JP2002167276A - Piezoelectric ceramic composition and piezoresonator - Google Patents

Piezoelectric ceramic composition and piezoresonator

Info

Publication number
JP2002167276A
JP2002167276A JP2000363700A JP2000363700A JP2002167276A JP 2002167276 A JP2002167276 A JP 2002167276A JP 2000363700 A JP2000363700 A JP 2000363700A JP 2000363700 A JP2000363700 A JP 2000363700A JP 2002167276 A JP2002167276 A JP 2002167276A
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
oscillation
phase shift
frequency
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000363700A
Other languages
Japanese (ja)
Other versions
JP4234898B2 (en
Inventor
Shuichi Fukuoka
修一 福岡
Shuzo Iwashita
修三 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000363700A priority Critical patent/JP4234898B2/en
Publication of JP2002167276A publication Critical patent/JP2002167276A/en
Application granted granted Critical
Publication of JP4234898B2 publication Critical patent/JP4234898B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric composition and a piezoresonator without generating phase transition distortion between resonant frequency and anti- resonant frequency and around their neighboring frequency, capable of making P/V large, excellent in temperature stability at an oscillating frequency in the temperature range between -20 deg.C to 80 deg.C capable of controlling characteristic fluctuation caused by baking dispersion. SOLUTION: A composition formula of the piezoelectric composition is expressed by mole ratio is Bi4Ti3O12.x(Sr1-aAa)TiO3 (x and a are 0.5<=x<=0.8, 0<=a<=0.8; and A contains a main ingredient satisfying at least one kind selected from among Ba, (Bi0.5Na0.5), (Bi0.5Li0.5) and (Bi0.5K0.5), and Mn of 0.05 to 1 pts.wt. in terms of MnO2 to the main ingredient of 100 pts.wt.).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧電磁器組成物お
よび圧電共振子に関し、例えば、共振子、超音波振動
子、超音波モータ、あるいは加速度センサ、ノッキング
センサ、およびAEセンサ等の圧電センサなどに適し、
特に、厚み滑り振動の基本波振動を利用したエネルギ一
閉じ込め型発振子の高周波発振子用として好適に用いら
れる圧電磁器組成物および圧電共振子に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric ceramic composition and a piezoelectric resonator, for example, a resonator, an ultrasonic oscillator, an ultrasonic motor, or a piezoelectric sensor such as an acceleration sensor, a knocking sensor, and an AE sensor. Suitable for
In particular, the present invention relates to a piezoelectric ceramic composition and a piezoelectric resonator which are suitably used for a high-frequency oscillator of an energy-trapping type oscillator utilizing a fundamental wave vibration of a thickness shear vibration.

【0002】[0002]

【従来技術】従来から、圧電磁器を利用した製品として
は、例えば、フィルタ、圧電共振子(以下、発振子を含
む概念である)、超音波振動子、超音波モータ、圧電セ
ンサ等がある。
2. Description of the Related Art Conventionally, products using piezoelectric ceramics include, for example, a filter, a piezoelectric resonator (hereinafter, a concept including an oscillator), an ultrasonic oscillator, an ultrasonic motor, and a piezoelectric sensor.

【0003】ここで、発振子は、マイコンの基準信号発
振用として、例えば、コルビッツ発振回路等の発振回路
に組み込まれて利用される。図1はコルピッツ発振回路
を基本とした回路構成においてインダクタの部分を圧電
発振子に置き換えたピアス発振回路を示すものである。
このピアス発振回路は、コンデンサ11、12と、抵抗
13と、インバータ14および発振子15により構成さ
れている.そして、ピアス発振回路において、発振信号
を発生するには、以下の発振条件を満足する必要があ
る。
[0005] Here, the oscillator is used for oscillation of a reference signal of a microcomputer, for example, incorporated in an oscillation circuit such as a Colbitz oscillation circuit. FIG. 1 shows a Pierce oscillation circuit in which an inductor part is replaced with a piezoelectric oscillator in a circuit configuration based on a Colpitts oscillation circuit.
This piercing oscillation circuit includes capacitors 11 and 12, a resistor 13, an inverter 14, and an oscillator 15. In order to generate an oscillation signal in the piercing oscillation circuit, it is necessary to satisfy the following oscillation conditions.

【0004】即ち、インバータ14と抵抗13からなる
増幅回路における増幅率をα、移相量をθ1とし、ま
た、発振子15とコンデンサ11、12からなる帰還回
路における帰還率をβ、移相量をθ2としたとき、ルー
プゲインがα×β≧1であり、かつ、移相量がθ1+θ2
=360゜×n(但しn=1,2,…)であることが必
要となる。
That is, the amplification factor in the amplifier circuit including the inverter 14 and the resistor 13 is α, the phase shift amount is θ 1 , the feedback ratio in the feedback circuit including the oscillator 15 and the capacitors 11 and 12 is β, When the amount is θ 2 , the loop gain is α × β ≧ 1, and the phase shift amount is θ 1 + θ 2
= 360 ゜ × n (where n = 1, 2,...).

【0005】一般的に抵抗13およびインバータ14か
らなる増幅回路は、マイコンに内蔵されている。誤発振
や不発振を起さない、安定した発振を得るためにはルー
プゲインを大きくしなければならない。ループゲインを
大きくするには、帰還率βのゲインを決定する、発振子
のP/V、すなわち共振インピーダンスR0および***
振インピーダンスRaの差を大きくすることが必要とな
る。なお、P/Vは20×Log(Ra/R0)の値とし
て定義される。
Generally, an amplification circuit including a resistor 13 and an inverter 14 is built in a microcomputer. To obtain stable oscillation without causing erroneous oscillation or non-oscillation, the loop gain must be increased. To increase the loop gain determines the gain of the feedback factor beta, resonator of P / V, i.e. it is necessary to increase the difference in resonance impedance R 0 and anti-resonance impedance R a. Note that P / V is defined as a value of 20 × Log (R a / R 0 ).

【0006】また、移相量の条件を満足させるために
は、共振周波数と***振周波数の間およびその近傍の周
波数で、移相が約−90゜から約+90゜まで移相反転
し、且つ共振周波数と***振周波数の間およびその近傍
にスプリアス振動による移相歪みが発生しないことも重
要となる。
Further, in order to satisfy the condition of the amount of phase shift, at a frequency between and near the resonance frequency and the antiresonance frequency, the phase shift reverses from about -90 ° to about + 90 °, and It is also important that no phase shift distortion due to spurious vibration occurs between and near the resonance frequency and the antiresonance frequency.

【0007】従来、圧電性が高く例えば大きなP/Vが
得られるPZTやPT系材料が使用されていた。しかし
ながら、PZTやPT系材料には鉛が自重の約60%の
割合で含有されているため酸性雨により鉛の溶出が起こ
り環境汚染を招く危険性が指摘されている。そこで、鉛
を含有しない圧電材料への高い期待が寄せられている。
鉛を含有しないビスマス層状化合物を主体とする材料系
においては、PZTやPT系材料と比較して機械的品質
係数(Qm)が比較的高いという特徴があり、発振子用
の圧電材料としての応用が可能である。
Conventionally, PZT or PT-based materials having high piezoelectricity and providing a large P / V, for example, have been used. However, it has been pointed out that PZT and PT-based materials contain lead at a rate of about 60% of its own weight, and lead to elution of acid by acid rain, which may lead to environmental pollution. Therefore, high expectations are placed on lead-free piezoelectric materials.
A material system mainly composed of a bismuth layered compound not containing lead has a feature that the mechanical quality factor (Qm) is relatively high as compared with PZT and PT materials, and is applied as a piezoelectric material for an oscillator. Is possible.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来の
ビスマス層状化合物を主体とする圧電磁器組成物を、圧
電発振子の圧電磁器として用いた場合、充分なP/Vが
得られられないばかりか、加工性が悪くチッピング(共
振子用磁器エッジの欠け)により共振周波数と***振周
波数の間にスプリアス振動に伴う移相歪みが発生し、移
相の条件を満足しなくなり、不発振が生じたり、安定し
た発振が得られないという問題があった。
However, when a conventional piezoelectric ceramic composition mainly composed of a bismuth layered compound is used as a piezoelectric ceramic of a piezoelectric oscillator, not only a sufficient P / V cannot be obtained, Due to poor workability, chipping (deletion of the porcelain edge for the resonator) causes phase shift distortion due to spurious vibration between the resonance frequency and the anti-resonance frequency, and the phase shift condition is not satisfied. There was a problem that stable oscillation could not be obtained.

【0009】また、従来の圧電磁器組成物を圧電発振子
の圧電磁器として用いた場合、共振周波数の温度変化率
が±5000ppmよりも大きく、電子機器から要求さ
れる温度特性に対する周波数の許容公差±5000pp
m以内の精度には対応できないという問題があった。
When the conventional piezoelectric ceramic composition is used as a piezoelectric ceramic of a piezoelectric oscillator, the temperature change rate of the resonance frequency is larger than ± 5000 ppm, and the allowable tolerance of the frequency with respect to the temperature characteristic required by the electronic equipment is ±. 5000pp
There is a problem that the accuracy within m cannot be dealt with.

【0010】さらに、磁器密度の焼成温度依存性が急峻
であるとともに磁器の焼成温度範囲が狭く、焼成ばらつ
きによる特性変動が大きくなるという問題があった。
Further, there is a problem that the porcelain density has a sharp dependence on the sintering temperature, the sintering temperature range of the porcelain is narrow, and the characteristic variation due to the sintering variation becomes large.

【0011】従って、本発明は、共振周波数と***振周
波数の間およびその近傍の周波数で移相歪みが発生せ
ず、厚み滑り振動や厚み縦振動の基本波振動のP/Vを
大きくできるとともに、−20℃〜+80℃の温度範囲
で発振周波数の温度安定性に優れ、且つ焼成温度の範囲
を広くして焼成ばらつきによる特性変動を抑制できる圧
電磁器組成物および圧電共振子を提供することを目的と
する。
Therefore, according to the present invention, phase shift distortion does not occur at frequencies between and near the resonance frequency and the antiresonance frequency, and the P / V of the fundamental wave vibration of the thickness slip vibration and the thickness longitudinal vibration can be increased. To provide a piezoelectric ceramic composition and a piezoelectric resonator which are excellent in temperature stability of oscillation frequency in a temperature range of -20 ° C to + 80 ° C, and which can widen a range of a firing temperature to suppress a characteristic variation due to a firing variation. Aim.

【0012】[0012]

【課題を解決するための手段】本発明の圧電磁器組成物
は、金属元素として少なくともSr、BiおよびTiを
含有するビスマス層状化合物であって、モル比による組
成式を Bi4Ti312・x(Sr1-aa)TiO3 と表したとき、前記x、aが、0.5≦x≦0.8、0
≦a≦0.8、AはBa、(Bi0.5Na0.5)、(Bi
0.5Li0.5)および(Bi0.50.5)のうち少なくとも
1種を満足する主成分と、該主成分100重量部に対し
てMnをMnO2換算で0.05〜1重量部含有するこ
とを特徴とする。
The piezoelectric ceramic composition of the present invention is a bismuth layered compound containing at least Sr, Bi and Ti as metal elements, and has a composition formula of Bi 4 Ti 3 O 12. When expressed as x (Sr 1-a A a ) TiO 3 , x and a are 0.5 ≦ x ≦ 0.8, 0
≦ a ≦ 0.8, A is Ba, (Bi 0.5 Na 0.5 ), (Bi 0.5
0.5 Li 0.5 ) and (Bi 0.5 K 0.5 ), characterized by containing 0.05 to 1 part by weight of Mn in terms of MnO 2 with respect to 100 parts by weight of the main component. And

【0013】このような圧電磁器組成物によれば、特に
厚み滑り基本波振動やあるいは厚み縦の基本波および3
次オーバートーン振動でのP/V値を大きくすることが
できるとともに、a>0とすることにより、−20℃〜
+80℃の温度範囲で発振周波数の温度安定性に優れ、
且つ焼成温度の範囲を広くして焼成ばらつきによる特性
変動を抑制できる。
According to such a piezoelectric ceramic composition, in particular, the thickness-slip fundamental wave vibration and / or the thickness-longitudinal fundamental wave and
The P / V value in the next overtone vibration can be increased, and by setting a> 0, -20 ° C.
Excellent temperature stability of oscillation frequency in the temperature range of + 80 ° C,
In addition, the range of the firing temperature can be widened to suppress variation in characteristics due to firing variations.

【0014】本発明では、AがBaの場合、即ち、主成
分が、Bi4Ti312・x(Sr1- aBaa)TiO3
表わされるものが望ましい。この場合には、特に、厚み
滑り基本波振動の基本波および3次オーバートーン振動
でのP/V値を大きくできるとともに、−20℃〜+8
0℃の温度範囲における発振周波数の温度安定性を向上
し、焼成温度の範囲を広くして焼成ばらつきによる特性
変動を抑制できる。
In the present invention, when A is Ba, that is, the main component is desirably represented as Bi 4 Ti 3 O 12 .x (Sr 1 -a Ba a ) TiO 3 . In this case, the P / V value of the fundamental wave of the thickness-slip fundamental wave vibration and the third-order overtone vibration can be particularly increased, and at the same time, -20 ° C to +8
The temperature stability of the oscillation frequency in the temperature range of 0 ° C. can be improved, and the range of the firing temperature can be widened to suppress the characteristic fluctuation due to the firing variation.

【0015】本発明の圧電共振子は、圧電磁器の両主面
に電極を形成してなるとともに、前記圧電磁器が上記圧
電磁器組成物からなるものである。
A piezoelectric resonator according to the present invention is formed by forming electrodes on both main surfaces of a piezoelectric ceramic, and the piezoelectric ceramic is made of the piezoelectric ceramic composition.

