JP2002151360A - Electric double-layer capacitor - Google Patents

Electric double-layer capacitor

Info

Publication number
JP2002151360A
JP2002151360A JP2000339924A JP2000339924A JP2002151360A JP 2002151360 A JP2002151360 A JP 2002151360A JP 2000339924 A JP2000339924 A JP 2000339924A JP 2000339924 A JP2000339924 A JP 2000339924A JP 2002151360 A JP2002151360 A JP 2002151360A
Authority
JP
Japan
Prior art keywords
group
electric double
layer capacitor
double layer
ammonium salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000339924A
Other languages
Japanese (ja)
Other versions
JP4583582B2 (en
Inventor
Hideji Iwasaki
秀治 岩崎
Nozomi Sugo
望 須郷
Yoshitaka Uehara
剛毅 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2000339924A priority Critical patent/JP4583582B2/en
Publication of JP2002151360A publication Critical patent/JP2002151360A/en
Application granted granted Critical
Publication of JP4583582B2 publication Critical patent/JP4583582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide electrolyte solution, that is gained by having quaternary ammonium salt dissolved in a nonaquous solvent which enables to improve voltage resistance, without increasing the electrical resistance and also provide and electric double-layer capacitor having the electrolyte solution. SOLUTION: This electric double-layer capacitor has electrolyte solution, that is gained by solving such ammonium salt that is represented in formula 1 [in the formula, X represents BF4, PF6, ClO4, AsF6, SbF6, AlCl4 or RfSO3 (Rf=fluoroalkyl group); n represents a number 0 through 5; R1, R2 and R3 are respectively a hydrogen atom, an alkyl group, an aralkyl group, alkynyl group, an aryl goup, or a heterocyclic group, or R1 and R2 may form a ring structure with two carbon atoms that are combined with each other] into a nonaquous solvent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特定のアンモニウ
ム塩を非水系溶媒に溶解して得られる電解液および該電
解液を有する電気二重層キャパシタに関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic solution obtained by dissolving a specific ammonium salt in a non-aqueous solvent, and an electric double layer capacitor having the electrolytic solution.

【0002】[0002]

【従来の技術】近年、バックアップ電源、補助電源など
として、重金属を使用していない、サイクル特性の高い
電気二重層キャパシタが注目を集めている。電気二重層
キャパシタは、一般的に一次電池および二次電池と比較
して瞬間充放電特性および繰り返し充放電特性に優れ、
充放電時に過電圧が無いために簡単な電気回路が適用で
き、また電気容量の残存量が分かり易く、さらに使用温
度範囲が広いなどの利点を有する。このような電気二重
層キャパシタは、マイコンやICチップのメモリ、タイ
マー部分およびその他の制御機器バックアップ電源、停
電時電源などとして実用化されている。
2. Description of the Related Art In recent years, an electric double layer capacitor that does not use heavy metals and has high cycle characteristics has attracted attention as a backup power supply and an auxiliary power supply. Electric double layer capacitors generally have better instantaneous charge / discharge characteristics and repetitive charge / discharge characteristics than primary batteries and secondary batteries,
Since there is no overvoltage during charging and discharging, a simple electric circuit can be applied, the remaining amount of electric capacity is easy to understand, and further, there are advantages such as a wide operating temperature range. Such an electric double layer capacitor has been put into practical use as a backup power supply for a memory of a microcomputer or an IC chip, a timer section and other control equipment, a power supply at the time of a power failure, and the like.

【0003】電気二重層キャパシタは、用いる電解液の
種類により、水溶液系と非水溶液系に大別される。非水
溶液電解液としては、アルカリ金属または4級アンモニ
ウムの過塩素酸塩、四フッ化硼素塩、六フッ化燐酸塩な
どの電解質をプロピレンカーボネート、γ−ブチロラク
トン、ジメチルホルムアミド、アセトニトリルなどの非
水系溶媒に溶解したものが用いられる(特開昭59−3
914号公報参照)。
[0003] Electric double layer capacitors are broadly classified into aqueous solutions and non-aqueous solutions depending on the type of electrolyte used. As the non-aqueous electrolyte, an electrolyte such as a perchlorate of an alkali metal or quaternary ammonium, a boron tetrafluoride, a hexafluorophosphate or the like may be used as a non-aqueous solvent such as propylene carbonate, γ-butyrolactone, dimethylformamide, and acetonitrile. Is used (see JP-A-59-3).
914).

