JP2002170563A - Manganese system positive electrode material having excellent cycle property and lithium secondary battery using the same - Google Patents

Manganese system positive electrode material having excellent cycle property and lithium secondary battery using the same

Info

Publication number
JP2002170563A
JP2002170563A JP2000364153A JP2000364153A JP2002170563A JP 2002170563 A JP2002170563 A JP 2002170563A JP 2000364153 A JP2000364153 A JP 2000364153A JP 2000364153 A JP2000364153 A JP 2000364153A JP 2002170563 A JP2002170563 A JP 2002170563A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium secondary
secondary battery
electrode material
cycle characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000364153A
Other languages
Japanese (ja)
Inventor
Ryuichi Nagase
隆一 長瀬
Kenji Kohiro
健司 小廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP2000364153A priority Critical patent/JP2002170563A/en
Publication of JP2002170563A publication Critical patent/JP2002170563A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a Mn system positive electrode material and a lithium secondary battery using the material which finely maintains an initial capacity and a large charging factor, stabilizes an oxidation number of the Mn in the material, and has a good cycle property of charging. SOLUTION: A positive electrode active material for the lithium secondary battery is a particle expressed by formula Li1+x(Mn2-x)O4 (x is 0-0.20). A surface of Mn system positive material, which is excellent in the cycle property, is coated with LiNixCo1-xO2 (x is more than 0 and less than 1.0).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
用正極材料、特にサイクル特性に優れたMn系正極材料
及び同正極材料を用いたリチウム二次電池に関する。
The present invention relates to a positive electrode material for a lithium secondary battery, and more particularly to a Mn-based positive electrode material having excellent cycle characteristics and a lithium secondary battery using the same.

【0002】[0002]

【従来の技術】リチウム二次電池は従来の二次電池に比
べ高いエネルギー密度を有するので、携帯電話、携帯用
ビデオカメラ、ノート型パソコンなどの電子機器用電池
として普及しているが、将来的には電気自動車や一般家
庭の分散配置型電源としての利用が期待されており、さ
らに高容量、高能率の電池を得るための研究開発が盛ん
に行われている。
2. Description of the Related Art Lithium secondary batteries have a higher energy density than conventional secondary batteries, and thus have become widespread as batteries for electronic devices such as mobile phones, portable video cameras, and notebook personal computers. Is expected to be used as a distributed power source for electric vehicles and ordinary households, and research and development for obtaining a high-capacity, high-efficiency battery is being actively conducted.

【0003】現在、市販されているリチウム二次電池用
正極活物質には、LiCoOが用いられているが、熱
的安定性が悪いため安全性に問題があり、またコバルト
自体の地球資源の採掘可能な埋蔵量が少なく、高価であ
るという欠点を持っている。これに替わるものとして、
豊富な資源を持ち経済性に優れているリチウム・ニッケ
ル複合酸化物の研究が行われている。しかし、このリチ
ウム・ニッケル複合酸化物はLiNiOの合成の際に
酸素気流が必要であるという工程の難しさがあり、また
Niの一部が本来Liの入るべきサイトに混入するなど
の結晶の乱れがあって十分なサイクル特性が得られない
という欠点があるので殆ど実用化に至っていないのが現
状である。
At present, LiCoO 2 is used as a commercially available positive electrode active material for lithium secondary batteries, but has a problem in safety due to poor thermal stability. It has the drawback that the reserves that can be mined are small and expensive. As an alternative,
Research is being conducted on lithium-nickel composite oxides that have abundant resources and are economical. However, this lithium-nickel composite oxide has a difficulty in the step of requiring an oxygen gas stream when synthesizing LiNiO 2 , and has a problem in that a part of Ni is mixed in a site where Li should originally enter. At present, it has hardly been put to practical use because there is a defect that sufficient cycle characteristics cannot be obtained due to disturbance.

【0004】このようなことから、コバルトやニッケル
に比べさらに価格が安く、埋蔵されている量も豊富であ
るLiMnスピネル化合物が注目され、近年研
究が盛んに行われている。そして上記のような電気自動
車等の用途にも対応できるものと期待されている。この
リチウム・マンガン複合酸化物であるスピネルLi
はLiが8a四面体サイトに、Mnは16d八
面体サイトにある。酸素の配置は立方細密充填構造であ
り、基本の骨格はλ-MnOである。リチウムイオン
は可逆的に四面体サイトを占めるのでLiMn
を正極材とするリチウム二次電池においては基本骨格の
構造破壊は殆ど起こらない。充放電に伴なって結晶格子
の膨張・収縮が起こるのみである。このため充放電が安
定しているという特徴を有している。
[0004] For these reasons, attention has been paid to Li x Mn 2 O 4 spinel compounds, which are cheaper than cobalt and nickel and have a large amount of reserves, and have been actively studied in recent years. It is expected that it can be used for electric vehicles and the like as described above. This lithium / manganese composite oxide, spinel Li x M
In n 2 O 4 , Li is on the 8a tetrahedral site and Mn is on the 16d octahedral site. The arrangement of oxygen is a cubic close-packed structure, and the basic skeleton is λ-MnO 2 . Since lithium ions reversibly occupy tetrahedral sites, Li x Mn 2 O 4
In a lithium secondary battery using as a positive electrode material, structural destruction of the basic skeleton hardly occurs. Only expansion and contraction of the crystal lattice occur with charge and discharge. For this reason, it has the feature that charge and discharge are stable.