【0016】このような圧電共振子によれば、例えば、
厚み滑り基本波振動を適用した発振子ではP/Vが大き
くなることから発振余裕度が高まり、且つ共振周波数と
***振周波数の間およびその近傍の周波数で移相歪みが
発生しないことから安定した発振が得られるとともに、
発振周波数の温度安定性に優れた高精度な発振が得ら
れ、さらに、焼成温度の範囲が広くなることから焼成ば
らつきによる特性変動を著しく抑制した2〜20MHz
の広い周波数に適応できる発振子を得ることができる。
According to such a piezoelectric resonator, for example,
In an oscillator to which the thickness-slip fundamental wave oscillation is applied, the P / V is increased, so that the oscillation margin is increased, and the phase shift distortion is not generated between the resonance frequency and the antiresonance frequency and in the vicinity of the resonance frequency, so that the oscillation is stabilized. Oscillation is obtained,
High-precision oscillation excellent in temperature stability of oscillation frequency is obtained, and furthermore, since the range of the firing temperature is widened, characteristic fluctuation due to firing variations is significantly suppressed from 2 to 20 MHz.
An oscillator that can be applied to a wide range of frequencies can be obtained.

【0017】[0017]

【発明の実施の形態】本発明の圧電磁器組成物は、金属
元素として少なくともSr、BiおよびTiを含有する
ビスマス層状化合物であって、モル比による組成式を Bi4Ti312・x(Sr1-aa)TiO3 と表したとき、前記xが、0.5≦x≦0.8、0≦a
≦0.8、AはBa、(Bi0.5Na0.5)、(Bi0.5
Li0.5)および(Bi0.50.5)のうち少なくとも1
種を満足する主成分と、該主成分100重量部に対して
MnをMnO2換算で0.05〜1重量部含有するもの
である。
BEST MODE FOR CARRYING OUT THE INVENTION The piezoelectric ceramic composition of the present invention is a bismuth layered compound containing at least Sr, Bi and Ti as metal elements, and has a composition formula of Bi 4 Ti 3 O 12 × ( Sr 1-a A a ) When expressed as TiO 3 , x is 0.5 ≦ x ≦ 0.8, 0 ≦ a
≦ 0.8, A is Ba, (Bi 0.5 Na 0.5 ), (Bi 0.5
At least one of (Li 0.5 ) and (Bi 0.5 K 0.5 )
A main component that satisfies the seed, and 0.05 to 1 part by weight of Mn in terms of MnO 2 based on 100 parts by weight of the main component.

【0018】ここで、係数であるxを上記の範囲に設定
した理由ついて説明する。上記組成式において、xを
0.5≦x≦0.8の範囲に設定した理由は、xが0.
5より少ないとP/Vが55dBより小さくなるからで
ある。一方xが0.8より多いとP/Vが55dBより
小さくなるとともに、移相歪みの発生頻度が大きくなり
安定した発振子を得ることができないからである。
Here, the reason why the coefficient x is set in the above range will be described. In the above composition formula, the reason why x is set in the range of 0.5 ≦ x ≦ 0.8 is that x is in the range of 0.5 ≦ x ≦ 0.8.
This is because if it is less than 5, P / V becomes smaller than 55 dB. On the other hand, if x is more than 0.8, P / V becomes smaller than 55 dB, and the frequency of occurrence of phase shift distortion increases, so that a stable oscillator cannot be obtained.

【0019】また、0.5≦x≦0.8の範囲において
は、焼成密度の焼成温度依存性が小さくなることから焼
成温度の範囲を広く設定でき、焼成ばらつきによるP/
Vの特性変動や移相歪みの発生を著しく抑制できること
から、歩留まりが高く安定した発振子を得ることができ
る。xは、P/Vをより大きくするとともに、移相歪み
の発生を著しく抑制するという理由から、0.6≦x≦
0.75であることが望ましい。
Further, in the range of 0.5 ≦ x ≦ 0.8, since the dependency of the firing density on the firing temperature is small, the range of the firing temperature can be set wide, and P / D
Since the fluctuation of the characteristic of V and the occurrence of phase shift distortion can be remarkably suppressed, a stable and high-yield oscillator can be obtained. x is larger than 0.6 ≦ x ≦, because P / V is further increased and phase shift distortion is significantly suppressed.
Desirably, it is 0.75.

【0020】また、本発明ではa>0を満足することが
望ましい。Srの一部を、Ba、(Bi0.5Na0.5)、
(Bi0.5Li0.5)および(Bi0.50.5)のうち少な
くとも1種で置換することにより、低温焼成が可能で、
且つ焼成温度の範囲が広くなることから、焼成ばらつき
によるP/Vなどの特性変動を著しく低下させることが
できるからである。特に、焼成温度範囲を広くし焼成ば
らつきによるP/Vの特性変動を著しく小さくするとい
う理由から、0.2≦a≦0.75とすることが望まし
い。
In the present invention, it is desirable that a> 0 is satisfied. Part of Sr is converted to Ba, (Bi 0.5 Na 0.5 ),
By substituting at least one of (Bi 0.5 Li 0.5 ) and (Bi 0.5 K 0.5 ), low-temperature firing is possible,
In addition, since the range of the firing temperature is widened, fluctuations in characteristics such as P / V due to variations in firing can be significantly reduced. In particular, from the viewpoint of widening the firing temperature range and remarkably reducing the P / V characteristic fluctuation due to firing variations, it is preferable to satisfy 0.2 ≦ a ≦ 0.75.

【0021】また、Srの一部は、P/Vを55dBよ
り大きくし、特に発振周波数の温度変化率を±3000
ppm以内に減少するとともに、焼成温度の範囲を広く
でき、焼成ばらつきによる特性変動を低下させるという
点から、Srの一部をBaで置換することが望ましく、
特にP/Vをより大きくするとともに、優れた温度特性
を有するという理由から、0.35≦a≦0.8とする
ことが望ましい。
Some of the Sr have a P / V greater than 55 dB, and in particular, have a temperature variation rate of the oscillation frequency of ± 3000.
It is desirable to replace a part of Sr with Ba from the viewpoint that it can be reduced to within ppm, the range of the firing temperature can be widened, and the characteristic variation due to the firing variation is reduced.
In particular, it is preferable that 0.35 ≦ a ≦ 0.8 because P / V is further increased and excellent temperature characteristics are obtained.

【0022】即ち、主成分が、モル比による組成式をB
4Ti312・x(Sr1-aBaa)TiO3と表したと
き、0.5≦x≦0.8、0<a≦0.8、特に0.3
5≦a≦0.8を満足することが望ましい。特に、Aが
Baと(Bi0.5Na0.5)の組合せであることが望まし
い。
That is, the main component is represented by a composition formula represented by a molar ratio as B:
When expressed as i 4 Ti 3 O 12 · x (Sr 1 -a Ba a ) TiO 3 , 0.5 ≦ x ≦ 0.8, 0 <a ≦ 0.8, particularly 0.3
It is desirable to satisfy 5 ≦ a ≦ 0.8. In particular, it is desirable that A is a combination of Ba and (Bi 0.5 Na 0.5 ).