【0004】電気二重層キャパシタの耐電圧は、電荷移
動反応である酸化還元反応が、正極および負極で起こり
始める電位によって規定される。例えば、ボタン型電気
二重層キャパシタでは、一般的に耐食性に優れたステン
レス系材料が集電を兼ねた金属ケースに使用されてい
る。すなわち、この場合に、電気二重層キャパシタの耐
電圧を決定する反応は、正極でのステンレスケースとの
酸化反応と、負極での電解液の還元分解反応である。負
極側では、電解液および電解質の還元分解反応が起こる
可能性があるが、非水系溶媒では還元反応が起こり難い
ため、多くの場合、電解質中に含まれるカチオンの還元
電位が問題である。
The withstand voltage of an electric double layer capacitor is defined by a potential at which an oxidation-reduction reaction, which is a charge transfer reaction, starts to occur at a positive electrode and a negative electrode. For example, in a button-type electric double layer capacitor, a stainless steel material having excellent corrosion resistance is generally used for a metal case that also serves as a current collector. That is, in this case, the reactions that determine the withstand voltage of the electric double layer capacitor are an oxidation reaction with the stainless steel case at the positive electrode and a reductive decomposition reaction of the electrolytic solution at the negative electrode. On the negative electrode side, a reductive decomposition reaction of the electrolytic solution and the electrolyte may occur, but the reduction reaction does not easily occur in a non-aqueous solvent. Therefore, in many cases, the reduction potential of cations contained in the electrolyte is a problem.

【0005】電気二重層キャパシタ用電解質としてアル
カリ金属塩が使用されることは知られている(特開昭4
8−50255号公報参照)が、このようなアルカリ金
属塩を電気二重層キャパシタ用電解質として使用した場
合、過電圧の印加によって還元析出反応が促進し、デン
ドライト結晶が析出してしまうことがある。デンドライ
ト結晶はセパレータを貫通し、正極−負極を短絡させ、
使用不可な状態になるため、アルカリ金属塩は現実には
電解質として使用できない。
It is known that an alkali metal salt is used as an electrolyte for an electric double layer capacitor (Japanese Patent Application Laid-open No. Sho 4).
However, when such an alkali metal salt is used as an electrolyte for an electric double layer capacitor, a reduction precipitation reaction is accelerated by application of an overvoltage, and a dendrite crystal may be precipitated. Dendrite crystals penetrate the separator, short-circuiting the positive electrode-negative electrode,
The alkali metal salt cannot be used as an electrolyte in reality because it cannot be used.

【0006】また、四級アンモニウムカチオンはリチウ
ムイオンより還元され難く、たとえ過電圧が印可されて
も析出することはない。したがって、四級アンモニウム
カチオンは電気二重層キャパシタ用電解質として多用さ
れている(特開昭49−68254号公報および特開昭
50−44463号公報参照)。4級アンモニウムカチ
オンの耐電圧を向上させる方法として、4級アンモニウ
ムカチオンのアルキル基を長くし、立体的に嵩高くする
ことによって電極面への接触を妨げる方法が用いられ、
例えばテトラブチルアンモニウム塩、N,N−ジエチル
ピロリジニウム塩などが使用され(特開昭63−127
520号公報および特開昭63−215031号公報参
照)、また環状アンモニウム塩が使用されている(特開
平4−233210号公報参照)。
Further, the quaternary ammonium cation is harder to be reduced than the lithium ion, and does not precipitate even if an overvoltage is applied. Therefore, quaternary ammonium cations are frequently used as electrolytes for electric double layer capacitors (see JP-A-49-68254 and JP-A-50-44463). As a method for improving the withstand voltage of the quaternary ammonium cation, a method is used in which the alkyl group of the quaternary ammonium cation is lengthened and the contact with the electrode surface is hindered by increasing the steric bulk.
For example, tetrabutylammonium salt, N, N-diethylpyrrolidinium salt and the like are used (JP-A-63-127).
520 and JP-A-63-215031), and a cyclic ammonium salt is used (see JP-A-4-233210).

【0007】[0007]

【発明が解決しようとする課題】上記の特開昭63−1
27520号公報および特開昭63−215031号公
報に記載されているカチオンでは、分子構造が大きくな
り過ぎ、イオンの移動が阻害されるため、伝導度が小さ
くなり電気抵抗が大きくなる。また、特開平4−233
210号公報に記載されたカチオンでは、電気抵抗の増
加は抑えられるものの、使用するアミンが非常に高価で
あり、経済的に不利である。
The above-mentioned JP-A-63-1
In the cations described in Japanese Patent No. 27520 and JP-A-63-215031, the molecular structure becomes too large and the movement of ions is inhibited, so that the conductivity becomes small and the electric resistance becomes large. Also, Japanese Patent Laid-Open No.
In the cation described in Japanese Patent Publication No. 210, although the increase in electric resistance can be suppressed, the amine used is very expensive, which is economically disadvantageous.

【0008】本発明の目的は、電気抵抗を増加させるこ
となく耐電圧を向上させ、かつ経済的に優位な4級アン
モニウム塩を非水系溶媒に溶解して得られる電解液を提
供することにある。本発明の他の目的は、かかる電解液
を有する電気二重層キャパシタを提供することにある。
An object of the present invention is to provide an electrolytic solution obtained by dissolving an economically superior quaternary ammonium salt in a non-aqueous solvent while improving the withstand voltage without increasing the electric resistance. . Another object of the present invention is to provide an electric double layer capacitor having such an electrolytic solution.

【0009】[0009]

【課題を解決するための手段】本発明によれば、上記の
目的は、一般式
According to the present invention, the above objects have been achieved by the general formula

【0010】[0010]

【化2】 Embedded image

【0011】[式中、XはBF4、PF6、ClO4、A
sF6、SbF6、AlCl4またはRfSO3(ここで、
Rfはフルオロアルキル基を表す)を表し、nは0〜5
の整数を表し、R1、R2およびR3は水素原子、アルキ
ル基、アラルキル基、アルケニル基、アリール基もしく
は複素環基を表すか、またはR1とR2は互いに結合する
2つの炭素原子と一緒になって環構造を形成していても
よい。]で示されるアンモニウム塩(以下、これをアン
モニウム塩Aと略称することがある)を非水系溶媒に溶
解して得られる電解液および該電解液を有する電気二重
層キャパシタを提供することによって達成される。
[Wherein X is BF 4 , PF 6 , ClO 4 , A
sF 6 , SbF 6 , AlCl 4 or RfSO 3 (where
Rf represents a fluoroalkyl group), and n is 0 to 5
Wherein R 1 , R 2 and R 3 represent a hydrogen atom, an alkyl group, an aralkyl group, an alkenyl group, an aryl group or a heterocyclic group, or R 1 and R 2 represent two carbon atoms bonded to each other Together with to form a ring structure. The present invention has been attained by providing an electrolytic solution obtained by dissolving an ammonium salt represented by the following formula (hereinafter sometimes abbreviated as ammonium salt A) in a non-aqueous solvent, and an electric double layer capacitor having the electrolytic solution. You.

【0012】[0012]

【発明の実施の形態】上記の一般式において、R1、R2
およびR3が表すアルキル基としては、例えばメチル
基、エチル基、プロピル基、ブチル基、イソプロピル基
などが挙げられ、アラルキル基としては、例えばベンジ
ル基などが挙げられ、アルケニル基としては、例えばア
リル基、クロチル基、プレニル基などが挙げられ、アリ
ール基としては、例えばフェニル基、ナフチル基などが
挙げられ、複素環基としては、例えばピリジル基、キノ
リル基、フリル基などが挙げられる。また、R1とR2
互いに結合する2つの炭素原子と一緒になって形成する
環構造としては、例えばピペリジル基、ピロリジル基な
どが挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION In the above general formula, R 1 , R 2
And the alkyl group represented by R 3 include, for example, a methyl group, an ethyl group, a propyl group, a butyl group, and an isopropyl group, and the aralkyl group includes, for example, a benzyl group. Groups, a crotyl group, a prenyl group, and the like. Examples of the aryl group include a phenyl group and a naphthyl group. Examples of the heterocyclic group include a pyridyl group, a quinolyl group, and a furyl group. Examples of the ring structure formed by combining two carbon atoms where R 1 and R 2 are bonded to each other include a piperidyl group and a pyrrolidyl group.

【0013】アンモニウム塩Aは、対応するアミンをハ
ロゲン化アルキルなどで4級化した後に、アニオン交換
によって得ることができる。例えば、テトラメチルエチ
レンジアミンにヨウ化メチルを加えて4級化し、得られ
たジヨウ化ヘキサメチルエチレンジアンモニウムをさら
にテトラフルオロ硼酸水溶液でアニオン交換することに
よりヘキサメチルエチレンジアンモニウムテトラフルオ
ロボレートを得ることができる。得られるアンモニウム
塩Aは、無水メタノールなどを用いて再結晶することに
より、残存するヨウ素イオンおよび水分を除去して使用
する。
The ammonium salt A can be obtained by anion exchange after quaternizing the corresponding amine with an alkyl halide or the like. For example, quaternization can be performed by adding methyl iodide to tetramethylethylenediamine, and hexamethylethylenediammoniumtetrafluoroborate can be obtained by further anion-exchanging the obtained hexamethylethylenediamonium diiodide with an aqueous tetrafluoroboric acid solution. it can. The obtained ammonium salt A is used by removing the remaining iodide ions and water by recrystallization using anhydrous methanol or the like.

【0014】本発明の電解液は、アンモニウム塩Aを非
水系溶媒に溶解することによって調製される。非水系溶
媒としては、例えばジプロピルエーテル、ジブチルエー
テル、テトラヒドロフラン、テトラヒドロピランなどの
エーテル類;エチレンカーボネート、1,2−プロピレ
ンカーボネート、1,3−プロピレンカーボネートなど
のカーボネート類;γ―ブチロラクトン、α―メチル−
γ―ブチロラクトン、β―メチル−γ―ブチロラクトン
などのラクトン類;アセトニトリル、ベンゾニトリルな
どの二トリル類;ジメチルスルホキシドなどのスルホキ
シド類;ジメチルスルホランなどのスルホラン類などが
使用される。アンモニウム塩Aの非水系溶媒中の濃度
は、高ければ高いほど好ましいが、低温でのアンモニウ
ム塩の溶解度を考慮して、通常0.01〜5モル/リッ
トルの範囲であるのが好ましく、0.1〜3モル/リッ
トルの範囲であるのがより好ましい。
The electrolytic solution of the present invention is prepared by dissolving ammonium salt A in a non-aqueous solvent. Examples of the non-aqueous solvent include ethers such as dipropyl ether, dibutyl ether, tetrahydrofuran and tetrahydropyran; carbonates such as ethylene carbonate, 1,2-propylene carbonate and 1,3-propylene carbonate; γ-butyrolactone, α- Methyl-
Lactones such as γ-butyrolactone and β-methyl-γ-butyrolactone; nitriles such as acetonitrile and benzonitrile; sulfoxides such as dimethylsulfoxide; sulfolanes such as dimethylsulfolane are used. The higher the concentration of the ammonium salt A in the non-aqueous solvent, the better. However, in consideration of the solubility of the ammonium salt at a low temperature, the concentration is usually preferably in the range of 0.01 to 5 mol / l, preferably 0.1 to 5 mol / l. More preferably, it is in the range of 1 to 3 mol / l.

【0015】本発明の電気二重層キャパシタは、コイン
型(ボタン型)、フラット型、円筒型、巻型などの公知
の形状を取り得る。図1に、本発明の一実施形態に係る
コイン型電気二重層キャパシタの断面図を示す。図1に
示されるコイン型電気二重層キャパシタは、分極性電極
3,4がセパレータ2により分離されており、分極性電
極3,4のセパレータ2とは反対の面にそれぞれ集電極
1,5が接するように設置されており、全体が蓋(リー
ド電極)6で覆われた構造を有している。分極性電極
3,4は、活性炭とアセチレンブラック、カーボンブラ
ックなどの導電性補助材料およびテフロン(登録商
標)、ポリテトラフルオロエチレンなどの結着材の混錬
物である。これらの割合は、活性炭の電気伝導度および
自己結着力によって異なるが、通常活性炭80重量部に
対して、導電性補助材料0〜20重量部、結着材0〜2
0重量部の範囲で使用される。セパレータ2は二つの分
極性電極が接触しないように絶縁する役目を果たしてい
る。セパレータとしては、ガラス製ろ紙、ポリプロピレ
ン、ナイロンなどの不織布、ポリテトラフルオロエチレ
ンなどの多孔性フィルムが使用される。集電極1,5と
しては、例えば、活性炭繊維にニッケル、アルミニウ
ム、亜鉛、銅、スズ、鉛またはこれらの合金をプラズマ
溶射、アーク溶射することによって形成されたものが使
用される。蓋6は金属製であり、集電極保護の役目を果
す。用いられる材質としては導電性であればよく、ステ
ンレス製、アルミニウム製、ニッケル製などが使用され
る。
The electric double layer capacitor of the present invention can take a known shape such as a coin type (button type), a flat type, a cylindrical type, and a wound type. FIG. 1 shows a sectional view of a coin-type electric double layer capacitor according to an embodiment of the present invention. In the coin-type electric double layer capacitor shown in FIG. 1, the polarizable electrodes 3 and 4 are separated by a separator 2, and collector electrodes 1 and 5 are provided on the surfaces of the polarizable electrodes 3 and 4 opposite to the separator 2, respectively. They are installed so as to be in contact with each other, and have a structure in which the whole is covered with a lid (lead electrode) 6. The polarizable electrodes 3 and 4 are a kneaded product of activated carbon, a conductive auxiliary material such as acetylene black and carbon black, and a binder such as Teflon (registered trademark) and polytetrafluoroethylene. These proportions vary depending on the electric conductivity and the self-binding force of the activated carbon, but usually 0 to 20 parts by weight of the conductive auxiliary material and 0 to 2 parts by weight of the binder with respect to 80 parts by weight of the activated carbon.
Used in the range of 0 parts by weight. The separator 2 serves to insulate the two polarizable electrodes from contacting each other. As the separator, a glass filter paper, a nonwoven fabric such as polypropylene or nylon, or a porous film such as polytetrafluoroethylene is used. As the collector electrodes 1 and 5, for example, those formed by plasma spraying or arc spraying nickel, aluminum, zinc, copper, tin, lead or an alloy thereof on activated carbon fibers are used. The lid 6 is made of metal and serves to protect the collector. Any material may be used as long as it is conductive, and stainless steel, aluminum, nickel and the like are used.

【0016】[0016]

【実施例】以下に、実施例を挙げて本発明をより具体的
に説明するが、本発明はこれらの実施例に限定されるも
のではない。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

【0017】実施例1〜4および比較例1〜3 表1に示される電解質を用い、各々濃度0.5M/リッ
トルのプロピレンカーボネート溶液とし、これらの電解
液を充填した電気二重層キャパシタを作製した。これら
の電気二重層キャパシタをHIOKI EDLC評価シ
ステムを用いて、2.8Vの充放電試験を30℃で10
00回行った。表1に初期ESR、1000回の負荷試
験後のESRおよび静電容量を示す。
Examples 1 to 4 and Comparative Examples 1 to 3 Using the electrolytes shown in Table 1, propylene carbonate solutions each having a concentration of 0.5 M / liter were prepared, and electric double layer capacitors filled with these electrolytes were produced. . These electric double layer capacitors were subjected to a 2.8 V charge / discharge test at 30 ° C. for 10 times using a HIOKI EDLC evaluation system.
It was performed 00 times. Table 1 shows the initial ESR, the ESR after 1000 load tests, and the capacitance.

【0018】[0018]

【表1】 [Table 1]

【0019】表1より明らかなように、実施例1〜4の
電気二重層キャパシタは、比較例1〜3の電気二重層キ
ャパシタに比べて、ESRの変化量が小さいことが分か
る。これは実施例1〜4の電気二重層キャパシタで用い
た電解質の耐電圧が向上したことに起因すると推定され
る。
As is clear from Table 1, the electric double layer capacitors of Examples 1 to 4 have a smaller ESR variation than the electric double layer capacitors of Comparative Examples 1 to 3. This is presumed to be due to the improved withstand voltage of the electrolyte used in the electric double layer capacitors of Examples 1 to 4.

【0020】参考例1 温度計、ジムロート還流管および滴下ロートを装着した
1リットル容三つ口フラスコに、テトラメチルエチレン
ジアミン116g(1モル)、キシレン300gを取
り、窒素にて反応器内を置換した後、70℃に昇温し
た。そこにヨウ化メチル319.5g(2.25モル)
を4時間で滴下した。滴下終了後、さらに10時間加熱
攪拌した。−10℃まで冷却し、析出した塩をろ取し
た。ジヨウ化ヘキサメチルエチレンジアンモニウムの収
量は332g(収率83%)であった。ジヨウ化ヘキサ
メチルエチレンジアンモニウム40g(0.1モル)を
温度計、ジムロート還流管および滴下ロートを装着した
1リットル容三つ口フラスコに取り、メタノール400
gを加え、系内を窒素置換した後、反応液を−20℃に
冷却した。そこに、HBF488g(1モル)を3時間
で滴下し、さらに12時間攪拌した。析出した塩をろ過
によって除いた後、メタノールを減圧下に留去した。得
られた残渣をメタノール:水=1:1の溶液200gか
ら再結晶した。得られた粗結晶をさらに乾燥メタノール
から再結晶して、目的とするヘキサメチルエチレンジア
ンモニウムテトラフルオロボレート21.1g(収率6
6%)を得た。
Reference Example 1 In a 1-liter three-necked flask equipped with a thermometer, a Dimroth reflux tube and a dropping funnel, 116 g (1 mol) of tetramethylethylenediamine and 300 g of xylene were placed, and the inside of the reactor was replaced with nitrogen. Thereafter, the temperature was raised to 70 ° C. 319.5 g (2.25 mol) of methyl iodide there
Was added dropwise over 4 hours. After completion of the dropwise addition, the mixture was further heated and stirred for 10 hours. After cooling to -10 ° C, the precipitated salt was collected by filtration. The yield of hexamethylethylene diammonium diiodide was 332 g (83% yield). 40 g (0.1 mol) of hexamethylethylenediammonium diiodide was placed in a 1-liter three-necked flask equipped with a thermometer, a Dimroth reflux tube and a dropping funnel, and methanol 400 was added.
g was added and the inside of the system was replaced with nitrogen, and then the reaction solution was cooled to -20 ° C. There, 88 g (1 mol) of HBF 4 was added dropwise over 3 hours, and the mixture was further stirred for 12 hours. After removing the precipitated salt by filtration, methanol was distilled off under reduced pressure. The obtained residue was recrystallized from 200 g of a 1: 1 methanol: water solution. The obtained crude crystals were further recrystallized from dry methanol to obtain 21.1 g of the desired hexamethylethylenediammonium tetrafluoroborate (yield 6).
6%).

【0021】参考例2 ハステロイC製1リットル容オートクレーブに圧力計お
よび温度計を装着し、これにジエチレントリアミン10
3g(1モル)を取り、系内を窒素置換した後、ヨウ化
メチル1136g(8モル)を加えて、120℃に加熱
した。20時間過熱攪拌し、室温に冷却した後、内容物
を取り出し、固体であるトリヨウ化オクタメチルジエチ
レントリアンモニウム178g(収率33%)を得た。
トリヨウ化オクタメチルジエチレントリアンモニウム4
9.6g(0.1モル)を温度計、ジムロート還流管お
よび滴下ロートを装着した1リットル容三つ口フラスコ
に取り、メタノール400gを加え、系内を窒素置換し
た後、反応液を−20℃に冷却した。そこにHBF4
8g(1モル)を3時間で滴下し、さらに12時間攪拌
した。析出した塩をろ過によって除いた後、メタノール
を減圧下に留去した。得られた残渣をメタノール:水=
1:1の溶液200gから再結晶した。得られた粗結晶
をさらに乾燥メタノールから再結晶して、目的とするオ
クタメチルジエチレントリアンモニウムテトラフルオロ
ボレート23.4g(収率52%)を得た。
Reference Example 2 A pressure gauge and a thermometer were attached to a 1 liter autoclave made of Hastelloy C, and diethylene triamine 10
After taking 3 g (1 mol) and replacing the inside of the system with nitrogen, 1136 g (8 mol) of methyl iodide was added and heated to 120 ° C. After stirring with heating for 20 hours and cooling to room temperature, the contents were taken out to obtain 178 g (yield 33%) of octamethyldiethylenetriammonium triiodide as a solid.
Octamethyldiethylenetriammonium triiodide 4
9.6 g (0.1 mol) was placed in a 1-liter three-necked flask equipped with a thermometer, a Dimroth reflux tube and a dropping funnel, 400 g of methanol was added, and the system was purged with nitrogen. Cooled to ° C. There HBF 4 8
8 g (1 mol) was added dropwise over 3 hours, and the mixture was further stirred for 12 hours. After removing the precipitated salt by filtration, methanol was distilled off under reduced pressure. The obtained residue is methanol: water =
It was recrystallized from 200 g of a 1: 1 solution. The obtained crude crystals were further recrystallized from dry methanol to obtain 23.4 g (yield: 52%) of the target octamethyldiethylenetriammonium tetrafluoroborate.

【0022】参考例3 参考例1においてヨウ化メチル319.5gの代わりに
ヨウ化エチル351gを用いた以外は同様にして反応お
よび操作を行い、目的とするヘキサエチルエチレンジア
ンモニウムテトラフルオロボレート13.9g(収率3
4%)を得た。
Reference Example 3 The reaction and operation were carried out in the same manner as in Reference Example 1 except that 351 g of ethyl iodide was used instead of 319.5 g of methyl iodide. 9 g (yield 3
4%).

【0023】参考例4 参考例2においてヨウ化メチル1136gの代わりにヨ
ウ化エチル1248gを用いた以外は同様にして反応お
よび操作を行い、目的とするオクタエチルジエチレント
リアンモニウムテトラフルオロボレート15.4g(収
率27%)を得た。
Reference Example 4 The reaction and operation were carried out in the same manner as in Reference Example 2 except for using 1248 g of methyl iodide instead of 1248 g of ethyl iodide, to obtain 15.4 g of the intended octaethyldiethylenetriammonium tetrafluoroborate (yield: 27%).

【0024】[0024]

【発明の効果】本発明により、電気抵抗を増加させるこ
となく耐電圧を向上させ、かつ経済的に優位な、4級ア
ンモニウム塩を非水系溶媒に溶解して得られる電解液が
提供され、該電解液を有する電気二重層キャパシタが提
供される。
According to the present invention, there is provided an electrolytic solution obtained by dissolving a quaternary ammonium salt in a non-aqueous solvent, which is improved in withstand voltage without increasing electric resistance and economically advantageous. An electric double layer capacitor having an electrolyte is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係るコイン型電気二重層
キャパシタの断面図である。
FIG. 1 is a sectional view of a coin-type electric double layer capacitor according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,5…集電極、2…セパレータ、3,4…分極性電
極、6…蓋
1,5 ... collector electrode, 2 ... separator, 3,4 ... polarizable electrode, 6 ... lid

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一般式 【化1】 [式中、XはBF4、PF6、ClO4、AsF6、SbF
6、AlCl4またはRfSO3(ここで、Rfはフルオ
ロアルキル基を表す)を表し、nは0〜5の整数を表
し、R1、R2およびR3は水素原子、アルキル基、アラ
ルキル基、アルケニル基、アリール基もしくは複素環基
を表すか、またはR1とR2は互いに結合する2つの炭素
原子と一緒になって環構造を形成していてもよい。]で
示されるアンモニウム塩を非水系溶媒に溶解して得られ
る電解液。
1. A compound of the general formula [Where X is BF 4 , PF 6 , ClO 4 , AsF 6 , SbF
6 , AlCl 4 or RfSO 3 (where Rf represents a fluoroalkyl group), n represents an integer of 0 to 5, and R 1 , R 2 and R 3 represent a hydrogen atom, an alkyl group, an aralkyl group, It may represent an alkenyl group, an aryl group or a heterocyclic group, or R 1 and R 2 may form a ring structure together with two carbon atoms bonded to each other. ] An electrolytic solution obtained by dissolving the ammonium salt represented by the formula (1) in a non-aqueous solvent.
【請求項2】請求項1記載の電解液を有する電気二重層
キャパシタ。
2. An electric double layer capacitor having the electrolytic solution according to claim 1.
JP2000339924A 2000-11-08 2000-11-08 Electric double layer capacitor Expired - Fee Related JP4583582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000339924A JP4583582B2 (en) 2000-11-08 2000-11-08 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000339924A JP4583582B2 (en) 2000-11-08 2000-11-08 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2002151360A true JP2002151360A (en) 2002-05-24
JP4583582B2 JP4583582B2 (en) 2010-11-17

Family

ID=18814918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000339924A Expired - Fee Related JP4583582B2 (en) 2000-11-08 2000-11-08 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP4583582B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132307A1 (en) * 2010-04-23 2011-10-27 富士通株式会社 Electrolyte and storage device using electrolyte
CN102584602A (en) * 2011-01-05 2012-07-18 中国科学院长春应用化学研究所 Quaternary ammonium salt and preparation method thereof
CN103688326A (en) * 2011-08-30 2014-03-26 海洋王照明科技股份有限公司 Double-center quaternary ammonium salt ion liquid, preparation method therefor and use thereof
EP2752409A1 (en) * 2011-08-30 2014-07-09 Ocean's King Lighting Science & Technology Co., Ltd. Double-center bipyridyl cationic ion liquid, preparation method therefor and use thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311839A (en) * 1999-04-26 2000-11-07 Mitsubishi Chemicals Corp Electrolytic solution for electrochemical capacitor, and electrochemical capacitor using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311839A (en) * 1999-04-26 2000-11-07 Mitsubishi Chemicals Corp Electrolytic solution for electrochemical capacitor, and electrochemical capacitor using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132307A1 (en) * 2010-04-23 2011-10-27 富士通株式会社 Electrolyte and storage device using electrolyte
JPWO2011132307A1 (en) * 2010-04-23 2013-07-18 富士通株式会社 Electrolytic solution and power storage device using the electrolytic solution
JP5376052B2 (en) * 2010-04-23 2013-12-25 富士通株式会社 Electrolytic solution and power storage device using the electrolytic solution
US8804311B2 (en) 2010-04-23 2014-08-12 Fujitsu Limited Electrolyte solution and electric energy storing device using electrolyte solution
CN102584602A (en) * 2011-01-05 2012-07-18 中国科学院长春应用化学研究所 Quaternary ammonium salt and preparation method thereof
CN103688326A (en) * 2011-08-30 2014-03-26 海洋王照明科技股份有限公司 Double-center quaternary ammonium salt ion liquid, preparation method therefor and use thereof
EP2752861A1 (en) * 2011-08-30 2014-07-09 Ocean's King Lighting Science&Technology Co., Ltd. Double-center quaternary ammonium salt ion liquid, preparation method therefor and use thereof
EP2752409A1 (en) * 2011-08-30 2014-07-09 Ocean's King Lighting Science & Technology Co., Ltd. Double-center bipyridyl cationic ion liquid, preparation method therefor and use thereof
EP2752861A4 (en) * 2011-08-30 2015-04-01 Oceans King Lighting Science Double-center quaternary ammonium salt ion liquid, preparation method therefor and use thereof
EP2752409A4 (en) * 2011-08-30 2015-04-29 Oceans King Lighting Science Double-center bipyridyl cationic ion liquid, preparation method therefor and use thereof
US9196424B2 (en) 2011-08-30 2015-11-24 Ocean's King Lighting Science & Technology Co., Ltd. Double-center bipyridyl cationic ion liquid, preparation method therefor and use thereof
US9202632B2 (en) 2011-08-30 2015-12-01 Ocean's King Lighting Science & Technology Co., Ltd. Double-center quaternary ammonium salt ion liquid, preparation method therefor and use thereof

Also Published As

Publication number Publication date
JP4583582B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
CN102264926B (en) Pentacyclic anion salt and use thereof as an electrolyte
JPWO2005022571A1 (en) Electrolytic solution for electric double layer capacitor and electric double layer capacitor
JP4548592B2 (en) Electric double layer capacitor
JP6827232B2 (en) Water-based secondary battery
JP6671079B2 (en) Ionic liquid, its production method and its use
JP4913864B2 (en) Electrolyte, electrolytic solution using the same, and electrochemical element
JP2006236829A (en) Ionic liquid, nonaqueous electrolyte for electricity accumulation device and electricity accumulation device
WO2016103906A1 (en) Electricity storage device
JPH1027623A (en) Organic electrolyte battery
JP2945890B2 (en) Electric double layer capacitor
JP4583582B2 (en) Electric double layer capacitor
JP2000138074A (en) Secondary power supply
JP5101260B2 (en) Electrolyte and electrochemical device using quaternary ammonium salt electrolyte
JP5275011B2 (en) Electrolyte and electrochemical device using quaternary ammonium salt electrolyte
JPH09286785A (en) Fluorine-containing dioxolane, organic solvent for electrolysis, lithium secondary cell and electric double layer capacitor
JP2010153560A (en) Electrolyte using quaternary ammonium salt electrolyte, and electrochemical element
JP3991566B2 (en) Electrochemical capacitor
JP2005175239A5 (en)
JP2005175239A (en) Electric double-layer capacitor and electrolyte thereof
JP2001217154A (en) Nonaqueous electrolytic solution electric double-layer capacitor
JP3690065B2 (en) Electric double layer capacitor
JPH1154377A (en) Electric double layer capacitor
JP2009283643A (en) Electrolyte, electrolytic solution using it, and electrochemical element
JP2020155279A (en) Aqueous electrolyte solution for power storage device, and power storage device including the same
JP2003173935A (en) Electrolyte solution for electrochemical capacitor and electrochemical capacitor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees