JP2005317420A - Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container - Google Patents

Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container Download PDF

Info

Publication number
JP2005317420A
JP2005317420A JP2004135621A JP2004135621A JP2005317420A JP 2005317420 A JP2005317420 A JP 2005317420A JP 2004135621 A JP2004135621 A JP 2004135621A JP 2004135621 A JP2004135621 A JP 2004135621A JP 2005317420 A JP2005317420 A JP 2005317420A
Authority
JP
Japan
Prior art keywords
plating
layer
battery
steel sheet
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004135621A
Other languages
Japanese (ja)
Inventor
Hitoshi Omura
等 大村
Tatsuo Tomomori
龍夫 友森
Yoshitaka Honda
義孝 本田
Eiji Yamane
栄治 山根
Eiji Okamatsu
栄次 岡松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2004135621A priority Critical patent/JP2005317420A/en
Publication of JP2005317420A publication Critical patent/JP2005317420A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plated steel sheet for a battery container capable of making a battery with superior discharge characteristics even if a conductive layer made mainly of graphite is not formed on an inner wall of the battery container, a battery container using the same, and a battery using it. <P>SOLUTION: A metal layer which is made by forming a dispersed plated layer dispersed with ultra-fine carbonaceous content in the layer and, then by applying heat treatment is provided on the battery container inner face side of the plated steel sheet for battery container, and by forming an alloy layer containing silver on this metal layer, the plated steel sheet for battery container is made, and the battery container is made by forming this plated steel sheet into a bottomed cylindrical shape. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電池容器用めっき鋼板、その電池容器用めっき鋼板を用いた電池容器およびその電池容器を用いた電池に関する。   The present invention relates to a plated steel sheet for battery containers, a battery container using the plated steel sheet for battery containers, and a battery using the battery container.

近年、オーディオ機器やモバイユ電話など、多方面において携帯用機器が用いられ、その作動電源として一次電池であるアルカリ電池、二次電池であるニッケル水素電池、リチウムイオン電池などが多用されている。これらの電池においては、高出力化および長寿命化など、高出力化が常時求められおり、正極および負極活物質を充填する電池容器も電池の重要な構成要素として性能の向上が求められている。例えば、鋼板表面に形成させるニッケルめっき中に黒鉛やカーボンブラックなどの微細炭素質を分散析出させることにより、表面に凹凸を形成させるとともに、導電性に優れる黒鉛粒子を表面に露出させて正極活物質と電池容器内面との接触抵抗を低減させた表面処理鋼板が出願人から提案されている(例えば特許文献1、2、3参照)。   In recent years, portable devices such as audio devices and mobile phones have been used in various fields, and alkaline batteries that are primary batteries, nickel-hydrogen batteries that are secondary batteries, lithium ion batteries, and the like are frequently used as operating power sources. In these batteries, higher output such as higher output and longer life is always required, and battery containers filled with positive electrode and negative electrode active materials are also required to improve performance as important components of the battery. . For example, by dispersing and precipitating fine carbonaceous materials such as graphite and carbon black during nickel plating to be formed on the surface of the steel sheet, irregularities are formed on the surface, and graphite particles having excellent conductivity are exposed on the surface, so that the positive electrode active material A surface-treated steel sheet with reduced contact resistance between the battery and the inner surface of the battery container has been proposed by the applicant (see, for example, Patent Documents 1, 2, and 3).

これらの表面処理鋼板を電池容器に成形加工し、正極および負極活物質を充填して電池とする場合、充填する負極活物質との接触抵抗が減少して放電特性が向上し、従来行われていた接触抵抗を減少させるための電池容器内面に黒鉛などを主体とする塗料を塗布して導電層を形成する工程を省略することが可能となった。この微細炭素質を分散析出させためっき層上に黒鉛などを主体とする塗料を塗布すると電池性能はさらに向上する。しかし、黒鉛の塗料の塗布および乾燥においては溶媒が揮散されて環境に悪影響を与え、また余分な塗装工程が必要でコストアップとなるので、黒鉛塗料の塗布を省略してもこのような高い電池性能を発現させることが可能な電池容器用めっき鋼板が求められている。   When these surface-treated steel sheets are formed into a battery container and filled with a positive electrode and a negative electrode active material to form a battery, the contact resistance with the negative electrode active material to be filled is reduced and the discharge characteristics are improved. In addition, it is possible to omit the step of forming a conductive layer by applying a paint mainly composed of graphite on the inner surface of the battery container in order to reduce the contact resistance. When a coating mainly composed of graphite or the like is applied on the plating layer on which the fine carbonaceous material is dispersed and deposited, the battery performance is further improved. However, in applying and drying graphite paint, the solvent is volatilized and adversely affects the environment. Further, an extra painting process is required and the cost is increased. There is a need for a plated steel sheet for battery containers capable of exhibiting performance.

本発明に関する先行技術文献として以下のものがある。
国際公開第WO00/05437号パンフレット 特開2002−180296号公報 特開2004−076118号公報
Prior art documents relating to the present invention include the following.
International Publication No. WO00 / 05437 Pamphlet JP 2002-180296 A JP 2004-076118 A

本発明は、電池容器内面に黒鉛などを主体とする導電層を形成せずとも、優れた放電特性を有する電池とすることが可能な電池容器用めっき鋼板、それを用いた電池容器およびそれを用いた電池を提供することを目的とする。   The present invention provides a plated steel sheet for a battery container that can be used as a battery having excellent discharge characteristics without forming a conductive layer mainly composed of graphite or the like on the inner surface of the battery container, and a battery container using the same. It aims at providing the used battery.

上記課題を解決する本発明の電池容器用めっき鋼板は、鋼板の電池容器内面となる側の鋼板上に下から順に、層中に極微細炭素質を分散した分散めっきのマトリックスとなる金属と鉄とが拡散してなる分散めっき−鉄拡散層、層中に極微細炭素質を分散した分散めっき層、銀または銀含有化合物からなる層が形成されてなることを特徴とする電池容器用めっき鋼板(請求項1)、または
鋼板の電池容器内面となる側の鋼板上に下から順に、めっきのマトリックスとなる金属と鉄との拡散層、めっき層、めっきのマトリックスとなる金属と層中に極微細炭素質を分散した分散めっきのマトリックスとなる金属とが拡散してなるめっき−分散めっき拡散層、層中に極微細炭素質を分散した分散めっき層、銀または銀含有化合物からなる層が形成されてなることを特徴とする電池容器用めっき鋼板(請求項2)、または
鋼板の電池容器内面となる側の鋼板上に下から順に、層中に極微細炭素質および微細炭素質を分散した分散めっきのマトリックスとなる金属と鉄とが拡散してなる分散めっき−鉄拡散層、層中に極微細炭素質を分散した分散めっき層、銀または銀含有化合物からなる層が形成されてなることを特徴とする電池容器用めっき鋼板(請求項3)、または
鋼板の電池容器内面となる側の鋼板上に下から順に、めっきのマトリックスとなる金属と鉄との拡散層、めっき層、めっきのマトリックスとなる金属と層中に極微細炭素質および微細炭素質を分散した分散めっきのマトリックスとなる金属とが拡散してなるめっき−分散めっき拡散層、層中に極微細炭素質を分散した分散めっき層、銀または銀含有化合物からなる層が形成されてなることを特徴とする電池容器用めっき鋼板(請求項4)であり、
上記(請求項1、2)の電池容器用めっき鋼板において、前記分散めっき層中に前記極微細炭素質が0.1〜5重量%の量で分散されてなること(請求項5)を特徴とし、また
上記(請求項3、4)の電池容器用めっき鋼板において、前記分散めっき層中に前記極微細炭素質および前記微細炭素質が0.1〜5重量%の量で分散されてなること(請求項6)を特徴とし、また
上記(請求項1〜6)の電池容器用めっき鋼板において、前記極微細炭素質がカーボンナノチューブであること(請求項7)を特徴とし、また
上記(請求項3、4、6)の電池容器用めっき鋼板において、前記微細炭素質がケッチェンブラックまたはアセチレンブラックであること(請求項8)を特徴とし、また
上記(請求項1〜8)の電池容器用めっき鋼板において、前記分散めっきのマトリックスとなる金属および前記めっきのマトリックスとなる金属がニッケルまたはニッケル合金であること(請求項9)を特徴とし、また
上記(請求項9)の電池容器用めっき鋼板において、前記ニッケル合金がニッケル−コバルト合金、ニッケル−コバルト−リン合金、またはニッケル−リン合金のいずれかであること(請求項10)を特徴とする。
The plated steel sheet for battery containers according to the present invention that solves the above-mentioned problems is a metal and iron serving as a matrix for dispersed plating in which ultrafine carbonaceous materials are dispersed in the layers in order from the bottom on the steel sheet inner surface side of the steel sheet. And a diffusion plating-iron diffusion layer formed by diffusing and a dispersion plating layer in which an ultrafine carbonaceous material is dispersed in the layer, and a layer made of silver or a silver-containing compound. (Claim 1) or, in order from the bottom, on the steel sheet on the side of the battery container inner surface of the steel sheet, a diffusion layer of metal and iron serving as a plating matrix, a plating layer, a metal serving as a plating matrix and a pole in the layer Plating-dispersion plating diffusion layer formed by diffusion of metal used as a matrix for dispersion plating in which fine carbonaceous material is dispersed, dispersion plating layer in which ultrafine carbonaceous material is dispersed in the layer, and a layer made of silver or a silver-containing compound are formed. The On the plated steel sheet for battery containers (Claim 2), or on the steel sheet on the battery container inner surface side, the ultrafine carbonaceous material and the fine carbonaceous material were dispersed in the layers in order from the bottom. Dispersion plating-iron diffusion layer formed by diffusion of metal and iron, which is a matrix for dispersion plating, a dispersion plating layer in which ultrafine carbonaceous material is dispersed in the layer, and a layer made of silver or a silver-containing compound. A plated steel sheet for battery containers (Claim 3), or a steel sheet on the side that is to be the battery container inner surface of the steel sheet, in order from the bottom, a metal-iron diffusion layer, a plating layer, and a plating layer Plating-dispersed plating diffusion layer in which the metal that is the matrix and the metal that is the matrix of the dispersion plating in which the fine carbonaceous material and the fine carbonaceous material are dispersed in the layer, the dispersion in which the fine carbonaceous material is dispersed in the layer Kkiso a silver or plated steel sheet for battery container layer composed of silver-containing compound is characterized by comprising a formation (Claim 4),
In the plated steel sheet for battery containers according to the above (claims 1 and 2), the ultrafine carbonaceous matter is dispersed in the dispersion plating layer in an amount of 0.1 to 5% by weight (claim 5). Further, in the plated steel sheet for battery containers according to the above (claims 3 and 4), the ultrafine carbonaceous material and the fine carbonaceous material are dispersed in an amount of 0.1 to 5% by weight in the dispersion plating layer. (Claim 6), and in the plated steel sheet for a battery container according to (Claim 1-6), the ultrafine carbonaceous material is a carbon nanotube (Claim 7). The plated steel sheet for battery containers according to claim 3, 4 or 6, wherein the fine carbonaceous material is ketjen black or acetylene black (claim 8), and the battery according to the above (claims 1 to 8). Stained steel plate for containers The metal serving as the matrix of the dispersion plating and the metal serving as the matrix of the plating are nickel or a nickel alloy (Claim 9), and in the plated steel sheet for battery containers according to the above (Claim 9), The nickel alloy is any one of a nickel-cobalt alloy, a nickel-cobalt-phosphorus alloy, and a nickel-phosphorus alloy (claim 10).