【0023】また、主成分に対してMnO2を含有せし
めることにより、P/Vの向上に大きく向上できるが、
MnO2含有量を主成分l00重量部に対してl重量部
より多いと体積固有抵抗値が下がり、分極時に電流が流
れ充分な分極ができず厚み滑り振動のP/Vが低くなる
からである。一方、0.05重量部よりも少なくなる
と、P/Vが低下し、移相歪みが出やすくなるからであ
る。Mnは、焼結性を高め、P/Vを大きくするという
点から、主成分100重量部に対して、MnO2換算で
0.3〜0.7重量部含有することが望ましい。
By adding MnO 2 to the main component, P / V can be greatly improved.
If the content of MnO 2 is more than 1 part by weight with respect to 100 parts by weight of the main component, the volume specific resistance value decreases, current flows during polarization, sufficient polarization cannot be performed, and P / V of thickness-shear vibration decreases. . On the other hand, if the amount is less than 0.05 parts by weight, P / V decreases, and phase shift distortion is likely to occur. From the viewpoint of enhancing sinterability and increasing P / V, Mn is desirably contained in an amount of 0.3 to 0.7 parts by weight in terms of MnO 2 with respect to 100 parts by weight of the main component.

【0024】本発明の圧電磁器組成物においては、組成
式としてBi4Ti312・x(Sr 1-aa)TiO3
表されるが、主結晶相としてはビスマス層状化合物から
なるものである。即ち、本発明の圧電磁器組成物は、
(Sr1-aaxBi4Ti3+x12+3xと表すことがで
き、(Bi222+(αm-1βm3m+12-で書き表され
るビスマス層状化合物の一般式において、αサイトとβ
サイト及び酸素サイトに欠陥をともないながらがらm=
4の結晶構造を有し、Mnが一部固溶したビスマス層状
化合物になっていると考えられる。Mnは主結晶相中に
固溶し、一部Mn化合物の結晶として粒界に析出する場
合がある。また、その他の結晶相として、パイロクロア
相、ペロブスカイト相、構造の異なるBi層状化合物が
存在することもあるが、微量であれば特性上問題ない。
In the piezoelectric ceramic composition of the present invention, the composition
Bi as an expressionFourTiThreeO12X (Sr 1-aAa) TiOThreeso
Although the main crystal phase is represented by a bismuth layered compound
It becomes. That is, the piezoelectric ceramic composition of the present invention,
(Sr1-aAa)xBiFourTi3 + xO12 + 3xCan be expressed as
(BiTwoOTwo)2+m-1βmO3m + 1)2-Written in
In the general formula of the bismuth layered compound represented by
M =
Bismuth layer with crystal structure of 4 and Mn partially dissolved
It is considered to be a compound. Mn in the main crystal phase
When solid solution forms and partially precipitates at the grain boundary as crystals of Mn compound
There is a case. In addition, pyrochlore
Phase, perovskite phase, Bi layered compound with different structure
Although it may be present, there is no problem in characteristics if the amount is very small.

【0025】本発明の圧電磁器組成物は、粉砕時のZr
2ボールからZr等が混入する場合もあるが、微量で
あれば特性上問題ない。
The piezoelectric ceramic composition of the present invention is characterized in that Zr at the time of pulverization
There are cases where Zr or the like is mixed in from the O 2 ball.

【0026】本発明の組成を有する圧電磁器は、例え
ば、原料として、SrCO3、BaCO3、Bi23、M
nO2、TiO2、Na2CO3、K2CO3、Li2CO3
らなる各種酸化物或いはその塩を用いることができる。
原料はこれに限定されず、焼成により酸化物を生成する
炭酸塩、硝酸塩等の金属塩を用いても良い。
The piezoelectric ceramic having the composition of the present invention can be produced, for example, by using SrCO 3 , BaCO 3 , Bi 2 O 3 , M
Various oxides composed of nO 2 , TiO 2 , Na 2 CO 3 , K 2 CO 3 , and Li 2 CO 3 or salts thereof can be used.
The raw material is not limited to this, and metal salts such as carbonates and nitrates that generate oxides by firing may be used.

【0027】これらの原料を上記した組成となるように
秤量し、混合後の平均粒度分布(D 50)が0.3〜1μ
mの範囲になるように粉砕し、この混合物を850〜1
050℃で仮焼し、仮焼後の平均粒度分布(D50)が
0.3〜1μmの範囲になるように粉砕し、再度所定の
有機バインダを加え湿式混合し造粒する。
These raw materials are adjusted to have the above-mentioned composition.
The average particle size distribution after weighing and mixing (D 50) Is 0.3-1μ
m, and the mixture is crushed to 850 to 1
Calcination at 050 ° C, average particle size distribution after calcination (D50)But
Pulverize to a range of 0.3 to 1 μm, and again
An organic binder is added, wet mixed and granulated.

【0028】このようにして得られた粉体を、公知のプ
レス成形等により所定形状に成形し、大気中等の酸化性
雰囲気において1000〜1300℃の温度範囲で2〜
5時間焼成し、本発明の組成を有する圧電磁器が得られ
る。
The powder thus obtained is formed into a predetermined shape by known press molding or the like, and the powder is formed at a temperature of 1000 to 1300 ° C. in an oxidizing atmosphere such as air.
After firing for 5 hours, a piezoelectric ceramic having the composition of the present invention is obtained.

【0029】本発明の組成を有する圧電磁器は、図1に
示すようなピアス発振回路の発振子の圧電磁器、特に厚
み滑り振動の基本波振動を利用する高周波発振子用とし
て最適であるが、それ以外の圧電共振子、超音波振動
子、超音波モータおよび加速度センサ、ノッキングセン
サ、AEセンサ等の圧電センサなどにも用いることがで
きる。
The piezoelectric ceramic having the composition of the present invention is most suitable for a piezoelectric ceramic of an oscillator of a piercing oscillation circuit as shown in FIG. 1, particularly for a high-frequency oscillator utilizing a fundamental wave vibration of a thickness shear vibration. Other piezoelectric resonators, ultrasonic transducers, ultrasonic motors and acceleration sensors, knocking sensors, AE sensors, and other piezoelectric sensors can also be used.

【0030】図2に本発明の圧電共振子(圧電発振子)
を示す。この圧電共振子は、上記した組成の圧電磁器1
の両面に電極2、3を形成して構成されている。このよ
うな圧電共振子では、厚み滑り振動における基本波のP
/Vを高くでき、発振余裕度が高まり、共振周波数と反
共振周波数の間及びその近傍の周波数で移相歪みが発生
しないことから安定した発振が得られ、さらに発振周波
数の温度安定性に優れた高精度な発振が得られ、特に2
〜20MHzの周波数に適応できる圧電発振子を得るこ
とができる。
FIG. 2 shows a piezoelectric resonator (piezoelectric oscillator) according to the present invention.
Is shown. This piezoelectric resonator is a piezoelectric ceramic 1 having the above-described composition.
Are formed by forming electrodes 2 and 3 on both surfaces. In such a piezoelectric resonator, the fundamental wave P
/ V can be increased, the oscillation margin is increased, and stable oscillation is obtained because phase shift distortion does not occur between and near the resonance frequency and the antiresonance frequency, and the oscillation frequency has excellent temperature stability. High-precision oscillation is obtained.
It is possible to obtain a piezoelectric oscillator that can be adapted to a frequency of about 20 MHz.