【0005】ところが、LiMnスピネル化合
物はこのように熱的安定性が高いけれども、これを正極
活物質として使用した二次電池はサイクル特性が悪く、
実用上の大きな支障となっている。従来、この欠点を改
良しようとして活物質の均一性を高めたり、他の物質の
ドーピングなどの方法を用いてサイクル特性改善の図ら
れているがいまだ十分なものとは言えない。例えば、L
Mnスピネル化合物のMn塩のMnサイトを
Zn、Ti、Zr等で一部置換する提案がなされた。し
かし、これによって得たものは、Mn酸化数が大きく変
動し、初期容量が著しく低下するという問題があった。
このようなことから、LiMnスピネル化合物
は、さらに改良がなければ実用に供することができなか
った。
[0005] However, although the Li x Mn 2 O 4 spinel compound has high thermal stability as described above, a secondary battery using this as a positive electrode active material has poor cycle characteristics.
This is a major obstacle in practical use. Conventionally, attempts have been made to improve the uniformity of the active material to improve this drawback, or to improve the cycle characteristics by using a method such as doping with another material, but it cannot be said that it is still sufficient. For example, L
i x Mn 2 O 4 Mn sites of Zn in the Mn salt of spinel compounds, Ti, is proposed to partially replaced with Zr, etc. have been made. However, those obtained by this method had a problem that the Mn oxidation number fluctuated greatly and the initial capacity was significantly reduced.
For these reasons, the Li x Mn 2 O 4 spinel compound could not be put to practical use without further improvement.

【0006】従来、LiMnスピネル化合物のサ
イクル特性を改善する方法として、LiMn粉の
表面にAgを被覆する技術の提案がなされている(「L
iMn粉の表面処理の充放電特性への影響I.A
g被覆」Electrochemistry 67,No.4(1999) p.359-363
)。しかし、この技術報告書によるとLiMn
粒子へのAg被覆により、30°Cでは充放電サイクル
特性は良好であったが、60°Cではサイクル特性数の
増加とともに放電容量が低下し、50サイクル目の容量
は初期容量の70%に低下し、必ずしも良好な結果が得
られていない。しかも、60°CではLiMn
からのマンガンイオンの溶出があり、それをAg被覆で
は防止できないと報告されており、LiMn粉の
表面にAgを被覆することでは、サイクル特性の改善は
困難なことが分かっている。
Conventionally, as a method for improving the cycle characteristics of a LiMn 2 O 4 spinel compound, a technique of coating Ag on the surface of LiMn 2 O 4 powder has been proposed (see “L.
Effect of surface treatment of iMn 2 O 4 powder on charge and discharge characteristics A
g coating '' Electrochemistry 67, No. 4 (1999) p.359-363
). However, according to this technical report, LiMn 2 O 4
Due to the Ag coating on the particles, the charge / discharge cycle characteristics were good at 30 ° C, but at 60 ° C, the discharge capacity decreased as the number of cycle characteristics increased, and the capacity at the 50th cycle was reduced to 70% of the initial capacity. And good results have not always been obtained. Moreover, there is dissolution of manganese ions from the 60 ° C in LiMn 2 O 4 powder, it has been reported that it can not prevent the Ag coating is to coat the Ag on the surface of LiMn 2 O 4 powder, the cycle characteristics Improvements have proven difficult.

【0007】また、LiMnスピネル化合物の高
温サイクル特性を改善する方法として、ポリアニリン高
分子化合物でLiMn粒を被覆して電解液との直
接的接触を防止し、マンガン溶解に起因する充放電容量
の低下を抑制する方法が提案されている(「ポリアニリ
ン被覆スピネルLiMnの充放電挙動」Electroc
hemistry 68,No.7(2000) p.587-590)。しかし、この方
法はサイクル数が少ない場合に効果があること報告がな
されているが、サイクル数が増大する場合の効果は十分
に確認されていない。しかも、ポリアニリン自体の充放
電挙動が電解液に強く依存するため、電解液の種類によ
っては十分な効果が得られず、汎用性のある安定したサ
イクル特性改善効果のある材料とは必ずしも言えない問
題がある。この外、LiMn粒子にLiMn
層を形成するか又はLiMnとの複合体と
して、高電位における充放電時にマンガンの溶出を防止
し、サイクル特性を向上させようとするもの(特開平1
0−199528)あるいはスピネルマンガン正極活物
質粒子お表面のマンガンの一部をSc、Ti、V、C
r、Fe、希土類の遷移金属で置換して表面層を形成し
サイクル特性を向上させようとするもの(特開2000
−30709)が提案されている。しかし、表面被覆層
形成の作業工程が複雑になり、また安定した十分なサイ
クル特性を向上させることができないという問題があ
る。
As a method of improving the high-temperature cycle characteristics of the LiMn 2 O 4 spinel compound, a method of coating LiMn 2 O 4 particles with a polyaniline polymer compound to prevent direct contact with the electrolyte and dissolving the manganese is caused. (“Charging and discharging behavior of polyaniline-coated spinel LiMn 2 O 4 ” Electroc) has been proposed.
hemistry 68, No. 7 (2000) p.587-590). However, although it has been reported that this method is effective when the number of cycles is small, the effect when the number of cycles is increased has not been sufficiently confirmed. In addition, since the charge / discharge behavior of polyaniline itself strongly depends on the electrolytic solution, sufficient effects cannot be obtained depending on the type of the electrolytic solution, and it is not necessarily a versatile material having a stable cycle characteristic improving effect. There is. In addition, LiMn 2 O 4 particles have Li 2 Mn 2
A method of forming an O 4 layer or as a composite with Li 2 Mn 2 O 4 to prevent manganese from eluting during charge and discharge at a high potential and to improve cycle characteristics (Japanese Patent Laid-Open No.
0-199528) or a part of manganese on the surface of the spinel manganese positive electrode active material particles is Sc, Ti, V, C
A method for improving cycle characteristics by forming a surface layer by substituting with a transition metal of r, Fe, or rare earth (Japanese Patent Laid-Open No. 2000-2000)
-30709) has been proposed. However, there is a problem that the operation process of forming the surface coating layer becomes complicated, and stable and sufficient cycle characteristics cannot be improved.

【0008】[0008]

【発明が解決しようとする課題】本発明は、リチウム二
次電池用正極材料としてLi1+x(Mn2-x)O
(0≦x≦0.20)の化学式で表されるスピネル化合
物を使用し、初期容量を良好に維持するとともに、高温
での劣化を抑制し、高充電率を維持する良好な充電サイ
クル特性を有するMn系正極材料及び同正極材料を用い
たリチウム二次電池を確立することである。
SUMMARY OF THE INVENTION The present invention provides Li 1 + x (Mn 2-x ) O 4 as a cathode material for a lithium secondary battery.
Using a spinel compound represented by the chemical formula of (0 ≦ x ≦ 0.20), a good charge cycle characteristic of maintaining a good initial capacity, suppressing deterioration at a high temperature, and maintaining a high charge rate. An object of the present invention is to establish a Mn-based positive electrode material and a lithium secondary battery using the same.

【0009】[0009]

【課題を解決するための手段】本発明は、この知見に基
づき、 1.Li1+x(Mn2-x)O(0≦x≦0.2
0)の化学式で表される粒状のリチウム二次電池用正極
活物質材料であって、その表面がLiNiCo -x
(0<x<1.0)でコーティングされていること
を特徴とするサイクル特性に優れたMn系正極材料 2.Li1+x(Mn2-x)O(0≦x≦0.2
0)の化学式で表される粒状のリチウム二次電池用正極
活物質材料であって、その表面がLiNiCo -x
(0.7<x<0.9)でコーティングされている
ことを特徴とするサイクル特性に優れたMn系正極材料 3.正極活物質材料の平均粒径が5〜20μm、タップ
密度が2.0g/cc以上であることを特徴とする上記
1又は2記載のサイクル特性に優れたMn系正極材料 4.コーティングされるLiNiCo1-xの平
均粒径が1μm以下であることを特徴とする上記1〜3
のそれぞれに記載のサイクル特性に優れたMn系正極材
料 5.LiNiCo1-xのコーティング層の厚さ
が0.5μm以下であることを特徴とする上記1〜4の
それぞれに記載のサイクル特性に優れたMn系正極材料 6.LiNiCo1-x粉粒に圧縮と剪断力を与
えて母粒子である正極活物質材料にコーティングされた
ものであることを特徴とする上記1〜5のそれぞれに記
載のサイクル特性に優れたMn系正極材料 7.上記1〜6のそれぞれに記載のMn系正極材料を用
いたリチウム二次電池を提供する。
The present invention has been made based on this finding. Li 1 + x (Mn 2-x ) O 4 (0 ≦ x ≦ 0.2
0) A particulate positive electrode active material for a lithium secondary battery represented by the chemical formula 0), the surface of which is LiNi x Co 1 -x
1. Mn-based positive electrode material excellent in cycle characteristics characterized by being coated with O 2 (0 <x <1.0) Li 1 + x (Mn 2-x ) O 4 (0 ≦ x ≦ 0.2
0) A particulate positive electrode active material for a lithium secondary battery represented by the chemical formula 0), the surface of which is LiNi x Co 1 -x
2. Mn-based positive electrode material excellent in cycle characteristics characterized by being coated with O 2 (0.7 <x <0.9) 3. The Mn-based positive electrode material having excellent cycle characteristics as described in 1 or 2, wherein the positive electrode active material has an average particle diameter of 5 to 20 μm and a tap density of 2.0 g / cc or more. Wherein the average particle size of LiNi x Co 1-x O 2 to be coated is 1 μm or less.
4. Mn-based positive electrode materials excellent in cycle characteristics described in each of 5. 5. The Mn-based positive electrode material having excellent cycle characteristics as described in any one of 1 to 4 above, wherein the thickness of the coating layer of LiNi x Co 1-x O 2 is 0.5 μm or less. LiNi x Co 1-x O 2 powder is compressed and sheared to give a positive electrode active material which is a base particle by applying a compressive and shearing force. 6. Excellent Mn-based positive electrode material A lithium secondary battery using the Mn-based positive electrode material described in any of 1 to 6 above is provided.

【0010】[0010]

【発明の実施の形態】現在、リチウム二次電池に用いら
れるLi1+x(Mn2-x)Oスピネル化合物は実
験室レベルの特殊なケースを除き、実用的なレベルでは
粉末状のリチウム塩(炭酸塩)とマンガン塩(酸化物)
を混合して熱処理する固相反応法が用いられている。固
相反応法はリチウム塩(炭酸塩)中のリチウムとマンガ
ン塩(酸化物)中のマンガンの相互拡散を主反応として
進む。この場合、相互に均一拡散するのが理想である
が、リチウム塩(炭酸塩)は熱的に不安定で分解しやす
く、実際にはマンガン塩(酸化物)中にリチウムが拡散
する形で反応が進む。
DETAILED DESCRIPTION OF THE INVENTION At present, Li 1 + x (Mn 2 -x ) O 4 spinel compounds used in lithium secondary batteries are powdery lithium salts at practical levels except for special cases at the laboratory level. Carbonate) and manganese salt (oxide)
Are mixed and heat-treated. The solid-state reaction method proceeds mainly by mutual diffusion of lithium in a lithium salt (carbonate) and manganese in a manganese salt (oxide). In this case, it is ideal that they diffuse uniformly, but the lithium salt (carbonate) is thermally unstable and easily decomposed, and actually reacts in such a way that lithium diffuses into the manganese salt (oxide). Advances.

【0011】スピネル化合物の平均粒径は二酸化マンガ
ンの粒径に依存するが、本発明の平均粒径は5ミクロン
以上、20ミクロン以下の大きさに調整され、またタッ
プ密度が2.0g/cc以上であるのが望ましい。平均
粒径5μm未満では電解液へのMn溶解の進行が速く効
果が期待できない。また、平均粒径20μmを超えると
相対的に粗粒が増え、塗布性や電池特性に問題を生じ
る。さらに、タップ密度が2.0g/cc未満では、電
池作製時のプレス時に粒の破壊を生じ電池特性に悪影響
を与える。これらのスピネル化合物の出発原料として
は、市販の化学合成二酸化マンガンを用いても良いし、
微粒炭酸マンガンを酸化して作製しても良い(特願平1
1−085106、特願2000−043588参
照)。これらの出発原料とリチウム塩(炭酸塩)を混合
し、不活性雰囲気中、大気中又は酸化雰囲気中で650
〜900°Cの間で電気炉等の加熱装置を用いて熱処理
することによって得られる。
Although the average particle size of the spinel compound depends on the particle size of manganese dioxide, the average particle size of the present invention is adjusted to a size of 5 μm to 20 μm and the tap density is 2.0 g / cc. It is desirable that this is the case. If the average particle size is less than 5 μm, the dissolution of Mn in the electrolytic solution proceeds so rapidly that no effect can be expected. On the other hand, if the average particle size exceeds 20 μm, coarse particles relatively increase, which causes problems in applicability and battery characteristics. Further, when the tap density is less than 2.0 g / cc, particles are broken at the time of pressing at the time of producing a battery, which adversely affects battery characteristics. As a starting material of these spinel compounds, commercially available chemically synthesized manganese dioxide may be used,
It may be produced by oxidizing fine manganese carbonate.
1-085106, Japanese Patent Application No. 2000-043588). These starting materials are mixed with a lithium salt (carbonate) and mixed in an inert atmosphere, air or an oxidizing atmosphere.
It is obtained by performing heat treatment using a heating device such as an electric furnace at a temperature of up to 900 ° C.

【0012】上記のように、Mn系正極材における問題
点の一つとして高温での劣化が大きいことが挙げられる
が、その要因として電解液と水分の反応で生成するHF
がMn系正極材に作用して劣化することが挙げられる。
近年Ni−Co系正極材料がHFに対して劣化防止の効
果があることが見出されている。そのてめ、Mn系正極
材とNi−Co系正極材料とを混合した混合正極材料の
提案がなされている。しかし、これによってもサイクル
劣化が大きくなり実用的ではない結果が得られている。
このため、本発明はLi1+x(Mn2-x)O(0
≦x≦0.20)の化学式で表される粒状のリチウム二
次電池用正極活物質材料に、LiNiCo -x
(0<x<1.0)、好ましくはLiNiCo1-x
(0.7<x<0.9)をコーティングし、高温時
におけるマンガン系正極材料とHFとの反応を抑制し、
サイクル劣化を防止するものである。なお、LiNi
Co1-xに種々の元素をドーピングした材料につ
いても同様の効果が得られる。
As described above, one of the problems with the Mn-based cathode material is that deterioration at a high temperature is large. One of the causes is that HF generated by the reaction between the electrolyte and water.
Acts on the Mn-based positive electrode material and deteriorates.
In recent years, it has been found that a Ni—Co-based positive electrode material has an effect of preventing deterioration of HF. In addition, a mixed cathode material in which a Mn-based cathode material and a Ni—Co-based cathode material are mixed has been proposed. However, this also results in increased cycle deterioration and results in impractical results.
For this reason, the present invention provides Li 1 + x (Mn 2-x ) O 4 (0
≦ x ≦ 0.20) LiNi x Co 1 -xO 2 is used as a granular positive electrode active material for a lithium secondary battery represented by the chemical formula:
(0 <x <1.0), preferably LiNi x Co 1-x
O 2 (0.7 <x <0.9) is coated to suppress the reaction between the manganese-based positive electrode material and HF at a high temperature,
This is to prevent cycle deterioration. Note that LiNi x
Similar effects can be obtained for materials obtained by doping Co 1-x O 2 with various elements.

【0013】コーティングするLiNiCo1-x
は平均粒径が1μm以下であることが望ましい。平均
粒径が1μmを超えるとコーティング自体が困難とな
り、コーティングの効果が得られない。また、LiNi
Co1-xのコーティング層の厚さは0.5μm
以下であることが望ましい。コーティング層の厚さが
0.5μmを超えると充放電時のLiの移動に悪影響を
与える。好適な範囲は0.01〜0.2μmである。こ
れらのLiNiCo1-xコーティングは、Li
NiCo1-xの粉粒に圧縮と剪断力を与えて母
粒子であるLi1+x(Mn2-x)Oの正極活物質
材料にコーティングすることが望ましい。これによっ
て、LiNiCo1-xを母粒子である正極活物
質材料を破壊せずに該正極活物質材料に均一に被覆する
ことができる。以上のLiNiCo1-xコーテ
ィング層を形成することによって、初期容量を低下させ
ずに、自己放電の低減、高サイクル特性のリチウム二次
電池用正極材料を得ることが可能になった。
LiNi x Co 1-x O to be coated
2 preferably has an average particle size of 1 μm or less. If the average particle size exceeds 1 μm, the coating itself becomes difficult, and the effect of the coating cannot be obtained. Also, LiNi
x Co 1-x O 2 coating layer thickness is 0.5 μm
It is desirable that: If the thickness of the coating layer exceeds 0.5 μm, the movement of Li during charge and discharge is adversely affected. A preferred range is from 0.01 to 0.2 μm. These LiNi x Co 1-x O 2 coatings provide Li
It is desirable to apply compression and shearing force to the Ni x Co 1-x O 2 powder to coat the powder on the positive electrode active material of Li 1 + x (Mn 2-x ) O 4 as the base particle. Thereby, the LiNi x Co 1-x O 2 can be uniformly coated on the positive electrode active material without destroying the positive electrode active material which is the base particle. By forming the above-mentioned LiNi x Co 1-x O 2 coating layer, it became possible to obtain a positive electrode material for a lithium secondary battery having reduced self-discharge and high cycle characteristics without lowering the initial capacity. .

【0014】[0014]

【実施例】以下、実施例に基づいて説明する。本実施例
は好適な1例にすぎず、本発明はこれらの実施例に限定
されるものではない。したがって、本発明の技術思想の
範囲で種々の変形や他の実施例及び態様を含むものであ
る。本発明の実施に当たって、図1に示すコイン型セル
を用いて電池特性の評価を行った。このコイン型セルは
正極活物質を導電性カーボン及び結着剤としてのポリフ
ッ化ビニリデンとn-メチルピロリドンを混合し、ドク
ターブレード法でSUS板4上に成膜したものを正極8
とした。これにセパレータ7及び負極6としての金属リ
チウム板及び電解液5としてEC/DMC溶液を用いて
SUS製の上下蓋1、3及びテフロン(登録商標)製の
シールガスケット2にて封入したものを使用した。この
セルにより電池性能として、55°Cでのサイクル試験
をC/2充電、1C放電で100サイクルまで行った。
Embodiments will be described below with reference to embodiments. This embodiment is merely a preferred example, and the present invention is not limited to these embodiments. Therefore, various modifications and other embodiments and aspects are included within the technical idea of the present invention. In carrying out the present invention, battery characteristics were evaluated using the coin-shaped cell shown in FIG. This coin-type cell was prepared by mixing a positive electrode active material with conductive carbon, polyvinylidene fluoride as a binder and n-methylpyrrolidone, and forming a film on a SUS plate 4 by a doctor blade method.
And A separator and a metal lithium plate as the negative electrode 6 and an EC / DMC solution as the electrolyte 5 which are sealed with upper and lower lids 1 and 3 made of SUS and a seal gasket 2 made of Teflon (registered trademark) are used. did. As a battery performance of this cell, a cycle test at 55 ° C. was performed up to 100 cycles of C / 2 charge and 1C discharge.

【0015】微細粒炭酸マンガンを酸化処理した酸化マ
ンガンを出発原料として、炭酸リチウムと混合し、大気
中750°Cで熱処理して、スピネル構造のマンガン酸
リチウムをリチウム二次電池用正極材料として得た。こ
の時の平均粒径は出発原料に依存するが、本発明の範囲
内である平均粒径10μmに調整した。この正極材料を
母材として、これに平均粒径が0.5μmのLiNi
Co1-xを0.1μmの厚さでコーティングし
た。なお、コーティング材は平均粒径5μmのLiNi
Co1-xをボールミルで湿式粉砕し乾燥して準
備した。
Using manganese oxide obtained by oxidizing fine manganese carbonate as a starting material, it is mixed with lithium carbonate and heat-treated at 750 ° C. in the air to obtain lithium manganate having a spinel structure as a positive electrode material for a lithium secondary battery. Was. The average particle size at this time depends on the starting material, but was adjusted to an average particle size of 10 μm within the range of the present invention. Using this positive electrode material as a base material, LiNi x having an average particle size of 0.5 μm
Co 1-x O 2 was coated at a thickness of 0.1 μm. The coating material is LiNi having an average particle size of 5 μm.
x Co 1-x O 2 was prepared by wet grinding with a ball mill and drying.

【0016】[0016]

【表1】 [Table 1]

【0017】表1に示すように母材のサイクル特性は、
初期放電容量は115.2mAh/gであり、50サイ
クルまではほぼ一定の比率で低下するが、60サイクル
目で急激な低下を示す。この低下傾向はさらにサイクル
を増加させると顕著であり、80サイクルで98.0m
Ah/g、90サイクルで88.1mAh/gとなっ
た。これに対して、実施例のコーティングした材料のサ
イクル特性は、初期放電容量109.4mAh/gであ
り、50サイクルまでは母材同様一定の比率で低下す
る。それ以降も低下傾向は同様であるが、80サイクル
目では99.2mAh/gと母材の放電容量を逆転す
る。実施例のサイクル特性は100サイクル以降も同様
の低下傾向で推移し、200サイクルを超えても急激な
低下は見られなかった。
As shown in Table 1, the cycle characteristics of the base material are as follows:
The initial discharge capacity is 115.2 mAh / g, and decreases at a substantially constant rate until 50 cycles, but shows a sharp decrease at the 60th cycle. This decreasing tendency is remarkable when the cycle is further increased, and 98.0 m in 80 cycles.
Ah / g, 88.1 mAh / g in 90 cycles. On the other hand, the cycle characteristics of the coated material of the example are an initial discharge capacity of 109.4 mAh / g, and decrease at a constant rate like the base material up to 50 cycles. Thereafter, the decrease tendency is the same, but the discharge capacity of the base material is reversed to 99.2 mAh / g at the 80th cycle. The cycle characteristics of the example remained in a similar decreasing tendency even after 100 cycles, and no sharp decrease was observed even after 200 cycles.

【0018】サイクル劣化率(mAh/g/サイクル)
を以下の式で計算し、表2にまとめた。 サイクル劣化率=(N回目の放電容量−M回目の放電容
量/(M−N)×100)
Cycle deterioration rate (mAh / g / cycle)
Was calculated by the following equation and summarized in Table 2. Cycle deterioration rate = (Nth discharge capacity−Mth discharge capacity / (M−N) × 100)

【0019】[0019]

【表2】 [Table 2]

【0020】表2に示したとおり、母材のサイクルの低
下傾向は50サイクルを境に急激に悪化したのに対し
て、実施例では50サイクル以降も同様の低下率で安定
したサイクル劣化率となった。このように本発明のLi
NiCo1-xをコーティングしたリチウム二次
電池用正極材料のサイクル特性の向上が著しいことが分
かる。
As shown in Table 2, the decrease tendency of the cycle of the base material rapidly deteriorated after 50 cycles, whereas in the embodiment, the cycle deterioration rate was stable at the same rate after 50 cycles. became. Thus, the Li of the present invention
It can be seen that the cycle characteristics of the positive electrode material for a lithium secondary battery coated with Ni x Co 1-x O 2 are remarkably improved.

【0021】[0021]

【発明の効果】リチウム二次電池用正極材料としてLi
1+x(Mn2-x)O(0≦x≦0.20)の化学
式で表されるスピネル化合物を使用し、初期容量を良好
に維持するとともに、高充電率を維持する良好な充電サ
イクル特性を有するMn系正極材料及び同正極材料を用
いたリチウム二次電池を得ることができるという優れた
効果を有する。
As described above, Li is used as a positive electrode material for a lithium secondary battery.
1 + x (Mn 2-x ) using O 4 (0 ≦ x ≦ 0.20 ) spinel compound represented by the chemical formula, while maintaining good initial capacity, good charge cycle characteristic of maintaining a high charging rate And a lithium secondary battery using the same Mn-based positive electrode material and the positive electrode material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電池特性評価用コイン型セルの断面模式図であ
る。
FIG. 1 is a schematic cross-sectional view of a coin-type cell for evaluating battery characteristics.

【符号の説明】[Explanation of symbols]

1 上蓋 2 シールガスケット 3 下蓋 4 SUS板 5 電解液 6 負極 7 セパレータ 8 正極 DESCRIPTION OF SYMBOLS 1 Upper lid 2 Seal gasket 3 Lower lid 4 SUS plate 5 Electrolyte 6 Negative electrode 7 Separator 8 Positive electrode

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ05 AK03 AK19 AL12 AM03 AM05 AM07 BJ03 CJ05 CJ22 DJ16 HJ02 HJ04 HJ05 HJ08 5H050 AA07 BA17 CA08 CA09 CA29 FA17 FA18 GA07 GA22 HA02 HA04 HA05 HA08  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H029 AJ05 AK03 AK19 AL12 AM03 AM05 AM07 BJ03 CJ05 CJ22 DJ16 HJ02 HJ04 HJ05 HJ08 5H050 AA07 BA17 CA08 CA09 CA29 FA17 FA18 GA07 GA22 HA02 HA04 HA05 HA08

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 Li1+x(Mn2-x)O(0≦x
≦0.20)の化学式で表される粒状のリチウム二次電
池用正極活物質材料であって、その表面がLiNi
1-x(0<x<1.0)でコーティングされて
いることを特徴とするサイクル特性に優れたMn系正極
材料。
1. Li 1 + x (Mn 2-x ) O 4 (0 ≦ x
≦ 0.20) a positive electrode active material for lithium secondary battery of particulate represented by the chemical formula, its surface LiNi x C
A Mn-based positive electrode material excellent in cycle characteristics characterized by being coated with o 1-x O 2 (0 <x <1.0).
【請求項2】 Li1+x(Mn2-x)O(0≦x
≦0.20)の化学式で表される粒状のリチウム二次電
池用正極活物質材料であって、その表面がLiNi
1-x(0.7<x<0.9)でコーティングさ
れていることを特徴とするサイクル特性に優れたMn系
正極材料。
2. Li 1 + x (Mn 2-x ) O 4 (0 ≦ x
≦ 0.20) a positive electrode active material for lithium secondary battery of particulate represented by the chemical formula, its surface LiNi x C
A Mn-based positive electrode material excellent in cycle characteristics characterized by being coated with o 1-x O 2 (0.7 <x <0.9).
【請求項3】 正極活物質材料の平均粒径が5〜20μ
m、タップ密度が2.0g/cc以上であることを特徴
とする請求項1又は2記載のサイクル特性に優れたMn
系正極材料。
3. The positive electrode active material has an average particle size of 5 to 20 μm.
3. Mn having excellent cycle characteristics according to claim 1 or 2, wherein the tap density is 2.0 g / cc or more.
System cathode material.
【請求項4】 コーティングされるLiNiCo
1-xの平均粒径が1μm以下であることを特徴と
する請求項1〜3のそれぞれに記載のサイクル特性に優
れたMn系正極材料。
4. LiNi x Co to be coated
Mn-based positive electrode material having excellent cycle characteristics according to each of claims 1 to 3 having an average particle size of 1-x O 2 is equal to or is 1μm or less.
【請求項5】 LiNiCo1-xのコーティン
グ層の厚さが0.5μm以下であることを特徴とする請
求項1〜4のそれぞれに記載のサイクル特性に優れたM
n系正極材料。
5. The M according to claim 1, wherein the thickness of the coating layer of LiNi x Co 1-x O 2 is 0.5 μm or less.
n-based positive electrode material.
【請求項6】 LiNiCo1-x粉粒に圧縮と
剪断力を与えて母粒子である正極活物質材料にコーティ
ングされたものであることを特徴とする請求項1〜5の
それぞれに記載のサイクル特性に優れたMn系正極材
料。
6. The method according to claim 1, wherein the LiNi x Co 1-x O 2 powder is applied to the positive electrode active material as mother particles by applying compression and shearing force. 4. A Mn-based positive electrode material excellent in cycle characteristics described in 1.
【請求項7】 請求項1〜6のそれぞれに記載のMn系
正極材料を用いたリチウム二次電池。
7. A lithium secondary battery using the Mn-based positive electrode material according to claim 1.
JP2000364153A 2000-11-30 2000-11-30 Manganese system positive electrode material having excellent cycle property and lithium secondary battery using the same Withdrawn JP2002170563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000364153A JP2002170563A (en) 2000-11-30 2000-11-30 Manganese system positive electrode material having excellent cycle property and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000364153A JP2002170563A (en) 2000-11-30 2000-11-30 Manganese system positive electrode material having excellent cycle property and lithium secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2002170563A true JP2002170563A (en) 2002-06-14

Family

ID=18835145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000364153A Withdrawn JP2002170563A (en) 2000-11-30 2000-11-30 Manganese system positive electrode material having excellent cycle property and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2002170563A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012433A (en) * 2004-06-22 2006-01-12 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2006503789A (en) * 2002-10-31 2006-02-02 エルジー・ケム・リミテッド Lithium transition metal oxide with gradient in composition of metal components
WO2010029745A1 (en) * 2008-09-10 2010-03-18 戸田工業株式会社 Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY AND METHOD FOR PRODUCTION THEREOF, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
JP2012094483A (en) * 2011-05-11 2012-05-17 Dainippon Printing Co Ltd Positive electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method of manufacturing positive electrode plate for nonaqueous electrolyte secondary battery, and battery pack
CN102709525A (en) * 2012-05-24 2012-10-03 奇瑞汽车股份有限公司 Metal oxide coated lithium nickel manganese oxide material, preparation method of metal oxide coated lithium nickel manganese oxide material and lithium ion battery
JP2022139191A (en) * 2021-03-11 2022-09-26 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode active material and lithium ion secondary battery including the positive electrode active material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006503789A (en) * 2002-10-31 2006-02-02 エルジー・ケム・リミテッド Lithium transition metal oxide with gradient in composition of metal components
US7695649B2 (en) 2002-10-31 2010-04-13 Lg Chem, Ltd. Lithium transition metal oxide with gradient of metal composition
JP2006012433A (en) * 2004-06-22 2006-01-12 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2010029745A1 (en) * 2008-09-10 2010-03-18 戸田工業株式会社 Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY AND METHOD FOR PRODUCTION THEREOF, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
JP2010092848A (en) * 2008-09-10 2010-04-22 Toda Kogyo Corp Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP2012094483A (en) * 2011-05-11 2012-05-17 Dainippon Printing Co Ltd Positive electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method of manufacturing positive electrode plate for nonaqueous electrolyte secondary battery, and battery pack
CN102709525A (en) * 2012-05-24 2012-10-03 奇瑞汽车股份有限公司 Metal oxide coated lithium nickel manganese oxide material, preparation method of metal oxide coated lithium nickel manganese oxide material and lithium ion battery
JP2022139191A (en) * 2021-03-11 2022-09-26 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode active material and lithium ion secondary battery including the positive electrode active material
JP7275180B2 (en) 2021-03-11 2023-05-17 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode active material and lithium ion secondary battery comprising the positive electrode active material

Similar Documents

Publication Publication Date Title
KR100542184B1 (en) An active material for a battery and a method of preparing the same
Manjunatha et al. Electrode materials for aqueous rechargeable lithium batteries
JP4354170B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP2903469B1 (en) Method for producing anode material for lithium ion battery
CN107359334A (en) Spherical or spherical anode material for lithium-ion batteries and lithium ion battery
KR101166334B1 (en) Manufacturing method of cathode active materials for secondary battery containing metal composite oxides and cathode active materials made by the same
JP2009193745A (en) Method for manufacturing positive electrode active material
CN106784655A (en) A kind of coating modification method for improving lithium-rich manganese-based anode material performance
Ghosh et al. Improved electrochemical performance of Li2MnSiO4/C composite synthesized by combustion technique
TW200301022A (en) Lithium ion secondary battery
CN110817972A (en) Fluorine modified high-voltage lithium cobaltate, preparation method thereof and battery
CN116454261A (en) Lithium ion battery anode material and preparation method thereof
CN106450280A (en) Preparation method of oxide-coated lithium ion battery material
JP2002279987A (en) Material of positive electrode for lithium secondary battery, and the lithium secondary battery using the material
JP2003157844A (en) Positive electrode active material for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery
JP2001023641A (en) Positive electrode active material for lithium secondary battery and manufacture of the same
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP2002170563A (en) Manganese system positive electrode material having excellent cycle property and lithium secondary battery using the same
JPH10162828A (en) Nonaqueous electrolyte battery, and manufacture thereof
JP2001052703A (en) Positive electrode material for lithium secondary battery and its manufacture
JP2000156224A (en) Nonaqueous electrolyte battery
CN114180642B (en) High-voltage lithium ion battery positive electrode material and preparation method and application thereof
JP3219352B2 (en) Non-aqueous electrolyte secondary battery
US20140302393A1 (en) High capacity lithium-ion electrochemical cells and methods of making same
US11605808B2 (en) Method for preparing cathode active material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205