そして、本発明の電池容器は、上記(請求項1〜10)のいずれかの電池容器用めっき鋼板を有底の筒型形状に成形加工してなる電池容器(請求項11)であり、
本発明の電池は、上記(請求項11)の電池容器を用いてなる電池(請求項12)である。
And the battery container of the present invention is a battery container (invention 11) formed by processing the plated steel sheet for a battery container according to any of the above (inventions 1 to 10) into a bottomed cylindrical shape,
The battery of the present invention is a battery (claim 12) using the battery container of the above (claim 11).

本発明においては、電池容器用めっき鋼板の電池容器内面となる側に、めっき層中に極微細炭素質を分散した分散めっき層を形成させて熱処理を施してなる金属層を設け、その金属層上に銀または銀を含む化合物からなる層を形成させることにより、容器内面に黒鉛粉末を主成分とする塗料を塗布せずに用いても、従来の分散めっき層を形成させためっき鋼板を用い、さらに電池容器に成形した後内面に黒鉛を塗布した容器を用いた電池と同等以上の放電特性が得られる。また、電池寿命も向上する。   In the present invention, a metal layer formed by heat treatment by forming a dispersion plating layer in which a fine carbonaceous material is dispersed in the plating layer is provided on the side of the plated steel sheet for the battery container, which is the inner surface of the battery container. By using a plated steel sheet with a conventional dispersed plating layer formed on the inner surface of the container without applying a paint mainly composed of graphite powder by forming a layer made of silver or a compound containing silver on the container. Furthermore, after being formed into a battery container, discharge characteristics equivalent to or higher than those of a battery using a container having an inner surface coated with graphite can be obtained. In addition, battery life is improved.

以下、本発明を詳細に説明する。まず本発明の電池容器用めっき鋼板の基板である鋼板について説明する。基板となる鋼板としては、汎用の低炭素アルミキルド鋼(炭素量0.01〜0.15重量%)、またはニオブやチタンを添加した非時効性の極低炭素アルミキルド鋼(炭素量0.01重量%未満)を用いる。これらの鋼を熱間圧延板を酸洗して表面のスケールを除去した後、冷間圧延し次いで電解洗浄、焼鈍、調質圧延したものを基板として用いる。冷間圧延して電解洗浄後、焼鈍を施さずに基板としてめっきを施し、その後焼鈍してもよい。   Hereinafter, the present invention will be described in detail. First, a steel plate that is a substrate of the plated steel plate for battery containers of the present invention will be described. As a steel plate to be used as a substrate, general-purpose low carbon aluminum killed steel (carbon content 0.01 to 0.15% by weight) or non-aging ultra low carbon aluminum killed steel to which niobium or titanium is added (carbon content 0.01 weight) %). These steels are pickled from a hot-rolled plate to remove scale on the surface, then cold-rolled, and then subjected to electrolytic cleaning, annealing, and temper rolling as a substrate. Cold rolling and electrolytic cleaning may be followed by plating as a substrate without annealing and then annealing.

このようにして得られる基板である鋼板の両面に金属層を形成させて、本発明の電池容器用めっき鋼板とする。一般に、電池容器用めっき鋼板に形成させる金属層としては、ニッケルめっき層や各種のニッケル合金めっき層、または鋼板上にこれらのめっき層を形成させた後、熱処理を施したものなどがあるが、本発明の電池容器用めっき鋼板においては、電池容器の少なくとも内面となる面にめっき層中に極微細炭素質であるカーボンナノチューブを分散させた分散めっき層、またはめっき層中に極微細炭素質であるカーボンナノチューブおよびケッチェンブラックやアセチレンブラックなどのカーボンブラックからなる微細炭素質を分散させた分散めっき層を鋼板上に形成させて熱処理を施してなる金属層を設け、さらにこれらの金属層上に銀または銀を含む化合物からなる層を形成させることを特徴としている。電池容器の外面となる面には、通常のニッケルめっき層や各種のニッケル合金めっき層、または鋼板上にこれらのめっき層を形成させた後、熱処理を施してなる層を設けてもよいし、上記の電池容器の内面となる面に形成させる層を設けてもよい。通常、電池容器の内面には、充填する負極活物質との接触抵抗を減少させて放電特性を向上させるために、鋼板にめっき層や上記の分散めっき層を形成させ、またはさらび熱処理を施して鋼板とこれらのめっき層の間に拡散層を形成させた電池容器用めっき鋼板を電池容器に成形加工し、容器内面側のこれらのめっき層の上に黒鉛などを主体とする塗料を塗布して導電層を形成させているが、本発明の電池容器用めっき鋼板を電池容器に成形加工し、正極および負極活物質を充填して電池とした場合は、容器内面の最表面に銀または銀を含む化合物からなる層を形成させることにより、黒鉛塗料を塗布しなくとも従来の黒鉛塗料を塗布した電池容器を用いた場合と同等以上の放電特性が得られる。そのため、この黒鉛塗料の塗布及び乾燥工程を省略することができる。本発明の電池容器用めっき鋼板を電池容器に成形加工し、従来と同様に容器内面に黒鉛塗料を塗布した容器を用いた場合は、放電特性はさらに向上する。また、内部抵抗が低下し、電池寿命が向上する副次効果も得られる。   A metal layer is formed on both surfaces of the steel plate, which is the substrate thus obtained, to obtain a plated steel plate for battery containers of the present invention. In general, as a metal layer to be formed on the plated steel sheet for battery containers, there are a nickel plated layer and various nickel alloy plated layers, or a layer subjected to heat treatment after these plated layers are formed on the steel sheet, In the plated steel sheet for battery containers according to the present invention, a dispersion plating layer in which carbon nanotubes that are extremely fine carbonaceous materials are dispersed in the plating layer on at least the inner surface of the battery container, or a very fine carbonaceous matter in the plating layer. A dispersed plating layer in which fine carbonaceous materials such as carbon nanotubes such as certain carbon nanotubes and ketjen black and acetylene black are dispersed is formed on a steel plate, and a metal layer is formed by heat treatment, and further on these metal layers A layer made of silver or a compound containing silver is formed. The surface to be the outer surface of the battery container may be provided with a normal nickel plating layer, various nickel alloy plating layers, or a layer formed by heat treatment after these plating layers are formed on a steel plate, You may provide the layer formed in the surface used as the inner surface of said battery container. Usually, in order to reduce the contact resistance with the negative electrode active material to be filled and improve the discharge characteristics on the inner surface of the battery container, a plated layer or the above-mentioned dispersed plated layer is formed on the steel plate or subjected to a heat treatment. Then, the plated steel sheet for the battery container in which a diffusion layer is formed between the steel sheet and these plated layers is formed into a battery container, and a paint mainly composed of graphite is applied on these plated layers on the inner surface side of the container. When the plated steel sheet for battery containers of the present invention is formed into a battery container and filled with a positive electrode and a negative electrode active material to form a battery, silver or silver is formed on the outermost surface of the container inner surface. By forming a layer made of a compound containing, discharge characteristics equal to or higher than those obtained when a conventional battery container coated with graphite paint is used without applying graphite paint. Therefore, the application and drying steps of this graphite paint can be omitted. When the plated steel sheet for battery containers of the present invention is formed into a battery container and a container having a graphite paint applied to the inner surface of the container as in the conventional case, the discharge characteristics are further improved. In addition, a secondary effect of reducing the internal resistance and improving the battery life can be obtained.

最表面に銀または銀を含む化合物からなる層を形成させる容器内面のめっき層、または拡散層とめっき層は下記に示すように構成されていることが好ましい。すなわち鋼板側から下から順に、(a)分散めっき層のマトリックスとなる金属と鉄とが拡散してなる拡散層、分散めっき層、銀または銀を含む化合物からなる層を形成したもの、(b)めっき層のマトリックスとなる金属と鉄とが拡散してなる拡散層、めっき層、めっき層のマトリックスとなる金属と分散めっき層のマトリックスとなる金属とが拡散してなる拡散層、分散めっき層、銀または銀を含む化合物からなる層を形成したもの、のいずれかであることが好ましい。   It is preferable that the plating layer on the inner surface of the container for forming a layer made of silver or a compound containing silver on the outermost surface, or the diffusion layer and the plating layer are configured as shown below. That is, in order from the bottom from the steel sheet side, (a) a diffusion layer formed by diffusing a metal and iron that is a matrix of a dispersion plating layer, a dispersion plating layer, a layer made of silver or a compound containing silver, (b ) Diffusion layer formed by diffusing metal and iron serving as matrix of plating layer, plating layer, diffusion layer formed by diffusing metal serving as matrix of plating layer and metal serving as matrix of dispersed plating layer, dispersion plating layer , Or a layer formed of silver or a compound containing silver is preferable.

めっき層を構成する金属としては、ニッケル、ニッケル−コバルト合金、ニッケル−コバルト−リン合金、またはニッケル−リン合金のいずれかであることが好ましい。コバルトおよびコバルト−リン合金も用いることができる。また分散めっき層のマトリックスとなる金属としては上記のめっき層を構成するいずれかの金属と同様の金属であることが好ましい。   The metal constituting the plating layer is preferably nickel, nickel-cobalt alloy, nickel-cobalt-phosphorus alloy, or nickel-phosphorus alloy. Cobalt and cobalt-phosphorus alloys can also be used. Moreover, it is preferable that the metal used as the matrix of the dispersed plating layer is the same metal as any of the metals constituting the plating layer.

分散めっき層中に分散させる極微細炭素質としては、平均径が0.4〜1.8nmの単層カーボンナノチューブや平均径が1〜数nmの多層カーボンナノチューブなどを用いることができるが、平均径が1nm前後の単層カーボンナノチューブを用いることが好ましい。極微細炭素質はめっき中に0.1〜5重量%の量で分散されていることが好ましく、0.5〜3重量%の量で分散されていることがより好ましい。   As the ultrafine carbon material dispersed in the dispersion plating layer, single-walled carbon nanotubes having an average diameter of 0.4 to 1.8 nm, multi-walled carbon nanotubes having an average diameter of 1 to several nm, etc. can be used. It is preferable to use single-walled carbon nanotubes having a diameter of around 1 nm. The ultrafine carbonaceous material is preferably dispersed in an amount of 0.1 to 5% by weight during plating, and more preferably in an amount of 0.5 to 3% by weight.

分散めっき層中には上記の極微細炭素質のみを分散させてもよいが、これらの極微細炭素質は高価であるので、平均径が10〜60nmのケッチェンブラックや平均径が50〜200nmのアセチレンブラックなどのカーボンブラックからなる微細炭素質を併用して分散させてもよい。極微細炭素質とこれらの微細炭素質を併用する場合は、両者の合計でめっき中に0.1〜5重量%の量で分散されていることが好ましく、0.5〜3重量%の量で分散されていることがより好ましい。これらの極微細炭素質や微細炭素質は疎水性であるので、界面活性剤を用いてめっき液中に分散させる。これらの極微細炭素質または極微細炭素質と微細炭素質を分散させためっき液を用いて電解処理することにより、めっき中にこれらの極微細炭素質または極微細炭素質と微細炭素質が分散してなる分散めっきが得られる。   Although only the above-mentioned ultrafine carbonaceous matter may be dispersed in the dispersion plating layer, since these ultrafine carbonaceous materials are expensive, Ketjen Black having an average diameter of 10 to 60 nm or an average diameter of 50 to 200 nm A fine carbonaceous material made of carbon black such as acetylene black may be used in combination. When ultrafine carbonaceous materials and these fine carbonaceous materials are used in combination, the total amount of both is preferably dispersed in an amount of 0.1 to 5% by weight during plating, and an amount of 0.5 to 3% by weight More preferably, it is dispersed. Since these ultrafine carbonaceous materials and fine carbonaceous materials are hydrophobic, they are dispersed in the plating solution using a surfactant. By performing electrolytic treatment using these ultrafine carbonaceous materials or a plating solution in which ultrafine carbonaceous materials and fine carbonaceous materials are dispersed, these ultrafine carbonaceous materials or ultrafine carbonaceous materials and fine carbonaceous materials are dispersed during plating. Thus obtained dispersion plating is obtained.

鋼板の電池容器内面となる側に形成させた上記の分散めっき層、またはめっき層と分散めっき層からなる金属層の最表面に形成させる銀または銀酸化物などの銀を含む化合物からなる層における銀の存在量としては、銀として0.01〜1.0g/m 、好ましくは0.05〜0.5g/m であることが好ましい。0.01g/m 未満では放電特性の向上効果に乏しく、1.0g/m を超えてもそれ以上放電特性は向上せず、コスト的に有利でなくなる。また、電池容器用めっき鋼板の電池容器外面となる側には鋼板上に下から順に、鉄−ニッケル層、または鉄−ニッケル拡散層、ニッケル層を設けることが好ましい。 In the above-mentioned dispersion plating layer formed on the side that becomes the battery container inner surface of the steel plate, or a layer made of a compound containing silver such as silver or silver oxide formed on the outermost surface of the metal layer composed of the plating layer and the dispersion plating layer the abundance of silver, 0.01 to 1.0 g / m 2 as silver, it is preferred that preferably is 0.05 to 0.5 g / m 2. Is less than 0.01 g / m 2 poor effect of improving the discharge characteristics, discharge characteristics more exceed 1.0 g / m 2 is not improved, it is not cost-effective. Moreover, it is preferable to provide an iron-nickel layer, or an iron-nickel diffusion layer, and a nickel layer in order from the bottom on the steel plate on the side that becomes the outer surface of the battery case.

次に、本発明の電池容器用めっき鋼板の製造方法について説明する。上記の低炭素アルミキルド鋼または極低炭素アルミキルド鋼の冷延鋼板を基板とし、これらの基板に上記のニッケル、ニッケル−コバルト合金、ニッケル−コバルト−リン合金、またはニッケル−リン合金のいずれかからなるめっき金属中に、あるいはコバルトもしくはコバルト−リン合金のいずれかからなるめっき金属中に、上記の極微細炭素質または極微細炭素質と微細炭素質を分散させてなる分散めっき層を形成させるか、もしくは上記のニッケル、ニッケル−コバルト合金、ニッケル−コバルト−リン合金、またはニッケル−リン合金、あるいはコバルトもしくはコバルト−リン合金のいずれかからなるめっき層とその上に上記のいずれかの分散めっき層を形成させ、熱処理を施し、基板上にニッケルまたは各種のニッケル合金に上記の極微細炭素質または極微細炭素質と微細炭素質を分散させてなる層と基板の鉄との拡散層を形成させるか、またはこれらのニッケルめっき、ニッケル合金めっきと基板の鉄との拡散層を形成させ、次いでさらにこれらのめっき層上にフラッシュめっき法などの湿式めっき法や、蒸着法、スパッタ法、イオンプレーティング法などの乾式めっき法を用いて銀または銀含有化合物からなる層を形成させる。または、上記の分散めっき層を形成させるか、もしくは上記のいずれかのめっき層とその上に上記のいずれかの分散めっき層を形成させた後に焼鈍して拡散層を形成させ、次いで焼鈍後のこれらのめっき層上に銀または銀含有化合物からなる層を形成させた後、再度熱処理を施して最表面に銀含有化合物からなる層を形成させてもよい。これらの鋼板上に上記のめっき層を形成させ、焼鈍処理を行う工程は、低炭素アルミキルド鋼の冷延鋼板をめっき基板として用いる場合(以下、A工程という)と、極低炭素アルミキルド鋼の冷延鋼板をめっき基板として用いる場合(以下、B工程という)に大別される。   Next, the manufacturing method of the plated steel sheet for battery containers of this invention is demonstrated. Cold-rolled steel sheets of the above-mentioned low carbon aluminum killed steel or extremely low carbon aluminum killed steel are used as substrates, and these substrates are made of any of the above nickel, nickel-cobalt alloy, nickel-cobalt-phosphorus alloy, or nickel-phosphorus alloy. In the plated metal or in the plated metal made of either cobalt or a cobalt-phosphorus alloy, a dispersion plating layer formed by dispersing the above ultrafine carbonaceous material or ultrafine carbonaceous material and fine carbonaceous material is formed, Alternatively, a plating layer made of any one of the above nickel, nickel-cobalt alloy, nickel-cobalt-phosphorus alloy, nickel-phosphorus alloy, cobalt or cobalt-phosphorus alloy, and any one of the above-described dispersion plating layers thereon Formed, heat-treated, nickel or various nickel alloys on the substrate Form a diffusion layer of iron on the substrate and a layer formed by dispersing ultrafine carbonaceous material or a layer of ultrafine carbonaceous material and fine carbonaceous material, or a diffusion layer of these nickel plating, nickel alloy plating and substrate iron Then, a layer made of silver or a silver-containing compound is further formed on these plating layers using a wet plating method such as flash plating or a dry plating method such as vapor deposition, sputtering, or ion plating. Let Alternatively, the dispersion plating layer is formed, or any one of the above plating layers and any of the above dispersion plating layers are formed thereon, and then annealed to form a diffusion layer, and then after annealing. After forming a layer made of silver or a silver-containing compound on these plating layers, a heat treatment may be performed again to form a layer made of a silver-containing compound on the outermost surface. The process of forming the above-mentioned plating layer on these steel sheets and performing the annealing treatment includes the case where a cold rolled steel sheet of low carbon aluminum killed steel is used as a plating substrate (hereinafter referred to as “A process”) and the cooling of ultra low carbon aluminum killed steel. It is roughly divided into cases where a rolled steel sheet is used as a plating substrate (hereinafter referred to as B process).

A工程により電池容器用めっき鋼板を製造する場合は、以下のようにして行う。鋼板上に上記の(a)の構成の金属層を形成させる場合は、低炭素アルミキルド鋼を冷間圧延しアルカリ水溶液中で電解洗浄し、次いで箱型焼鈍または連続焼鈍した後調質圧延し、電池容器外面となる側にニッケルめっきを施し、電池容器内面となる側に上記のいずれかの分散めっきを施し、再度箱型焼鈍法または連続焼鈍法による拡散熱処理を施した後、引き続き電池容器内面となる側のみに銀めっきまたは銀−錫合金めっきを施す。またはその後熱処理として再加熱処理する。このようにして、電池容器内面となる側には(a)の構成の分散めっき層上の最表面に銀を含む合金層が形成されてなり、電池容器外面となる側にはニッケル層が形成された本発明の電池容器用めっき鋼板が得られる。冷間圧延後の焼鈍を箱型焼鈍で行う場合は640〜680℃の温度範囲で5〜20時間均熱することが好ましく、連続焼鈍で行う場合は730〜800℃の温度範囲で0.5〜3分均熱することが好ましい。めっき後の拡散熱処理を箱型焼鈍で行う場合は500〜530℃の温度範囲で5〜10時間均熱することが好ましく、連続焼鈍で行う場合は730〜800℃の温度範囲で0.5〜3分均熱することが好ましい。再加熱処理は、めっき後の拡散熱処理を行った場合は400〜500℃の温度範囲で0.5〜3分均熱することが好ましく、めっき後の拡散熱処理を行わない場合は730〜800℃の温度範囲で0.5〜3分均熱することが好ましい。   When manufacturing the plated steel sheet for battery containers by A process, it carries out as follows. When forming a metal layer having the above-mentioned configuration (a) on a steel sheet, cold rolling the low carbon aluminum killed steel, electrolytic cleaning in an alkaline aqueous solution, and then temper rolling after box annealing or continuous annealing, Apply nickel plating to the battery container outer surface, apply any of the above dispersion plating to the battery container inner surface, and perform diffusion heat treatment again by the box-type annealing method or continuous annealing method, and then continue to the battery container inner surface. Silver plating or silver-tin alloy plating is applied only to the side. Or it reheats as heat processing after that. In this way, an alloy layer containing silver is formed on the outermost surface of the dispersion plating layer having the structure (a) on the side that becomes the inner surface of the battery container, and a nickel layer is formed on the side that becomes the outer surface of the battery container. The plated steel sheet for battery containers of the present invention is obtained. When annealing after cold rolling is performed by box-type annealing, it is preferable to soak for 5 to 20 hours in a temperature range of 640 to 680 ° C, and when performing annealing by continuous annealing, 0.5 ° C is performed at a temperature range of 730 to 800 ° C. It is preferable to soak for -3 minutes. When the diffusion heat treatment after plating is performed by box-type annealing, it is preferable to soak for 5 to 10 hours in a temperature range of 500 to 530 ° C., and when performed by continuous annealing, 0.5 to about 730 to 800 ° C. It is preferable to soak for 3 minutes. The reheating treatment is preferably carried out in the temperature range of 400 to 500 ° C. for 0.5 to 3 minutes when the diffusion heat treatment after plating is performed, and 730 to 800 ° C. when the diffusion heat treatment after plating is not performed. It is preferable to soak for 0.5 to 3 minutes in the temperature range.

鋼板上に上記の(b)の構成の金属層を形成させる場合は、低炭素アルミキルド鋼を冷間圧延しアルカリ水溶液中で電解洗浄した後に箱型焼鈍または連続焼鈍し、次いで調質圧延し、電池容器外面となる側にニッケルめっきを施し、電池容器内面となる側に上記のいずれかのめっきを施し、次いでその上に上記のいずれかの分散めっきを施した後、再度箱型焼鈍法または連続焼鈍法による拡散熱処理を行い、引き続き電池容器内面となる側のみに銀めっきまたは銀−錫合金めっきを施す。またはその後熱処理として再加熱処理する。このようにして、電池容器内面となる側には(b)の構成のめっき層上に分散めっき層が形成され、さらにその上の最表面に銀を含む合金層が形成されてなり、電池容器外面となる側にはニッケル層が形成された本発明の電池容器用めっき鋼板が得られる。冷間圧延後の焼鈍を箱型焼鈍で行う場合は640〜680℃の温度範囲で5〜20時間均熱することが好ましく、連続焼鈍で行う場合は730〜800℃の温度範囲で0.5〜3分均熱することが好ましい。めっき後の拡散熱処理を箱型焼鈍で行う場合は500〜530℃の温度範囲で5〜10時間均熱することが好ましく、連続焼鈍で行う場合は730〜800℃の温度範囲で0.5〜3分均熱することが好ましい。再加熱処理は、めっき後の拡散熱処理を行った場合は400〜500℃の温度範囲で0.5〜3分均熱することが好ましく、めっき後の拡散熱処理を行わない場合は730〜800℃の温度範囲で0.5〜3分均熱することが好ましい。   When forming a metal layer having the above-described configuration (b) on a steel plate, cold rolling the low carbon aluminum killed steel and electrolytically washing it in an alkaline aqueous solution, followed by box annealing or continuous annealing, and then temper rolling, Apply nickel plating on the battery container outer surface, apply any one of the above platings on the battery container inner surface, and then apply any of the above dispersion platings thereon, then again with a box-type annealing method or Diffusion heat treatment is performed by a continuous annealing method, and silver plating or silver-tin alloy plating is subsequently applied only to the side that becomes the battery container inner surface. Or it reheats as heat processing after that. In this way, a dispersion plating layer is formed on the plating layer having the configuration (b) on the side that becomes the inner surface of the battery container, and an alloy layer containing silver is further formed on the outermost surface thereof. The plated steel sheet for battery containers of this invention in which the nickel layer was formed in the side used as an outer surface is obtained. When annealing after cold rolling is performed by box-type annealing, it is preferable to soak for 5 to 20 hours in a temperature range of 640 to 680 ° C, and when performing annealing by continuous annealing, 0.5 ° C is performed at a temperature range of 730 to 800 ° C. It is preferable to soak for -3 minutes. When the diffusion heat treatment after plating is performed by box-type annealing, it is preferable to soak for 5 to 10 hours in a temperature range of 500 to 530 ° C., and when performed by continuous annealing, 0.5 to about 730 to 800 ° C. It is preferable to soak for 3 minutes. The reheating treatment is preferably carried out for 0.5 to 3 minutes in the temperature range of 400 to 500 ° C. when the diffusion heat treatment after plating is performed, and 730 to 800 ° C. when the diffusion heat treatment after plating is not performed. It is preferable to soak for 0.5 to 3 minutes in the temperature range.

B工程により電池容器用めっき鋼板を製造する場合は、以下のようにして行う。鋼板上に上記の(a)の構成の金属層を設ける場合は、極低炭素アルミキルド鋼を上記と同様の工程を経て電解洗浄し、電池容器外面となる側にニッケルめっきを施し、電池容器内面となる側に上記のいずれかの分散めっきを施し、その後連続焼鈍し、次いで調質圧延する。そして電池容器内面となる側にのみ銀めっき、または銀−錫合金めっきを施す。または分散めっきを施した後、その上に銀めっき、または銀−錫合金めっきを施し、その後連続焼鈍し、次いで調質圧延する。このようにして、電池容器内面となる側には(a)の構成の分散めっき層のマトリックスとなる金属と鉄とからなる拡散層上に分散めっき層が形成され、さらにその上の最表面に銀を含む合金層が形成されてなり、電池容器外面となる側には鉄−ニッケル拡散層、ニッケル層が形成された本発明の電池容器用めっき鋼板が得られる。連続焼鈍は730〜800℃の温度範囲で0.5〜3分均熱することが好ましい。   When manufacturing the plated steel sheet for battery containers by B process, it carries out as follows. When a metal layer having the above-described configuration (a) is provided on a steel plate, the ultra-low carbon aluminum killed steel is electrolytically cleaned through the same process as described above, and nickel plating is applied to the side that becomes the outer surface of the battery case. Any one of the above-described dispersion plating is applied to the side to be, and then continuous annealing is performed, followed by temper rolling. Then, silver plating or silver-tin alloy plating is applied only to the inner side of the battery container. Alternatively, after dispersion plating is performed, silver plating or silver-tin alloy plating is applied thereon, followed by continuous annealing, and then temper rolling. In this way, a dispersion plating layer is formed on the diffusion layer made of metal and iron, which is the matrix of the dispersion plating layer having the structure (a), on the inner surface side of the battery container, and further on the outermost surface thereabove. The plated steel sheet for battery containers of this invention in which the alloy layer containing silver was formed and the iron-nickel diffused layer and the nickel layer were formed in the side used as the battery container outer surface is obtained. The continuous annealing is preferably performed at a temperature range of 730 to 800 ° C. for 0.5 to 3 minutes.

鋼板上に上記の(b)の構成の金属層を設ける場合は、極低炭素アルミキルド鋼を上記と同様の工程を経て電解洗浄し、電池容器外面となる側にニッケルめっきを施し、電池容器内面となる側に上記のいずれかのめっきを施し、その上に上記のいずれかの分散めっきを施し、その後連続焼鈍し、次いで調質圧延する。そして電池容器内面となる側にのみ銀めっき、または銀−錫合金めっきを施す。または分散めっきを施した後、その上に銀めっき、または銀−錫合金めっきを施し、その後連続焼鈍し、次いで調質圧延する。このようにして、電池容器内面となる側には(b)の構成のめっき層のマトリックスとなる金属と鉄とからなる拡散層上にめっき層が形成され、その上にめっき層のマトリックスとなる金属と分散めっき層のマトリックスとなる金属とからなる拡散層とさらにその上に分散めっき層され、またさらにその上の最表面に銀を含む合金層が形成されてなり、電池容器外面となる側には鉄−ニッケル拡散層、ニッケル層が形成された本発明の電池容器用めっき鋼板が得られる。連続焼鈍は730〜800℃の温度範囲で0.5〜3分均熱することが好ましい。   When the metal layer having the structure (b) is provided on the steel plate, the ultra-low carbon aluminum killed steel is subjected to electrolytic cleaning through the same process as described above, and nickel plating is applied to the battery container outer surface, Any one of the above-described plating is performed on the side to be, and any one of the above-described dispersion plating is performed thereon, followed by continuous annealing, and then temper rolling. Then, silver plating or silver-tin alloy plating is applied only to the inner side of the battery container. Alternatively, after dispersion plating is performed, silver plating or silver-tin alloy plating is applied thereon, followed by continuous annealing, and then temper rolling. In this way, a plating layer is formed on the diffusion layer made of metal and iron, which is the matrix of the plating layer having the configuration (b), on the side that becomes the inner surface of the battery container, and the plating layer matrix is formed thereon. A diffusion layer composed of a metal and a metal serving as a matrix of the dispersion plating layer, a dispersion plating layer formed thereon, and an alloy layer containing silver formed on the outermost surface on the diffusion layer. The plated steel sheet for battery containers according to the present invention in which an iron-nickel diffusion layer and a nickel layer are formed is obtained. The continuous annealing is preferably performed at a temperature range of 730 to 800 ° C. for 0.5 to 3 minutes.

本発明の電池容器用めっき鋼板は上記のようにして得られる。本発明の電池容器は上記電池容器用めっき鋼板を、絞り加工法、絞りしごき加工法(DI加工法)、絞りストレッチ加工法(DTR加工法)、または絞り加工後ストレッチ加工としごき加工を併用する加工法を用いて、有底の筒型形状に成形加工して得られる。筒型形状としては底面が円、楕円、または長方形や正方形などの多角形の形状であり、用途に応じて側壁の高さを適宜選択した筒型形状に成形加工する。このようにして得られる電池容器に正極、負極活物質等を充填して電池とする。   The plated steel sheet for battery containers of the present invention is obtained as described above. The battery container of the present invention uses the above-described plated steel sheet for a battery container in combination with a drawing process, a drawing and ironing process (DI process method), a drawing stretch process (DTR process method), or a drawing process and a stretch process. Using a processing method, it is obtained by molding into a bottomed cylindrical shape. As the cylindrical shape, the bottom surface is a circle, an ellipse, or a polygonal shape such as a rectangle or a square, and is molded into a cylindrical shape in which the height of the side wall is appropriately selected according to the application. The battery container thus obtained is filled with a positive electrode, a negative electrode active material, and the like to obtain a battery.

以下、実施例にて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to examples.

[電池容器用めっき鋼板の作成]
基板として、表1に化学組成を示す低炭素アルミキルド鋼(I)および極低炭素アルミキルド鋼(II)の冷間圧延板(厚さ0.25mm)を用い、低炭素アルミキルド鋼(I)を用いた場合は下記の1〜6で示す工程を経て、極低炭素アルミキルド鋼(II)を用いた場合は下記の7〜10で示す工程を経て、それぞれ電池容器用めっき鋼板を作成した。なお、下記の1〜10の工程においては容器内面となる側にめっきを施した場合を示しており、容器外面となる側には下記の1〜6の工程においては焼鈍後に、下記の7〜10の工程においては電解洗浄後にニッケルめっきを施す。
1)冷間圧延→電解洗浄→焼鈍(箱型または連続焼鈍)→調質圧延→分散ニッケルめっ きまたは分散ニッケル合金めっき→拡散熱処理(箱型または連続焼鈍)→銀めっき または銀−錫合金めっき→最表面に銀を含む合金層形成
2)冷間圧延→電解洗浄→焼鈍(箱型または連続焼鈍)→調質圧延→分散ニッケルめっ きまたは分散ニッケル合金めっき→拡散熱処理(箱型または連続焼鈍)→銀めっき または銀−錫合金めっき→再加熱処理(箱型または連続焼鈍)→最表面に銀を含む 合金層形成
3)冷間圧延→電解洗浄→焼鈍(箱型または連続焼鈍)→調質圧延→分散ニッケルめっ きまたは分散ニッケル合金めっき→銀めっきまたは銀−錫合金めっき→再加熱処理 (箱型または連続焼鈍)→最表面に銀を含む合金層形成
4)冷間圧延→電解洗浄→焼鈍(箱型または連続焼鈍)→調質圧延→ニッケルめっきま たはニッケル合金めっき→分散ニッケルめっきまたは分散ニッケル合金めっき→拡 散熱処理(箱型または連続焼鈍)→銀めっきまたは銀−錫合金めっき→最表面に銀 を含む合金層形成
5)冷間圧延→電解洗浄→焼鈍(箱型または連続焼鈍)→調質圧延→ニッケルめっきま たはニッケル合金めっき→分散ニッケルめっきまたは分散ニッケル合金めっき→拡 散熱処理(箱型または連続焼鈍)→銀めっきまたは銀−錫合金めっき→再加熱処理 (箱型または連続焼鈍→最表面に銀を含む合金層形成
6)冷間圧延→電解洗浄→焼鈍(箱型または連続焼鈍)→調質圧延→ニッケルめっきま たはニッケル合金めっき→分散ニッケルめっきまたは分散ニッケル合金めっき→銀 めっきまたは銀−錫合金めっき→再加熱処理(箱型または連続焼鈍)→最表面に銀 を含む合金層形成
7)冷間圧延→電解洗浄→分散ニッケルめっきまたは分散ニッケル合金めっき→連続焼 鈍→調質圧延→銀めっきまたは銀−錫合金めっき→最表面に銀を含む合金層形成
8)冷間圧延→電解洗浄→分散ニッケルめっきまたは分散ニッケル合金めっき→銀めっ きまたは銀−錫合金めっき→連続焼鈍→調質圧延→最表面に銀を含む合金層形成
9)冷間圧延→電解洗浄→ニッケルめっきまたはニッケル合金めっき→分散ニッケルめ っきまたは分散ニッケル合金めっき→連続焼鈍→調質圧延→銀めっきまたは銀−錫 合金めっき→最表面に銀を含む合金層形成
10)冷間圧延→電解洗浄→ニッケルめっきまたはニッケル合金めっき→分散ニッケルめ っきまたは分散ニッケル合金めっき→銀めっきまたは銀−錫合金めっき→連続焼鈍 →調質圧延→最表面に銀を含む合金層形成
[Creation of plated steel sheets for battery containers]
Low-carbon aluminum killed steel (I) and ultra-low carbon aluminum killed steel (II) cold-rolled plates (thickness 0.25 mm) whose chemical compositions are shown in Table 1 are used as substrates, and low-carbon aluminum killed steel (I) is used. In the case of using the extremely low carbon aluminum killed steel (II), the following steps 7 to 10 were performed, and the plated steel sheets for battery containers were respectively prepared. In addition, in the following steps 1 to 10, the case where plating is performed on the side that becomes the inner surface of the container is shown, and on the side that becomes the outer surface of the container, after annealing in the following steps 1 to 6, the following 7 to In step 10, nickel plating is applied after electrolytic cleaning.
1) Cold rolling → Electrolytic cleaning → Annealing (box type or continuous annealing) → Temper rolling → Dispersed nickel plating or dispersed nickel alloy plating → Diffusion heat treatment (box type or continuous annealing) → Silver plating or silver-tin alloy Plating → Formation of alloy layer containing silver on the outermost surface 2) Cold rolling → Electrolytic cleaning → Annealing (box type or continuous annealing) → Temper rolling → Dispersed nickel plating or dispersed nickel alloy plating → Diffusion heat treatment (box type or Continuous annealing) → Silver plating or silver-tin alloy plating → Reheating treatment (box type or continuous annealing) → Alloy layer formation including silver on the outermost surface 3) Cold rolling → Electrolytic cleaning → Annealing (box type or continuous annealing) → Temper rolling → Dispersed nickel plating or dispersed nickel alloy plating → Silver plating or silver-tin alloy plating → Reheating treatment (box type or continuous annealing) → Formation of alloy layer containing silver on the outermost surface 4) Cold rolling → Electrolytic washing Purification → Annealing (box type or continuous annealing) → Temper rolling → Nickel plating or nickel alloy plating → Dispersion nickel plating or dispersion nickel alloy plating → Spread heat treatment (box type or continuous annealing) → Silver plating or silver-tin Alloy plating → Formation of alloy layer containing silver on the outermost surface 5) Cold rolling → Electrolytic cleaning → Annealing (box type or continuous annealing) → Temper rolling → Nickel plating or nickel alloy plating → Dispersed nickel plating or dispersed nickel alloy Plating → Spread heat treatment (box type or continuous annealing) → Silver plating or silver-tin alloy plating → Reheating treatment (Box type or continuous annealing → Formation of alloy layer containing silver on the outermost surface 6) Cold rolling → Electrolytic cleaning → Annealing (box or continuous annealing) → Temper rolling → Nickel plating or nickel alloy plating → Dispersion nickel plating or dispersion nickel alloy plating → Silver plating or Silver-tin alloy plating → Reheating treatment (box type or continuous annealing) → Formation of alloy layer containing silver on the outermost surface 7) Cold rolling → Electrolytic cleaning → Dispersion nickel plating or dispersion nickel alloy plating → Continuous annealing → Tempering Rolling → Silver plating or silver-tin alloy plating → Formation of alloy layer containing silver on the outermost surface 8) Cold rolling → Electrolytic cleaning → Dispersion nickel plating or dispersion nickel alloy plating → Silver plating or silver-tin alloy plating → Continuous Annealing → Temper rolling → Alloy layer formation including silver on the outermost surface 9) Cold rolling → Electrolytic cleaning → Nickel plating or nickel alloy plating → Dispersed nickel plating or dispersed nickel alloy plating → Continuous annealing → Temper rolling → Silver Plating or silver-tin alloy plating → Formation of alloy layer containing silver on the outermost surface
10) Cold rolling → Electrolytic cleaning → Nickel plating or nickel alloy plating → Dispersed nickel plating or dispersed nickel alloy plating → Silver plating or silver-tin alloy plating → Continuous annealing → Temper rolling → Alloy containing silver on the outermost surface Layer formation

Figure 2005317420
Figure 2005317420

上記の1〜10に示した工程におけるニッケルめっき、各種ニッケル−合金めっき、分散ニッケルめっき、各種分散ニッケル合金めっき、銀めっき、銀−錫合金めっきは以下に示す条件で行った。
<ニッケルめっき>
浴組成 硫酸ニッケル 300g/L
塩化ニッケル 40g/L
ホウ酸 30g/L
ピット抑制剤(ラウリル硫酸ナトリウム) 0.4mL/L
陽極 ニッケルペレット(チタンバスケットに充填し、ポリプロピレン製アノード バッグ装着)
撹拌 空気撹拌
pH 4〜4.6
浴温 55〜60℃
電流密度 20A/dm
The nickel plating, the various nickel-alloy platings, the dispersed nickel plating, the various dispersed nickel alloy platings, the silver plating, and the silver-tin alloy plating in the steps shown in the above 1 to 10 were performed under the following conditions.
<Nickel plating>
Bath composition Nickel sulfate 300g / L
Nickel chloride 40g / L
Boric acid 30g / L
Pit inhibitor (sodium lauryl sulfate) 0.4mL / L
Anode Nickel pellet (filled in a titanium basket and fitted with a polypropylene anode bag)
Agitation Air agitation pH 4 to 4.6
Bath temperature 55-60 ° C
Current density 20A / dm 2

<ニッケル−コバルト合金めっき>
浴組成 硫酸ニッケル 250g/L
硫酸コバルト 5〜40g/L
塩化ニッケル 40g/L
ホウ酸 30g/L
陽極 ニッケルペレット(チタンバスケットに充填し、ポリプロピレン製アノード バッグ装着)
撹拌 空気撹拌
pH 1.5〜2.5
浴温 40〜60℃
電流密度 10〜15A/dm
<Nickel-cobalt alloy plating>
Bath composition Nickel sulfate 250g / L
Cobalt sulfate 5-40g / L
Nickel chloride 40g / L
Boric acid 30g / L
Anode Nickel pellet (filled in a titanium basket and fitted with a polypropylene anode bag)
Stirring Air stirring pH 1.5-2.5
Bath temperature 40-60 ° C
Current density 10-15A / dm 2

<ニッケル−コバルト−リン合金めっき>
浴組成 硫酸ニッケル 250g/L
硫酸コバルト 5〜40g/L
塩化ニッケル 40g/L
ホウ酸 30g/L
亜リン酸 5〜20g/L
陽極 ニッケルペレット(チタンバスケットに充填し、ポリプロピレン製アノード バッグ装着)
撹拌 空気撹拌
pH 1.5〜2.5
浴温 40〜60℃
電流密度 5〜15A/dm
<Nickel-cobalt-phosphorus alloy plating>
Bath composition Nickel sulfate 250g / L
Cobalt sulfate 5-40g / L
Nickel chloride 40g / L
Boric acid 30g / L
Phosphorous acid 5-20g / L
Anode Nickel pellet (filled in a titanium basket and fitted with a polypropylene anode bag)
Stirring Air stirring pH 1.5-2.5
Bath temperature 40-60 ° C
Current density 5-15 A / dm 2

<ニッケル−リン合金めっき>
浴組成 硫酸ニッケル 250g/L
塩化ニッケル 40g/L
ホウ酸 30g/L
亜リン酸 5〜20g/L
陽極 ニッケルペレット(チタンバスケットに充填し、ポリプロピレン製アノード バッグ装着)
撹拌 空気撹拌
pH 1.5〜2.5
浴温 40〜60℃
電流密度 10〜15A/dm
<Nickel-phosphorus alloy plating>
Bath composition Nickel sulfate 250g / L
Nickel chloride 40g / L
Boric acid 30g / L
Phosphorous acid 5-20g / L
Anode Nickel pellet (filled in a titanium basket and fitted with a polypropylene anode bag)
Stirring Air stirring pH 1.5-2.5
Bath temperature 40-60 ° C
Current density 10-15A / dm 2

<分散ニッケルめっき>
浴組成 硫酸ニッケル 300g/L
塩化ニッケル 40g/L
ホウ酸 30g/L
カーボンナノチューブ(平均径1.2nm) 1g/L
ベンゼンスルホン酸ナトリウム(分散剤) 5mL/L
ピット抑制剤(ラウリル硫酸ナトリウム) 2mL/L
陽極 ニッケルペレット(チタンバスケットに充填し、ポリプロピレン製アノード バッグ装着)
撹拌 空気撹拌
pH 4〜4.6
浴温 55〜60℃
電流密度 10A/dm
<Dispersed nickel plating>
Bath composition Nickel sulfate 300g / L
Nickel chloride 40g / L
Boric acid 30g / L
Carbon nanotube (average diameter 1.2nm) 1g / L
Sodium benzenesulfonate (dispersant) 5mL / L
Pit inhibitor (sodium lauryl sulfate) 2mL / L
Anode Nickel pellet (filled in a titanium basket and fitted with a polypropylene anode bag)
Agitation Air agitation pH 4 to 4.6
Bath temperature 55-60 ° C
Current density 10A / dm 2

<分散ニッケル−コバルト合金めっき>
浴組成 硫酸ニッケル 250g/L
硫酸コバルト 5〜40g/L
塩化ニッケル 40g/L
ホウ酸 30g/L
カーボンナノチューブ(平均径1.2nm) 1g/L
ベンゼンスルホン酸ナトリウム(分散剤) 5mL/L
陽極 ニッケルペレット(チタンバスケットに充填し、ポリプロピレン製アノード バッグ装着)
撹拌 空気撹拌
pH 1.5〜2.5
浴温 40〜60℃
電流密度 10〜15A/dm
<Dispersed nickel-cobalt alloy plating>
Bath composition Nickel sulfate 250g / L
Cobalt sulfate 5-40g / L
Nickel chloride 40g / L
Boric acid 30g / L
Carbon nanotube (average diameter 1.2nm) 1g / L
Sodium benzenesulfonate (dispersant) 5mL / L
Anode Nickel pellet (filled in a titanium basket and fitted with a polypropylene anode bag)
Stirring Air stirring pH 1.5-2.5
Bath temperature 40-60 ° C
Current density 10-15A / dm 2

<分散ニッケル−コバルト−リン合金めっきめっき>
浴組成 硫酸ニッケル 250g/L
硫酸コバルト 5〜40g/L
塩化ニッケル 40g/L
ホウ酸 30g/L
亜リン酸 5〜20g/L
カーボンナノチューブ(平均径1.2nm) 0.3g/L
ケッチェンブラック(平均径25nm) 0.7g/L
ベンゼンスルホン酸ナトリウム(分散剤) 5mL/L
陽極 ニッケルペレット(チタンバスケットに充填し、ポリプロピレン製アノード バッグ装着)
撹拌 空気撹拌
pH 1.5〜2.5
浴温 40〜60℃
電流密度 5〜15A/dm
<Dispersed nickel-cobalt-phosphorus alloy plating>
Bath composition Nickel sulfate 250g / L
Cobalt sulfate 5-40g / L
Nickel chloride 40g / L
Boric acid 30g / L
Phosphorous acid 5-20g / L
Carbon nanotube (average diameter 1.2nm) 0.3g / L
Ketjen black (average diameter 25nm) 0.7g / L
Sodium benzenesulfonate (dispersant) 5mL / L
Anode Nickel pellet (filled in a titanium basket and fitted with a polypropylene anode bag)
Stirring Air stirring pH 1.5-2.5
Bath temperature 40-60 ° C
Current density 5-15 A / dm 2

<分散ニッケル−リン合金めっき>
浴組成 硫酸ニッケル 250g/L
塩化ニッケル 40g/L
ホウ酸 30g/L
亜リン酸 5〜20g/L
カーボンナノチューブ(平均径1.2nm) 0.2g/L
アセチレンブラック(平均径120nm) 0.8g/L
陽極 ニッケルペレット(チタンバスケットに充填し、ポリプロピレン製アノード バッグ装着)
撹拌 空気撹拌
pH 1.5〜2.5
浴温 40〜60℃
電流密度 10〜15A/dm
<Dispersed nickel-phosphorus alloy plating>
Bath composition Nickel sulfate 250g / L
Nickel chloride 40g / L
Boric acid 30g / L
Phosphorous acid 5-20g / L
Carbon nanotube (average diameter 1.2nm) 0.2g / L
Acetylene black (average diameter 120nm) 0.8g / L
Anode Nickel pellet (filled in a titanium basket and fitted with a polypropylene anode bag)
Stirring Air stirring pH 1.5-2.5
Bath temperature 40-60 ° C
Current density 10-15A / dm 2

<銀めっき>
浴組成 銀含有有機酸塩(ダインシルバー−NEC) 200g/L
有機酸(錯塩:ダインシルバー−AGI) 500g/L
有機添加剤(ダインシルバー−AGH) 25g/L
陽極 銀板
撹拌 めっき浴の循環
pH 2.5〜3.5
浴温 40〜45℃
電流密度 1A/dm
<Silver plating>
Bath composition Silver-containing organic acid salt (Dyne Silver-NEC) 200g / L
Organic acid (complex salt: Dyne Silver-AGI) 500g / L
Organic additive (Dyne Silver-AGH) 25g / L
Anode Silver plate Agitation Plating bath circulation pH 2.5-3.5
Bath temperature 40-45 ° C
Current density 1A / dm 2

<銀−錫合金めっき>
浴組成 銀−錫合金めっき浴(ディップソールTS-3200(Sn-3.5wt%Ag共晶合金用、 ディップソール(株)製)
陽極 錫板
撹拌 めっき浴の循環
浴温 22〜45℃
電流密度 2A/dm
<Silver-tin alloy plating>
Bath composition Silver-tin alloy plating bath (Dipsol TS-3200 (for Sn-3.5wt% Ag eutectic alloy, manufactured by Dipsol Co., Ltd.))
Anode Tin plate Agitation Plating bath circulation Bath temperature 22-45 ° C
Current density 2A / dm 2

以上のようにして表2及び表3に示す電池容器用めっき鋼板の試料(試料番号1〜10)を作成した。表4及び表5に示すように、比較用に分散めっき層を形成させない試料(試料番号11、13、15)および最表面に銀または銀含有化合物を形成させない試料(試料番号12、14、16)を作成した。さらに、分散めっき層を形成させず、および銀または銀含有化合物を形成させない試料(従来品:試料番号17)も作成した。   Samples (sample numbers 1 to 10) of the plated steel sheets for battery containers shown in Tables 2 and 3 were prepared as described above. As shown in Tables 4 and 5, for comparison, samples that do not form a dispersion plating layer (sample numbers 11, 13, and 15) and samples that do not form silver or a silver-containing compound on the outermost surface (sample numbers 12, 14, and 16) )created. Further, a sample (conventional product: sample number 17) which does not form a dispersion plating layer and does not form silver or a silver-containing compound was also prepared.

Figure 2005317420
Figure 2005317420

Figure 2005317420
Figure 2005317420

Figure 2005317420
Figure 2005317420

Figure 2005317420
Figure 2005317420

[電池容器の作成]
これらの試料番号1〜17の試料から57mm径でブランクを打ち抜いた後、鉄−ニッケル合金層とニッケル層のみを設けた側が容器外面となるようにして、10段の絞り加工により、外径13.8mm、高さ49.3mmの円筒形のLR6型電池(単三型電池)容器に成形加工した。
[Create battery container]
After blanks were punched out from these samples Nos. 1 to 17 with a diameter of 57 mm, the outer diameter 13 was obtained by ten-stage drawing so that the side on which only the iron-nickel alloy layer and the nickel layer were provided was the outer surface of the container. It was molded into a cylindrical LR6 type battery (AA size battery) container having a height of 4 mm and a height of 49.3 mm.

[電池の作成]
この電池容器を用いて、以下のようにしてアルカリマンガン電池を作成した。二酸化マンガンと黒鉛を10:1の比率で採取し、水酸化カリウム(10モル)を添加混合して正極合剤を作成した。次いで、この正極合剤を金型中で加圧して所定寸法のドーナツ形状の正極合剤ペレットに成形し、上記の電池容器に圧挿入した。なお、一部の電池容器は、内面に黒鉛粉末を主成分とする塗料を塗布したものを用いた。次に、負極集電棒をスポット溶接した負極板を電池容器に装着した。次いで、ビニロン製織布からなるセパレータを、電池容器に圧挿入した正極合剤ペレットの内周に沿うようにして挿入し、亜鉛粒と酸化亜鉛を飽和させた水酸化カリウムからなる負極ゲルを電池容器内に充填した。さらに、負極板に絶縁体のガスケットを装着して電池容器内に挿入した後、カシメ加工を施してアルカリマンガン電池を作成した。
[Create battery]
Using this battery container, an alkaline manganese battery was prepared as follows. Manganese dioxide and graphite were collected at a ratio of 10: 1, and potassium hydroxide (10 mol) was added and mixed to prepare a positive electrode mixture. Next, the positive electrode mixture was pressurized in a mold to form a donut-shaped positive electrode mixture pellet having a predetermined size, and was press-inserted into the battery container. In addition, some battery containers used what applied the coating material which has graphite powder as a main component on the inner surface. Next, the negative electrode plate spot-welded with the negative electrode current collector rod was attached to the battery container. Next, a separator made of vinylon woven cloth is inserted along the inner periphery of the positive electrode mixture pellet press-inserted into the battery container, and the negative electrode gel made of potassium hydroxide saturated with zinc particles and zinc oxide is added to the battery. The container was filled. Further, an insulating gasket was attached to the negative electrode plate and inserted into the battery container, and then caulking was performed to prepare an alkaline manganese battery.

[特性評価]
以上のようにして試料番号1〜18の試料から作成した電池容器を用いて作成した電池の特性を、以下のようにして評価した。
[Characteristic evaluation]
The characteristics of the batteries prepared using the battery containers prepared from the samples Nos. 1 to 18 as described above were evaluated as follows.

<短絡電流>
電池を80℃で3日間放置した後、電池に電流計を接続して閉回路を設けて電流値を測定し、これを短絡電流とした。短絡電流が大きいほど特性が良好であることを示す。
<Short-circuit current>
After the battery was left at 80 ° C. for 3 days, an ammeter was connected to the battery, a closed circuit was provided, and the current value was measured. It shows that a characteristic is so favorable that a short circuit current is large.

<放電特性>
電池を80℃で3日間放置した後、電池を1.5Aの一定電流に放電し、電圧が0.9Vに到達するまでの時間を放電時間として測定した。放電時間が長いほど放電特性が良好であることを示す。
<Discharge characteristics>
After leaving the battery at 80 ° C. for 3 days, the battery was discharged to a constant current of 1.5 A, and the time until the voltage reached 0.9 V was measured as the discharge time. The longer the discharge time, the better the discharge characteristics.

<間歇放電特性>
重付加間歇放電の評価として、2Aで0.5秒放電した後に0.25Aで29.5秒放電する操作を1サイクルとして、このサイクルを繰り返し、電圧が1.0Vに到達するまでのサイクル数を測定した。サイクル数が多いほど間歇放電特性が良好であることを示す。これらの特性評価結果を表6に示す。
<Intermittent discharge characteristics>
As an evaluation of the double-added intermittent discharge, an operation of discharging at 2A for 0.5 seconds and then discharging at 0.25A at 29.5 seconds is defined as one cycle. Was measured. It shows that a intermittent discharge characteristic is so favorable that there are many cycles. These characteristic evaluation results are shown in Table 6.

Figure 2005317420
Figure 2005317420

表6に示すように、電池容器内面となる側に極微細炭素質を含有させためっき層を形成させるとともに、最表面に銀を含む合金層を形成させた本発明の電池容器用めっき鋼板を用いた電池においては、極微細炭素質を含有させためっき層のみを形成させた電池容器用めっき鋼板や、極微細炭素質を含有しないめっき層上の最表面に銀を含む合金層を形成させた電池容器用めっき鋼板を用いた場合よりも優れた短絡電流、放電特性、間歇放電特性が得られた。また本発明の電池容器用めっき鋼板を用いた電池の容器内面に黒鉛塗料を塗布した場合は、さらに短絡電流、放電特性、間歇放電特性が向上した。   As shown in Table 6, the plated steel sheet for battery containers of the present invention in which a plating layer containing ultrafine carbonaceous matter is formed on the side that becomes the inner surface of the battery container and an alloy layer containing silver is formed on the outermost surface. In the battery used, a plated steel sheet for battery containers in which only a plating layer containing ultrafine carbonaceous material was formed, or an alloy layer containing silver on the outermost surface on the plating layer not containing ultrafine carbonaceous matter was formed. The short-circuit current, discharge characteristics, and intermittent discharge characteristics superior to those obtained when using the plated steel sheet for battery containers were obtained. Moreover, when a graphite paint was applied to the inner surface of a battery container using the plated steel sheet for battery containers of the present invention, the short-circuit current, discharge characteristics, and intermittent discharge characteristics were further improved.

本発明の電池容器内面となる側に極微細炭素質を含有させためっき層を形成させるとともに、最表面に微量の銀を含む合金層を形成させてなる電池容器用めっき鋼板を用いた電池は、容器内面に黒鉛塗料を塗布せずに用いても従来の容器内面に黒鉛塗料を塗布した容器を用いた場合よりも優れた短絡電流、放電特性、間歇放電特性を示す。そのため、黒鉛塗料を塗布および乾燥する工程を省略することが可能となり、低コストで電池を製造できる。また本発明の電池容器用めっき鋼板を用いた電池の容器内面に黒鉛塗料を塗布した場合は、さらに短絡電流、放電特性、間歇放電特性が向上するので、高性能電池を提供することができる。
A battery using a plated steel sheet for a battery container in which a plated layer containing ultrafine carbonaceous matter is formed on the inner surface side of the battery container of the present invention and an alloy layer containing a trace amount of silver is formed on the outermost surface. Even if it is used without applying a graphite paint to the inner surface of the container, it exhibits superior short circuit current, discharge characteristics, and intermittent discharge characteristics as compared with the case of using a container with a graphite paint applied to the inner surface of a conventional container. Therefore, it becomes possible to omit the process of applying and drying the graphite paint, and the battery can be manufactured at low cost. Moreover, when a graphite paint is applied to the inner surface of a battery container using the plated steel sheet for battery containers of the present invention, the short-circuit current, the discharge characteristics, and the intermittent discharge characteristics are further improved, so that a high-performance battery can be provided.

Claims (12)

鋼板の電池容器内面となる側の鋼板上に下から順に、層中に極微細炭素質を分散した分散めっきのマトリックスとなる金属と鉄とが拡散してなる分散めっき−鉄拡散層、層中に極微細炭素質を分散した分散めっき層、銀または銀含有化合物からなる層が形成されてなることを特徴とする電池容器用めっき鋼板。 Dispersion plating-iron diffusion layer, in which the metal and iron that are the matrix of the dispersion plating in which the fine carbonaceous material is dispersed in the layer are diffused in order from the bottom on the steel plate on the battery container inner surface side of the steel plate, in the layer A plated steel sheet for a battery container, characterized in that a dispersion plating layer in which ultrafine carbonaceous material is dispersed and a layer made of silver or a silver-containing compound are formed. 鋼板の電池容器内面となる側の鋼板上に下から順に、めっきのマトリックスとなる金属と鉄との拡散層、めっき層、めっきのマトリックスとなる金属と層中に極微細炭素質を分散した分散めっきのマトリックスとなる金属とが拡散してなるめっき−分散めっき拡散層、層中に極微細炭素質を分散した分散めっき層、銀または銀含有化合物からなる層が形成されてなることを特徴とする電池容器用めっき鋼板。 In order from the bottom on the steel plate on the side of the battery container inner surface of the steel plate, a diffusion layer of metal and iron serving as a plating matrix, a plating layer, a dispersion in which ultrafine carbonaceous material is dispersed in the metal and layer serving as a plating matrix A plating-dispersion plating diffusion layer formed by diffusing a metal serving as a plating matrix, a dispersion plating layer in which ultrafine carbonaceous material is dispersed in the layer, and a layer made of silver or a silver-containing compound. Plated steel sheet for battery containers. 鋼板の電池容器内面となる側の鋼板上に下から順に、層中に極微細炭素質および微細炭素質を分散した分散めっきのマトリックスとなる金属と鉄とが拡散してなる分散めっき−鉄拡散層、層中に極微細炭素質を分散した分散めっき層、銀または銀含有化合物からなる層が形成されてなることを特徴とする電池容器用めっき鋼板。 Dispersion plating-iron diffusion in which metal and iron, which is a matrix of dispersion plating in which ultrafine carbonaceous materials and fine carbonaceous materials are dispersed in order, are diffused in order from the bottom on the steel plate on the side of the battery container inner surface of the steel plate A plated steel sheet for battery containers, comprising a layer, a dispersion plating layer in which ultrafine carbonaceous material is dispersed in the layer, and a layer made of silver or a silver-containing compound. 鋼板の電池容器内面となる側の鋼板上に下から順に、めっきのマトリックスとなる金属と鉄との拡散層、めっき層、めっきのマトリックスとなる金属と層中に極微細炭素質および微細炭素質を分散した分散めっきのマトリックスとなる金属とが拡散してなるめっき−分散めっき拡散層、層中に極微細炭素質を分散した分散めっき層、銀または銀含有化合物からなる層が形成されてなることを特徴とする電池容器用めっき鋼板。 In order from the bottom on the steel plate on the side that is the inner surface of the battery container of the steel plate, a diffusion layer of metal and iron serving as a plating matrix, a plating layer, a metal and a layer serving as a plating matrix, and extremely fine carbonaceous and fine carbonaceous matter A plating-dispersed plating diffusion layer formed by diffusing a metal serving as a matrix of a dispersed plating in which a metal is dispersed, a dispersed plating layer in which ultrafine carbon is dispersed in the layer, and a layer made of silver or a silver-containing compound are formed. A plated steel sheet for battery containers. 前記分散めっき層中に前記極微細炭素質が0.1〜5重量%の量で分散されてなることを特徴とする、請求項1または2に記載の電池容器用めっき鋼板。 3. The plated steel sheet for battery containers according to claim 1, wherein the ultrafine carbonaceous matter is dispersed in an amount of 0.1 to 5 wt% in the dispersion plating layer. 前記分散めっき層中に前記極微細炭素質および前記微細炭素質が0.1〜5重量%の量で分散されてなることを特徴とする、請求項3または4に記載の電池容器用めっき鋼板。 5. The plated steel sheet for battery containers according to claim 3, wherein the ultrafine carbonaceous material and the fine carbonaceous material are dispersed in an amount of 0.1 to 5% by weight in the dispersed plating layer. . 前記極微細炭素質がカーボンナノチューブであることを特徴とする、請求項1〜6のいずれかに記載の電池容器用めっき鋼板。 The plated steel sheet for battery containers according to claim 1, wherein the ultrafine carbonaceous material is a carbon nanotube. 前記微細炭素質がケッチェンブラックまたはアセチレンブラックであることを特徴とする、請求項3、4、または6のいずれかに記載の電池容器用めっき鋼板。 The plated steel sheet for battery containers according to claim 3, wherein the fine carbonaceous material is ketjen black or acetylene black. 前記分散めっきのマトリックスとなる金属および前記めっきのマトリックスとなる金属がニッケルまたはニッケル合金であることを特徴とする、請求項1〜8のいずれかに記載の電池容器用めっき鋼板。 The plated steel sheet for battery containers according to any one of claims 1 to 8, wherein the metal serving as the matrix of the dispersion plating and the metal serving as the matrix of the plating are nickel or a nickel alloy. 前記ニッケル合金がニッケル−コバルト合金、ニッケル−コバルト−リン合金、またはニッケル−リン合金のいずれかであることを特徴とする、請求項9に記載の電池容器用めっき鋼板。 The plated steel sheet for battery containers according to claim 9, wherein the nickel alloy is any one of a nickel-cobalt alloy, a nickel-cobalt-phosphorus alloy, and a nickel-phosphorus alloy. 請求項1〜10のいずれか1項に記載の電池容器用めっき鋼板を有底の筒型形状に成形加工してなる電池容器。 The battery container formed by shape | molding the plated steel plate for battery containers of any one of Claims 1-10 in a bottomed cylindrical shape. 請求項8に記載の電池容器を用いてなる電池。

A battery comprising the battery container according to claim 8.

JP2004135621A 2004-04-30 2004-04-30 Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container Withdrawn JP2005317420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004135621A JP2005317420A (en) 2004-04-30 2004-04-30 Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004135621A JP2005317420A (en) 2004-04-30 2004-04-30 Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container

Publications (1)

Publication Number Publication Date
JP2005317420A true JP2005317420A (en) 2005-11-10

Family

ID=35444604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004135621A Withdrawn JP2005317420A (en) 2004-04-30 2004-04-30 Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container

Country Status (1)

Country Link
JP (1) JP2005317420A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202918A (en) * 2009-03-02 2010-09-16 Shinshu Univ Composite plated coating film and method of forming the same, and electroplating liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202918A (en) * 2009-03-02 2010-09-16 Shinshu Univ Composite plated coating film and method of forming the same, and electroplating liquid

Similar Documents

Publication Publication Date Title
JP5083931B2 (en) Battery container manufacturing method, battery container manufactured by the battery container manufacturing method, and battery using the battery container
JP2004076118A (en) Surface treated steel sheet for battery case, manufacturing method therefor, battery case formed of the steel sheet, and battery using the battery case
JP5102945B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and alkaline battery using the battery container
JP2006093096A (en) Plated steel sheet for battery container, battery container using same, and battery using its battery container
JP4824961B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2006190648A (en) Plated sheet steel for battery case, battery case using the plated sheet steel for battery case, and battery using the battery case
JP4748665B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
WO2005104267A1 (en) Plated steel sheet for battery container, battery container utilizing the plated steel sheet and battery utilizing the battery container
JP2006294353A (en) Plated steel sheet for battery container, battery container using plated steel sheet for battery container, and battery using battery container
JP5041809B2 (en) Plated steel sheet for battery container, manufacturing method thereof, battery container using the plated steel sheet for battery container, and battery using the battery container
JP4798953B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2005317420A (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2007051325A (en) Plated steel plate for battery case, battery case using the steel plate for battery case and battery using the battery case
JP2005317423A (en) Plated steel sheet for battery container, battery container using plated steel sheet for battery container, and battery using battery container
JP4817724B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2005310452A (en) Plated steel sheet for battery case, battery case using the plated steel sheet for battery case, and battery using the battery case
JP4798955B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2007059087A (en) Plated steel sheet for battery case, battery case using same, and battery using the battery case
JP4675707B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP2004076117A (en) Surface treated steel sheet for battery case, and battery case using the same
JP2007051324A (en) Plated steel plate for battery case, battery case using the steel plate for battery case and battery using the battery case
JP2006307321A (en) Plated steel sheet for battery vessel, battery vessel using the plated steel sheet for battery vessel, and battery using the battery vessel
JP4911952B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP4968877B2 (en) Plated steel sheet for battery container, method for producing the same, battery container using the plated steel sheet for battery container, and battery using the battery container
JP3594285B2 (en) Surface-treated steel sheet for battery case, battery case using the same, manufacturing method thereof and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070124

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070416

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081113