【0031】[0031]

【実施例】まず、出発原料として純度99.9%のSr
CO3粉末、BaCO3粉末、Bi 23粉末、MnO2
末、TiO2粉末、Na2CO3粉末、K2CO3粉末、L
2CO3粉末を、モル比による組成式を主成分Bi4
312・x(Sr1-aa)TiO3と表したとき、A、
x、aが表1に示すような元素、値の主成分と、この主
成分100重量部に対してMnO2粉末を表1に示すよ
うな重量部となるように秤量混合した。
EXAMPLE First, Sr having a purity of 99.9% was used as a starting material.
COThreePowder, BaCOThreePowder, Bi TwoOThreePowder, MnOTwopowder
End, TiOTwoPowder, NaTwoCOThreePowder, KTwoCOThreePowder, L
iTwoCOThreeThe powder is represented by a composition formula based on the molar ratio as a main component Bi.FourT
iThreeO12X (Sr1-aAa) TiOThree, A,
x and a are the elements and main components of the values shown in Table 1, and
MnO to 100 parts by weight of componentTwoThe powder is shown in Table 1.
Weighed and mixed so as to obtain an appropriate weight.

【0032】秤量した原料粉末を、純度99.9%のジ
ルコニアボール、イソプロピルアルコール(IPA)と
共に500mlポリポットに投入し、16時間回転ミル
にて混合した。
The weighed raw material powder was put into a 500 ml polypot together with zirconia balls having a purity of 99.9% and isopropyl alcohol (IPA), and mixed in a rotary mill for 16 hours.

【0033】混合後のスラリ−を大気中にて乾燥し、#
40メッシュを通し、その後、大気中950℃、3時間
保持して仮焼し、この合成粉末を純度99.9%のZr
2ボールとイソプロピルアルコール(IPA)と共に
500mlポリポットに投入し、20時間粉砕して評価
粉末を得た。
The mixed slurry is dried in the air, and #
After passing through a mesh of 40, the mixture was calcined at 950 ° C. for 3 hours in the atmosphere, and the synthesized powder was made of 99.9% pure Zr.
O 2 was added to 500ml polyethylene pot together with balls and isopropyl alcohol (IPA), reputation powder was pulverized for 20 hours.

【0034】この粉末に適量の有機バインダーを添加し
て造粒し、金型プレスにて150MPaで長さ25m
m、幅38mm、厚みlmmの板状に成形し、大気中に
おいて1200℃で3時間本焼成し圧電磁器を得た。
An appropriate amount of an organic binder is added to the powder, and the mixture is granulated.
m, a width of 38 mm, and a thickness of 1 mm were formed and baked in air at 1200 ° C. for 3 hours to obtain a piezoelectric ceramic.

【0035】その後、長さ6mm、幅30mmに加工
後、長さ方向に分極するための端面電極を形成し分極処
理を施した。その後、分極用電極を除去し、厚み約0.
17mmとなるようにラップ機により加工した。その
後、長さ6mmと幅30mmからなる面の両面にCr−
Agを蒸着し、電極と磁器との密着強度を高めるために
250℃で12時間のアニール処理を施した。
Thereafter, after processing into a length of 6 mm and a width of 30 mm, an end face electrode for polarizing in the length direction was formed and a polarization treatment was performed. Thereafter, the electrode for polarization was removed, and the thickness was reduced to about 0.
It processed by the lapping machine so that it might be set to 17 mm. Then, Cr- on both sides of the surface consisting of 6 mm in length and 30 mm in width
Ag was deposited and annealed at 250 ° C. for 12 hours in order to increase the adhesion strength between the electrode and the porcelain.

【0036】その後、図2に示す電極構造となるよう
に、無電極に相当する部位の電極をエッチングで除去
し、長さ4.45mm(L)、幅0.9mm(W)、厚
み0.17mm(H)形状にダイシングソーやワイヤー
ソーを用いて加工し、8MHzの発振に相当する厚み滑
り振動の基本波振動用発振子を得た。図2において、P
は分極方向を示す。
Thereafter, the electrode corresponding to the non-electrode is removed by etching so that the electrode structure shown in FIG. 2 is obtained, and the length is 4.45 mm (L), the width is 0.9 mm (W), and the thickness is 0.4 mm. A 17 mm (H) shape was processed using a dicing saw or a wire saw to obtain an oscillator for fundamental wave oscillation of thickness-shear vibration corresponding to 8 MHz oscillation. In FIG. 2, P
Indicates the polarization direction.

【0037】発振子の特性は、インピーダンスアナライ
ザによリインピーダンス波形を測定し、厚み滑り振動の
基本波振動でのP/VをP/V=20×Log(Ra/
0)の式により算出した(但し、Ra:***振インピー
ダンス、R0:共振インピーダンス)。
As for the characteristics of the oscillator, a re-impedance waveform is measured by an impedance analyzer, and P / V at the fundamental wave vibration of the thickness shear vibration is calculated as P / V = 20 × Log (Ra /
R 0 ) (where, R a : anti-resonance impedance, R 0 : resonance impedance).

【0038】さらにインピーダンス波形より、共振周波
数と***振周波数の間で移相が約−90゜から約+90
゜に移相反転した後の約+90゜の移相からなる周波数
帯域において、10゜を超える移相歪みが発生するか否
かを調査した。移相歪みの評価は、移相歪み=|(+)
側の最大移相値−最大値から局所的に変化した移相値|
により求め、共振子100個中5個以上において10゜
を超える移相歪みが発生した場合においては×、それ以
下の場合は○とした。
Further, according to the impedance waveform, the phase shift between the resonance frequency and the anti-resonance frequency is about -90 ° to about + 90 °.
It was investigated whether or not a phase shift distortion exceeding 10 ° occurs in a frequency band consisting of about + 90 ° after the phase shift and inversion to ゜. The evaluation of the phase shift distortion is as follows: phase shift distortion = | (+)
-Side phase shift value-phase shift value locally changed from the maximum value |
When a phase shift strain of more than 10 ° occurred in 5 or more resonators out of 100 resonators, it was evaluated as ×, and when it was less than 10 °, it was evaluated as ○.

【0039】さらに密度とP/Vの焼成温度依存性を求
め、焼成温度が15℃変化した場合においてもP/Vの
変化が10%以下である場合を○、P/Vの差が10%
より大きい場合を×として、表1に焼成分布特性として
表記した。
Further, the dependency of the density and P / V on the sintering temperature was determined. When the sintering temperature changed by 15 ° C., the case where the change of P / V was 10% or less was evaluated as ○, and the difference between P / V was 10%.
Table 1 shows the firing distribution characteristics as x when the value was larger.

【0040】さらに、発振周波数の温度変化率は、P/
Vが最大となる焼成温度の発振子を用いて、25℃の発
振周波数を基準にして、−20℃もしくは+80℃での
発振周波数の変化を以下の式により算出した。
Further, the temperature change rate of the oscillation frequency is P /
Using an oscillator having a firing temperature at which V becomes the maximum, a change in the oscillation frequency at -20 ° C. or + 80 ° C. was calculated based on the oscillation frequency at 25 ° C. by the following equation.

【0041】Fosc変化率(ppm)={(Fosc
(drift)一Fosc(25))/Fosc(2
5)}×100、但し、Fosc(dfift)は、−
20℃もしくは+80℃での発振周波数であり、Fos
c(25)は25℃での発振周波数である。これらの結
果を表1に示す。
Fosc change rate (ppm) = {(Fosc
(Drift) one Fosc (25)) / Fosc (2
5)} × 100, provided that Fosc (dfit) is −
Oscillation frequency at 20 ° C or + 80 ° C, Fos
c (25) is the oscillation frequency at 25 ° C. Table 1 shows the results.

【0042】[0042]

【表1】 [Table 1]

【0043】表1から明らかなように、本発明の範囲内
の試料は、厚み滑り振動における基本波振動のP/V値
を55dB以上、特には60dB以上と大きくでき、且
つ10゜を超える移相歪みが発生しないことから安定し
た発振を得ることができるとともに、焼成温度範囲が広
く、焼成温度変化による特性バラツキが小さく、さら
に、発振周波数の温度変化率が±5000ppm以内と
なり小さいことが判る。また、Srの一部をBa等で置
換した場合には、±4500ppm以内、特には±40
00ppm以内とできることが判る。
As is clear from Table 1, the samples within the range of the present invention can increase the P / V value of the fundamental wave vibration in the thickness-shear vibration to 55 dB or more, particularly 60 dB or more, and shift by more than 10 °. It can be seen that stable oscillation can be obtained because no phase distortion occurs, the firing temperature range is wide, the variation in characteristics due to the firing temperature change is small, and the temperature change rate of the oscillation frequency is as small as ± 5000 ppm or less. Further, when a part of Sr is replaced with Ba or the like, it is within ± 4500 ppm, especially ± 40 ppm.
It turns out that it can be set to within 00 ppm.

【0044】一方、比較例である、試料No.20のM
nを含有しない場合には、焼結体の密度が低く、P/V
値が43dBと小さく、且つ10゜を上回る移相歪みが
発生し、安定した発振が得られられないことが判る。
On the other hand, the sample No. 20 M
When n is not contained, the density of the sintered body is low and P / V
It can be seen that a small value of 43 dB and phase shift distortion exceeding 10 ° are generated, and stable oscillation cannot be obtained.

【0045】また、係数xの値が1の試料No.1の場
合、大きなP/Vは得られるものの試作した発振子10
0個中24個において10゜を上回る移相歪みが発生
し、さらに、P/Vの焼成温度依存性が大きいことか
ら、焼成ばらつきを招きやすく安定した発振が得られら
れないことがわかる。一方xの値が0.8より大きい試
料No.1、2、9の場合、移相歪みが発生しやすく、
さらにP/Vの焼成温度依存性が大きいことから、歩留
まりが悪く安定した特性を示す発振子が得られられない
ことがわかる。
The sample No. having the coefficient x of 1 was used. In the case of 1, a large P / V can be obtained, but the prototyped oscillator 10
Phase shift distortion of more than 10 ° occurs in 24 of the 0 pieces, and furthermore, since the firing temperature dependence of P / V is large, it can be seen that firing variations easily occur and stable oscillation cannot be obtained. On the other hand, Sample No. in which the value of x was larger than 0.8. In the case of 1, 2, and 9, phase shift distortion is likely to occur,
Further, since the firing temperature dependence of P / V is large, it can be seen that an oscillator having poor yield and stable characteristics cannot be obtained.

【0046】また、Aの種類をBaにした試料No.1
2の場合、P/Vを60dBと実用レベルまで高めなが
ら、−20〜80℃の発振周波数の温度変化率を±20
00ppm以内と優れた温度安定性を有していることが
わかる。
The sample No. in which the type of A was set to Ba was used. 1
In the case of 2, the temperature change rate of the oscillation frequency from -20 to 80 ° C. was ± 20 while increasing the P / V to a practical level of 60 dB.
It turns out that it has excellent temperature stability of less than 00 ppm.

【0047】さらに、Srの一部をBa0.7(Bi0.5
0.50.3で置換した試料No.10の場合、aの値が
0.75でP/Vが74dBと大きな値を有しながら、
−20〜80℃の発振周波数の温度変化率が±3000
ppm以内と優れた温度特性を有し発振子として最も好
ましい特性となる。
Further, a part of Sr is converted to Ba 0.7 (Bi 0.5 N
a 0.5 ) Sample No. substituted with 0.3 . In the case of 10, while the value of a is 0.75 and the P / V is as large as 74 dB,
Temperature change rate of oscillation frequency of -20 to 80 ° C is ± 3000
It has excellent temperature characteristics of less than ppm and is the most preferable characteristic as an oscillator.

【0048】図3に、本発明の試料No.10のインピ
ーダンスと移相特性を、図4に試料No.10の発振周
波数の温度変化率を示した。図5に移相歪みが発生した
比較例の試料No.1のインピーダンスと移相特性を示
した。
FIG. 3 shows a sample No. of the present invention. FIG. 4 shows the impedance and phase shift characteristics of Sample No. 10. 10 shows the temperature change rate of the oscillation frequency. FIG. 5 shows a sample No. of a comparative example in which phase shift distortion occurred. 1 and a phase shift characteristic.

【0049】図4から本発明の試料No.10では大き
な移相歪みが発生せず、また、図3から−20〜80℃
の発振周波数の温度変化率が±3000ppm以内と優
れた温度特性を有することが判る。一方、図5から、N
o.1では、共振周波数と***振周波数の間で移相が約
−90゜から約+90゜に移相反転した後の約+90゜
の移相からなる周波数帯域において、符号Aで示す、移
相が10゜を超える大きな移相歪みが発生していること
が判る。
As shown in FIG. 10, no large phase shift distortion is generated, and from FIG.
It can be seen that the temperature change rate of the oscillation frequency is within ± 3000 ppm and has excellent temperature characteristics. On the other hand, from FIG.
o. 1, in a frequency band consisting of a phase shift of about + 90 ° after the phase shift is inverted from about −90 ° to about + 90 ° between the resonance frequency and the anti-resonance frequency, the phase shift indicated by the symbol A is It can be seen that a large phase shift distortion exceeding 10 ° has occurred.

【0050】さらに、図6に試料No.10と試料N
o.1の密度の焼成温度依存性を示し、図7に試料N
o.10と試料No.1のP/Vの焼成温度依存性を示
した。これらのグラフから、本発明の試料では、広い焼
成温度範囲で磁器密度が高くかつ一定であることから、
焼成温度が多少ばらついたとしても磁器密度が殆ど変化
せず、P/Vも殆ど変化しないことが判る。
Further, FIG. 10 and sample N
o. The firing temperature dependence of the density of Sample No. 1 is shown in FIG.
o. 10 and sample no. 1 showed the firing temperature dependency of P / V. From these graphs, in the sample of the present invention, since the porcelain density is high and constant over a wide firing temperature range,
It can be seen that even if the firing temperature varies somewhat, the porcelain density hardly changes, and the P / V hardly changes.

【0051】このように、本発明の組成を有する圧電磁
器においては、特に、厚み滑り振動の基本波振動のP/
Vを大きくできるとともに、共振周波数と***振周波数
の間において、10゜を超える移相歪みが発生せず、さ
らに、−20℃〜80℃での発振周波数の温度変化率を
小さくすることができ、さらに焼成温度依存性を小さく
したことから発振子の安定性を向上できる。
As described above, in the piezoelectric ceramic having the composition of the present invention, in particular, the P /
V can be increased, phase shift distortion of more than 10 ° does not occur between the resonance frequency and the anti-resonance frequency, and the temperature change rate of the oscillation frequency between -20 ° C and 80 ° C can be reduced. Further, since the firing temperature dependency is reduced, the stability of the oscillator can be improved.

【0052】また、図8に試料No.4のX線回折図を
示す。図8からビスマス層状化合物を主結晶相としてい
ることが分かる。試料No.4は組成式としてはBi4
Ti312・0.75(Sr0.65Ba0.35)TiO3のビ
スマス層状化合物とペロブスカイト化合物の組み合わせ
として書き表している。一方ビスマス層状化合物は一般
式として(Bi222+(αm-1βm3m+12-で書き表
されるが、Bi4Ti312は一般式のαの元素はBi3+
で、βの元素はTi4+からなるm=3のビスマス層状化
合物であり電気的な中性条件は保たれている。
FIG. 8 shows the sample No. 4 shows the X-ray diffraction pattern of FIG. FIG. 8 shows that the bismuth layer compound is the main crystal phase. Sample No. 4 is Bi 4 as a composition formula.
Ti 3 O 12 0.75 (Sr 0.65 Ba 0.35 ) TiO 3 is expressed as a combination of a bismuth layered compound and a perovskite compound. On the other hand, the bismuth layered compound is represented by the general formula (Bi 2 O 2 ) 2+m-1 β m O 3m + 1 ) 2- , and Bi 4 Ti 3 O 12 is an element of α in the general formula. Is Bi 3+
The element β is a bismuth layer compound of m = 3 made of Ti 4+ , and the electrical neutral condition is maintained.

【0053】図8のX線回折図からビスマス層状化合物
が主結晶相として認められる事から、ペロブスカイト化
合物はm=3からなるビスマス層状化合物に取りこまれ
て、m=4の結晶を有するようになったものと考えるこ
とができる。即ち、試料4のαはBi、Sr、Baから
なる元素からなり、またβはTiからなる元素で構成さ
れ、αサイトとβサイト及び酸素サイトに欠陥をともな
いながらがらm=4の結晶構造を有し、具体的には(S
0.65Ba0.350.75Bi4Ti3 7514 25にMnが一
部固溶したビスマス層状化合物になっているものと考え
ている。
Since the bismuth layered compound is recognized as the main crystal phase from the X-ray diffraction diagram of FIG. 8, the perovskite compound is incorporated into the bismuth layered compound having m = 3 so that it has a crystal having m = 4. It can be considered that it has become. That is, in Sample 4, α is composed of an element composed of Bi, Sr, and Ba, and β is composed of an element composed of Ti, and has a crystal structure of m = 4 while having defects in α-site, β-site, and oxygen-site. And specifically, (S
r 0.65 Ba 0.35 ) 0.75 Bi 4 Ti 3 . 75 O 14 . It is considered that this is a bismuth layered compound in which Mn is partially dissolved in 25 .

【0054】[0054]

【発明の効果】以上詳述したように、本発明の圧電磁器
組成物では、厚み滑り振動における基本波振動のP/V
値を大きくしながら、共振周波数と***振周波数の間で
10゜を超える移相歪みの発生を著しく少なくすること
ができ、さらに共振周波数の温度変化率が小さく、さら
に焼成温度範囲が広くなることから焼成ばらつきによる
P/Vの特性変動を抑制でき、高い歩留まりが実現でき
ることになる。
As described above in detail, in the piezoelectric ceramic composition of the present invention, the P / V of the fundamental wave vibration in the thickness-shear vibration is obtained.
While increasing the value, the occurrence of phase shift distortion exceeding 10 ° between the resonance frequency and the anti-resonance frequency can be significantly reduced, the temperature change rate of the resonance frequency is small, and the firing temperature range is widened. Therefore, it is possible to suppress the P / V characteristic fluctuation due to the firing variation, and to realize a high yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】コルピッツ型発振回路を原型としたピアス発振
回路を示した概略図である。
FIG. 1 is a schematic diagram showing a Pierce oscillation circuit using a Colpitts oscillation circuit as a prototype.

【図2】8MHz用発振子の概略図である。FIG. 2 is a schematic view of an oscillator for 8 MHz.

【図3】本発明の試料No.10のインピーダンスと移
相特性を示すグラフである。
FIG. 3 shows a sample No. of the present invention. 10 is a graph showing the impedance and phase shift characteristics of No. 10;

【図4】本発明の試料No.10の発振周波数の温度変
化率を示すグラフである。
FIG. 4 shows a sample No. of the present invention. 10 is a graph showing the temperature change rate of the oscillation frequency of No. 10.

【図5】比較例の試料No.1のインピーダンスと移相
歪みを表すグラフである。
FIG. 5 shows a sample No. of a comparative example. 3 is a graph showing impedance and phase shift distortion of No. 1;

【図6】試料No.10と試料No.1の密度の焼成温
度依存性を示すグラフである。
FIG. 10 and sample no. 4 is a graph showing the firing temperature dependence of the density of No. 1.

【図7】試料No.10と試料No.1のP/Vの焼成
温度依存性を示すグラフである。
FIG. 10 and sample no. 6 is a graph showing the firing temperature dependence of P / V of No. 1.

【図8】試料No.4のX線回折図を示す。FIG. 4 shows an X-ray diffraction pattern.

【符号の説明】[Explanation of symbols]

l・・・圧電磁器 2、3・・・電極 l: Piezoelectric ceramics 2, 3, ... electrodes

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】金属元素として少なくともSr、Biおよ
びTiを含有し、モル比による組成式を Bi4Ti312・x(Sr1-aa)TiO3 と表したとき、前記x、aが 0.5≦x≦0.8 0≦a≦0.8 Aは、Ba、(Bi0.5Na0.5)、(Bi0.5Li0.5
および(Bi0.50.5)のうち少なくとも1種を満足す
る主成分と、該主成分100重量部に対してMnをMn
2換算で0.05〜1重量部含有することを特徴とす
る圧電磁器組成物。
1. A composition comprising at least Sr, Bi and Ti as a metal element and a composition formula based on a molar ratio represented as Bi 4 Ti 3 O 12 .x (Sr 1 -aA a ) TiO 3 , a is 0.5 ≦ x ≦ 0.8 0 ≦ a ≦ 0.8 A is Ba, (Bi 0.5 Na 0.5 ), (Bi 0.5 Li 0.5 )
And (Bi 0.5 K 0.5 ) a main component that satisfies at least one of Mn and Mn with respect to 100 parts by weight of the main component.
The piezoelectric ceramic composition, characterized in that O 2 converted at containing 0.05 parts by weight.
【請求項2】圧電磁器の両主面に電極を形成してなると
ともに、前記圧電磁器が、請求項1記載の圧電磁器組成
物からなることを特徴とする圧電共振子。
2. A piezoelectric resonator comprising electrodes formed on both main surfaces of a piezoelectric ceramic, wherein the piezoelectric ceramic is made of the piezoelectric ceramic composition according to claim 1.
JP2000363700A 2000-11-29 2000-11-29 Piezoelectric ceramic composition and piezoelectric resonator Expired - Fee Related JP4234898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000363700A JP4234898B2 (en) 2000-11-29 2000-11-29 Piezoelectric ceramic composition and piezoelectric resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000363700A JP4234898B2 (en) 2000-11-29 2000-11-29 Piezoelectric ceramic composition and piezoelectric resonator

Publications (2)

Publication Number Publication Date
JP2002167276A true JP2002167276A (en) 2002-06-11
JP4234898B2 JP4234898B2 (en) 2009-03-04

Family

ID=18834767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000363700A Expired - Fee Related JP4234898B2 (en) 2000-11-29 2000-11-29 Piezoelectric ceramic composition and piezoelectric resonator

Country Status (1)

Country Link
JP (1) JP4234898B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078703A1 (en) 2006-12-25 2008-07-03 Kyocera Corporation Piezoelectric ceramic and piezoelectric element
WO2008081842A1 (en) 2006-12-26 2008-07-10 Kyocera Corporation Piezoelectric ceramic material and piezoelectric element
JP2008179532A (en) * 2006-12-26 2008-08-07 Kyocera Corp Piezoelectric ceramic material and piezoelectric element
JP2009084067A (en) * 2007-09-27 2009-04-23 Kyocera Corp Piezoelectric porcelain and piezoelectric element
JP2009221066A (en) * 2008-03-18 2009-10-01 Kyocera Corp Piezoelectric ceramic and piezoelectric element using the same
WO2009122916A1 (en) 2008-03-18 2009-10-08 京セラ株式会社 Piezoelectric ceramic, and piezoelectric elementing using the same
JP2010013295A (en) * 2008-07-01 2010-01-21 Kyocera Corp Piezoelectric ceramic and piezoelectric element using it
JP2011213538A (en) * 2010-03-31 2011-10-27 Tdk Corp Piezoelectric composition, piezoelectric ceramic, vibrator, and ultrasonic motor
WO2013146915A1 (en) 2012-03-30 2013-10-03 京セラ株式会社 Piezoelectric ceramic, piezoelectric element, and method for manufacturing piezoelectric ceramic

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100096952A1 (en) * 2006-12-25 2010-04-22 Kyocera Corporation Piezoelectric Ceramic and Piezoelectric Element
WO2008078703A1 (en) 2006-12-25 2008-07-03 Kyocera Corporation Piezoelectric ceramic and piezoelectric element
US8258679B2 (en) 2006-12-25 2012-09-04 Kyocera Corporation Piezoelectric ceramic comprising a bismuth layered compound and piezoelectric element
WO2008081842A1 (en) 2006-12-26 2008-07-10 Kyocera Corporation Piezoelectric ceramic material and piezoelectric element
JP2008179532A (en) * 2006-12-26 2008-08-07 Kyocera Corp Piezoelectric ceramic material and piezoelectric element
JP2009084067A (en) * 2007-09-27 2009-04-23 Kyocera Corp Piezoelectric porcelain and piezoelectric element
WO2009122916A1 (en) 2008-03-18 2009-10-08 京セラ株式会社 Piezoelectric ceramic, and piezoelectric elementing using the same
JP2009221066A (en) * 2008-03-18 2009-10-01 Kyocera Corp Piezoelectric ceramic and piezoelectric element using the same
US8643255B2 (en) 2008-03-18 2014-02-04 Kyocera Corporation Piezoelectric ceramic and piezoelectric element using the same
JP2010013295A (en) * 2008-07-01 2010-01-21 Kyocera Corp Piezoelectric ceramic and piezoelectric element using it
JP2011213538A (en) * 2010-03-31 2011-10-27 Tdk Corp Piezoelectric composition, piezoelectric ceramic, vibrator, and ultrasonic motor
WO2013146915A1 (en) 2012-03-30 2013-10-03 京セラ株式会社 Piezoelectric ceramic, piezoelectric element, and method for manufacturing piezoelectric ceramic
JPWO2013146915A1 (en) * 2012-03-30 2015-12-14 京セラ株式会社 Piezoelectric ceramic, piezoelectric element, and method of manufacturing the piezoelectric ceramic

Also Published As

Publication number Publication date
JP4234898B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
JP4234902B2 (en) Piezoelectric ceramic composition and piezoelectric resonator
JP4234898B2 (en) Piezoelectric ceramic composition and piezoelectric resonator
US4605876A (en) Piezoelectric ceramic energy trapping electronic device
JP4471542B2 (en) Piezoelectric ceramic composition and piezoelectric resonator
JP3961175B2 (en) Oscillator
JP3732967B2 (en) Porcelain composition
JP4544712B2 (en) Piezoelectric ceramic and piezoelectric element
JP4789328B2 (en) Piezoelectric ceramic composition and piezoelectric resonator
JP4737843B2 (en) Piezoelectric ceramic composition and piezoelectric resonator
JP2001342061A (en) Piezoelectric ceramic and piezoelectric resonator
JP4231202B2 (en) Piezoelectric ceramic composition and piezoelectric resonator
JP4355115B2 (en) Piezoelectric ceramic and piezoelectric element
JP3389477B2 (en) Piezoelectric ceramic composition
JP3618040B2 (en) Piezoelectric ceramic composition
JP3347602B2 (en) Piezoelectric ceramic composition
JP3805103B2 (en) Manufacturing method of third overtone oscillator
JP2000103670A (en) Piezoelectric ceramic for oscillator
JP5094284B2 (en) Piezoelectric ceramic and piezoelectric element
JP3389485B2 (en) Piezoelectric ceramic composition
JP3420458B2 (en) Piezoelectric ceramic composition
JP2002137966A (en) Piezoelectric ceramic and piezoelectric element
JP3860684B2 (en) Piezoelectric ceramic composition
JP2874495B2 (en) Piezoelectric material
JPH10330156A (en) Piezoelectric ceramic composition
JP2002198771A (en) Piezoelectric resonator element and piezoelectric resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4234898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees