JP2002158014A - Manufacturing method of catalyst layer.film joined body for solid polymer fuel cell - Google Patents

Manufacturing method of catalyst layer.film joined body for solid polymer fuel cell

Info

Publication number
JP2002158014A
JP2002158014A JP2000351816A JP2000351816A JP2002158014A JP 2002158014 A JP2002158014 A JP 2002158014A JP 2000351816 A JP2000351816 A JP 2000351816A JP 2000351816 A JP2000351816 A JP 2000351816A JP 2002158014 A JP2002158014 A JP 2002158014A
Authority
JP
Japan
Prior art keywords
catalyst layer
sheet
ion exchange
membrane
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000351816A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kunihaza
康弘 国狭
Shinji Kinoshita
伸二 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2000351816A priority Critical patent/JP2002158014A/en
Publication of JP2002158014A publication Critical patent/JP2002158014A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a catalyst layer.film joined body for a solid polymer fuel cell utilizing a transcription method with high yield. SOLUTION: After forming a catalyst layer containing a fluorine resin having sulfonic acid group and a catalyst on a base material sheet, an ion exchange film, a base material sheet, a porous sheet, and an elastic rubber sheet, are laminated in the sequence of the ion exchange film/the catalyst layer/the base material sheet/the porous sheet with a porosity of 20-80%/and the elastic rubber, and after transcribing the catalyst layer on the ion exchange film by hot- pressing the obtained laminated body, the base material sheet is peeled off, and the catalytic layer.film joined body for the solid polymer fuel cell is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子型燃料
電池用電極・膜接合体の製造方法に関する。
The present invention relates to a method for producing an electrode / membrane assembly for a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】水素・酸素燃料電池は、その反応生成物
が原理的に水のみであり地球環境への悪影響がほとんど
ない発電システムとして注目されている。固体高分子型
燃料電池は、かつてジェミニ及びバイオサテライト計画
で宇宙船に搭載されたが、当時の電池出力密度は低かっ
た。その後、より高性能のアルカリ型燃料電池が開発さ
れ、現在のスペースシャトルに至るまで宇宙用にはアル
カリ型燃料電池が採用されている。
2. Description of the Related Art A hydrogen / oxygen fuel cell has attracted attention as a power generation system whose reaction product is only water in principle and has almost no adverse effect on the global environment. Solid polymer fuel cells were once mounted on spacecraft in the Gemini and Biosatellite programs, but the power density at that time was low. Since then, higher performance alkaline fuel cells have been developed, and up to the present space shuttle, alkaline fuel cells have been adopted for space applications.

【0003】ところが、近年技術の進歩により固体高分
子型が再び注目されている。その理由として次の2点が
挙げられる。(1)固体高分子電解質として高導電性の
イオン交換膜が開発された。(2)ガス拡散電極に用い
られる触媒として金属をカーボンに担持した担持触媒を
用い、さらに電極中にイオン交換樹脂を含有させて該樹
脂で触媒を被覆することにより、きわめて大きな活性が
得られるようになった。
However, in recent years, with the advance of technology, the solid polymer type has been attracting attention again. The reasons are as follows. (1) A highly conductive ion exchange membrane was developed as a solid polymer electrolyte. (2) By using a supported catalyst in which a metal is supported on carbon as a catalyst used for a gas diffusion electrode, further containing an ion exchange resin in the electrode and coating the catalyst with the resin, an extremely large activity can be obtained. Became.

【0004】そして、高分子電解質であるイオン交換膜
とガス拡散電極とからなる電極・膜接合体の製造方法に
関して多くの検討がなされている。現在検討されている
固体高分子型燃料電池は、作動温度が50〜120℃と
低いため、排熱が燃料電池の補機動力等に有効利用しが
たい欠点がある。これを補う意味でも固体高分子型燃料
電池は、特に高い出力密度を要求されている。また実用
化への課題として、燃料及び空気利用率の高い運転条件
下でも高エネルギ効率、高出力密度が得られる電極・膜
接合体の開発が要求されている。
[0004] Many studies have been made on a method of manufacturing an electrode / membrane assembly comprising an ion exchange membrane as a polymer electrolyte and a gas diffusion electrode. Since the operating temperature of the polymer electrolyte fuel cell currently being studied is as low as 50 to 120 ° C., there is a drawback that the exhaust heat cannot be effectively used for the auxiliary power of the fuel cell. To compensate for this, polymer electrolyte fuel cells are required to have a particularly high output density. Further, as a task for practical use, there is a demand for the development of an electrode / membrane assembly that can achieve high energy efficiency and high power density even under operating conditions with high fuel and air utilization rates.

【0005】電極・膜接合体の製造方法としては、例え
ば以下の方法が挙げられる。イオン交換膜上に触媒とイ
オン交換樹脂を含む触媒層を直接形成する方法。カーボ
ンクロス等からなり電極・膜接合体の外側に配置されて
触媒層にガスを供給する役割を担うガス拡散層上に、触
媒層を形成したものを2枚作製し、それらでイオン交換
膜を挟んで接合する方法。別途用意した基材に触媒層を
形成し、該触媒層を高分子電解質膜上に転写する転写
法。
As a method for producing the electrode / membrane assembly, for example, the following method is exemplified. A method of directly forming a catalyst layer containing a catalyst and an ion exchange resin on an ion exchange membrane. Two catalyst layers are formed on a gas diffusion layer, which is made of carbon cloth, etc. and is located outside the electrode / membrane assembly and serves to supply gas to the catalyst layer. A method of sandwiching and joining. A transfer method in which a catalyst layer is formed on a separately prepared base material, and the catalyst layer is transferred onto the polymer electrolyte membrane.

【0006】これらのうち転写法の場合には、触媒層を
形成するための基材を自由に選択できるので、触媒とイ
オン交換樹脂とを含む塗工液により触媒層を形成する場
合は、各種の塗工方法が使用できる。しかし、転写にお
いては、燃料電池の高出力密度化のためには、触媒層が
全面的に確実にイオン交換膜上に転写されて該膜と接合
されることが不可欠であり、そのための製造方法が検討
されている。
In the case of the transfer method, a substrate for forming the catalyst layer can be freely selected. Therefore, when the catalyst layer is formed by a coating liquid containing a catalyst and an ion exchange resin, various methods are used. Can be used. However, in the transfer, in order to increase the output density of the fuel cell, it is essential that the catalyst layer is completely transferred onto the ion exchange membrane and bonded to the membrane. Is being considered.

【0007】転写法で触媒層をイオン交換膜に接合させ
る際、従来より、触媒層が充分に膜上に転写されるよう
に、転写用の基材シートの外側に弾性ゴムを配置し、弾
性ゴムの外側から圧力をかけてホットプレスしている。
この場合、触媒層は良好に転写されるが、基材シートを
弾性ゴムから剥離しにくく、ホットプレスするたびに弾
性ゴムから基材シートを剥がす操作が必要となり、製造
効率が悪かった。
When a catalyst layer is bonded to an ion exchange membrane by a transfer method, an elastic rubber is conventionally provided on the outside of a transfer base sheet so that the catalyst layer is sufficiently transferred onto the membrane. Hot pressing with pressure from outside of rubber.
In this case, the catalyst layer is transferred well, but the base sheet is hardly peeled off from the elastic rubber, and an operation of peeling the base sheet from the elastic rubber is required every time hot pressing is performed, resulting in poor production efficiency.

【0008】この問題を解決するために、基材シートと
弾性ゴムの間に、ポリテトラフルオロエチレン(以下、
PTFEという。)、エチレン−テトラフルオロエチレ
ン共重合体(以下、ETFEという。)、ポリイミド、
ポリエチレンテレフタレート(以下、PETという。)
等からなる緻密なシートを配置し、ホットプレス後に基
材シートが弾性ゴムに張り付く状態を回避して生産効率
を高める方法が提案されている(以下、上記緻密なシー
トのように、基材シートが弾性ゴムに張り付く状態を回
避する機能を有するシートを離型用シートという。)。
In order to solve this problem, a polytetrafluoroethylene (hereinafter, referred to as “polytetrafluoroethylene”) is provided between a base sheet and an elastic rubber.
It is called PTFE. ), Ethylene-tetrafluoroethylene copolymer (hereinafter referred to as ETFE), polyimide,
Polyethylene terephthalate (hereinafter referred to as PET)
There has been proposed a method of arranging a dense sheet made of a material or the like and avoiding a state in which the base sheet adheres to the elastic rubber after hot pressing to enhance production efficiency (hereinafter, such a base sheet as the dense sheet described above is used. A sheet having a function of avoiding the state of sticking to the elastic rubber is referred to as a release sheet.)

【0009】[0009]

【発明が解決しようとする課題】しかし上記の方法の場
合、以下の問題がある。例えばバッチ式でホットプレス
によりイオン交換膜の両面に触媒層を製造する場合、以
下の積層体をホットプレスする。すなわち、金属製プレ
ス板/弾性ゴム/緻密な離型用シート/触媒層が形成さ
れた基材シート/イオン交換膜/触媒層が形成された基
材シート/緻密な離型用シート/弾性ゴム/金属製プレ
ス板。この方法の場合、ホットプレスの際に、基材シー
トと緻密な離型用シートとの間にガス(空気など)が残
留し、該ガスがプレス面内から系外に抜けきれずに気泡
として残るため、気泡と接する触媒層の部分に対応する
触媒層の膜と接する面が膜と接合されない。そのため、
電極・膜接合体の製造の歩留が悪い。
However, the above method has the following problems. For example, when manufacturing a catalyst layer on both surfaces of an ion exchange membrane by hot pressing in a batch system, the following laminate is hot pressed. Metal press plate / elastic rubber / dense release sheet / base sheet with catalyst layer formed / ion exchange membrane / base sheet with catalyst layer / dense release sheet / elastic rubber / Metal press plate. In the case of this method, a gas (such as air) remains between the base sheet and the dense release sheet during hot pressing, and the gas cannot be removed from the press surface to the outside of the system and is formed as bubbles. Therefore, the surface of the catalyst layer corresponding to the portion of the catalyst layer in contact with the bubbles is not bonded to the film. for that reason,
The production yield of the electrode / membrane assembly is poor.

【0010】また、みかけ上電極・膜接合体が得られて
も触媒層には膜と接合していない部分が存在し、当該触
媒層の部分は反応に関与せず実質上の有効電極面積が小
さくなる問題がある。したがって、電極・膜接合体の製
造をホットプレスによる転写法で行う場合、基材シート
と離型用シートとの間に気泡が残らないホットプレス転
写法が望まれている。
In addition, even if an apparent electrode-membrane assembly is obtained, there is a portion of the catalyst layer that is not bonded to the membrane, and the portion of the catalyst layer does not participate in the reaction and has a substantial effective electrode area. There is a problem of becoming smaller. Therefore, when the electrode / membrane assembly is manufactured by a transfer method using a hot press, a hot press transfer method in which no air bubbles remain between the base sheet and the release sheet is desired.

【0011】そこで本発明は、固体高分子型燃料電池の
電極・膜接合体を転写法により製造する方法において、
基材シートの内側に気泡が残らず歩留の高いホットプレ
スによる転写を使用して製造する方法を提供することを
目的とする。
Accordingly, the present invention provides a method for producing an electrode / membrane assembly of a polymer electrolyte fuel cell by a transfer method.
It is an object of the present invention to provide a method for manufacturing using transfer by a hot press having a high yield without leaving air bubbles inside a base sheet.

【0012】[0012]

【課題を解決するための手段】本発明は、触媒層を有す
る電極とイオン交換膜からなる固体高分子電解質膜とが
接合されている固体高分子型燃料電池用電極・膜接合体
の製造方法であって、下記工程A〜Fを含むことを特徴
とする固体高分子型燃料電池用電極・膜接合体の製造方
法を提供する。 工程A:スルホン酸基を有する含フッ素樹脂と触媒とを
含む触媒層を基材シート上に形成する工程。 工程B:前記基材シートの前記触媒層が形成された面に
隣接してイオン交換膜を積層する工程。 工程C:前記基材シートの前記触媒層が形成されていな
い面に隣接して空隙率20〜80%の多孔質シートを積
層する工程。 工程D:前記多孔質シートの前記基材シートに隣接して
いない面に隣接して弾性ゴムを積層する工程。 工程E:工程B〜Dにより得られた積層体を、ホットプ
レスして前記触媒層を前記イオン交換膜上に転写する工
程。 工程F:工程Eの後、前記基材シートを前記触媒層から
剥離する工程。
According to the present invention, there is provided a method for producing an electrode / membrane assembly for a polymer electrolyte fuel cell in which an electrode having a catalyst layer and a polymer electrolyte membrane comprising an ion exchange membrane are joined. A process for producing an electrode / membrane assembly for a polymer electrolyte fuel cell, comprising the following steps A to F: Step A: a step of forming a catalyst layer containing a fluorinated resin having a sulfonic acid group and a catalyst on a substrate sheet. Step B: a step of laminating an ion exchange membrane adjacent to the surface of the base sheet on which the catalyst layer is formed. Step C: a step of laminating a porous sheet having a porosity of 20 to 80% adjacent to the surface of the base sheet on which the catalyst layer is not formed. Step D: a step of laminating an elastic rubber adjacent to a surface of the porous sheet that is not adjacent to the base sheet. Step E: a step of hot pressing the laminate obtained in Steps B to D to transfer the catalyst layer onto the ion exchange membrane. Step F: a step of peeling the base sheet from the catalyst layer after the step E.

【0013】本発明における多孔質シートは離型用シー
トの役割を有しており、多孔質シートと基材シートはホ
ットプレスによりくっついて離れにくくなることがない
ので、ホットプレス後基材シートと触媒層とイオン交換
膜とからなる積層体を容易に取り出すことができ生産効
率が高い。また、基材シートと多孔質シートを積層した
際にこれらの間に気泡が存在しても、ホットプレスによ
り圧力がかけられたときに当該気泡は多孔質シートの細
孔に抜けて基材シートと多孔質シートの間に残存しなく
なる。そのため、触媒層とイオン交換膜とが接合されな
い部分が生じることがなく、歩留が高まる。
The porous sheet in the present invention has a role of a release sheet. Since the porous sheet and the base sheet do not stick to each other by hot pressing and are not easily separated, the porous sheet and the base sheet after hot pressing can be separated. The laminate composed of the catalyst layer and the ion exchange membrane can be easily taken out, and the production efficiency is high. Further, even if bubbles are present between the base sheet and the porous sheet when they are laminated, the bubbles are released into the pores of the porous sheet when pressure is applied by a hot press, and And the porous sheet will not remain. Therefore, there is no portion where the catalyst layer and the ion exchange membrane are not joined, and the yield is increased.

【0014】ここで、多孔質シートの空隙率が20%未
満であると、気泡が充分に抜けきらない。また、空隙率
が80%を超えると、多孔質シートの強度が弱いため、
取扱い性が悪くなりホットプレスに対する耐久性も弱
い。多孔質シートの空隙率は、特に25〜70%が好ま
しい。
Here, if the porosity of the porous sheet is less than 20%, bubbles cannot be sufficiently removed. When the porosity exceeds 80%, the strength of the porous sheet is low,
Poor handling and poor durability against hot pressing. The porosity of the porous sheet is particularly preferably from 25 to 70%.

【0015】また、多孔質シートの厚さは5〜500μ
m、特に30〜200μmであることが好ましい。厚さ
が500μmを超えると、多孔性であるためにホットプ
レス時の熱伝導性が低く、ホットプレス転写に必要な熱
が充分に膜や触媒層まで伝わらず、基材シートの剥離時
に基材シートに触媒層が残るおそれがある。一方、多孔
質シートの厚さが5μm未満であると、当該シート中の
細孔容積の絶対量が少ないため、基材シートと多孔質シ
ートの間に残存するガスを系外に逃すことができなくな
るおそれがある。
Further, the thickness of the porous sheet is 5 to 500 μm.
m, particularly preferably 30 to 200 μm. When the thickness exceeds 500 μm, the heat conductivity at the time of hot pressing is low due to the porosity, and the heat required for hot press transfer is not sufficiently transmitted to the film or the catalyst layer. The catalyst layer may remain on the sheet. On the other hand, when the thickness of the porous sheet is less than 5 μm, the gas remaining between the base sheet and the porous sheet can escape to the outside because the absolute amount of the pore volume in the sheet is small. It may disappear.

【0016】また、上記多孔質シートの機能としては、
上述の気泡をプレス対象物(膜と触媒層と基材シート)
の系外に逃すこと、ホットプレス時のプレス対象物への
熱伝導のほかに、プレス対象物がクリーンな状態でホッ
トプレスされるために保護しプレスの圧力をプレス対象
物に均一に伝えるため平坦性に優れること、ホットプレ
ス後に基材シートと剥離しやすいことが望まれる。すな
わち、多孔質シートは、多孔質で、適宜な厚さで熱伝導
性に優れ、耐熱性が高く、平坦で、基材シートと剥離し
やすいことが好ましい。
The function of the porous sheet is as follows.
The above-mentioned air bubbles are pressed (film, catalyst layer, base sheet)
In addition to the escape to the outside of the system, heat conduction to the press object during hot pressing, as well as protecting the press object to be hot pressed in a clean state and transmitting the pressure of the press uniformly to the press object It is desired that the substrate be excellent in flatness and be easily peeled off from the substrate sheet after hot pressing. That is, the porous sheet is preferably porous, has an appropriate thickness, has excellent thermal conductivity, has high heat resistance, is flat, and is easily peeled off from the base sheet.

【0017】上記条件を満たすには、基材シートとして
は具体的には例えば紙、ポリエステルや綿製の布、カー
ボンクロス、カーボンペーパー、木製の薄板等が挙げら
れる。取扱い性等も考慮すると、木材パルプ、綿ぼろパ
ルプ等の植物繊維、ビスコースレーヨン、セルロースア
セテート、又はポリビニルアルコール、アクリル樹脂、
ポリオレフィン、ポリアミド等を原料とする合成繊維を
原料とする紙が好ましく、いわゆる上質PPC(Pla
ne Paper Copy)用紙のような一般的なコ
ピー用紙が好ましく使用できる。
To satisfy the above conditions, specific examples of the base sheet include paper, polyester or cotton cloth, carbon cloth, carbon paper, and a thin wooden board. Considering handling properties, wood pulp, vegetable fibers such as cotton rag pulp, viscose rayon, cellulose acetate, or polyvinyl alcohol, acrylic resin,
Paper made of synthetic fibers made of polyolefin, polyamide or the like is preferred, and so-called high quality PPC (Pla)
General copy paper such as ne Paper Copy) can be preferably used.

【0018】[0018]

【発明の実施の形態】本発明では、まず工程Aにおいて
触媒とスルホン酸基を有する含フッ素樹脂とを含む触媒
層を基材シート上に形成する。触媒層は、例えば触媒と
スルホン酸基を有する含フッ素樹脂とを含む塗工液を基
材シート上に塗工し、乾燥することにより得られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, first, in step A, a catalyst layer containing a catalyst and a fluorinated resin having a sulfonic acid group is formed on a substrate sheet. The catalyst layer is obtained, for example, by applying a coating liquid containing a catalyst and a fluorine-containing resin having a sulfonic acid group onto a base sheet and drying the coating liquid.

【0019】ここでスルホン酸基を有する含フッ素樹脂
は特に限定されないが、耐久性等の観点からスルホン酸
基を有するパーフルオロカーボン重合体であることが好
ましい。具体的には、CF2=CF2に基づく重合単位と
CF2=CF−(OCF2CFX)m−Op−(CF2n
SO3H(式中、Xはフッ素原子又はトリフルオロメチ
ル基であり、mは0〜3の整数であり、nは1〜12の
整数であり、pは0又は1である。)に基づく重合単位
とからなる共重合体が好ましい。
The fluorinated resin having a sulfonic acid group is not particularly limited, but is preferably a perfluorocarbon polymer having a sulfonic acid group from the viewpoint of durability and the like. Specifically, CF 2 = polymerized units based on CF 2 and CF 2 = CF- (OCF 2 CFX ) m -O p - (CF 2) n -
SO 3 H (where X is a fluorine atom or a trifluoromethyl group, m is an integer of 0 to 3, n is an integer of 1 to 12, and p is 0 or 1). Copolymers comprising polymerized units are preferred.

【0020】また触媒は、カソード側の場合は、例えば
Pt微粒子を導電性カーボン(例えばバルカンXC−7
2(商品名、キャボット社製))に担持した担持触媒が
使用できる。また、アノード側の場合は、Pt又はPt
−Ru合金の微粒子を導電性カーボンに担持した担持触
媒が使用できる。また、基材シートは特に限定されない
が、PTFE、PET、ETFE等からなると、ホット
プレスに対する耐熱性、強度、触媒層転写後の剥離性等
の観点から好ましい。
When the catalyst is on the cathode side, for example, Pt fine particles are converted into conductive carbon (for example, Vulcan XC-7).
2 (trade name, manufactured by Cabot Corporation)). In the case of the anode side, Pt or Pt
A supported catalyst in which fine particles of a Ru alloy are supported on conductive carbon can be used. The base sheet is not particularly limited, but is preferably made of PTFE, PET, ETFE, or the like from the viewpoints of heat resistance against hot press, strength, and releasability after transfer of the catalyst layer.

【0021】塗工液は、スルホン酸基を有する含フッ素
樹脂を溶解又は良好に分散できる溶媒又は該溶媒を含む
混合溶媒を使用し、当該含フッ素樹脂を溶解又は分散さ
せ触媒を分散させたものを使用する。この塗工液には、
上記触媒と上記含フッ素樹脂のほかに、必要に応じて撥
水剤、保水剤、発泡剤等を含有させてもよい。塗工方法
としては、例えば、バーコータ塗工、ダイコート法、ス
プレー法等が使用できる。
The coating liquid is prepared by dissolving or dispersing the fluororesin having a sulfonic acid group or a mixed solvent containing the solvent, and dispersing or dispersing the catalyst. Use In this coating liquid,
In addition to the above-mentioned catalyst and the above-mentioned fluorine-containing resin, a water repellent, a water retention agent, a foaming agent and the like may be contained as necessary. As a coating method, for example, a bar coater coating, a die coating method, a spraying method and the like can be used.

【0022】次いで、工程B、C、Dを行う。これらの
工程はどの工程から行ってもよく、同時に行ってもよ
い。またこれらの工程で積層すると同時に工程Eのホッ
トプレスを行ってもよい。すなわち、工程B、C、D
は、イオン交換膜/触媒層/基材シート/多孔質シート
/弾性ゴムの順に配置して積層することを示している。
Next, steps B, C and D are performed. These steps may be performed from any step or may be performed simultaneously. The hot pressing in step E may be performed simultaneously with the lamination in these steps. That is, steps B, C, D
Indicates that the layers are arranged in the order of ion exchange membrane / catalyst layer / base sheet / porous sheet / elastic rubber and laminated.

【0023】弾性ゴムは、ホットプレス被処理物がホッ
トプレスの金属製プレス板により傷つけられないよう
に、かつホットプレス被処理物に対して熱及び圧力が均
等に伝わりやすいように配置されるものである。その機
能を考慮すると、特にシリコーンゴム、ポリブタジエン
ゴム等が好ましく、その厚さは0.1〜10mm程度で
あることが好ましい。
The elastic rubber is arranged so that the object to be hot-pressed is not damaged by the metal press plate of the hot press and that heat and pressure are easily transmitted evenly to the object to be hot-pressed. It is. In consideration of its function, silicone rubber, polybutadiene rubber and the like are particularly preferable, and the thickness thereof is preferably about 0.1 to 10 mm.

【0024】次に、工程Eにおいて、工程B〜Dにより
得られた積層体をホットプレスして触媒層をイオン交換
膜上に転写する。ホットプレスの温度は80〜200℃
であることが好ましく、ホットプレスの圧力は0.05
〜20MPaであることが好ましい。ホットプレスの温
度が低すぎると触媒層を膜上に充分に転写できず、ま
た、触媒層中の含フッ素樹脂又はイオン交換膜の分解温
度より低い温度でホットプレスを行うことが必要であ
る。上記の温度、上記の圧力の範囲でホットプレスを行
うと、触媒層全体が膜上に均一に転写できる。そして、
工程Eの後、基材シートを触媒層から剥離する工程Fを
行う。
Next, in step E, the laminate obtained in steps B to D is hot pressed to transfer the catalyst layer onto the ion exchange membrane. Hot press temperature is 80 ~ 200 ℃
Preferably, the pressure of the hot press is 0.05
It is preferable that it is -20 MPa. If the temperature of the hot press is too low, the catalyst layer cannot be sufficiently transferred onto the membrane, and it is necessary to perform the hot press at a temperature lower than the decomposition temperature of the fluorine-containing resin or the ion exchange membrane in the catalyst layer. When hot pressing is performed at the above temperature and pressure, the entire catalyst layer can be uniformly transferred onto the film. And
After the step E, a step F of separating the substrate sheet from the catalyst layer is performed.

【0025】本発明の方法は、アノード、カソードのう
ち、一方の触媒層の形成のみに用いて、もう一方の触媒
層は別の方法で形成してもよく、例えば直接膜に塗工液
を塗工したり、ガス拡散層上に塗工液を塗工して触媒層
を形成したものを膜とホットプレス接合させる方法で形
成してもよい。また、アノード、カソードともに本発明
の方法で触媒層を形成してもよい。この場合、それぞれ
の触媒層を一方ずつ転写してもよいが、両方の触媒層を
同時に転写してもよい。
The method of the present invention may be used to form only one of the anode and cathode catalyst layers, and the other catalyst layer may be formed by another method. For example, a coating solution may be directly applied to the membrane. It may be formed by a method of applying a coating or applying a coating liquid on the gas diffusion layer to form a catalyst layer and hot-press bonding the film to the film. Further, the catalyst layer may be formed by the method of the present invention for both the anode and the cathode. In this case, each catalyst layer may be transferred one by one, or both catalyst layers may be transferred simultaneously.

【0026】両方の触媒層を同時に転写する場合、工程
B、C、Dにより積層された積層体は以下のとおりであ
る。弾性ゴム/多孔質シート/転写基材シート+カソー
ド触媒層/膜/アノード触媒層+転写基材シート/多孔
質シート/弾性ゴム。そしてこれらの積層体を金属製プ
レス板で挟みこんでホットプレスする。このとき、金属
製プレス板と弾性ゴムとの間にも多孔質シートを配置す
ると、金属製プレス板と多孔質シートとの間にも気泡が
溜まらないようにでき、ホットプレス被処理物に対して
熱と圧力を均一に伝えられるので好ましい。
When both catalyst layers are transferred at the same time, the laminated body laminated in steps B, C and D is as follows. Elastic rubber / porous sheet / transfer base sheet + cathode catalyst layer / membrane / anode catalyst layer + transfer base sheet / porous sheet / elastic rubber. Then, these laminates are sandwiched between metal press plates and hot-pressed. At this time, if the porous sheet is also arranged between the metal press plate and the elastic rubber, air bubbles can be prevented from also collecting between the metal press plate and the porous sheet, and the hot-pressed workpiece can be prevented. Heat and pressure can be transmitted uniformly.

【0027】本発明により得られる電極・膜接合体は、
触媒層のイオン交換膜と隣接していない面に隣接してガ
ス拡散層を配置することが好ましい。ここでガス拡散層
は、導電性の多孔質層からなり、燃料ガス又は酸素を含
む酸化剤ガスが触媒層全体にいきわたるようにガスを拡
散させる役割を担う。この場合、ガス拡散層は触媒層に
対して機械的に押しつけるだけでもよく、触媒層と熱圧
着させて接合して配置させてもよい。また、接着剤等を
用いてガス拡散層と触媒層とを接合させてもよい。
The electrode / membrane assembly obtained according to the present invention comprises:
It is preferable to dispose a gas diffusion layer adjacent to a surface of the catalyst layer that is not adjacent to the ion exchange membrane. Here, the gas diffusion layer is formed of a conductive porous layer, and has a role of diffusing the gas so that the fuel gas or the oxidizing gas containing oxygen spreads throughout the catalyst layer. In this case, the gas diffusion layer may be simply mechanically pressed against the catalyst layer, or may be thermocompression-bonded and joined to the catalyst layer. Further, the gas diffusion layer and the catalyst layer may be joined using an adhesive or the like.

【0028】ガス拡散層の構成材料は特に限定されない
が、例えばカーボンペーパーやカーボンクロス(繊維織
布)を使用できる。また、それらを基材とし、片方の表
面にPTFE等の結着剤とカーボン粉末からなる層を形
成してなる、平坦性を高めたガス拡散層も好ましく使用
できる。
The constituent material of the gas diffusion layer is not particularly limited. For example, carbon paper or carbon cloth (fiber woven fabric) can be used. Further, a gas diffusion layer having improved flatness, which is obtained by forming a layer composed of a binder such as PTFE and carbon powder on one surface using these as a base material, can also be preferably used.

【0029】ガス拡散層のさらに外側には通常ガスの流
路が形成されたセパレータが配置され、該セパレータか
らカソードには空気等の酸素を含む酸化剤ガスが、アノ
ードには水素等の燃料ガスが供給される。電極・膜接合
体は、セパレータを介して複数積層されてもよい。
Further, a separator having a gas flow path formed thereon is disposed further outside the gas diffusion layer. An oxidizing gas containing oxygen such as air is supplied to the cathode from the separator, and a fuel gas such as hydrogen is supplied to the anode from the separator. Is supplied. A plurality of electrode / membrane assemblies may be stacked via a separator.

【0030】また、本発明における固体高分子電解質膜
となるイオン交換膜としては、具体的な商品としては例
えば、旭硝子社製のフレミオン、旭化成工業社製のアシ
プレックス、デュポン社製のナフィオン、ジャパンゴア
テックス社製のゴアセレクト等が使用できる。これらの
膜は、スルホン酸基を有するパーフルオロカーボン重合
体からなる膜であるが、これら以外に、リン酸基又はフ
ェノール系水酸基等を有するパーフルオロカーボン重合
体からなる膜も使用できる。また、スルホン酸基やリン
酸基等を有する炭化水素系樹脂又は部分フッ素化された
炭化水素系樹脂からなる膜も使用できる。膜の製造方法
は特に限定されず、押出し成形膜でもよいし、イオン交
換樹脂を溶媒に溶解した溶液から、キャスト法にて得ら
れる膜でもよい。
Specific examples of the ion exchange membrane serving as the solid polymer electrolyte membrane in the present invention include Flemion manufactured by Asahi Glass Co., Aciplex manufactured by Asahi Kasei Kogyo, Nafion manufactured by DuPont, and Japan. Gore Select made by Gore-Tex can be used. These films are films made of a perfluorocarbon polymer having a sulfonic acid group, but other than these, films made of a perfluorocarbon polymer having a phosphoric acid group or a phenolic hydroxyl group can also be used. Further, a membrane made of a hydrocarbon-based resin having a sulfonic acid group or a phosphate group or a partially fluorinated hydrocarbon-based resin can be used. The method for producing the membrane is not particularly limited, and may be an extruded membrane or a membrane obtained by casting from a solution in which an ion exchange resin is dissolved in a solvent.

【0031】また、イオン交換樹脂からなる膜を補強材
と複合化した補強膜も固体高分子電解質膜として使用で
きる。補強材としては、ポリエチレン、PTFE、テト
ラフルオロエチレン/パーフルオロ(プロピルビニルエ
ーテル)共重合体、テトラフルオロエチレン/ヘキサフ
ルオロプロピレン共重合体等が挙げられる。これらの補
強材はフィブリル状で膜中に存在してもよいし、これら
の材料からなる織布、不織布又は多孔体に膜が保持され
ていてもよい。固体高分子電解質膜の厚さは特に限定さ
れないが、20〜150μm程度が好ましい。
A reinforcing membrane obtained by combining a membrane made of an ion exchange resin with a reinforcing material can also be used as the solid polymer electrolyte membrane. Examples of the reinforcing material include polyethylene, PTFE, tetrafluoroethylene / perfluoro (propyl vinyl ether) copolymer, and tetrafluoroethylene / hexafluoropropylene copolymer. These reinforcing materials may be present in the form of fibrils in the membrane, or the membrane may be held by a woven fabric, nonwoven fabric or porous body made of these materials. The thickness of the solid polymer electrolyte membrane is not particularly limited, but is preferably about 20 to 150 μm.

【0032】[0032]

【実施例】以下に、本発明を実施例(例1)及び比較例
(例2)により具体的に説明するが、本発明はこれらに
限定されない。なお、例1では、触媒層とイオン交換膜
の接合に関する本発明の実施形態を示す図1を参照しな
がら説明する。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples (Example 1) and Comparative Examples (Example 2), but the present invention is not limited to these. Example 1 will be described with reference to FIG. 1 showing an embodiment of the present invention relating to bonding of a catalyst layer and an ion exchange membrane.

【0033】〔例1〕ステンレス鋼製オートクレーブ
に、重合開始剤としてのジイソプロピルパーオキシジカ
ーボネートと、CF2=CFOCF2CF(CF3)OC
2CF2SO2Fとを仕込んだ。次いでオートクレーブ
内を液体窒素で充分に脱気した後、CF2=CF2を仕込
んで40℃にてバルク重合を開始した。重合中は系外か
らCF2=CF2を導入することによりオートクレーブ内
の圧力を一定に保持した。10時間後に未反応のCF2
=CF2をパージして重合を終了させ、得られたポリマ
ー溶液をメタノールで凝集し、洗浄、乾燥させてCF2
=CF2/CF2=CFOCF2CF(CF3)OCF2
2SO2F共重合体を得た。
Example 1 In a stainless steel autoclave, diisopropyl peroxydicarbonate as a polymerization initiator and CF 2 CFCFOCF 2 CF (CF 3 ) OC
F 2 CF 2 SO 2 F was charged. Then, after the inside of the autoclave was sufficiently degassed with liquid nitrogen, CF 2 = CF 2 was charged and bulk polymerization was started at 40 ° C. During the polymerization, the pressure inside the autoclave was kept constant by introducing CF 2 = CF 2 from outside the system. Unreacted CF 2 after 10 hours
= Polymerization was terminated by purging CF 2 , and the obtained polymer solution was coagulated with methanol, washed and dried to obtain CF 2
= CF 2 / CF 2 = CFOCF 2 CF (CF 3) OCF 2 C
An F 2 SO 2 F copolymer was obtained.

【0034】ジメチルスルホキシド30質量%及びKO
Hを15質量%を含む混合水溶液中でこの共重合体を加
水分解し、水洗した後、1モル/Lの塩酸中に浸漬する
ことでスルホン酸型パーフルオロカーボン重合体を得
た。なお、重合開始剤の量、重合時の圧力を調整するこ
とにより、イオン交換容量ARを1.1ミリ当量/グラ
ム乾燥樹脂(以下meq/gとする)とした。
30% by weight of dimethyl sulfoxide and KO
The copolymer was hydrolyzed in a mixed aqueous solution containing 15% by mass of H, washed with water, and then immersed in 1 mol / L hydrochloric acid to obtain a sulfonic acid type perfluorocarbon polymer. The ion exchange capacity A R was adjusted to 1.1 meq / g dry resin (hereinafter referred to as meq / g) by adjusting the amount of the polymerization initiator and the pressure during the polymerization.

【0035】次に、触媒層形成用塗工液を以下のように
調製した。触媒にはカーボン(商品名:バルカンXC−
72R、キャボット社製)にPtが40%担持されたも
のを用い、該触媒と上記スルホン酸型パーフルオロカー
ボン重合体とを質量比で7:3となるように、エタノー
ル/水の混合溶媒中で混合撹拌した。このとき塗工液の
固形分(触媒と樹脂の合量)濃度は10質量%となるよ
うに調節した。
Next, a coating solution for forming a catalyst layer was prepared as follows. The catalyst is carbon (trade name: Vulcan XC-
72R, manufactured by Cabot Corp.) in which 40% of Pt is supported, and the catalyst and the sulfonic acid type perfluorocarbon polymer are mixed in a mixed solvent of ethanol / water in a weight ratio of 7: 3. Mix and stir. At this time, the solid content (total amount of the catalyst and the resin) of the coating solution was adjusted to be 10% by mass.

【0036】得られた塗工液を厚さ75μmのPETフ
ィルムからなる基材シート4の片面に、Pt付着量が
0.3mg/cm2となるようにバーコータで塗布し、
乾燥することで触媒層5を形成した。このシートを、有
効電極面積が25cm2となるように2枚切り出した。
この2枚のシートを、触媒層5が形成された面を内側に
向けて対向させ、間に固体高分子電解質膜としてスルホ
ン酸型パーフルオロカーボン重合体からなるイオン交換
膜(商品名:フレミオンHR、旭硝子社製、AR=1.
1meq/g、乾燥膜厚50μm)6を挟んだ。
The obtained coating solution was applied to one surface of a base sheet 4 made of a PET film having a thickness of 75 μm using a bar coater so that the amount of Pt attached was 0.3 mg / cm 2 .
The catalyst layer 5 was formed by drying. Two sheets of this sheet were cut out so that the effective electrode area was 25 cm 2 .
The two sheets are opposed to each other with the surface on which the catalyst layer 5 is formed facing inward, and an ion exchange membrane (trade name: Flemion HR, made of a sulfonic acid type perfluorocarbon polymer) serving as a solid polymer electrolyte membrane therebetween A R = 1.
(1 meq / g, dry film thickness 50 μm) 6.

【0037】多孔質シート2としては厚さ91μm、空
隙率50〜55%の上質PPC用紙(富士ゼロックス社
製)を用い、2枚の多孔質シート2で厚さ1mmのシリ
コーンゴムからなる弾性ゴム3を挟み込んだものを2組
用意した。この2組を、それぞれ上記の2枚の基材シー
ト4それぞれの外側に配置し、さらにその外側に2枚の
ステンレス鋼製プレス板1をそれぞれ配置した。
As the porous sheet 2, high-quality PPC paper (manufactured by Fuji Xerox Co., Ltd.) having a thickness of 91 μm and a porosity of 50 to 55% is used, and two porous sheets 2 are formed of an elastic rubber made of 1 mm thick silicone rubber. Two sets sandwiching 3 were prepared. These two sets were arranged outside each of the two base sheets 4 described above, and two stainless steel press plates 1 were further arranged outside thereof.

【0038】すなわち、図1に示すように、ステンレス
鋼製プレス板1/多孔質シート2/弾性ゴム3/多孔質
シート2/基材シート4/触媒層5/イオン交換膜6/
触媒層5/基材シート4/多孔質シート2/弾性ゴム3
/多孔質シート2/ステンレス鋼製プレス板1の順に積
層し、ホットプレスを行った。
That is, as shown in FIG. 1, a stainless steel press plate 1 / porous sheet 2 / elastic rubber 3 / porous sheet 2 / base sheet 4 / catalyst layer 5 / ion exchange membrane 6 /
Catalyst layer 5 / base sheet 4 / porous sheet 2 / elastic rubber 3
/ Porous sheet 2 / stainless steel press plate 1 were laminated in this order and hot pressed.

【0039】ホットプレスの条件は130℃、3MPa
で4分間とし、ホットプレス後、カソード、アノードと
もに基材シートを触媒層から剥離することで触媒層を膜
に転写し、触媒層と膜の接合体を得た。この操作を10
サンプルについて行ったところ、10サンプルともに触
媒層が基材シート上に残留することなく膜に触媒層がき
れいに転写できていた。
Hot pressing conditions are 130 ° C., 3 MPa
After hot pressing, the base sheet was peeled off from the catalyst layer for both the cathode and the anode to transfer the catalyst layer to the membrane, thereby obtaining an assembly of the catalyst layer and the membrane. Perform this operation 10 times.
When the test was performed on the samples, the catalyst layer was clearly transferred to the film without leaving the catalyst layer on the base sheet in all 10 samples.

【0040】〔例2〕ホットプレスして触媒層を膜上に
転写する際に、多孔質シートである紙のかわりに、厚さ
100μm、空隙率0%の緻密なポリイミド製フィルム
を用いた以外は例1と同様にして、10サンプルのホッ
トプレス転写を行った。その結果、10サンプル中3サ
ンプルについてカソード又はアノード触媒層の一部が基
材シート上に残留し、触媒層全面を膜上にきれいに転写
することはできなかった。
[Example 2] Except for using a dense polyimide film having a thickness of 100 µm and a porosity of 0% instead of paper as a porous sheet when transferring a catalyst layer onto a film by hot pressing. In the same manner as in Example 1, 10 samples were subjected to hot press transfer. As a result, in three out of ten samples, part of the cathode or anode catalyst layer remained on the base sheet, and the entire catalyst layer could not be transferred to the membrane cleanly.

【0041】これは、ホットプレスする際に、基材シー
トとポリイミド製フィルムとの間やポリイミド製フィル
ムとステンレス製プレス板との間に気泡が溜まっていた
ために、所定のプレス圧がプレス被処理物に対して均一
に印加されなかったためと思われる。
This is because air bubbles were trapped between the substrate sheet and the polyimide film or between the polyimide film and the stainless steel press plate during hot pressing, so that a predetermined press pressure was This is probably because the voltage was not uniformly applied to the object.

【0042】[0042]

【発明の効果】本発明の方法でホットプレスにより触媒
層をイオン交換膜上に転写すると、基材シートと多孔質
シートとの間にガス(気泡)が溜まることがないので、
プレス面全体に均一にプレス圧を加えることができ、均
一に熱を伝達できる。したがって、本発明の方法によれ
ば、触媒層をイオン交換膜へ転写する際の歩留が大幅に
向上する。
When the catalyst layer is transferred onto the ion exchange membrane by hot pressing according to the method of the present invention, gas (bubbles) does not accumulate between the base sheet and the porous sheet.
Press pressure can be applied uniformly to the entire press surface, and heat can be transferred uniformly. Therefore, according to the method of the present invention, the yield when transferring the catalyst layer to the ion exchange membrane is greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】触媒層とイオン交換膜の接合に関する本発明の
実施形態を示す模式図。
FIG. 1 is a schematic view showing an embodiment of the present invention relating to bonding of a catalyst layer and an ion exchange membrane.

【符号の説明】[Explanation of symbols]

1:ステンレス鋼製プレス板 2:多孔質シート 3:弾性ゴム 4:基材シート 5:触媒層 6:イオン交換膜 1: Press plate made of stainless steel 2: Porous sheet 3: Elastic rubber 4: Base sheet 5: Catalyst layer 6: Ion exchange membrane

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H018 AA06 AS01 BB01 BB03 BB06 BB08 BB12 DD06 DD08 EE02 EE05 EE17 EE18 HH03 HH04 5H026 AA06 BB01 BB02 BB03 BB04 BB08 CX03 CX04 CX05 CX08 EE02 EE05 EE18 EE19 HH03 HH04  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】触媒層を有する電極とイオン交換膜からな
る固体高分子電解質膜とが接合されている固体高分子型
燃料電池用電極・膜接合体の製造方法であって、下記工
程A〜Fを含むことを特徴とする固体高分子型燃料電池
用電極・膜接合体の製造方法。 工程A:スルホン酸基を有する含フッ素樹脂と触媒とを
含む触媒層を基材シート上に形成する工程。 工程B:前記基材シートの前記触媒層が形成された面に
隣接してイオン交換膜を積層する工程。 工程C:前記基材シートの前記触媒層が形成されていな
い面に隣接して空隙率20〜80%の多孔質シートを積
層する工程。 工程D:前記多孔質シートの前記基材シートに隣接して
いない面に隣接して弾性ゴムを積層する工程。 工程E:工程B〜Dにより得られた積層体を、ホットプ
レスして前記触媒層を前記イオン交換膜上に転写する工
程。 工程F:工程Eの後、前記基材シートを前記触媒層から
剥離する工程。
1. A method for producing an electrode / membrane assembly for a polymer electrolyte fuel cell comprising an electrode having a catalyst layer and a solid polymer electrolyte membrane comprising an ion exchange membrane, the method comprising the following steps A to A method for producing an electrode / membrane assembly for a polymer electrolyte fuel cell, comprising F. Step A: a step of forming a catalyst layer containing a fluorinated resin having a sulfonic acid group and a catalyst on a substrate sheet. Step B: a step of laminating an ion exchange membrane adjacent to the surface of the base sheet on which the catalyst layer is formed. Step C: a step of laminating a porous sheet having a porosity of 20 to 80% adjacent to the surface of the base sheet on which the catalyst layer is not formed. Step D: a step of laminating an elastic rubber adjacent to a surface of the porous sheet that is not adjacent to the base sheet. Step E: a step of hot pressing the laminate obtained in Steps B to D to transfer the catalyst layer onto the ion exchange membrane. Step F: a step of peeling the base sheet from the catalyst layer after the step E.
【請求項2】前記多孔質シートの厚さが5〜500μm
である請求項1に記載の電極・膜接合体の製造方法。
2. The porous sheet has a thickness of 5 to 500 μm.
The method for producing an electrode / membrane assembly according to claim 1, wherein
【請求項3】前記多孔質シートが、植物繊維又は合成繊
維を原料とする紙からなる請求項1又は2に記載の電極
・膜接合体の製造方法。
3. The method for producing an electrode / membrane assembly according to claim 1, wherein the porous sheet is made of paper made from vegetable fibers or synthetic fibers.
JP2000351816A 2000-11-17 2000-11-17 Manufacturing method of catalyst layer.film joined body for solid polymer fuel cell Withdrawn JP2002158014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000351816A JP2002158014A (en) 2000-11-17 2000-11-17 Manufacturing method of catalyst layer.film joined body for solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000351816A JP2002158014A (en) 2000-11-17 2000-11-17 Manufacturing method of catalyst layer.film joined body for solid polymer fuel cell

Publications (1)

Publication Number Publication Date
JP2002158014A true JP2002158014A (en) 2002-05-31

Family

ID=18824801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000351816A Withdrawn JP2002158014A (en) 2000-11-17 2000-11-17 Manufacturing method of catalyst layer.film joined body for solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP2002158014A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012523A (en) * 2004-06-24 2006-01-12 Dainippon Printing Co Ltd Transfer sheet for producing electrode-electrolyte membrane joining body and manufacturing method thereof
JP2009099381A (en) * 2007-10-17 2009-05-07 Sumitomo Chemical Co Ltd Catalyst layer sheet for fuel cell, its manufacturing method, and fuel cell
JP2009245795A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Method for manufacturing membrane-electrode assembly for solid polymer electrolyte fuel cell
JP2010049825A (en) * 2008-08-19 2010-03-04 Toyota Motor Corp Membrane-electrode assembly manufacturing method, membrane-electrode assembly manufactured by the method, and fuel cell including the membrane-electrode assembly
JP2010080169A (en) * 2008-09-25 2010-04-08 Dainippon Printing Co Ltd Catalyst transfer film for polymer electrolyte fuel cell, catalyst layer-electrolyte membrane laminate obtained by using it, and polymer electrolyte fuel cell
WO2017038165A1 (en) * 2015-08-31 2017-03-09 トヨタ車体 株式会社 Device for forming coating for fuel cell separator, and fuel cell separator
JP2020095794A (en) * 2018-12-10 2020-06-18 トヨタ自動車株式会社 Method for manufacturing membrane electrode-gas diffusion layer assembly for fuel cell
FR3105600A1 (en) * 2019-12-23 2021-06-25 Commissariat à l'Energie Atomique et aux Energies Alternatives Method and device for manufacturing a membrane assembly - active layers of a fuel cell or an electrolyzer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012523A (en) * 2004-06-24 2006-01-12 Dainippon Printing Co Ltd Transfer sheet for producing electrode-electrolyte membrane joining body and manufacturing method thereof
JP4538686B2 (en) * 2004-06-24 2010-09-08 大日本印刷株式会社 Transfer sheet for producing electrode-electrolyte membrane assembly and method for producing the same
JP2009099381A (en) * 2007-10-17 2009-05-07 Sumitomo Chemical Co Ltd Catalyst layer sheet for fuel cell, its manufacturing method, and fuel cell
JP2009245795A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Method for manufacturing membrane-electrode assembly for solid polymer electrolyte fuel cell
JP2010049825A (en) * 2008-08-19 2010-03-04 Toyota Motor Corp Membrane-electrode assembly manufacturing method, membrane-electrode assembly manufactured by the method, and fuel cell including the membrane-electrode assembly
JP2010080169A (en) * 2008-09-25 2010-04-08 Dainippon Printing Co Ltd Catalyst transfer film for polymer electrolyte fuel cell, catalyst layer-electrolyte membrane laminate obtained by using it, and polymer electrolyte fuel cell
WO2017038165A1 (en) * 2015-08-31 2017-03-09 トヨタ車体 株式会社 Device for forming coating for fuel cell separator, and fuel cell separator
JPWO2017038165A1 (en) * 2015-08-31 2018-02-01 トヨタ車体株式会社 Fuel cell separator coating film forming apparatus and fuel cell separator
JP2020095794A (en) * 2018-12-10 2020-06-18 トヨタ自動車株式会社 Method for manufacturing membrane electrode-gas diffusion layer assembly for fuel cell
JP7110961B2 (en) 2018-12-10 2022-08-02 トヨタ自動車株式会社 Manufacturing method of membrane electrode gas diffusion layer assembly for fuel cell
FR3105600A1 (en) * 2019-12-23 2021-06-25 Commissariat à l'Energie Atomique et aux Energies Alternatives Method and device for manufacturing a membrane assembly - active layers of a fuel cell or an electrolyzer
EP3843185A1 (en) * 2019-12-23 2021-06-30 Commissariat à l'Energie Atomique et aux Energies Alternatives Method and device for manufacturing an active layer membrane assembly of a fuel cell or an electrolyser

Similar Documents

Publication Publication Date Title
JP4702053B2 (en) Solid polymer electrolyte membrane, membrane electrode assembly for solid polymer fuel cell, and method for producing solid polymer electrolyte membrane
US8202570B2 (en) Process for producing membrane/electrode assembly for polymer electrolyte fuel cell and process for producing polymer electrolyte fuel cell
US20100314038A1 (en) Process for producing membrane/electrode assembly for polymer electrolyte fuel cell
JP4699763B2 (en) One-step method for joining and sealing fuel cell membrane electrode assemblies
US20030008198A1 (en) Membrane-electrode assembly for solid polymer electrolyte fuel cells and process for its production
JP2009193860A (en) Membrane-electrode assembly for polymer electrolyte fuel cell and method of manufacturing the same
JP4940575B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH MASK FILM FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP4843985B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH GASKET FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
WO2010075492A1 (en) Process to produce catalyst coated membranes for fuel cell applications
JP2003285396A (en) Base material film for producing electrode film and/or electrolyte film and method for producing joined body of electrode film and electrolyte film
JP5194624B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP2003282088A (en) Polymerelectrolyte type fuel cell and production process thereof
JP2002158014A (en) Manufacturing method of catalyst layer.film joined body for solid polymer fuel cell
JP2005302526A (en) Solid polymer electrolyte membrane and membrane electrode assembly having solid polymer electrolyte membrane
JP2003197218A (en) Manufacturing method of film electrode junction for solid high polymer fuel cell
JP2003331852A (en) Membrane-electrode assembly for fuel cell and its manufacturing method
JP4843928B2 (en) Solid polymer electrolyte membrane, membrane electrode assembly for solid polymer fuel cell, and method for producing solid polymer electrolyte membrane
JP5273207B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH MASK FILM FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP4218255B2 (en) Method for producing membrane / electrode assembly for polymer electrolyte fuel cell
JP5676615B2 (en) Improved catalyst coated membrane with composite, thin film, and thin cathode for direct methanol fuel cells
JP5387059B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP4163029B2 (en) Method for producing membrane electrode assembly of polymer electrolyte fuel cell
JP2006066161A (en) Manufacturing method of fuel cell film/electrode junction
CN113381045A (en) Fuel cell membrane electrode and preparation method thereof
JP2009230964A (en) Catalyst layer transcription sheet, manufacturing method of electrolyte membrane-catalyst layer assembly using the same, manufacturing method of electrolyte membrane-electrode assembly, and manufacturing method of solid polymer fuel cell

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070516

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205