JP2002146534A - Method for producing carbon nanotube - Google Patents

Method for producing carbon nanotube

Info

Publication number
JP2002146534A
JP2002146534A JP2000346358A JP2000346358A JP2002146534A JP 2002146534 A JP2002146534 A JP 2002146534A JP 2000346358 A JP2000346358 A JP 2000346358A JP 2000346358 A JP2000346358 A JP 2000346358A JP 2002146534 A JP2002146534 A JP 2002146534A
Authority
JP
Japan
Prior art keywords
insulating substrate
carbon nanotubes
metal
carbon
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000346358A
Other languages
Japanese (ja)
Other versions
JP4523713B2 (en
Inventor
Chikao Kimura
親夫 木村
Takashi Nagate
隆 長手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2000346358A priority Critical patent/JP4523713B2/en
Publication of JP2002146534A publication Critical patent/JP2002146534A/en
Application granted granted Critical
Publication of JP4523713B2 publication Critical patent/JP4523713B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To array carbon nanotubes at a high density so as to be made uniform in a planar manner and to easily control their arrays. SOLUTION: Ni is vapor deposited on a thin film 11 of carbon deposited on either of the planes of a heat resistant insulation substrate 10 to form an Ni superthin layer. The Ni superthin layer and the heat resistant insulation substrate 10 are electrified by corona discharge. After that, the Ni superthin layer is heated and melted into a state where the Ni superfine grains are mutually separated. Thereafter, the temperatures of the heat resistant insulation substrate 10 and the Ni superfine grains are reduced to condense the Ni superfine grains, so that they are stuck to the heat resistant insulation substrate 10. Next, the heat resistant insulation substrate 10 and the Ni superfine grains 13 are destaticized. Finally, carbon is fed to the heat resistant insulation substrate 10 and the Ni superfine grains 13 by a vapor growth method to obtain carbon nanotubes 12 containing the Ni fine grains 13 on the tip parts.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電界放出電源材料
等に用いられるカーボンナノチューブの製造方法に係
り、特に、配列性や制御性等の向上を図ったカーボンナ
ノチューブの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing carbon nanotubes used for field emission power supply materials and the like, and more particularly to a method for producing carbon nanotubes with improved alignment and controllability.

【0002】[0002]

【従来の技術】真空中に配設されて電子を放出する部材
としての電界放出電源材料としては種々なものがある
が、近年、遷移金属炭化物やカーボンナノチューブ等の
炭素系材料がその特性等の観点から注目されている。カ
ーボンナノチューブは、グラファイト状炭素原子面を丸
め、それが円周方向に1個又は数個入れ子状に配列され
たチューブ状の構造を有しており、直径はナノメートル
オーダーで、結晶構造は炭素6員環が螺旋状に配列さ
れ、先端は6個の炭素5員環構造が配されて閉じた構造
になっているものである。
2. Description of the Related Art There are various types of field emission power supply materials as members which are arranged in a vacuum and emit electrons, and in recent years, carbon-based materials such as transition metal carbides and carbon nanotubes have been developed for their characteristics and the like. Attention has been paid from a viewpoint. Carbon nanotubes have a tube-like structure in which graphite-like carbon atoms are rounded and one or more are nested in the circumferential direction, the diameter is on the order of nanometers, and the crystal structure is carbon. The six-membered ring is arranged in a spiral, and the tip is a closed structure in which six carbon five-membered ring structures are arranged.

【0003】このような構造を有するカーボンナノチュ
ーブは、高い電気伝導度や大きな磁気抵抗を有すると共
に、トランジスタ動作やアクチュエータ動作を発揮し、
さらには、電界放射型電子源としての機能を果たし、ま
た、ガス吸蔵を行うなどの特異な特性を有することが実
証されている。多層構造に形成されてなるカーボンナノ
チューブを電界放射型電子源として使用した電子表示管
への応用では、わずかな電界を印加すると電子を放出す
ることができ、加熱の必要がなくいわゆる省エネルギー
で、放出電子のエネルギー幅が狭く、しかも、高電流密
度と高輝度の集束電子発生の条件を備えた電子表示管を
実現できるので、例えば、フラットパネルディスプレイ
への応用が期待できる。
[0003] The carbon nanotube having such a structure has a high electric conductivity and a large magnetoresistance, and at the same time, exhibits a transistor operation and an actuator operation.
In addition, it has been demonstrated that it functions as a field emission electron source and has unique characteristics such as performing gas occlusion. In an application to an electronic display tube using carbon nanotubes formed in a multilayer structure as a field emission type electron source, electrons can be emitted when a slight electric field is applied, so that heating is not required and so-called energy saving is achieved. Since an electron display tube having a narrow electron energy width and high-current density and high-luminance focused electron generation conditions can be realized, application to, for example, a flat panel display can be expected.

【0004】また、カーボンナノチューブとグラファイ
トを、エチレン(C)雰囲気中(例えば1×10
- 4Pa程度)において600〜650℃程度で加熱し、
針状のNi(面方向111)の先端にスポット状のカー
ボンナノチップを形成する技術も提案されている。この
ようなNi粒子先端に成長させたカーボンナノチューブ
は、電界中においてNi粒子と一体的に電子を放射する
電界放射電子源としての利用が期待されている。ところ
で、このようなカーボンナノチューブの構造的特徴を生
かし、電界電子放出をより効率良くするためには、カー
ボンナノチューブを一方向に、かつ平面的に均一にしか
も高密度で配した素子の形成が有効であると考えられ
る。
Further, carbon nanotubes and graphite are mixed in an ethylene (C 2 H 4 ) atmosphere (for example, 1 × 10 4 ).
- heating at about 600 to 650 ° C. in about 4 Pa),
A technique of forming a spot-like carbon nanotip at the tip of needle-like Ni (plane direction 111) has also been proposed. Such carbon nanotubes grown at the tips of Ni particles are expected to be used as a field emission electron source that emits electrons integrally with Ni particles in an electric field. By the way, in order to make the most of the structural characteristics of carbon nanotubes and to make field electron emission more efficient, it is effective to form an element in which carbon nanotubes are arranged uniformly and densely in one direction and in a plane. It is considered to be.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、カーボ
ンナノチューブは掴んだり、揃えたりすることが難しい
ため、その製造に関しては、カーボンナノチューブを平
面的に均一に高密度で配向性よく制御でき、しかも再現
性の良い製造方法が皆無であるという実状にある。カー
ボンナノチューブを生成する際には、種とも言うべき金
属の超微粒子を生成する方法としては、金属塩溶液の加
水分解による方法、金属アルコキシドをアルコール溶液
中で加水分解する方法、金属塩溶液の酸化還元による方
法、金属化合物の分解反応を利用する方法などの反応相
を液相として合成する方法や、エアロゾル法などの反応
相を気相として合成する方法が知られているが、これら
の方法で生成したばらばらの状態の金属の超微粒子を2
次元的に平面配列する手段として、現実的な適当な方法
がない。このように、カーボンナノチューブを掴んだ
り、落としたり、揃えたりする制御技術が確立されてい
ないという問題があった。これまでに、固体化学反応を
利用して、異物質材料にカーボンナノチューブを接合す
ることに成功した例もあるが、この例においても先のよ
うな制御技術が充分には確立されたものではない。
However, since it is difficult to grasp and align the carbon nanotubes, it is possible to control the carbon nanotubes uniformly and densely in a planar manner with good orientation, and to improve the reproducibility. There is no good manufacturing method. When producing carbon nanotubes, methods for producing ultrafine particles of metal, which can be called seeds, include a method by hydrolysis of a metal salt solution, a method of hydrolyzing a metal alkoxide in an alcohol solution, and an oxidation of a metal salt solution. A method of synthesizing a reaction phase as a liquid phase such as a method using reduction, a method utilizing a decomposition reaction of a metal compound, and a method of synthesizing a reaction phase as a gas phase such as an aerosol method are known. The separated metal ultrafine particles generated in 2
There is no practical appropriate method for dimensionally arranging the planes. As described above, there is a problem that a control technique for grasping, dropping, and aligning the carbon nanotubes has not been established. To date, there have been cases where carbon nanotubes have been successfully bonded to foreign materials using solid-state chemical reactions, but the control technology as described above has not been fully established in this case. .

【0006】本発明は、上記実状に鑑みてなされたもの
で、カーボンナノチューブを平面的に均一に高密度で配
することのできるカーボンナノチューブの製造方法を提
供するものである。本発明の他の目的は、カーボンナノ
チューブの成長の際の種となる超微粒子のサイズやその
配列状態を容易に制御することができるカーボンナノチ
ューブの製造方法を提供することにある。本発明の他の
目的は、カーボンナノチューブを利用したフラットパネ
ルディスプレイの製造方法を提供することにある。
The present invention has been made in view of the above circumstances, and provides a method for producing carbon nanotubes in which carbon nanotubes can be uniformly arranged at high density in a plane. Another object of the present invention is to provide a method for producing carbon nanotubes, which can easily control the size and arrangement of ultrafine particles serving as seeds during growth of carbon nanotubes. It is another object of the present invention to provide a method for manufacturing a flat panel display using carbon nanotubes.

【0007】[0007]

【課題を解決するための手段】上記本発明の目的を達成
するために、本発明に係るカーボンナノチューブの製造
方法は、絶縁基板上に鉄族金属の金属超薄層を形成し、
前記絶縁基板及び前記金属超薄層に静電気を帯電させ、
前記金属超薄層を加熱溶融して、前記絶縁基板上に前記
金属超薄層を構成する金属の超微粒子を互いに離間した
状態に形成し、前記金属の超微粒子及び前記絶縁基板の
温度を下げて前記超微粒子を凝結させることで前記絶縁
基板に固着させ、前記絶縁基板及び前記超微粒子の除電
を行い、前記絶縁基板及び前記超微粒子に気相成長法に
より炭素を供給して前記金属超微粒子を先端部に有する
カーボンナノチューブを形成するよう構成されてなるも
のである。
In order to achieve the object of the present invention, a method for producing carbon nanotubes according to the present invention comprises forming an ultrathin metal layer of an iron group metal on an insulating substrate;
Charge the static electricity on the insulating substrate and the metal ultra-thin layer,
The ultrathin metal layer is heated and melted to form ultrafine metal particles constituting the ultrathin metal layer on the insulating substrate in a state of being separated from each other, and the temperature of the ultrafine metal particles and the temperature of the insulating substrate are reduced. The ultrafine particles are coagulated to be fixed to the insulating substrate, the insulating substrate and the ultrafine particles are subjected to static elimination, and carbon is supplied to the insulating substrate and the ultrafine particles by a vapor growth method to form the metal ultrafine particles. Is formed to form a carbon nanotube having at its tip.

【0008】かかる構成においては、カーボンナノチュ
ーブを生成する際の種となるべき金属の微粒子を同じ極
の電荷に帯電させた状態で溶融状態とすることで、同極
電荷同士の反発力に伴い微粒子が均一に配列され、その
後の冷却により微粒子が均一に配列された状態で固体化
されるので、この状態で炭素を加熱供給することで、従
来と異なり、平面的に均一に高密度で配されたカーボン
ナノチューブを容易に得ることができるものである。
In such a configuration, fine particles of metal, which are to be seeds for producing carbon nanotubes, are melted in a state of being charged to the same polarity, so that fine particles are generated due to the repulsion between the same polarity charges. Are uniformly arranged, and solidified in a state where the fine particles are uniformly arranged by subsequent cooling.By heating and supplying carbon in this state, unlike the conventional case, the particles are uniformly arranged at a high density in a plane. The obtained carbon nanotube can be easily obtained.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図1乃至図3を参照しつつ説明する。なお、以下に
説明する部材、配置等は本発明を限定するものではな
く、本発明の趣旨の範囲内で種々改変することができる
ものである。最初に、本発明の実施の形態におけるカー
ボンナノチューブの製造方法を実施するに適した製造装
置の構成例について、図1を参照しつつ説明する。この
製造装置Sは、前処理部101と後処理部102とに大
別されて構成されて、後述するようにしてカーボンナノ
チューブを形成するに適したものとなっているものであ
る。前処理部101は、絶縁基板供給部1と、金属蒸着
部2と、コロナ放電機構部3と、加熱溶融部4と、基板
冷却・帯電除去部5と、中間基板排出部6とを具備して
構成されたものとなっている。一方、後処理部102
は、中間基板供給部7と、炭素供給加熱部8と、成長基
板排出部9とを有してなるものとなっている。本発明の
実施の形態におけるこの製造装置Sを、前処理部101
と後処理部102とから構成されるようにし、特に、前
処理部101から一旦、後述するように中間処理状態に
おける耐熱性絶縁基板10を取り出し、後処理部102
の中間基板供給部7へ供給し、炭素の加熱供給によるカ
ーボンナノチューブの成長を行わしめるようにしたの
は、この後処理部102における処理工程では耐熱性絶
縁基板10の取り扱いが、前処理部101に比してさら
に重要となることを考慮したためである。この製造装置
Sの各部の動作、機能等については、次述するカーボン
ナノチューブの製造手順において明らかにすることとす
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. The members, arrangements, and the like described below do not limit the present invention, and can be variously modified within the scope of the present invention. First, a configuration example of a manufacturing apparatus suitable for performing the method for manufacturing a carbon nanotube according to the embodiment of the present invention will be described with reference to FIG. The manufacturing apparatus S is roughly divided into a pre-processing unit 101 and a post-processing unit 102, and is suitable for forming carbon nanotubes as described later. The pre-processing unit 101 includes an insulating substrate supply unit 1, a metal deposition unit 2, a corona discharge mechanism unit 3, a heating and melting unit 4, a substrate cooling / static removal unit 5, and an intermediate substrate discharge unit 6. It is configured as follows. On the other hand, the post-processing unit 102
Has an intermediate substrate supply section 7, a carbon supply heating section 8, and a growth substrate discharge section 9. The manufacturing apparatus S according to the embodiment of the present invention is
And the post-processing unit 102. In particular, the heat-resistant insulating substrate 10 in the intermediate processing state is once taken out from the pre-processing unit 101 and
Is supplied to the intermediate substrate supply unit 7 to grow the carbon nanotubes by heating and supplying the carbon. In the processing step in the post-processing unit 102, the handling of the heat-resistant insulating substrate 10 is performed by the pre-processing unit 101. This is because the fact that it is more important than that of the above is considered. The operation, function, and the like of each unit of the manufacturing apparatus S will be clarified in a carbon nanotube manufacturing procedure described below.

【0010】以下、図1乃至図3を参照しつつ上述した
構成を有してなる製造装置Sを用いたカーボンナノチュ
ーブの製造手順について説明することとする。まず、Y
やBNなどの耐熱性セラミックスを用いて平板状
に形成された平滑な耐熱性絶縁基板10(図2参照)を
用意する。この耐熱性絶縁基板10は、その一方の平面
(カーボンナノチューブを生成する側の面)に、炭素の
薄層11を化学蒸着法等により予め極薄く(例えば0.
1μm程度)形成したものとするのが好適であるが、こ
の炭素の薄層11がない状態であってもよい。次いで、
この耐熱性絶縁基板10を絶縁基板供給部1から装置S
内へ供給する。耐熱性絶縁基板10は、金属蒸着部2に
位置せしめられて、ここで例えば、Niのような鉄族金
属を蒸着により(又はスパッタやメッキ法により)炭素
の薄層11上に(又は耐熱性絶縁基板10の地肌に直接
に)数10nm程度の膜厚で形成する(以下、このNi
蒸着膜をNi超薄層と言う)。
Hereinafter, a procedure for manufacturing carbon nanotubes using the manufacturing apparatus S having the above-described configuration will be described with reference to FIGS. First, Y
A flat heat-resistant insulating substrate 10 (see FIG. 2) formed in a plate shape using a heat-resistant ceramic such as 2 O 3 or BN is prepared. The heat-resistant insulating substrate 10 has a thin carbon layer 11 previously formed on one of its planes (the surface on the side where carbon nanotubes are generated) by a chemical vapor deposition method or the like (for example, 0.1 mm).
It is preferable that the carbon thin layer 11 is not formed. Then
The heat-resistant insulating substrate 10 is supplied from the insulating substrate supply unit 1 to the apparatus S.
Supply inside. The heat-resistant insulating substrate 10 is positioned on the metal deposition section 2, where, for example, an iron group metal such as Ni is deposited (or by sputtering or plating) on the carbon thin layer 11 (or heat-resistant). A film having a thickness of about several tens nm (directly on the background of the insulating substrate 10) (hereinafter referred to as Ni
The deposited film is called a Ni ultra-thin layer).

【0011】上述のようなNi超薄層の形成終了後、耐
熱性絶縁基板10をコロナ放電機構部3へ移し、コロナ
放電により正又は負の電荷を帯電させる。このコロナ放
電機構部3におけるコロナ放電によるコロナ帯電の方法
としては、帯電させるべき対象物(この発明の実施の形
態においては耐熱性絶縁基板10)の表面に、所定の間
隔を隔ててステンレス細線やタングス細線などを対向配
置し、これに所要の極性で4〜8kV程度の直流高電圧
を印加してコロナ放電を行わしめ、対象物の表面に帯電
電荷密度10- 4〜10- 3C/m程度の電荷を帯電させ
るようにするのが好適である。なお、コロナ放電に代え
て、高電圧を加圧する方法でもよい。次に、上述のよう
に電荷が帯電された状態の耐熱性絶縁基板10を、加熱
・溶融部4において、不活性ガス中で加熱して先に蒸着
されたNiを溶解させる。これによりNiは、耐熱性絶
縁基板10の表面が滑り易いために凝集し難くなり、さ
らに、ほぼ均一な大きさの微少なNi超微粒子14とし
て(図3参照)電荷を有した状態で表面張力によって凝
集しようとするが、各々の溶けたNi超微粒子14が正
又は負のいずれか一方の電荷を有しているため互いに反
発し合い、一定の間隔で耐熱性絶縁基板10上に配置さ
れた状態となる。
After the formation of the Ni ultra-thin layer as described above, the heat-resistant insulating substrate 10 is transferred to the corona discharge mechanism 3, where positive or negative charges are charged by corona discharge. As a method of corona charging by corona discharge in the corona discharge mechanism section 3, a stainless thin wire or a stainless steel wire is provided on the surface of an object to be charged (heat-resistant insulating substrate 10 in the embodiment of the present invention) at a predetermined interval. and arranged opposite tungsten thin wire, to which was applied a direct current high voltage of about 4~8kV at the required polarity tighten perform corona discharge, charge density on the surface of the object 10 - 4 ~10 - 3 C / m It is preferable to charge about two charges. Note that a method of applying a high voltage may be used instead of corona discharge. Next, the heat-resistant insulating substrate 10 in the state of being charged as described above is heated in an inert gas in the heating / melting unit 4 to dissolve previously deposited Ni. This makes it difficult for Ni to agglomerate because the surface of the heat-resistant insulating substrate 10 is slippery, and furthermore, has a surface tension in a state of having electric charges as minute Ni ultrafine particles 14 of almost uniform size (see FIG. 3). However, since each of the dissolved Ni ultrafine particles 14 has either positive or negative charge, they repel each other and are arranged on the heat-resistant insulating substrate 10 at regular intervals. State.

【0012】次に、上述のような状態の耐熱性絶縁基板
10を基板冷却・帯電除去部5へ移し、耐熱性絶縁基板
10全体を冷却してその温度を低下させると共に、帯電
電荷の除去(除電)を行う。これにより、耐熱性絶縁基
板10上には、Ni超微粒子が配置された状態となり、
耐熱性絶縁基板10は、一旦、中間基板排出部6から排
出されることとなる。次いで、中間基板排出部6から排
出された耐熱性絶縁基板10を、中間基板供給部7へ供
給すると、耐熱性絶縁基板10は、炭素供給加熱部8へ
位置せしめられる。そして、耐熱性絶縁基板10は、炭
素供給加熱部8において、炭素が気相状態から供給加熱
され、それにより、Ni超微粒子13を先端部とし、し
かも、平面的に一定の間隔で配置された状態のカーボン
ナノチューブ12が得られることとなり(図2参照)、
成長基板排出部9よりカーボンナノチューブ12が形成
された耐熱性絶縁基板10を取り出すことができる。な
お、ここで、炭素の供給方法については、公知の針状結
晶等を成長させる技術である炭化水素の熱分解による気
相成長法(化学蒸着法CVD)や炭化水素をプラズマ放
電で励起し反応を促進させるプラズマCVDが好適であ
り、これにより、カーボンナノチューブ形成に必要な炭
素を供給することにより、Ni超微粒子を種にしてカー
ボンナノチューブを成長させることが可能となる。これ
は、Ni超微粒子と炭素は、所定の温度で決まる平衡状
態の組成を維持しようとするため、Ni超微粒子の部分
から、供給された炭素が余分としてはきだされて、カー
ボンナノチューブが成長されてゆくものである。
Next, the heat-resistant insulating substrate 10 in the above-described state is transferred to the substrate cooling and charge removing section 5, where the entire heat-resistant insulating substrate 10 is cooled to lower its temperature and remove the charged charges ( Charge elimination). Thereby, the Ni ultrafine particles are arranged on the heat-resistant insulating substrate 10,
The heat-resistant insulating substrate 10 is once discharged from the intermediate substrate discharging section 6. Next, when the heat-resistant insulating substrate 10 discharged from the intermediate substrate discharge unit 6 is supplied to the intermediate substrate supply unit 7, the heat-resistant insulating substrate 10 is positioned at the carbon supply heating unit 8. Then, in the heat-resistant insulating substrate 10, carbon is supplied and heated from the gaseous state in the carbon supply and heating unit 8, whereby the Ni ultrafine particles 13 are used as the tips and are arranged at regular intervals in the plane. A carbon nanotube 12 in a state is obtained (see FIG. 2).
The heat-resistant insulating substrate 10 on which the carbon nanotubes 12 are formed can be taken out from the growth substrate discharge section 9. Here, regarding the method of supplying carbon, a gas phase growth method (chemical vapor deposition method) by thermal decomposition of hydrocarbon, which is a known technique for growing a needle-like crystal or the like, or a method in which hydrocarbon is excited by plasma discharge and reacted. Is preferable, and by supplying carbon necessary for forming carbon nanotubes, it becomes possible to grow carbon nanotubes by using Ni ultrafine particles as seeds. This is because the Ni ultra-fine particles and carbon try to maintain an equilibrium composition determined at a predetermined temperature, so that the supplied carbon is stripped off from the Ni ultra-fine particles and carbon nanotubes are grown. It is something that goes on.

【0013】なお、上述した発明の実施の形態において
は、耐熱性絶縁基板10を用い、これにカーボンナノチ
ューブを形成するようにしたが、耐熱性絶縁基板10に
限定される必要はなく、例えば、耐熱性絶縁基板10に
代えて導電性を有する導電性ガラス基板を用いてもよ
く、上述したと同様な工程処理によりNi超微粒子を先
端に形成したカーボンナノチューブを得ることができ
る。ここで、導電性を有する導電性ガラス基板は、耐熱
性絶縁ガラス板上に、例えばITO(Indium Tin Oxide)
等の導電性物質をスプレー法やゾルゲル法等で塗布後、
焼成することにより得ることができるものである。この
ような導電性ガラス基板を用いることにより、各々のカ
ーボンナノチューブに対して電圧を供給するための配線
を基板上に個別に別途形成する必要がないフラットパネ
ルディスプレイを形成することが可能となる。
In the above-described embodiment of the present invention, the heat-resistant insulating substrate 10 is used and carbon nanotubes are formed thereon. However, the present invention is not limited to the heat-resistant insulating substrate 10. A conductive glass substrate having conductivity may be used instead of the heat-resistant insulating substrate 10, and a carbon nanotube formed with Ni ultrafine particles at the tip can be obtained by the same process as described above. Here, a conductive glass substrate having conductivity is formed on a heat-resistant insulating glass plate by, for example, ITO (Indium Tin Oxide).
After applying a conductive material such as by spray method or sol-gel method,
It can be obtained by firing. By using such a conductive glass substrate, it is possible to form a flat panel display that does not require separate wiring for supplying a voltage to each carbon nanotube on the substrate.

【0014】また、本発明の実施の形態で説明したよう
に耐熱性絶縁基板10の表面に予め、炭素の薄膜11を
形成した場合には、これをフラットパネルディスプレイ
として用いる場合には、上述の導電性ガラス基板と同様
に、各々のカーボンナノチューブに対して電圧を供給す
るための配線を基板上に個別に別途形成する必要がない
ものとなる。また、上述した一連の工程を繰り返すこと
により、カーボンナノチューブを電界放射源としたフラ
ットパネルディスプレイを、連続的に得ることができる
こととなる。さらに、金属蒸着部2における金属蒸着層
の厚さと、コロナ放電機構部3におけるコロナ放電によ
る静電気帯電量を適宜変えることにより、超微粒子(本
発明の実施の形態においてはNi超微粒子)のサイズ及
び絶縁基板上の超微粒子の配列状態を制御することが可
能である。また、Niの代わりにFe、Coなどの鉄族
金属であっても良い。
As described in the embodiment of the present invention, when the carbon thin film 11 is formed on the surface of the heat resistant insulating substrate 10 in advance, when the carbon thin film 11 is used as a flat panel display, Similarly to the conductive glass substrate, it is not necessary to separately form a wiring for supplying a voltage to each carbon nanotube on the substrate. Further, by repeating the series of steps described above, a flat panel display using carbon nanotubes as a field emission source can be continuously obtained. Further, by appropriately changing the thickness of the metal vapor deposition layer in the metal vapor deposition section 2 and the amount of electrostatic charge due to corona discharge in the corona discharge mechanism section 3, the size and size of ultrafine particles (Ni ultrafine particles in the embodiment of the present invention) are improved. It is possible to control the arrangement state of the ultrafine particles on the insulating substrate. Further, instead of Ni, iron group metals such as Fe and Co may be used.

【0015】[0015]

【発明の効果】以上、述べたように、本発明によれば、
絶縁基板に形成された金属蒸着層に電荷を与えて溶融状
態とし、その後、冷却して固体化するため、溶融状態に
おいて金属微粒子が帯電電荷による反発力による均一な
配列状態とされた後に固体化されることとなり、その後
の炭素の加熱供給により、従来と異なり、平面的に均一
に高密度で配されたカーボンナノチューブを容易に得る
ことができるという効果を奏するものである。また、絶
縁基板に形成する金属蒸着層の厚さと帯電電荷量を制御
することで、金属超微粒子のサイズとその配列状態を容
易に制御でき、従来と異なり、高品質のカーボンナノチ
ューブを提供することができるという効果を奏するもの
である。さらに、本発明に係るカーボンナノチューブの
製造方法によりカーボンナノチューブを電界放射源とし
たフラットディスプレイ表示部を容易に形成することが
できるという効果を奏するものである。
As described above, according to the present invention,
The metal deposited layer formed on the insulating substrate is given a charge to be in a molten state, and then cooled and solidified.In the molten state, the metal fine particles are solidified after being uniformly arranged by the repulsive force of the charged charges. Then, by the subsequent heating and supply of carbon, there is an effect that, unlike the conventional case, carbon nanotubes arranged uniformly at high density in a plane can be easily obtained. In addition, by controlling the thickness and charge amount of the metal deposition layer formed on the insulating substrate, it is possible to easily control the size of metal ultrafine particles and their arrangement state. The effect is that it can be performed. Furthermore, the method for producing carbon nanotubes according to the present invention has an effect that a flat display portion using carbon nanotubes as a field emission source can be easily formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るカーボンナノチューブの製造方法
の実施に適した製造装置の構成例を示す構成図である。
FIG. 1 is a configuration diagram showing a configuration example of a production apparatus suitable for carrying out a method for producing carbon nanotubes according to the present invention.

【図2】本発明に係るカーボンナノチューブの製造方法
により形成されたカーボンナノチューブの例を示す模式
図である。
FIG. 2 is a schematic view showing an example of a carbon nanotube formed by the method for producing a carbon nanotube according to the present invention.

【図3】本発明に係るカーボンナノチューブの製造方法
におけるNi超微粒子の溶融状態を示す模式図である。
FIG. 3 is a schematic view showing a molten state of Ni ultrafine particles in the method for producing carbon nanotubes according to the present invention.

【符号の説明】[Explanation of symbols]

1…絶縁基板供給部 2…金属蒸着部 3…コロナ放電機構部 4…加熱溶融部 5…基板冷却・帯電除去部 6…中間基板排出部 7…中間基板供給部 8…炭素供給加熱部 9…成長基板排出部 10…耐熱性絶縁基板 11…炭素の薄層 12…カーボンナノチューブ 13…Ni超微粒子 14…溶融状態のNi超微粒子 DESCRIPTION OF SYMBOLS 1 ... Insulating substrate supply part 2 ... Metal vapor deposition part 3 ... Corona discharge mechanism part 4 ... Heat melting part 5 ... Substrate cooling / static removal part 6 ... Intermediate substrate discharge part 7 ... Intermediate substrate supply part 8 ... Carbon supply heating part 9 ... Growth substrate discharge unit 10 Heat-resistant insulating substrate 11 Thin carbon layer 12 Carbon nanotubes 13 Ultrafine Ni particles 14 Ultrafine Ni particles in a molten state

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01J 9/02 H01J 9/02 B Fターム(参考) 4G046 CA02 CB01 CC06 4K030 AA09 BA27 CA06 CA12 DA01 LA11 4L037 CS04 CT05 CT49 FA02 PA06 PA07 UA04 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01J 9/02 H01J 9/02 BF Term (Reference) 4G046 CA02 CB01 CC06 4K030 AA09 BA27 CA06 CA12 DA01 LA11 4L037 CS04 CT05 CT49 FA02 PA06 PA07 UA04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 絶縁基板上に鉄族金属の金属超薄層を形
成し、 前記絶縁基板及び前記金属超薄層に静電気を帯電させ、 前記金属超薄層を加熱溶融して、前記絶縁基板上に前記
金属超薄層を構成する金属の超微粒子を互いに離間した
状態に形成し、 前記金属の超微粒子及び前記絶縁基板の温度を下げて前
記超微粒子を凝結させることで前記絶縁基板に固着さ
せ、 前記絶縁基板及び前記超微粒子の除電を行い、 前記絶縁基板及び前記超微粒子に気相成長法により炭素
を供給して前記金属超微粒子を先端部に有するカーボン
ナノチューブを形成することを特徴とするカーボンナノ
チューブの製造方法。
An ultra-thin metal layer of an iron group metal is formed on an insulating substrate, static electricity is charged on the insulating substrate and the ultra-thin metal layer, and the ultra-thin metal layer is heated and melted to form the insulating substrate. The metal ultra-fine particles forming the metal ultra-thin layer are formed in a state separated from each other, and the temperature of the metal ultra-fine particles and the insulating substrate is lowered to condense the ultra-fine particles, thereby fixing the ultra-fine particles to the insulating substrate. Removing electricity from the insulating substrate and the ultrafine particles, and supplying carbon to the insulating substrate and the ultrafine particles by a vapor phase growth method to form carbon nanotubes having the metal ultrafine particles at a tip portion. Of producing carbon nanotubes.
【請求項2】 前記鉄族金属は、Niであることを特徴
とする請求項1記載のカーボンナノチューブの製造方
法。
2. The method according to claim 1, wherein the iron group metal is Ni.
【請求項3】 前記絶縁基板は、一方の平面側に導電性
を有する導電性ガラスが形成されてなることを特徴とす
る請求項1又は請求項2記載のカーボンナノチューブの
製造方法。
3. The method for producing carbon nanotubes according to claim 1, wherein the insulating substrate is formed by forming conductive glass having conductivity on one plane side.
【請求項4】 前記絶縁基板は、その一方の平面側に炭
素の薄層が予め形成されてなることを特徴とする請求項
1又は請求項2記載のカーボンナノチューブの製造方
法。
4. The method for producing carbon nanotubes according to claim 1, wherein the insulating substrate has a thin carbon layer previously formed on one plane side thereof.
JP2000346358A 2000-11-14 2000-11-14 Method for producing carbon nanotube Expired - Fee Related JP4523713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000346358A JP4523713B2 (en) 2000-11-14 2000-11-14 Method for producing carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000346358A JP4523713B2 (en) 2000-11-14 2000-11-14 Method for producing carbon nanotube

Publications (2)

Publication Number Publication Date
JP2002146534A true JP2002146534A (en) 2002-05-22
JP4523713B2 JP4523713B2 (en) 2010-08-11

Family

ID=18820241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000346358A Expired - Fee Related JP4523713B2 (en) 2000-11-14 2000-11-14 Method for producing carbon nanotube

Country Status (1)

Country Link
JP (1) JP4523713B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6532334B1 (en) 1998-01-21 2003-03-11 Kabushiki Kaisha Toshiba Information reproducing system, information recording/reproducing system, and recording medium applicable to the system
EP1582501A1 (en) * 2003-01-09 2005-10-05 Sony Corporation Production method for tubular carbon molecule and tubular carbon molecule, production method for recording device and recording device, production method for field electron emission element and field electron emission element, and production method for display unit and display unit
JP2007095580A (en) * 2005-09-29 2007-04-12 Masaru Hori Field emitter using carbon nanotube
KR100806129B1 (en) 2006-08-02 2008-02-22 삼성전자주식회사 Method of forming a carbon nanotube
JP2008192534A (en) * 2007-02-07 2008-08-21 Dialight Japan Co Ltd Base material for electron emitter, manufacturing method of base material for electron emitter, and manufacturing method of electron emitter
WO2008127962A2 (en) * 2007-04-11 2008-10-23 Carbon Design Innovations, Inc. Carbon nanotube signal modulator and photonic transmission device
US7582507B2 (en) 2002-08-02 2009-09-01 Nec Corporation Catalyst support substrate, method for growing carbon nanotubes using the same, and the transistor using carbon nanotubes
JP2010517914A (en) * 2007-02-09 2010-05-27 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Method for growing carbon nanotubes at the nanometer tip

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258776A (en) * 1999-03-10 2000-09-22 Ricoh Co Ltd Apparatus for spraying space particle for liquid crystal
JP2000321292A (en) * 1999-05-16 2000-11-24 Yoshikazu Nakayama Nano-tube, nano-tube probe, and their manufacture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2973352B2 (en) * 1995-07-10 1999-11-08 科学技術振興事業団 How to make graphite fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258776A (en) * 1999-03-10 2000-09-22 Ricoh Co Ltd Apparatus for spraying space particle for liquid crystal
JP2000321292A (en) * 1999-05-16 2000-11-24 Yoshikazu Nakayama Nano-tube, nano-tube probe, and their manufacture

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6532334B1 (en) 1998-01-21 2003-03-11 Kabushiki Kaisha Toshiba Information reproducing system, information recording/reproducing system, and recording medium applicable to the system
US6570837B1 (en) 1998-01-21 2003-05-27 Kabushiki Kaisha Toshiba Information recording medium including playback interrupt information table
US7582507B2 (en) 2002-08-02 2009-09-01 Nec Corporation Catalyst support substrate, method for growing carbon nanotubes using the same, and the transistor using carbon nanotubes
EP1582501A1 (en) * 2003-01-09 2005-10-05 Sony Corporation Production method for tubular carbon molecule and tubular carbon molecule, production method for recording device and recording device, production method for field electron emission element and field electron emission element, and production method for display unit and display unit
EP1582501A4 (en) * 2003-01-09 2009-01-28 Sony Corp Production method for tubular carbon molecule and tubular carbon molecule, production method for recording device and recording device, production method for field electron emission element and field electron emission element, and production method for display unit and display unit
US7828620B2 (en) 2003-01-09 2010-11-09 Sony Corporation Method of manufacturing tubular carbon molecule and tubular carbon molecule, method of manufacturing field electron emission device and field electron emission device, and method of manufacturing display unit and display unit
JP2007095580A (en) * 2005-09-29 2007-04-12 Masaru Hori Field emitter using carbon nanotube
KR100806129B1 (en) 2006-08-02 2008-02-22 삼성전자주식회사 Method of forming a carbon nanotube
JP2008192534A (en) * 2007-02-07 2008-08-21 Dialight Japan Co Ltd Base material for electron emitter, manufacturing method of base material for electron emitter, and manufacturing method of electron emitter
JP2010517914A (en) * 2007-02-09 2010-05-27 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Method for growing carbon nanotubes at the nanometer tip
WO2008127962A2 (en) * 2007-04-11 2008-10-23 Carbon Design Innovations, Inc. Carbon nanotube signal modulator and photonic transmission device
WO2008127962A3 (en) * 2007-04-11 2008-12-11 Covsystems Inc Carbon nanotube signal modulator and photonic transmission device

Also Published As

Publication number Publication date
JP4523713B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
KR100537512B1 (en) carbon-nano tube structure and manufacturing method thereof and field emitter and display device both adopting the same
US7625545B2 (en) Process for producing carbon nanotubes by arc discharge
US7811149B2 (en) Method for fabricating carbon nanotube-based field emission device
US20020127351A1 (en) Method for preparing nano-carbon and nano-carbon prepared by such method and composite material or mixed material containing nano-carbon and metal fine particle, apparatus for preparing nano-carbon, method for patterning nano-carbon and nano carbon base material patterned by the use of such method, as well as electron emission source using such patterned nano-carbon base material
JP3853333B2 (en) Method for manufacturing field emission array comprising nanostructures
JP3998241B2 (en) Manufacturing method of substrate on which carbon fiber is fixed
JP2000277003A (en) Manufacture of electron emission source and electron emission source
JPH08241665A (en) Field emission device with activation diamond particle release body and its preparation
TW200815281A (en) Substrate for growth of carbon nanotube, method for growth of carbon nanotube, method for control of particle diameter of catalyst for growth of carbon nanotube, and method for control carbon nanotube diameter
US6946780B2 (en) Carbon body, process for producing the carbon body, and electric field emission electron source using the carbon body
KR20070061473A (en) Method of synthesizing small-diameter carbon nanotubes with electron field emission properties
JP2006216482A (en) Manufacturing method of carbon nanotube cathode, and carbon nanotube cathode
US7842135B2 (en) Equipment innovations for nano-technology aquipment, especially for plasma growth chambers of carbon nanotube and nanowire
JP2002146534A (en) Method for producing carbon nanotube
JP2006315920A (en) Electron emission source and its manufacturing method
US20080241422A1 (en) Method for aerosol synthesis of carbon nanostructure under atmospheric pressure
JP2007186363A (en) Method and apparatus for producing carbon nanotube
JP2003277029A (en) Carbon nanotube and method for manufacturing the same
JP3885719B2 (en) Carbon nanotube manufacturing method and manufacturing apparatus in which part or all of tip end of graphene sheet cylinder is torn
JP3890471B2 (en) Method for producing electrode material for electron-emitting device using carbon nanotube
JP2004182537A (en) Method of forming arranged structure of nanocarbon material
US20030160556A1 (en) Cold cathode electron source
JP2008293967A (en) Electron source and method of manufacturing electron source
KR20010088087A (en) Selective deposition method of carbon nanotubes
JPH11130589A (en) Deposition of diamond film or diamondlike carbon film and apparatus therefor and cold anode produced by using the same deposition and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees