JP2002180296A - Surface-treated steel sheet for battery case, battery case using the steel sheet and battery - Google Patents

Surface-treated steel sheet for battery case, battery case using the steel sheet and battery

Info

Publication number
JP2002180296A
JP2002180296A JP2000376713A JP2000376713A JP2002180296A JP 2002180296 A JP2002180296 A JP 2002180296A JP 2000376713 A JP2000376713 A JP 2000376713A JP 2000376713 A JP2000376713 A JP 2000376713A JP 2002180296 A JP2002180296 A JP 2002180296A
Authority
JP
Japan
Prior art keywords
graphite
nickel
battery case
plating
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000376713A
Other languages
Japanese (ja)
Inventor
Hitoshi Omura
等 大村
Tatsuo Tomomori
龍夫 友森
Hideo Omura
英雄 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2000376713A priority Critical patent/JP2002180296A/en
Publication of JP2002180296A publication Critical patent/JP2002180296A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

PROBLEM TO BE SOLVED: To provide a surface-treated steel sheet for battery case having improved electrical contact properties with an active substance of a battery positive electrode, a battery case, and a battery. SOLUTION: The surface-treated steel sheet is obtained by forming a graphite-dispersed nickel plated layer or a graphite-dispersed nickel alloy plated layer on the face to be used as the inside of a battery case, and next performing heat treatment thereto. As the alloy plated layer, a nickel-cobalt alloy, a nickel - cobalt - iron alloy, nickel - manganese alloy, a nickel - phosphorous alloy, a nickel - bismuth alloy or the like are suitable. Further, the battery case is obtained by subjecting the surface treated steel sheet to forming by deep drawing, DI(drawing and ironing) working or DTR(drawing thin and redraw) working. The battery uses the battery case.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は電池ケース用表面
処理鋼板、その表面処理鋼板を使用した電池ケース、及
びその電池ケースを使用した電池に関する。
The present invention relates to a surface-treated steel sheet for a battery case, a battery case using the surface-treated steel sheet, and a battery using the battery case.

【0002】[0002]

【従来の技術】シェーバ等の小型家電に使用されるアル
カリマンガン電池類の需要の増大とともにそれらの電池
の高性能化の要望も強くなってきている。電池の高性能
化は電池正極である缶内壁と電池内部に充填される正極
活物質との接触を良好にすることがまず第一で、そのた
めに特開昭58ー48361号公報又は特開昭59ー1
60959号公報の提案のように導電性に優れた塗料を
缶内面に塗布する方法、特開平6ー342653号公報
又は特開平8−287885号公報の塗膜密着性を改良
するためのプレコート鋼板等の提案、塗膜密着性を改良
する別の方法として缶内面に凸凹を設ける特開昭59ー
209056号公報の提案、缶内面に肌荒れやクラック
を生じさせるという特開平9ー306439号公報提案
の方法等の多くの提案がされている。
2. Description of the Related Art As the demand for alkaline manganese batteries used for small household appliances such as shavers has increased, the demand for higher performance of these batteries has also increased. The first step in improving the performance of a battery is to improve the contact between the inner wall of the can, which is the positive electrode of the battery, and the positive electrode active material filled inside the battery. For this reason, Japanese Patent Application Laid-Open No. 58-48361 or 59-1
No. 60959, a method of applying a paint having excellent conductivity to the inner surface of a can, a precoated steel sheet for improving coating film adhesion described in JP-A-6-342453 or JP-A-8-287885, etc. As another method for improving coating film adhesion, Japanese Patent Application Laid-Open No. Sho 59-209056, in which unevenness is provided on the inner surface of a can, and Japanese Patent Application Laid-Open No. Hei 9-306439, which causes skin roughness and cracks on the inner surface of a can. Many proposals have been made, such as methods.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の技術で
あるプレコート鋼板等の鋼板面に導電性に優れた塗料
(導電剤)を缶内面に塗布する方法は電池ケース成形時
に導電剤が剥離しやすく、缶成形後缶内面に塗布する方
法は工程の増加につながりコストアップとなる。本発明
はこれらの点を考慮して、正極活物質との接触性をさら
に良好にすることを目的として、高性能な表面処理鋼板
を提供しようとするものである。また、その表面処理鋼
板を用いた電池ケースを及び電池を提供することを目的
とする。
However, the prior art method of applying a paint (conductive agent) having excellent conductivity to the inner surface of a can, such as a pre-coated steel plate, on the inner surface of a can is a problem in that the conductive agent is peeled off during molding of a battery case. It is easy to apply the method to the inner surface of the can after molding, which leads to an increase in the number of steps and an increase in cost. The present invention has been made in view of these points, and aims to provide a high-performance surface-treated steel sheet for the purpose of further improving the contact with the positive electrode active material. It is another object of the present invention to provide a battery case and a battery using the surface-treated steel sheet.

【0004】[0004]

【課題を解決するための手段】請求項1の電池ケース用
表面処理鋼板は、電池ケース内側になる面に黒鉛を分散
した黒鉛分散ニッケルめっき層を形成し、次いで熱処理
してなることを特徴とする。請求項2の電池ケース用表
面処理鋼板は、電池ケース内側になる面に黒鉛を分散し
た黒鉛分散ニッケル合金めっき層を形成し、次いで熱処
理してなることを特徴とする。これらの表面処理鋼板に
おいては、合金めっき層が、ニッケル−コバルト合金、
ニッケル−コバルト−鉄合金、ニッケル−マンガン合
金、ニッケル−リン合金、又はニッケル−ビスマス合金
のいずれかであることが望ましい。これらの表面処理鋼
板においては、めっき層の下層に拡散層が形成されてい
ることが望ましい。これらの表面処理鋼板においては、
黒鉛含有率が0.1〜25重量%であることが望まし
い。請求項6の電池ケースは、上記の表面処理鋼板を用
いて、深絞り加工、DI加工又はDTR加工により成形
されたことを特徴とする。請求項7の電池は、請求項6
の電池ケースを使用したことを特徴とする。
The surface-treated steel sheet for a battery case according to the first aspect is characterized in that a graphite-dispersed nickel plating layer in which graphite is dispersed is formed on a surface inside the battery case, and then heat-treated. I do. The surface-treated steel sheet for a battery case according to claim 2 is characterized in that a graphite-dispersed nickel alloy plating layer in which graphite is dispersed is formed on a surface inside the battery case, and then heat-treated. In these surface-treated steel sheets, the alloy plating layer has a nickel-cobalt alloy,
It is desirable to use any of a nickel-cobalt-iron alloy, a nickel-manganese alloy, a nickel-phosphorus alloy, and a nickel-bismuth alloy. In these surface-treated steel sheets, it is desirable that a diffusion layer is formed below the plating layer. In these surface-treated steel sheets,
It is desirable that the graphite content is 0.1 to 25% by weight. The battery case according to claim 6 is characterized in that the surface-treated steel sheet is formed by deep drawing, DI processing or DTR processing. The battery according to claim 7 is a battery according to claim 6
The battery case is used.

【0005】[0005]

【発明の実施の形態】以下に、本発明の内容について詳
しく説明する。 [使用する鋼板]本発明に使用する鋼板としては普通鋼
の冷延鋼板、特に低炭素アルミキルド鋼連鋳材をベース
とするものが用いられる。また、炭素分が0.003w
t%以下の極低炭素鋼やこれにニオブ、チタン等の金属
を添加した非時効性鋼、あるいは3〜18wt%のクロ
ム分を含んだステンレス鋼板等も使用することができ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The contents of the present invention will be described below in detail. [Steel Plate Used] As the steel plate used in the present invention, a cold rolled steel plate of ordinary steel, particularly one based on a low carbon aluminum killed steel continuous cast material is used. The carbon content is 0.003w
Ultra-low carbon steel of t% or less, non-aging steel to which a metal such as niobium or titanium is added, or stainless steel plate containing 3 to 18 wt% of chromium can also be used.

【0006】[下地ニッケルめっき]本発明の電池ケー
ス用表面処理鋼板においては、黒鉛分散めっきのみでも
良いが、まず、鋼板上にニッケルめっきを施すことが望
ましい。このニッケルめっきを以下、下地ニッケルめっ
きという。下地ニッケルめっきの目的は、電池ケースを
成形した後においても充分な耐食性を確保するためであ
る。下地ニッケルめっきがない場合、黒鉛分散めっきの
厚みを厚くすることが必要である。下地ニッケルめっき
浴としては、ワット浴、スルファミン酸浴、ホウフッ化
物、塩化物浴等の通常のニッケルめっきに使用される浴
を本発明でも使用することができる。ニッケルめっきに
は電解めっきと無電解めっきがあり、無電解めっきも使
用することができるが、一般的に浴管理、めっき厚さの
コントロールが可能な電解めっきの方が使用し易い。電
解法による場合の電流密度は3〜80A/dmで、均
一なめっき層を得るために浴は空気を浴槽中に吹き込む
空気攪拌等を行うことが好ましい。また、浴のpHは
3.5〜5.5の酸性領域が好ましく、浴温度は40〜
70℃であることが好ましい。
[Undercoated Nickel Plating] In the surface-treated steel sheet for a battery case of the present invention, only graphite dispersion plating may be used, but first, it is desirable to apply nickel plating on the steel sheet. This nickel plating is hereinafter referred to as base nickel plating. The purpose of the base nickel plating is to ensure sufficient corrosion resistance even after the battery case is formed. If there is no underlying nickel plating, it is necessary to increase the thickness of the graphite dispersion plating. As the base nickel plating bath, a bath used for ordinary nickel plating, such as a Watt bath, a sulfamic acid bath, a borofluoride, or a chloride bath, can be used in the present invention. Nickel plating includes electrolytic plating and electroless plating, and electroless plating can also be used. In general, electrolytic plating that allows bath management and control of plating thickness is easier to use. The current density in the electrolytic method is 3 to 80 A / dm 2 , and the bath is preferably subjected to air stirring or the like in which air is blown into a bath tub in order to obtain a uniform plating layer. Further, the pH of the bath is preferably in an acidic region of 3.5 to 5.5, and the bath temperature is 40 to
Preferably it is 70 ° C.

【0007】本発明における下地ニッケルめっき処理と
しては有機添加剤を使用しない無光沢めっき、有機添加
剤を使用する半光沢めっき又は光沢めっきのいずれでも
使用可能である。
In the present invention, the base nickel plating treatment may be any of matte plating using no organic additive, semi-glossy plating using an organic additive, and bright plating.

【0008】この下地ニッケルめっきは鋼板の両面に形
成させることが耐食性確保の観点から好ましく、缶の内
面側のめっき層の厚さは3μm以下であることが好まし
い。3μmを超えると、経済的に不利である。缶外面側
のめっき層の厚さは1〜4μmとすることが好ましい。
1μm未満では、耐食性を充分確保できなく、また、4
μmを超えると経済的に不利である。内面側より外面皮
のめっき層をやや厚くする方が電池ケースの防錆効果上
好ましい。
[0008] The nickel base plating is preferably formed on both sides of the steel sheet from the viewpoint of ensuring corrosion resistance, and the thickness of the plating layer on the inner surface side of the can is preferably 3 µm or less. If it exceeds 3 μm, it is economically disadvantageous. The thickness of the plating layer on the outer surface of the can is preferably from 1 to 4 μm.
If it is less than 1 μm, sufficient corrosion resistance cannot be ensured.
If it exceeds μm, it is economically disadvantageous. It is preferable to make the plating layer of the outer skin slightly thicker than the inner side in view of the rust prevention effect of the battery case.

【0009】[黒鉛分散ニッケル(合金)めっき層の形
成]この黒鉛分散ニッケルめっき層は、電池ケース内壁
に相当する側に形成する。めっき浴は、ニッケルめっき
浴をベースとするか(黒鉛分散ニッケルめっき層が形成
される)、その他ニッケル以外の他の金属、例えばコバ
ルト、マンガン、鉄、リン、ビスマス等とニッケルから
なる合金浴をベースとして、その浴中に黒鉛を分散させ
た浴を使用して行う(黒鉛分散ニッケル合金めっき層が
形成される)。ただし、モリブデン、アンチモン、砒
素、クロム等の金属又は半金属は電池内部においてガス
を発生させる恐れがあるため、あるいは電圧降下させる
恐れがあるため、それらの金属類を含有する浴の使用は
避けるのが好ましい。優れた導電剤である黒鉛を分散さ
せためっき浴を使用することで、黒鉛がめっき層の生成
とともにめっき層中に分散共析させ、めっき層表面にも
露出点在させ、電池正極活物質との電気接触性の改良を
図ることができる。また、潤滑性を有する黒鉛が電池ケ
ース用鋼板上に存在することによって、電池ケースの成
形性も向上するという効果がある。
[Formation of graphite-dispersed nickel (alloy) plating layer] This graphite-dispersed nickel plating layer is formed on the side corresponding to the inner wall of the battery case. The plating bath may be based on a nickel plating bath (a graphite-dispersed nickel plating layer is formed) or an alloy bath composed of nickel other than nickel, such as cobalt, manganese, iron, phosphorus, bismuth, or the like. As the base, a bath in which graphite is dispersed in the bath is used (a graphite-dispersed nickel alloy plating layer is formed). However, metals or metalloids such as molybdenum, antimony, arsenic, and chromium may generate gas inside the battery or cause a voltage drop, so avoid using a bath containing such metals. Is preferred. By using a plating bath in which graphite, which is an excellent conductive agent, is dispersed, graphite is dispersed and co-deposited in the plating layer together with the formation of the plating layer, and is exposed and scattered on the plating layer surface, thereby forming a positive electrode active material for the battery. Can be improved. In addition, the presence of the lubricating graphite on the battery case steel sheet has the effect of improving the formability of the battery case.

【0010】本発明で使用する黒鉛は天然黒鉛又は人造
黒鉛のいずれでもよいが、50%累積径が10μm以下
の微粉砕黒鉛を使用するのが好ましい。また、50%累
積径が5μm以下の超微細黒鉛を使用することがさらに
好ましい。めっき層の厚さに比して、あまり粒度の大き
い黒鉛を用いた場合、付着した黒鉛が脱落しやすくなる
からである。また、黒鉛化カーボンブラックを使用する
ことも好ましい。黒鉛化カーボンブラックはカーボンブ
ラックの黒鉛化品で、その平均粒度は0.1μm前後又
はそれ以下と大変微細だからである。
The graphite used in the present invention may be either natural graphite or artificial graphite, but it is preferable to use finely ground graphite having a 50% cumulative diameter of 10 μm or less. Further, it is more preferable to use ultrafine graphite having a 50% cumulative diameter of 5 μm or less. This is because, when graphite having a very large particle size is used as compared with the thickness of the plating layer, the attached graphite tends to fall off. It is also preferable to use graphitized carbon black. Graphitized carbon black is a graphitized product of carbon black, and its average particle size is very fine, around 0.1 μm or less.

【0011】黒鉛は、表面が疎水性であるために、その
ままめっき浴中で攪拌しても分散させるのは容易ではな
い。そのため、界面活性剤(黒鉛分散剤)を使用して強
制分散させる。使用する黒鉛分散剤は、カチオン系、ア
ニオン系、ノニオン系、両性のいずれの種類も使用する
ことができるが、被めっき板である鋼板とめっき層の密
着性が良好で、かつ、めっき層の脆化現象が少ないとい
う点を考慮した場合には、アニオン系の界面活性剤を本
発明の黒鉛分散剤として使用するのが好ましく、アニオ
ン系界面活性剤の中でも、ベンゼンスルホン酸系又は硫
酸エステル系の活性剤、例えば硫酸アルキルソーダ、ド
デシルベンゼンスルホン酸ソーダ、αオレフィンスルホ
ン酸ソーダ、アルキルナフタレンスルホン酸ソーダ、2
スルホコハク酸ジアルキルソーダ等が、本発明の黒鉛分
散剤としてさらに好ましい。
[0011] Because graphite has a hydrophobic surface, it is not easy to disperse graphite even if it is stirred in a plating bath. Therefore, it is forcibly dispersed using a surfactant (a graphite dispersant). The graphite dispersant used can be any of cationic, anionic, nonionic and amphoteric types, but the adhesion between the steel plate to be plated and the plating layer is good, and the In view of the fact that the embrittlement phenomenon is small, it is preferable to use an anionic surfactant as the graphite dispersant of the present invention. Among the anionic surfactants, benzenesulfonic acid-based or sulfate-based surfactants are used. Activators such as alkyl sodium sulfate, sodium dodecylbenzene sulfonate, sodium α-olefin sulfonate, sodium alkylnaphthalene sulfonate,
Dialkyl sodium sulfosuccinate and the like are more preferred as the graphite dispersant of the present invention.

【0012】微細黒鉛のめっき液中への分散方法は、黒
鉛粉末と一定量の水で希釈した黒鉛分散剤とを混練し、
最後にホモジナイザー又は超音波洗浄機のような乳化混
合機を使用して分散状態にする。この場合、黒鉛粉を少
量のアルコール等で湿潤させておく方法も分散のために
は有効である。このように、十分に黒鉛が分散した後
に、めっき液中に攪拌しつつ添加していく。分散剤の配
合量は黒鉛に対して、0.5〜10wt%程度であるこ
とが好ましい。黒鉛の配合量は最終的にめっき液に対
し、1〜100g/Lの添加量となるように調節するこ
とが好ましい。1g/L未満の配合量では被膜中の黒鉛
含有率が少なすぎて電池ケースの接触性改良が不十分な
ためであり、一方100g/Lを超えるとめっき液の流
動性が悪化したり、黒鉛粉がめっき装置の周辺に付着し
て種々のトラブルが生じ易くなるためである。また、め
っき液中にも黒鉛粒子の凝集を抑制するため、予め分散
剤を2〜10ml/L程度添加しておく。
A method for dispersing fine graphite in a plating solution is to knead graphite powder and a graphite dispersant diluted with a certain amount of water,
Finally, the mixture is dispersed using an emulsifying mixer such as a homogenizer or an ultrasonic cleaner. In this case, a method of moistening the graphite powder with a small amount of alcohol or the like is also effective for dispersion. After the graphite is sufficiently dispersed, it is added to the plating solution with stirring. It is preferable that the compounding amount of the dispersant is about 0.5 to 10% by weight based on graphite. It is preferable to adjust the blending amount of graphite so that the amount of the graphite finally becomes 1 to 100 g / L with respect to the plating solution. If the blending amount is less than 1 g / L, the graphite content in the coating is too small to improve the contact property of the battery case. On the other hand, if it exceeds 100 g / L, the fluidity of the plating solution deteriorates, This is because the powder is likely to adhere to the periphery of the plating apparatus and cause various troubles. In order to suppress the aggregation of the graphite particles in the plating solution, a dispersant is added in advance at about 2 to 10 ml / L.

【0013】黒鉛粉を分散させた分散めっき浴中のめっ
き液は、循環タンクのポンプを使用してめっき液を電解
槽の下部に循環させるとともに、電解槽下部に設けた細
孔から空気を吹き込んで攪拌する両方の方法で、黒鉛粉
をめっき浴中に常に分散状態にしておくことが好まし
い。分散状態を良好に維持することができれば、含有率
で0.1〜25%の黒鉛をめっき層中に分散させること
ができる。中でも、1〜10%程度の分散させることが
好ましい。なお、黒鉛分散めっき層の形成において、黒
鉛の含有率を向上させようとすれば電流密度を低くした
方が好ましい。黒鉛分散めっき層の厚みは0.1〜3μ
mの範囲が好ましい。0.1μm未満では、電池性能の
向上は認められず、3μmを超えると経済性の点で好ま
しくない。
The plating solution in the dispersion plating bath in which the graphite powder is dispersed is circulated to the lower portion of the electrolytic cell using a pump of a circulation tank, and air is blown from pores provided in the lower portion of the electrolytic cell. It is preferred that the graphite powder is always dispersed in the plating bath by both methods of stirring. If the dispersion state can be maintained well, graphite having a content of 0.1 to 25% can be dispersed in the plating layer. Above all, it is preferable to disperse about 1 to 10%. In the formation of the graphite dispersed plating layer, it is preferable to lower the current density in order to increase the graphite content. The thickness of the graphite dispersed plating layer is 0.1 to 3μ.
The range of m is preferred. If the thickness is less than 0.1 μm, no improvement in battery performance is observed.

【0014】[拡散層の形成]黒鉛分散ニッケルめっき
または黒鉛分散ニッケル合金めっき後、熱処理を施すこ
とが好ましい。この拡散層形成によって、この拡散処理
によって、鋼鈑を再結晶化させるため、電池ケースに加
工しやすくなる。また、この熱処理によって、黒鉛分散
ニッケルめっき層または黒鉛分散ニッケル合金めっき層
の黒鉛が表層に濃化し、ニッケルまたはニッケル合金を
部分的に被覆すると推定される。この濃化した黒鉛が電
池ケースに加工する際に、潤滑剤として働くだけでな
く、ニッケルまたはニッケル合金の酸化を防止する効果
があると推定される。さらに、ニッケルめっき層、黒鉛
分散ニッケルめっき層または黒鉛分散ニッケル合金めっ
き層の剥離防止に効果がある。
[Formation of Diffusion Layer] It is preferable to perform a heat treatment after the graphite-dispersed nickel plating or the graphite-dispersed nickel alloy plating. Due to the formation of the diffusion layer, the steel plate is recrystallized by the diffusion treatment, and thus the battery case is easily processed. It is also presumed that this heat treatment causes the graphite in the graphite-dispersed nickel plating layer or the graphite-dispersed nickel alloy plating layer to concentrate on the surface layer and partially cover the nickel or nickel alloy. It is presumed that this concentrated graphite not only functions as a lubricant when working into a battery case, but also has an effect of preventing oxidation of nickel or a nickel alloy. Further, it is effective in preventing the nickel plating layer, the graphite-dispersed nickel plating layer or the graphite-dispersed nickel alloy plating layer from peeling off.

【0015】熱処理は非酸化性又は還元性保護ガス下で
行うことが拡散層表面に酸化膜形成を防止する点で好ま
しい。非酸化性のガスとしてはいわゆる不活性ガスであ
る窒素、アルゴン、ヘリウムなどが好適に使用され、一
方、還元性ガスとしては水素、アンモニアクラッキング
ガス(水素75%、窒素25%)などが好適に使用され
る。熱処理方法としては箱型焼鈍法と連続焼鈍法がある
がいずれの方法によってもよい。箱型焼鈍の場合、熱処
理温度は500℃以上が好ましく、また処理時間は、連
続焼鈍法では短時間処理でよく箱型焼鈍法では比較的長
時間を要する。一般的には、連続焼鈍では30秒から2
分程度、箱型焼鈍では6時間から15時間程度が好まし
い。拡散層形成後、調質圧延を行っても良い。また、調
質圧延の替わりに、レベラー工程を通しても良い。
The heat treatment is preferably performed under a non-oxidizing or reducing protective gas from the viewpoint of preventing formation of an oxide film on the surface of the diffusion layer. As a non-oxidizing gas, a so-called inert gas such as nitrogen, argon or helium is preferably used, while as a reducing gas, hydrogen or an ammonia cracking gas (75% hydrogen, 25% nitrogen) is preferably used. used. As the heat treatment method, there are a box-type annealing method and a continuous annealing method, and any of these methods may be used. In the case of box-type annealing, the heat treatment temperature is preferably 500 ° C. or higher, and the processing time is short in the continuous annealing method and relatively long in the box-type annealing method. Generally, 30 seconds to 2 seconds for continuous annealing
Minutes, and about 6 to 15 hours for box annealing is preferable. After forming the diffusion layer, temper rolling may be performed. Further, instead of the temper rolling, a leveler process may be performed.

【0016】[電池ケースの形成]電池ケースの成形
は、深絞り成形法、いわゆるDI(drawing a
ndironing)成形法又はDTR(drawin
g thin and redraw)成形法によるこ
とが好ましい。DI成形法による場合は、まず表面処理
した薄肉鋼板であってその径が電池缶外径よりわずかに
大きく、かつ浅い絞りカップ素材を用意し、これを順次
しごき絞り径が小さくなるよう、同軸上に多段配置され
た複数個のしごきダイスへ供給し、最終段の絞りしごき
径が電池缶外径に該当するダイスに先端にアールが施さ
れているパンチで加圧して、くびれを生じないようにし
て連続的に通過させる。
[Formation of Battery Case] The battery case is formed by a deep drawing method, so-called DI (drawing a).
ndironing) molding method or DTR (drawin)
g thin and redraw). In the case of the DI forming method, first, a thin-walled steel plate having a surface treated and whose diameter is slightly larger than the outer diameter of the battery can and a shallow drawing cup material is prepared. The iron is supplied to a plurality of ironing dies arranged in multiple stages, and the die at the final stage is pressed with a punch with a radius at the tip of the die corresponding to the outer diameter of the battery can to prevent constriction. Through it continuously.

【0017】DTR成形法による場合もDI成形法と同
様に浅い絞りカップを用意しておいて、このカップを再
絞り成形し、最初の浅い絞りカップより小径でかつ高さ
の高い再絞りカップに順次成形していく。即ち再絞り成
形はカップ内に挿入されたリング状の押さえ部材とその
下部の再絞りダイスで保持されていて、再絞りポンチが
ダイスと同軸上に抑え部材内を往復運動できるように配
置されていて、径の異なる再絞りポンチを順次使用する
ことになる。もっとも必要ならば他の成形法で電池ケー
スを作製してもよい。
In the case of the DTR molding method, a shallow drawing cup is prepared similarly to the DI molding method, and the cup is redrawn and formed into a redrawn cup having a smaller diameter and a higher height than the first shallow drawing cup. It is formed sequentially. That is, the redrawing is held by a ring-shaped holding member inserted into the cup and a redrawing die below the ring, and the redrawing punch is arranged coaxially with the die and arranged to be able to reciprocate in the member. Therefore, the re-drawing punches having different diameters are used sequentially. If necessary, the battery case may be manufactured by another molding method.

【0018】[アルカリマンガン電池の作製]アルカリ
マンガン電池の正極合剤は二酸化マンガン、炭素粉及び
アルカリ水溶液を混合して作製する。二酸化マンガンに
は高純度の電解二酸化マンガンを使用することが好まし
い。黒鉛粉に要求される性質は、高純度かつ化学的に安
定していること、導電性、合剤成形性及び保液性が良好
であることで、これらの要求を満たす黒鉛粉としては、
例えばアセチレンブラック、各種のカーボンブラック変
性品、例えば黒鉛化カーボンブラック、合成黒鉛粉など
がある。正極合剤を製造する場合には電解二酸化マンガ
ンと黒鉛粉を重量比で好適には20:1〜10:1の割
合で混合し、これに水酸化カリウム水溶液をさらに追加
して適当な方法で混練して正極合剤とする。
[Preparation of Alkaline Manganese Battery] A positive electrode mixture of an alkaline manganese battery is prepared by mixing manganese dioxide, carbon powder and an aqueous alkaline solution. It is preferable to use high-purity electrolytic manganese dioxide for manganese dioxide. The properties required of graphite powders are that they are highly pure and chemically stable, and that they have good conductivity, mixability and liquid retention properties.
For example, there are acetylene black, various carbon black modified products such as graphitized carbon black, and synthetic graphite powder. In the case of producing a positive electrode mixture, electrolytic manganese dioxide and graphite powder are mixed at a weight ratio of preferably 20: 1 to 10: 1, and an aqueous potassium hydroxide solution is further added thereto by an appropriate method. Kneaded to form a positive electrode mixture.

【0019】また、必要であれば、電池ケースと正極合
剤間の導電性を良好にするために、黒鉛粉、熱硬化性樹
脂、メチルエチルケトン等の有機溶剤の混合物を電池ケ
ース内面にスプレー等の方法で塗布し、乾燥しておくこ
とも好ましい。次に、先の合剤を金型中で加圧プレスし
て所定のドーナツ形状の合剤ペレットとし、電池内部に
挿入、圧着する。また負極集電棒をスポット溶接した負
極板を電池ケースに装着するために、電池ケース開口端
の下部の所定位置をネックイン加工しておく。
If necessary, a mixture of graphite powder, a thermosetting resin, and an organic solvent such as methyl ethyl ketone may be sprayed on the inner surface of the battery case to improve the conductivity between the battery case and the positive electrode mixture. It is also preferable to apply by a method and dry. Next, the mixture is press-pressed in a mold to form a predetermined donut-shaped mixture pellet, inserted into the battery, and pressed. Further, in order to mount the negative electrode plate on which the negative electrode current collector rod is spot-welded to the battery case, a predetermined position below the opening end of the battery case is neck-in processed.

【0020】電池に使用するセパレータは負極活物質と
正極活物質の粒子の相互移動を防止し、負極生成物をセ
パレータ内に生成させないようにして電池の内部短絡、
自己放電を防止することを目的とするもので、耐アルカ
リ性を有する繊維質若しくは不織布が使用される。材質
としては、例えばビニロン、ポリオレフィン、ポリアミ
ド等の合成樹脂品又はαセルロース成分含有量が98%
以上のリンターパルプ、マーセル化木材パルプあるいは
再生セルロース等を使用することができる。
The separator used in the battery prevents the particles of the negative electrode active material and the positive electrode active material from reciprocally moving and prevents the negative electrode product from being generated in the separator, thereby causing a short circuit inside the battery.
The purpose is to prevent self-discharge, and a fibrous or nonwoven fabric having alkali resistance is used. As the material, for example, synthetic resin products such as vinylon, polyolefin, and polyamide, or the content of α-cellulose component is 98%.
The above linter pulp, mercerized wood pulp, regenerated cellulose or the like can be used.

【0021】これらの繊維質セパレータを電池ケースに
圧着した正極合剤ペレット内周に沿って挿入し、亜鉛粒
と酸化亜鉛を飽和させた水酸化カリウムからなる負極ゲ
ルを電池ケース内に挿入する。この場合に使用する亜鉛
粒としては中心径が200μm前後のアトマイズ粉末が
好ましく、またゲル材としてはでんぷん、セルロース誘
導体、ポリアクリレート等を用いることができる。これ
を電池ケース内に挿入した後、さらに負極体に絶縁体の
ガスケットを装着し、かしめ加工してアルカリマンガン
電池とする。
The fibrous separator is inserted along the inner periphery of the positive electrode mixture pellet pressed into the battery case, and the negative electrode gel composed of potassium hydroxide saturated with zinc particles and zinc oxide is inserted into the battery case. The zinc particles used in this case are preferably atomized powder having a center diameter of about 200 μm. As the gel material, starch, cellulose derivative, polyacrylate and the like can be used. After inserting this into a battery case, an insulator gasket is further attached to the negative electrode body, and caulking is performed to obtain an alkaline manganese battery.

【0022】[0022]

【実施例】以下に、本発明を実施例に基づいてさらに説
明する。 [実施例1]厚さ0.4mmであって、鋼板の成分が、
C:0.03wt%、Mn:0.20wt%、Si:
0.01wt%、P:0.011wt%、S:0.06
wt%、Al:0.035wt%、N:0.0025w
t%である熱延鋼板を、冷間圧延、焼鈍、調質圧延した
ものをめっき原板として使用した。そのめっき原板をN
aOH水溶液(30g/L)を用いて、75℃で陽極処
理(5A/dm×10秒)及び陰極処理(5A/dm
×10秒)し、アルカリ脱脂した。次いで、硫酸水溶
液(50g/L)に約15秒間浸漬して酸洗し、さらに
下記の条件でワット浴により空気攪拌しつつ、下地ニッ
ケルめっきを行った。なお、陽極にはポリプロピレン製
バッグを装着したチタンバスケットにニッケルペレット
を挿入したものを使用した。めっき時間は、電池ケース
内側になる面のめっき厚さを3.0μmに、また電池ケ
ース外側になる面のめっき厚さを1.9μmになるよう
に調節した。
EXAMPLES The present invention will be further described below with reference to examples. [Example 1] The thickness of a steel sheet is 0.4 mm,
C: 0.03 wt%, Mn: 0.20 wt%, Si:
0.01 wt%, P: 0.011 wt%, S: 0.06
wt%, Al: 0.035 wt%, N: 0.0025 w
A hot-rolled steel sheet having t% was cold-rolled, annealed, and temper-rolled, and used as a plating base sheet. The plating base plate is N
Anodizing (5 A / dm 2 × 10 seconds) and cathodic treatment (5 A / dm 2 ) at 75 ° C. using an aOH aqueous solution (30 g / L)
(2 × 10 seconds), followed by alkaline degreasing. Next, it was immersed in a sulfuric acid aqueous solution (50 g / L) for about 15 seconds to perform acid washing, and then nickel plating was performed on the base under agitation with a Watt bath under the following conditions. The anode used was one in which nickel pellets were inserted into a titanium basket equipped with a polypropylene bag. The plating time was adjusted so that the plating thickness on the surface inside the battery case was 3.0 μm and the plating thickness on the surface outside the battery case was 1.9 μm.

【0023】[下地ニッケルめっきの条件] [浴組成] 硫酸ニッケル 300g/L 塩化ニッケル 45g/L ほう酸 45g/L [めっき条件] 浴温度 55±2℃ pH 4.2±0.2 電流密度 20A/dm [Conditions of Nickel Underlayer] [Bath Composition] Nickel sulfate 300 g / L Nickel chloride 45 g / L Boric acid 45 g / L [Plating conditions] Bath temperature 55 ± 2 ° C. pH 4.2 ± 0.2 Current density 20 A / dm 2

【0024】[黒鉛分散ニッケルめっき]その後、下記の
条件で黒鉛分散ニッケルめっき浴を使用して、黒鉛分散
ニッケルめっきを行った。この黒鉛分散ニッケルめっき
浴についても、空気攪拌を行い、また陽極条件は前記、
下地ニッケルめっきの場合に同じである。この黒鉛分散
ニッケルめっき処理において、めっき時間、めっき浴中
の黒鉛添加量を変えてめっき厚さ及びめっき層中に分散
する黒鉛含有率を変化させた。
[Graphite-dispersed nickel plating] Thereafter, graphite-dispersed nickel plating was performed using a graphite-dispersed nickel plating bath under the following conditions. This graphite-dispersed nickel plating bath was also agitated with air, and the anode conditions were as described above.
It is the same in the case of base nickel plating. In this graphite-dispersed nickel plating treatment, the plating time and the amount of graphite added to the plating bath were changed to change the plating thickness and the graphite content dispersed in the plating layer.

【0025】[黒鉛分散ニッケルめっき条件] [浴組成] 硫酸ニッケル 300g/L 塩化ニッケル 45g/L ほう酸 45g/L 黒鉛 1g/L 分散剤 5ml/L ピットレス剤(ラウリル硫酸ソーダ) 2.0ml/L [めっき条件] 浴温度 60±2℃ pH 4.3±0.2 電流密度 15A/dm [Graphic dispersion nickel plating conditions] [Bath composition] Nickel sulfate 300 g / L Nickel chloride 45 g / L boric acid 45 g / L Graphite 1 g / L Dispersant 5 ml / L Pitless agent (sodium lauryl sulfate) 2.0 ml / L [ Plating conditions] Bath temperature 60 ± 2 ° C. pH 4.3 ± 0.2 Current density 15 A / dm 2

【0026】[黒鉛分散めっき浴の作製法]めっき浴中
に黒鉛を分散させる方法は以下のようにした。まず、市
販のベンゼンスルホン酸ソーダ(黒鉛分散剤)4mlを
1Lの脱塩水に希釈した希釈液をつくり、その希釈液中
に微粉黒鉛1Kgを混合した(混合液)。そして、その
混合液の流動性を良くするため、さらに脱塩水を1L追
加添加し、超音波分散機を使用して、十分攪拌混合した
希釈混合液を作成した。この希釈混合液を上記めっき浴
中に添加攪拌し、黒鉛分散めっき浴を作製した。微粉黒
鉛としては、日本黒鉛工業株式会社製黒鉛粉末ASSP
50%累積径6μmを使用した。
[Production Method of Graphite Dispersion Plating Bath] The method of dispersing graphite in the plating bath was as follows. First, a diluted solution was prepared by diluting 4 ml of commercially available sodium benzenesulfonate (graphite dispersant) in 1 L of demineralized water, and 1 kg of fine graphite was mixed into the diluted solution (mixed solution). Then, in order to improve the fluidity of the mixed solution, 1 L of demineralized water was further added, and a diluted mixed solution was sufficiently stirred and mixed using an ultrasonic disperser. This diluted mixed solution was added to the above plating bath and stirred to prepare a graphite dispersion plating bath. As the fine graphite, graphite powder ASSP manufactured by Nippon Graphite Industries, Ltd.
A 50% cumulative diameter of 6 μm was used.

【0027】黒鉛分散ニッケルめっきの終了した鋼板は
500℃で6時間、窒素:94%、水素:6%の雰囲気
で拡散処理を行った。処理後のニッケル−鉄拡散層の厚
さはグロー放電発光分光分析法で確認した結果、2.6
μmであった。 [調質圧延]熱拡散処理の終了した鋼板は、ストレッチャ
ーストレイン発生防止のため、その後調質圧延を行っ
た。
The steel sheet having been subjected to the graphite dispersion nickel plating was subjected to a diffusion treatment at 500 ° C. for 6 hours in an atmosphere of 94% nitrogen and 6% hydrogen. The thickness of the nickel-iron diffusion layer after the treatment was confirmed by glow discharge emission spectroscopy.
μm. [Temperature Rolling] The steel sheet subjected to the heat diffusion treatment was then subjected to temper rolling in order to prevent the occurrence of stretcher strain.

【0028】[電池ケースの形成]次に、このめっき鋼
板を使用してDI成形法によって電池ケースを作製し
た。直径20.5mmのカッピングの後、DI成形機で
リドロー及び2段階のしごき成形を行って、外径13.
8mm、ケース壁0.20mm、高さ56mmに成形し
た。この後、最終的に上部をトリミングして高さ49.
3mmのLRー6型電池ケースを作製した。ケース内面
を電子顕微鏡で拡大観察したところ、黒鉛が点状に分散
付着していることを確認した。さらに、赤外線吸収法
(JIS G 1211)によりめっき皮膜中の黒鉛含
有率を測定した。めっき浴中への黒鉛添加量と、黒鉛分
散めっき層中の黒鉛含有率との関係について調査した結
果、めっき液中への分散剤添加量を一定にした場合、こ
れらの間にはほぼ正比例の関係が存在することを確認し
た。すなわち、めっき浴中の黒鉛添加量5〜100g/
Lに対し、表面処理鋼板の黒鉛含有率は1〜25%とな
った。なお、分散剤添加量が10ml/Lまでは、該添
加量と黒鉛含有量とは比例関係にある。それ以上は飽和
に達する。
[Formation of Battery Case] Next, a battery case was manufactured using the plated steel sheet by a DI molding method. After cupping with a diameter of 20.5 mm, redrawing and two-stage ironing were performed with a DI molding machine, and the outer diameter was 13.
It was molded to 8 mm, the case wall 0.20 mm, and the height 56 mm. After this, the upper part is finally trimmed to a height of 49.
A 3 mm LR-6 type battery case was produced. When the inner surface of the case was observed under magnification with an electron microscope, it was confirmed that graphite was dispersed and attached in a dot-like manner. Further, the graphite content in the plating film was measured by an infrared absorption method (JIS G 1211). As a result of investigating the relationship between the amount of graphite added to the plating bath and the graphite content in the graphite-dispersed plating layer, when the amount of the dispersant added to the plating solution was kept constant, there was almost a direct proportionality between them. Confirmed that the relationship exists. That is, the amount of graphite added in the plating bath is 5 to 100 g /
With respect to L, the graphite content of the surface-treated steel sheet was 1 to 25%. It should be noted that up to a dispersant addition amount of 10 ml / L, there is a proportional relationship between the addition amount and the graphite content. After that, saturation is reached.

【0029】[電池の作製]この電池ケースに正極活物
質を充填して以下のようにして電池を作製して電池性能
を測定した。まず、二酸化マンガンと黒鉛を重量比で1
0:1の割合で採取し、これに8mol水酸化カリウム
を混合して正極合剤を作製する。一方、黒鉛80重量部
と熱硬化性エポキシ樹脂20重量部と混合物をメチルエ
チルケトンで希釈して、この希釈液を電池ケース内面に
エアスプレーして150℃で15分加熱乾燥する。先の
正極合剤を金型中で加圧プレスして所定のドーナツ形状
の合剤ペレットとし、電池内部に挿入、圧着した。また
負極集電棒をスポット溶接した負極板を電池ケースに装
着するために、電池ケース開口端の下部の所定位置をネ
ックイン加工した。
[Preparation of Battery] The battery case was filled with a positive electrode active material, and a battery was prepared as follows, and the battery performance was measured. First, manganese dioxide and graphite were added in a weight ratio of 1%.
A sample is collected at a ratio of 0: 1, and 8 mol of potassium hydroxide is mixed therewith to prepare a positive electrode mixture. On the other hand, a mixture of 80 parts by weight of graphite, 20 parts by weight of a thermosetting epoxy resin and methyl ethyl ketone is diluted, and the diluted liquid is air-sprayed on the inner surface of the battery case and dried by heating at 150 ° C. for 15 minutes. The positive electrode mixture was press-pressed in a mold to form a predetermined donut-shaped mixture pellet, which was inserted into the battery and crimped. In order to mount the negative electrode plate on which the negative electrode current collector rod was spot-welded to the battery case, a predetermined position below the opening end of the battery case was neck-in processed.

【0030】次いで、ビニロン製不織布からなるセパレ
ータを電池ケースに圧着したペレットの内周に沿って挿
入し、亜鉛粒と酸化亜鉛を飽和させた水酸化カリウムか
らなる負極ゲルを電池ケース内に挿入した。さらに負極
体に絶縁体のガスケットを装着し、これを電池ケース内
に挿入した後、さらにかしめ加工してアルカリマンガン
乾電池の完成品を作製した。このようにして作製したア
ルカリマンガン乾電池を60℃で20日間保存した後、
内部抵抗、短絡電流値及び0.9Vに達する間での連続
放電時間(分)を測定した。結果を表2に示した。
Next, a separator made of vinylon non-woven fabric was inserted along the inner periphery of the pellet pressed into the battery case, and a negative electrode gel made of potassium hydroxide saturated with zinc particles and zinc oxide was inserted into the battery case. . Further, an insulator gasket was attached to the negative electrode body, inserted into a battery case, and then caulked to produce a completed alkaline manganese dry battery. After storing the alkaline manganese dry battery thus manufactured at 60 ° C. for 20 days,
The internal resistance, the short-circuit current value, and the continuous discharge time (min) until reaching 0.9 V were measured. The results are shown in Table 2.

【0031】[実施例2〜6]実施例1と同一の条件
で、下地ニッケルめっき層の厚さ、黒鉛分散ニッケルめ
っき層の厚さ、分散剤添加量及び黒鉛含有率を変えた表
面処理鋼板を何種類か作製した。また、この処理鋼板を
使用して、電池ケースをプレス成形し、次いで電池を作
製して電池特性を測定した結果を表2にまとめた。
[Examples 2 to 6] Under the same conditions as in Example 1, a surface-treated steel sheet in which the thickness of the base nickel plating layer, the thickness of the graphite-dispersed nickel plating layer, the amount of the dispersant added, and the graphite content were changed Were produced in several types. Also, using this treated steel sheet, a battery case was press-formed, then a battery was prepared and the battery characteristics were measured. Table 2 summarizes the results.

【0032】[実施例7]下記の鋼板成分を有する、厚
さ0.25mmの極低炭素アルミキルド冷延鋼板をめっ
き原板として用いて、脱脂、酸洗、下地ニッケルめっき
を行った。 C:0.003wt%、Mn:0.19wt%、Si:
0.01wt%、P:0.011wt%、S:0.06
wt%、Al:0.035wt%、N:0.0021w
t%、Nb:0.002wt% 下地ニッケルめっき後、下記条件で黒鉛を分散させたニ
ッケル−コバルト−鉄合金めっきを行った。このめっき
浴についても、空気攪拌を行い、また条件は前記下地ニ
ッケルめっきの場合に同じである。また黒鉛の分散方法
は実施例1と同様である。
[Example 7] Degreasing, pickling, and nickel base plating were performed using a 0.25 mm-thick ultra-low carbon aluminum killed cold-rolled steel sheet having the following steel sheet components as a plating base sheet. C: 0.003 wt%, Mn: 0.19 wt%, Si:
0.01 wt%, P: 0.011 wt%, S: 0.06
wt%, Al: 0.035 wt%, N: 0.0021 w
t%, Nb: 0.002 wt% After the base nickel plating, nickel-cobalt-iron alloy plating in which graphite was dispersed was performed under the following conditions. Also in this plating bath, air stirring is performed, and the conditions are the same as in the case of the base nickel plating. The method of dispersing the graphite is the same as in Example 1.

【0033】[浴組成] 硫酸ニッケル 300g/L 塩化ニッケル 45g/L ほう酸 45g/L 硫酸コバルト 5g/L 硫酸第二鉄 5g/L 黒鉛 30g/L 分散剤 5ml/L [めっき条件] 浴温度 60±2℃ pH 4.3±0.2 電流密度 15A/dm [Bath composition] Nickel sulfate 300 g / L Nickel chloride 45 g / L Boric acid 45 g / L Cobalt sulfate 5 g / L Ferric sulfate 5 g / L Graphite 30 g / L Dispersant 5 ml / L [Plating conditions] Bath temperature 60 ± 2 ° C. pH 4.3 ± 0.2 Current density 15 A / dm 2

【0034】この黒鉛分散合金めっきにより、コバルト
含有率が2.3%、鉄含有率が1%、黒鉛含有率が7%
の黒鉛分散ニッケル合金めっき層が得られた。黒鉛分散
ニッケルーコバルトー鉄合金めっき後、連続焼鈍炉で鋼
の再結晶焼鈍とニッケルめっき層の拡散処理を同時に行
った。拡散処理条件は、実施例1と同じの雰囲気ガス条
件で、800℃、1分とした。グロー放電発光分光分析
法で確認した、鉄−ニッケル拡散層の厚さは2.8μm
であった。拡散処理後、レベラーを行った。 [電池ケースの形成]次に、このめっき鋼板を使用して
深絞り成形法によって電池ケースを作製した。ブランク
径57mmのカッピングの後、数回の絞り再絞りの成形
により、外径13.8mm、ケース壁0.20mm、高
さ56mmに成形した。この後、最終的に上部をトリミ
ングして高さ49.3mmのLRー6型電池ケースを作
製した。次いで電池を作製して電池特性を測定した結果
を表2にまとめた。
By this graphite dispersed alloy plating, the cobalt content is 2.3%, the iron content is 1%, and the graphite content is 7%.
Was obtained. After the graphite-dispersed nickel-cobalt-iron alloy plating, recrystallization annealing of the steel and diffusion treatment of the nickel plating layer were simultaneously performed in a continuous annealing furnace. The diffusion treatment was performed at 800 ° C. for 1 minute under the same atmosphere gas conditions as in Example 1. The thickness of the iron-nickel diffusion layer confirmed by glow discharge emission spectroscopy was 2.8 μm.
Met. After the diffusion treatment, a leveler was performed. [Formation of Battery Case] Next, a battery case was manufactured by using this plated steel sheet by a deep drawing method. After cupping with a blank diameter of 57 mm, it was formed into an outer diameter of 13.8 mm, a case wall of 0.20 mm, and a height of 56 mm by several times of drawing and drawing. Thereafter, the upper portion was finally trimmed to produce an LR-6 type battery case having a height of 49.3 mm. Next, the battery was fabricated and the battery characteristics were measured. The results are shown in Table 2.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[実施例8]実施例1と同様に、厚さ0.
4mmのめっき原板を使用して、脱脂、酸洗、下地ニッ
ケルめっきを行った。下地ニッケルめっき後、下記条件
で黒鉛を分散させたニッケル−マンガン合金めっきを行
った。このめっき浴についても、空気攪拌を行い、また
陽極条件は前記、下地ニッケルめっきの場合に同じであ
る。また黒鉛の分散方法は実施例1と同様である。
[Embodiment 8] As in the case of the embodiment 1, the thickness is 0.1 mm.
Using a 4 mm plating original plate, degreasing, pickling, and nickel plating for the base were performed. After the base nickel plating, nickel-manganese alloy plating in which graphite was dispersed was performed under the following conditions. Also in this plating bath, air agitation is performed, and the anode conditions are the same as in the case of the above-described nickel plating. The method of dispersing the graphite is the same as in Example 1.

【0038】[浴組成] スルファミン酸ニッケル 280g/L 塩化ニッケル 5g/L ほう酸 33g/L 硫酸マンガン 15g/L 黒鉛 40g/L 分散剤 10ml/L ピットレス剤 2.0ml/L [めっき条件] 浴温度 60±2℃ pH 4.0±0.2 電流密度 10A/dm [Bath composition] Nickel sulfamate 280 g / L Nickel chloride 5 g / L Boric acid 33 g / L Manganese sulfate 15 g / L Graphite 40 g / L Dispersant 10 ml / L Pitless agent 2.0 ml / L [Plating conditions] Bath temperature 60 ± 2 ° C pH 4.0 ± 0.2 Current density 10A / dm 2

【0039】この黒鉛分散めっきにより、マンガン含有
率が0.7%、黒鉛含有率が10%の黒鉛分散ニッケル
合金めっき層が得られた。黒鉛分散ニッケル合金めっき
後、拡散加熱処理を行い、更に調質圧延を行った。次
に、このめっき鋼板を使用して実施例1と同様にDI成
形法によって電池ケースを作製した。次いで電池を作製
して電池特性を測定した結果を表2にまとめた。
By this graphite dispersed plating, a graphite dispersed nickel alloy plating layer having a manganese content of 0.7% and a graphite content of 10% was obtained. After the graphite-dispersed nickel alloy plating, diffusion heat treatment was performed, and temper rolling was further performed. Next, a battery case was manufactured using the plated steel sheet by the DI molding method in the same manner as in Example 1. Next, the battery was fabricated and the battery characteristics were measured. The results are shown in Table 2.

【0040】[実施例9]実施例1と同様に、厚さ0.
25mmのめっき原板を使用して、脱脂、酸洗、下地ニ
ッケルめっきを行った。下地ニッケルめっき後、下記条
件で黒鉛を分散させたニッケル−リン合金めっきを行っ
た。このめっき浴についても、空気攪拌を行い、また陽
極条件は前記、下地ニッケルめっきの場合に同じであ
る。また黒鉛の分散方法は実施例1と同様である。
[Embodiment 9] In the same manner as in the embodiment 1, the thickness is set to 0.1 mm.
Degreasing, pickling and base nickel plating were performed using a 25 mm plating base plate. After the base nickel plating, nickel-phosphorus alloy plating in which graphite was dispersed was performed under the following conditions. Also in this plating bath, air agitation is performed, and the anode conditions are the same as in the case of the above-described nickel plating. The method of dispersing the graphite is the same as in Example 1.

【0041】[浴組成] 硫酸ニッケル 280g/L 塩化ニッケル 45g/L ほう酸 45g/L 亜リン酸 5g/L 黒鉛 15g/L 分散剤 4ml/L [めっき条件] 浴温度 65±2℃ pH 1.2±0.2 電流密度 15A/dm [Bath composition] Nickel sulfate 280 g / L Nickel chloride 45 g / L Boric acid 45 g / L Phosphorous acid 5 g / L Graphite 15 g / L Dispersant 4 ml / L [Plating conditions] Bath temperature 65 ± 2 ° C. pH 1.2 ± 0.2 Current density 15A / dm 2

【0042】この黒鉛分散複合めっきにより、リン含有
率が2%、黒鉛含有率が3%の黒鉛分散ニッケル合金め
っき層が得られた。黒鉛分散ニッケル合金めっき後、拡
散加熱処理を行い、調質圧延した。 [電池ケースの形成]次に、このめっき鋼板を使用して
DTR成形法によって電池ケースを作製した。ブランク
径58mmのカッピングの後、数回の絞り再絞りの成形
により、外径13.8mm、ケース壁0.20mm、高
さ49.3mmのLRー6型電池ケースを作製した。
次いで電池を作製して電池特性を測定した結果を表2に
まとめた。
By this graphite-dispersed composite plating, a graphite-dispersed nickel alloy plating layer having a phosphorus content of 2% and a graphite content of 3% was obtained. After the graphite-dispersed nickel alloy plating, diffusion heat treatment was performed, and temper rolling was performed. [Formation of Battery Case] Next, a battery case was produced by a DTR molding method using the plated steel sheet. After cupping with a blank diameter of 58 mm, an LR-6 type battery case having an outer diameter of 13.8 mm, a case wall of 0.20 mm, and a height of 49.3 mm was produced by forming several times of drawing and redrawing.
Next, the battery was fabricated and the battery characteristics were measured. The results are shown in Table 2.

【0043】[実施例10]実施例7と同様に、厚さ
0.25mmのめっき原板を使用して、脱脂、酸洗、下
地ニッケルめっきを行った。下地ニッケルめっき後、下
記条件で黒鉛を分散させたニッケル−ビスマス合金めっ
きを行った。このめっき浴についても、空気攪拌を行
い、また陽極条件は前記、下地ニッケルめっきの場合に
同じである。また黒鉛の分散方法は実施例1と同様であ
る。
Example 10 In the same manner as in Example 7, using a plating base plate having a thickness of 0.25 mm, degreasing, pickling, and base nickel plating were performed. After the base nickel plating, nickel-bismuth alloy plating in which graphite was dispersed was performed under the following conditions. Also in this plating bath, air agitation is performed, and the anode conditions are the same as in the case of the above-described nickel plating. The method of dispersing the graphite is the same as in Example 1.

【0044】[浴組成] 硫酸ニッケル 240g/L 硫酸ビスマス 1g/L EDTAー2Na 20g/L 分散剤 5ml/L 黒鉛 20g/L ピットレス剤 2.0ml/L [めっき条件] 浴温度 45±2℃ pH 1.5 電流密度 10A/dm [Bath composition] Nickel sulfate 240 g / L Bismuth sulfate 1 g / L EDTA-2Na 20 g / L Dispersant 5 ml / L Graphite 20 g / L Pitless agent 2.0 ml / L [Plating conditions] Bath temperature 45 ± 2 ° C. pH 1.5 Current density 10A / dm 2

【0045】この黒鉛分散めっきにより、ビスマス含有
率が4%、黒鉛含有率が5%の黒鉛分散ニッケル合金め
っき層が得られた。黒鉛分散ニッケル合金めっき後、拡
散加熱処理を行い、調質圧延を行った。 また、この処
理鋼板を使用して、実施例7と同様にして電池ケースを
プレス成形し、次いで電池を作製して電池特性を測定し
た結果を表2にまとめた。実施例2、5,7,9,10
については、冷間圧延後、焼鈍しないでめっき用原板と
して用い、 実施例3、4,6,8については、冷間圧
延後、焼鈍、調質圧延を行ってめっき用原板とした。
By this graphite dispersion plating, a graphite dispersed nickel alloy plating layer having a bismuth content of 4% and a graphite content of 5% was obtained. After the graphite-dispersed nickel alloy plating, diffusion heat treatment was performed and temper rolling was performed. Further, using this treated steel sheet, a battery case was press-formed in the same manner as in Example 7, and then a battery was fabricated and the battery characteristics were measured. Table 2 summarizes the results. Examples 2, 5, 7, 9, 10
Was used as an original plate for plating without annealing after cold rolling, and in Examples 3, 4, 6, and 8, annealed and temper rolled after cold rolling to obtain an original plate for plating.

【0046】[0046]

【比較例1】実施例1と同一厚さ、同一組成の鋼板を使
用して、実施例1と同様にして脱脂処理、酸洗、下地ニ
ッケルめっき処理、熱処理及び再調質を行った後、下記
条件で再度ニッケルめっきを電池ケース内面側に相当す
る面のみに厚み1.2μm行った。 [浴組成] 硫酸ニッケル 300g/L 塩化ニッケル 45g/L ほう酸 45g/L ピットレス剤(ラウリル硫酸ソーダ) 2.0ml/L [めっき条件] 浴温度 60±2℃ pH 4.3±0.2 電流密度 15A/dm
COMPARATIVE EXAMPLE 1 Using a steel plate having the same thickness and the same composition as in Example 1, after performing degreasing, pickling, base nickel plating, heat treatment and refining in the same manner as in Example 1, Under the following conditions, nickel plating was again performed on the surface corresponding to the inner surface side of the battery case only to a thickness of 1.2 μm. [Bath composition] Nickel sulfate 300 g / L Nickel chloride 45 g / L Boric acid 45 g / L Pitless agent (sodium lauryl sulfate) 2.0 ml / L [Plating conditions] Bath temperature 60 ± 2 ° C. pH 4.3 ± 0.2 Current density 15A / dm 2

【0047】[0047]

【比較例2】実施例1と同一厚さ、同一組成の鋼板を使
用して、実施例1と同様にして脱脂処理、酸洗、下地ニ
ッケルめっき処理、熱処理及び再調質を行ったが、その
後のめっき処理は行わなかった。
[Comparative Example 2] Degreasing, pickling, base nickel plating, heat treatment, and refining were performed in the same manner as in Example 1 except that a steel sheet having the same thickness and the same composition as in Example 1 was used. No subsequent plating was performed.

【0048】実施例及び比較例における鋼板の特性及び
電池特性は以下のようにして測定した。 (1)めっき皮膜中の黒鉛含有率 JIS−G−1211に記載の赤外線吸収法により測定
した。めっき鋼板1g中の炭素量を測定し、さらにめっ
きなしの同じ鋼板の炭素量を測定し、その差をめっき皮
膜中の黒鉛含有率(重量%)とする。なお、黒鉛粒子の
50%累積径は、レーザー回折式粒度分布測定機を使用
して測定した。
The characteristics of the steel sheet and the battery characteristics in Examples and Comparative Examples were measured as follows. (1) Graphite content in the plating film It was measured by an infrared absorption method described in JIS-G-1211. The carbon content in 1 g of the plated steel sheet is measured, and the carbon content of the same steel sheet without plating is measured, and the difference is defined as the graphite content (% by weight) in the plating film. The 50% cumulative diameter of the graphite particles was measured using a laser diffraction type particle size distribution analyzer.

【0049】(2)拡散層の厚さ グロー放電発光分光分析法で測定した。 (3)内部抵抗 作製した乾電池を60℃に20日間保存した後、交流イ
ンピーダンス法で内部抵抗値(mΩ)を測定した。 (4)短絡電流 作製した電池を60℃に20日間保存した後、該電池に
電流計を接続して閉回路を設け、電池の電流値を測定し
これを短絡電流とした。 (5)連続放電時間 作製した電池を60℃に20日間保存した後、該電池に
2Ωの抵抗を使用して閉回路を作成し、電圧が0.9V
に到達するまでの経過時間を測定した。測定結果は比較
例2の測定値を100としたときの指数で表示した。
(2) Thickness of diffusion layer Measured by glow discharge emission spectroscopy. (3) Internal Resistance After storing the produced dry battery at 60 ° C. for 20 days, the internal resistance value (mΩ) was measured by the AC impedance method. (4) Short-Circuit Current After the produced battery was stored at 60 ° C. for 20 days, an ammeter was connected to the battery to provide a closed circuit, and the current value of the battery was measured. (5) Continuous discharge time After the produced battery was stored at 60 ° C. for 20 days, a closed circuit was created using a 2Ω resistor, and the voltage was 0.9 V.
The time elapsed to reach was measured. The measurement results were indicated by an index when the measured value of Comparative Example 2 was set to 100.

【0050】[0050]

【発明の効果】本発明は、電池ケース内側になる面に黒
鉛を分散した黒鉛分散ニッケルめっき層あるいは黒鉛分
散ニッケル合金めっき層を形成し、次いで熱処理してな
ることを特徴とする電池ケース用表面処理鋼板であり、
本発明の表面処理鋼板から作製した電池ケースを用いた
電池は内部抵抗、短絡電流及び連続放電特性が優れる。
According to the present invention, there is provided a battery case surface characterized by forming a graphite-dispersed nickel-plated layer or graphite-dispersed nickel alloy-plated layer in which graphite is dispersed on the surface inside the battery case, and then heat-treating. Treated steel sheet,
A battery using the battery case made from the surface-treated steel sheet of the present invention has excellent internal resistance, short-circuit current, and continuous discharge characteristics.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/64 H01M 4/64 A 6/08 6/08 A // C25D 3/56 101 C25D 3/56 101 Fターム(参考) 4K023 AA12 AB15 AB21 BA06 BA08 BA15 CA09 CB09 CB16 DA02 4K024 AA03 AA14 AA15 AB01 AB02 AB12 BA03 BA04 BB21 BB25 BC01 CA01 DA03 DA04 DB01 GA04 GA08 5H011 AA03 AA09 CC05 CC06 DD00 DD05 DD18 KK02 5H017 AA02 AS06 AS10 BB01 BB06 BB16 CC03 DD05 EE01 EE04 EE06 HH01 HH05 5H024 AA03 AA14 BB01 BB05 BB11 CC02 CC19 DD02 EE01 EE03 FF31 HH01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 4/64 H01M 4/64 A 6/08 6/08 A // C25D 3/56 101 C25D 3/56 101 F term (reference) 4K023 AA12 AB15 AB21 BA06 BA08 BA15 CA09 CB09 CB16 DA02 4K024 AA03 AA14 AA15 AB01 AB02 AB12 BA03 BA04 BB21 BB25 BC01 CA01 DA03 DA04 DB01 GA04 GA08 5H011 AA03 AA09 CC05 CC06 DD00 DD06 DD06 DD06 DD06 BB16 CC03 DD05 EE01 EE04 EE06 HH01 HH05 5H024 AA03 AA14 BB01 BB05 BB11 CC02 CC19 DD02 EE01 EE03 FF31 HH01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 電池ケース内側になる面に黒鉛を分散し
た黒鉛分散ニッケルめっき層を形成し、次いで熱処理し
てなることを特徴とする電池ケース用表面処理鋼板。
1. A surface-treated steel sheet for a battery case, wherein a graphite-dispersed nickel plating layer in which graphite is dispersed is formed on a surface inside the battery case, and then heat-treated.
【請求項2】 電池ケース内側になる面に黒鉛を分散し
た黒鉛分散ニッケル合金めっき層を形成し、次いで熱処
理してなることを特徴とする電池ケース用表面処理鋼
板。
2. A surface-treated steel sheet for a battery case, wherein a graphite-dispersed nickel alloy plating layer in which graphite is dispersed is formed on a surface inside the battery case and then heat-treated.
【請求項3】 前記合金めっき層が、ニッケル−コバル
ト合金、ニッケル−コバルト−鉄合金、ニッケル−マン
ガン合金、ニッケル−リン合金、又はニッケル−ビスマ
ス合金のいずれかである請求項2記載の表面処理鋼板。
3. The surface treatment according to claim 2, wherein the alloy plating layer is any one of a nickel-cobalt alloy, a nickel-cobalt-iron alloy, a nickel-manganese alloy, a nickel-phosphorus alloy, and a nickel-bismuth alloy. steel sheet.
【請求項4】 前記めっき層の下層に拡散層が形成され
ている請求項1〜3のいずれかに記載の表面処理鋼板。
4. The surface-treated steel sheet according to claim 1, wherein a diffusion layer is formed below the plating layer.
【請求項5】 黒鉛含有率が0.1〜25重量%である
請求項1〜4のいずれかに記載の表面処理鋼板。
5. The surface-treated steel sheet according to claim 1, wherein the graphite content is 0.1 to 25% by weight.
【請求項6】 請求項1〜5のいずれかに記載の表面処
理鋼板を用いて、深絞り加工、DI加工又はDTR加工
により成形された電池ケース。
6. A battery case formed from the surface-treated steel sheet according to claim 1 by deep drawing, DI processing or DTR processing.
【請求項7】 請求項6の電池ケースを使用した電池。7. A battery using the battery case according to claim 6.
JP2000376713A 2000-12-11 2000-12-11 Surface-treated steel sheet for battery case, battery case using the steel sheet and battery Withdrawn JP2002180296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000376713A JP2002180296A (en) 2000-12-11 2000-12-11 Surface-treated steel sheet for battery case, battery case using the steel sheet and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000376713A JP2002180296A (en) 2000-12-11 2000-12-11 Surface-treated steel sheet for battery case, battery case using the steel sheet and battery

Publications (1)

Publication Number Publication Date
JP2002180296A true JP2002180296A (en) 2002-06-26

Family

ID=18845535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000376713A Withdrawn JP2002180296A (en) 2000-12-11 2000-12-11 Surface-treated steel sheet for battery case, battery case using the steel sheet and battery

Country Status (1)

Country Link
JP (1) JP2002180296A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004018740A1 (en) * 2002-08-20 2004-03-04 Toyo Kohan Co., Ltd. Surface treated steel plate for battery cases, its manufacturing method, battery case formed using the steel plate, battery using the battery case
JP2005121825A (en) * 2003-10-15 2005-05-12 Nitto Kogyo Co Ltd Fixing belt
WO2005104268A1 (en) * 2004-04-19 2005-11-03 Toyo Kohan Co., Ltd. Plated steel plate for cell vessel, cell vessel using the plated steel plate for cell vessel, cell using the cell vessel
WO2005104267A1 (en) * 2004-04-19 2005-11-03 Toyo Kohan Co., Ltd. Plated steel sheet for battery container, battery container utilizing the plated steel sheet and battery utilizing the battery container
WO2005106989A1 (en) * 2004-04-30 2005-11-10 Toyo Kohan Co., Ltd. Plated steel plate for battery container, battery container using the plated steel plate for battery container, and battery using the battery container
JP2007009333A (en) * 2006-10-23 2007-01-18 Shinshu Univ Plated structure and method of manufacturing the same
JP2008127641A (en) * 2006-11-22 2008-06-05 Dowa Metaltech Kk Method for producing composite plated material
JPWO2007026562A1 (en) * 2005-08-29 2009-03-05 京セラ株式会社 Metal film, manufacturing method thereof, manufacturing method of multilayer electronic component, and multilayer electronic component
JP2009144214A (en) * 2007-12-17 2009-07-02 Hitachi Ltd Electrode for electrolysis, manufacturing method therefor and apparatus for producing hydrogen
JP2010222707A (en) * 2010-06-07 2010-10-07 Shinshu Univ Electroless plating method and electroless plating solution
JP2012149331A (en) * 2011-01-21 2012-08-09 Nippon Steel Corp Plated steel excellent in corrosion resistance and workability, and method for manufacturing the same
WO2019111556A1 (en) * 2017-12-07 2019-06-13 株式会社豊田自動織機 Electricity storage device, method for producing electricity storage device, and electrolytic plating method
WO2019159794A1 (en) * 2018-02-14 2019-08-22 日本製鉄株式会社 Surface-treated steel sheet for battery containers and method for producing surface-treated steel sheet for battery containers

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004018740A1 (en) * 2002-08-20 2004-03-04 Toyo Kohan Co., Ltd. Surface treated steel plate for battery cases, its manufacturing method, battery case formed using the steel plate, battery using the battery case
JP2005121825A (en) * 2003-10-15 2005-05-12 Nitto Kogyo Co Ltd Fixing belt
WO2005104268A1 (en) * 2004-04-19 2005-11-03 Toyo Kohan Co., Ltd. Plated steel plate for cell vessel, cell vessel using the plated steel plate for cell vessel, cell using the cell vessel
WO2005104267A1 (en) * 2004-04-19 2005-11-03 Toyo Kohan Co., Ltd. Plated steel sheet for battery container, battery container utilizing the plated steel sheet and battery utilizing the battery container
WO2005106989A1 (en) * 2004-04-30 2005-11-10 Toyo Kohan Co., Ltd. Plated steel plate for battery container, battery container using the plated steel plate for battery container, and battery using the battery container
JPWO2007026562A1 (en) * 2005-08-29 2009-03-05 京セラ株式会社 Metal film, manufacturing method thereof, manufacturing method of multilayer electronic component, and multilayer electronic component
JP4599565B2 (en) * 2006-10-23 2010-12-15 国立大学法人信州大学 Electrolytic plating method and electrolytic plating solution
JP2007009333A (en) * 2006-10-23 2007-01-18 Shinshu Univ Plated structure and method of manufacturing the same
JP2008127641A (en) * 2006-11-22 2008-06-05 Dowa Metaltech Kk Method for producing composite plated material
JP2009144214A (en) * 2007-12-17 2009-07-02 Hitachi Ltd Electrode for electrolysis, manufacturing method therefor and apparatus for producing hydrogen
JP2010222707A (en) * 2010-06-07 2010-10-07 Shinshu Univ Electroless plating method and electroless plating solution
JP2012149331A (en) * 2011-01-21 2012-08-09 Nippon Steel Corp Plated steel excellent in corrosion resistance and workability, and method for manufacturing the same
WO2019111556A1 (en) * 2017-12-07 2019-06-13 株式会社豊田自動織機 Electricity storage device, method for producing electricity storage device, and electrolytic plating method
JPWO2019111556A1 (en) * 2017-12-07 2020-12-24 株式会社豊田自動織機 Power storage device, manufacturing method of power storage device, and electrolytic plating method
WO2019159794A1 (en) * 2018-02-14 2019-08-22 日本製鉄株式会社 Surface-treated steel sheet for battery containers and method for producing surface-treated steel sheet for battery containers
CN111699567A (en) * 2018-02-14 2020-09-22 日本制铁株式会社 Surface-treated steel sheet for battery container and method for producing surface-treated steel sheet for battery container
CN111699567B (en) * 2018-02-14 2022-10-28 日本制铁株式会社 Surface-treated steel sheet for battery container and method for producing surface-treated steel sheet for battery container

Similar Documents

Publication Publication Date Title
KR100591502B1 (en) Surface-treated steel sheet for battery case, method of production thereof, battery case formed by the steel sheet and battery using the case
JP2004076118A (en) Surface treated steel sheet for battery case, manufacturing method therefor, battery case formed of the steel sheet, and battery using the battery case
US6087040A (en) Battery case having surface-treated steel sheet
JP2002180296A (en) Surface-treated steel sheet for battery case, battery case using the steel sheet and battery
JP5083931B2 (en) Battery container manufacturing method, battery container manufactured by the battery container manufacturing method, and battery using the battery container
KR100428831B1 (en) Surface-treated steel plate for battery case, battery case and battery using the case
US6551721B1 (en) Surface-treated steel sheet for battery case, battery case comprising the same, methods for producing them, and battery
JP2006190648A (en) Plated sheet steel for battery case, battery case using the plated sheet steel for battery case, and battery using the battery case
JP3594286B2 (en) Surface-treated steel sheet for battery case, battery case using the same, manufacturing method thereof and battery
JP3743744B2 (en) Surface-treated steel sheet for battery case, method for producing the same, battery case using the surface-treated steel sheet for battery case, and battery using the same
CN107407000B (en) The manufacturing method and battery case surface treated steel plate of battery case surface treated steel plate
JP3594285B2 (en) Surface-treated steel sheet for battery case, battery case using the same, manufacturing method thereof and battery
JP4386230B2 (en) Alkaline battery core and battery using the same
JP2004076117A (en) Surface treated steel sheet for battery case, and battery case using the same
WO2005104267A1 (en) Plated steel sheet for battery container, battery container utilizing the plated steel sheet and battery utilizing the battery container
JP5041809B2 (en) Plated steel sheet for battery container, manufacturing method thereof, battery container using the plated steel sheet for battery container, and battery using the battery container
JPWO2005056885A1 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP4798953B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2005317423A (en) Plated steel sheet for battery container, battery container using plated steel sheet for battery container, and battery using battery container
JP2005317420A (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2005310452A (en) Plated steel sheet for battery case, battery case using the plated steel sheet for battery case, and battery using the battery case
JP2012114097A (en) Plated steel sheet for battery container, method for producing the same, battery container using the plated steel sheet for battery container and battery using the battery container
WO2001034876A1 (en) Surface-treated steel sheet for battery case, battery case using it, battery using the case
JP2004288653A (en) Surface treated steel plate for battery case, battery case, and battery using it
JP2006120614A (en) Plated steel sheet for battery container, battery container using plated steel sheet for battery container, and battery using battery container

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304