JP2002134086A - Activated carbon composite separator for battery - Google Patents

Activated carbon composite separator for battery

Info

Publication number
JP2002134086A
JP2002134086A JP2000369244A JP2000369244A JP2002134086A JP 2002134086 A JP2002134086 A JP 2002134086A JP 2000369244 A JP2000369244 A JP 2000369244A JP 2000369244 A JP2000369244 A JP 2000369244A JP 2002134086 A JP2002134086 A JP 2002134086A
Authority
JP
Japan
Prior art keywords
activated carbon
battery
separator
pbb
internal resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000369244A
Other languages
Japanese (ja)
Inventor
Yoji Hirai
洋司 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000369244A priority Critical patent/JP2002134086A/en
Publication of JP2002134086A publication Critical patent/JP2002134086A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a battery to be convenient in its use and to have a long life, by preventing a sulfation and a dentrite formed by repeated use of the battery under the uncharged or over discharged condition. SOLUTION: A composite structure of activated carbon and a separator is formed so that the activated carbon is to be contained in the battery, the activated carbon being fixed to, or contained in, or mixed with the separator. The activated carbon, forming the composite structure with the separator, curbs the increase of battery internal resistance causing the sulfation or dent light to be formed, enabling the battery use under the uncharged or over charged condition resulting from rapid charge and discharge, so that the battery becomes convenient in its use and has a long life.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池を構成す
るセパレータに関する改良である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement relating to a separator constituting a secondary battery.

【0002】[0002]

【従来の技術】電池のセパレータ(以下、セパレータ)
は、紙類、ガラスマット、或いは微孔を有する合成樹脂
の膜と不織布等、或いは微孔を有するセラミック等の材
質からなっていて、正極材と負極材間隔の正確性、電解
液拡散性、ガス透過性、イオン伝導性、等、電気化学上
求められる条件(以下、セパレータ機能)を多く満たし
ている。
2. Description of the Related Art Battery separators (hereinafter, separators)
Is made of a material such as paper, glass mat, or a synthetic resin film having micropores and a nonwoven fabric, or a ceramic having micropores. It satisfies many conditions (hereinafter referred to as separator function) required in electrochemical applications such as gas permeability and ion conductivity.

【0003】[0003]

【発明が解決しようとする課題】二次電池の急速充電は
不可欠の条件になりつつあり、鉛系二次電池(以下、P
bB)の急速充電は、既存諸装置の至便性上早急に確立
すべき技術である。又、エネルギー密度が大きいリチウ
ム系二次電池(以下、LiB)も同様である。然し乍
ら、急速充電時にともなう電池内部抵抗増幅を起因にし
て生成するPbBの酸化鉛膜状析出物(以下、サルフェ
ーション)及びLiBのリチウム樹枝状析出物(以下、
デントライト)の発生が、それら電池の急速充電を阻ん
でいる。
The rapid charging of secondary batteries is becoming an indispensable condition, and lead-based secondary batteries (hereinafter referred to as P
The rapid charging of bB) is a technology that should be established promptly for convenience of existing devices. The same applies to a lithium secondary battery (hereinafter, LiB) having a large energy density. However, a lead oxide film-like precipitate of PbB (hereinafter referred to as sulfation) and a lithium dendritic precipitate of LiB (hereinafter referred to as “sulfation”) generated due to an increase in internal resistance of the battery during rapid charging.
Dent light) prevents rapid charging of these batteries.

【0004】本発明は、セパレータの材質或いは活物質
組成にかかわらず、サルフェーション及びデントライト
の発生を抑える機能を有するセパレータを目的とする。
[0004] It is an object of the present invention to provide a separator having a function of suppressing the generation of sulfation and dentite regardless of the material or active material composition of the separator.

【0005】[0005]

【課題を解決するための手段】活性炭は、サルフェーシ
ョン及びデントライトを抑える作用があることが知られ
ている。例えば特開平9−245772があるが、該方
法はセパレータとは異なるポジションでの活性炭による
電池改良技術である。本発明は、粒状活性炭或いは繊維
状活性炭を二次電池のセパレータに接着剤で固着する構
造で電池内に介在せしめ、サルフェーション及びデント
ライトを抑える手段とした。
Activated carbon is known to have an effect of suppressing sulfation and dentite. For example, Japanese Unexamined Patent Application Publication No. 9-245772 discloses a battery improvement technique using activated carbon at a position different from that of the separator. The present invention has a structure in which granular activated carbon or fibrous activated carbon is fixed to a separator of a secondary battery with an adhesive, and is interposed in the battery to suppress sulfation and dentite.

【0006】[0006]

【発明の実施の形態】セパレータに接着剤を正確に塗布
するには、凸版印刷、凹版印刷、孔版印刷、等の方法が
好ましい。実証では、高粘度印刷インク等が一定形状で
通過できるスクリーン(以下、スクリーン)と、上記イ
ンクをスクリーン上に拡散圧着するローラー状用具(以
下、ローラ)からなる孔版印刷方法を用いた。セパレー
タ上に、セパレータ機能を侵さない最小限の間隔(以
下、適宜な間隔)で孔状の目開き(以下、目開き)が設
けてあるスクリーンを設置し、次に、スクリーン上に接
着剤をローラーで拡散圧着すると、スクリーンの目開き
を通過した接着剤が適宜な間隔でセパレータに塗布され
る。次に、接着剤を塗布した状態のセパレータ上に粒状
活性炭を散布すると、接着剤塗布形状と同形状に適宜な
間隔を保って粒状活性炭とセパレータが固着する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to accurately apply an adhesive to a separator, a method such as letterpress printing, intaglio printing, stencil printing, or the like is preferable. In the demonstration, a stencil printing method including a screen (hereinafter, referred to as a screen) through which a high-viscosity printing ink or the like can pass in a fixed shape and a roller-shaped tool (hereinafter, referred to as a roller) for diffusing and pressing the ink onto the screen was used. On the separator, a screen having pore-shaped openings (hereinafter referred to as openings) is installed at a minimum interval that does not impair the separator function (hereinafter referred to as an appropriate interval), and then an adhesive is applied on the screen. When diffusion pressure bonding is performed with a roller, the adhesive that has passed through the openings of the screen is applied to the separator at appropriate intervals. Next, when the granular activated carbon is sprayed on the separator coated with the adhesive, the granular activated carbon and the separator are fixed at the same shape as the adhesive applied shape at an appropriate interval.

【0007】繊維状活性炭をセパレータに固着するに
は、
[0007] To fix the fibrous activated carbon to the separator,

【0006】項で記した工程で良い。異なるところは、
繊維状活性炭は散布する形状ではないので、セパレータ
上に接着している接着剤に繊維状活性炭の適宜な片を載
置する方法になる。以上の工程で繊維状活性炭は、適宜
な間隔を保ってセパレータと固着する。
The steps described in the above section may be used. The difference is
Since the fibrous activated carbon is not in a form to be sprinkled, a method of placing an appropriate piece of the fibrous activated carbon on the adhesive bonded on the separator is adopted. In the above steps, the fibrous activated carbon is fixed to the separator at an appropriate interval.

【0008】尚、[0008]

【0006】項で記した工程をセパレータの両面に施し
て粒状活性炭或いは繊維状活性炭を固着すると、それら
活性炭の固着量が倍増し電池内部抵抗の増幅をより強く
抑える効果をもつた活性炭と複合一体化したセパレータ
(以下、本件セパレータ)が構成される。
When the steps described in the paragraph are performed on both surfaces of the separator to fix the granular activated carbon or the fibrous activated carbon, the amount of the activated carbon to be fixed is doubled, and the activated carbon is combined with the activated carbon having an effect of more strongly suppressing the amplification of the battery internal resistance. The separator (hereinafter, the present separator) is constituted.

【0009】[0009]

【実施例】実施例について図面を参照して説明すると、
図1に於いて、
Embodiments will be described with reference to the drawings.
In FIG.

【0006】項の工程を経た接着剤4がセパレータ3上
に塗布されている状態で粒状活性炭1をセパレータ3に
散布すると、粒状活性炭1はセパレータ3上に固着し本
件セパレータ3を構成する。
When the granular activated carbon 1 is sprayed on the separator 3 in a state where the adhesive 4 having undergone the above-mentioned process is applied on the separator 3, the granular activated carbon 1 adheres to the separator 3 to constitute the separator 3 of the present invention.

【0010】図2に於いて、In FIG. 2,

【0006】項の工程を経た接着剤4がセパレータ3上
に塗布されている状態で繊維状活性炭2をセパレータ3
に載置すると、繊維状活性炭2はセパレータ3上に固着
し本件セパレータ3を構成する。
The fibrous activated carbon 2 is applied to the separator 3 while the adhesive 4 having been subjected to the above-mentioned process is applied on the separator 3.
, The fibrous activated carbon 2 adheres to the separator 3 to form the separator 3 of the present invention.

【0011】図3に於いて、負極端子7を連結して鉛負
極活物質からなる負極4と、正極端子8を連結して酸化
鉛正極活物質からなる正極5と、それら負極4と正極5
を一定間隔に保っていて両面に粒状活性炭を固着した複
数の本件セパレータ3が、電池槽6に内設してある状態
でPbBが構成されている。
In FIG. 3, a negative electrode 4 made of a lead negative electrode active material is connected to a negative electrode terminal 7, a positive electrode 5 made of a lead oxide positive active material is connected to a positive electrode terminal 8, and the negative electrode 4 and the positive electrode 5 are connected.
PbB is formed in a state in which a plurality of the present separators 3 having granular activated carbon fixed on both surfaces thereof are provided in the battery tank 6 while maintaining a constant interval.

【0012】図1の、粒状活性炭1、接着剤4、セパレ
ータ3は、本件セパレータ3の構造を説明する概略拡大
図で、実際の構造はそれら各部材が緻密に連鎖してい
る。図2の、繊維状活性炭2、接着剤4、セパレータ3
は、本件セパレータ3の構造を説明する概略拡大図で、
実際の構造はそれら各部材は緻密に連鎖している。図3
の電池構造は、本件セパレータの形態を説明する化学電
池の基本的構成を示したもので、本件セパレータを用い
た電池の形状を限定するものではない。
The granular activated carbon 1, adhesive 4, and separator 3 in FIG. 1 are schematic enlarged views for explaining the structure of the present separator 3. In the actual structure, these members are closely linked. 2, fibrous activated carbon 2, adhesive 4, separator 3
Is a schematic enlarged view for explaining the structure of the present separator 3,
In an actual structure, these members are closely linked. FIG.
The battery structure described above shows the basic structure of a chemical battery for explaining the form of the present separator, and does not limit the shape of a battery using the present separator.

【0013】[0013]

【発明の効果】上記の様に構成された本件セパレータ3
のサルフェーションを抑える働きを確認するために、規
格表示6N2−2Aの3セル構造既存PbBの1セル
に、本件セパレータ3を用いて実証PbB(以下、実証
PbB)とし、比較のための1セルは既存PbB現状品
を用いた。又、双方セルには電解液、充電及び放電、短
絡等、全て同条件を施し(A)(B)(C)の運転とか
かる測定をした。 (A)2.5V定電圧で60分充電後、充電後電池内部
抵抗を測定。 (B)1A定電流で終止電圧を1.7Vとして放電後、
終止電圧1.7V時点の電池内部抗と終止電圧1.7V
迄の放電持続時間を測定。 (C)終止電圧1.7V迄放電後、負極端子7と正極端
子8を60分短絡。 以上の実証作業を12回反復した運転各数値を以下に記
した。
According to the present invention, the separator 3 constructed as described above is provided.
In order to confirm the function of suppressing the sulfation of the present invention, one cell of the existing PbB having a three-cell structure of the standard designation 6N2-2A was used as a demonstration PbB (hereinafter, demonstration PbB) using the present separator 3, and one cell for comparison was The existing PbB current product was used. The same conditions were applied to both cells, such as electrolyte, charge and discharge, short circuit, etc., and the operations (A), (B) and (C) and the measurements were performed. (A) After charging at a constant voltage of 2.5 V for 60 minutes, the internal resistance of the battery after charging was measured. (B) After discharging with a final voltage of 1.7 V at a constant current of 1 A,
The internal resistance of the battery at the end voltage of 1.7 V and the end voltage of 1.7 V
Measure the duration of discharge up to. (C) After discharging to a final voltage of 1.7 V, the negative electrode terminal 7 and the positive electrode terminal 8 were short-circuited for 60 minutes. The operation values obtained by repeating the above verification work 12 times are shown below.

【0014】 第1回運転 実証PbB 既存PbB (A)の電池内部抵抗値 38.8mΩ 33.3mΩ (B)の電池内部抵抗値 65.1mΩ 59.8mΩ (B)の放電持続時間値 17.26秒 21.43秒 第2回運転 実証PbB 既存PbB (A)の電池内部抵抗値 40.2mΩ 41.7mΩ (B)の電池内部抵抗値 59.4mΩ 72.8mΩ (B)の放電持続時間値 9.15秒 6.12秒 第3回運転 実証PbB 既存PbB (A)の電池内部抵抗値 39.3mΩ 37.7mΩ (B)の電池内部抵抗値 61.2mΩ 69.3mΩ (B)の放電持続時間値 13.54秒 10.50秒 第4回運転 実証PbB 既存PbB (A)の電池内部抵抗値 40.1mΩ 67.2mΩ (B)の電池内部抵抗値 58.6mΩ 107.8mΩ (B)の放電持続時間値 13.53秒 2.03秒 第5回運転 実証PbB 既存PbB (A)の電池内部抵抗値 35.2mΩ 78.1mΩ (B)の電池内部抵抗値 52.8mΩ 112.9mΩ (B)の放電持続時間値 12.09秒 1.32秒 第6回運転 実証PbB 既存PbB (A)の電池内部抵抗値 33.8mΩ 87.3mΩ (B)の電池内部抵抗値 49.9mΩ 121.4mΩ (B)の放電持続時間値 11.11秒 1.16秒 第7回運転 実証PbB 既存PbB (A)の電池内部抵抗値 32.8mΩ 176.1mΩ (B)の電池内部抵抗値 67.6mΩ 189.3mΩ (B)の放電持続時間値 12.16秒 0.16秒 第8回運転 実証PbB 既存PbB (A)の電池内部抵抗値 33.3mΩ 240.mΩ (B)の電池内部抵抗値 69.2mΩ 270.mΩ (B)の放電持続時間値 12.56秒 0.1秒 第9回運転 実証PbB 既存PbB (A)の電池内部抵抗値 33.1mΩ 297.mΩ (B)の電池内部抵抗値 72.8mΩ 322.mΩ (B)の放電持続時間値 11.13秒 0.1秒 第10回運転 実証PbB 既存PbB (A)の電池内部抵抗値 34.2mΩ 295.mΩ (B)の電池内部抵抗値 65.1mΩ 211.mΩ (B)の放電持続時間値 17.26秒 0.1秒 第11回運転 実証PbB 既存PbB (A)の電池内部抵抗値 34.8mΩ 124.mΩ (B)の電池内部抵抗値 80.5mΩ 132.mΩ (B)の放電持続時間値 15.57秒 0.6秒 第12回運転 実証PbB 既存PbB (A)の電池内部抵抗値 33.6mΩ 129.9mΩ (B)の電池内部抵抗値 81.7mΩ 156.6mΩ (B)の放電持続時間値 18.17秒 0.1秒First Operation Demonstration PbB Battery internal resistance value of existing PbB (A) 38.8 mΩ 33.3 mΩ Battery internal resistance value of (B) 65.1 mΩ 59.8 mΩ (B) Discharge duration value 17.26 Second 21.43 seconds Second operation demonstration PbB Battery internal resistance of existing PbB (A) 40.2 mΩ 41.7 mΩ Battery internal resistance of (B) 59.4 mΩ 72.8 mΩ (B) Discharge duration 9 .15 seconds 6.12 seconds Third operation demonstration PbB Battery internal resistance of existing PbB (A) 39.3 mΩ 37.7 mΩ Battery internal resistance of (B) 61.2 mΩ 69.3 mΩ (B) Discharge duration Value 13.54 seconds 10.50 seconds 4th operation Demonstration PbB Battery internal resistance value of existing PbB (A) 40.1 mΩ 67.2 mΩ Battery internal resistance value of (B) 58.6 mΩ 107.8 mΩ (B) Duration value 13.53 seconds 2.03 seconds Fifth operation Demonstration PbB Internal battery resistance value of existing PbB (A) 35.2 mΩ 78.1 mΩ (B) Battery internal resistance value 52.8 mΩ 112.9 mΩ (B) Discharge duration value of 12.09 seconds 1.32 seconds 6th operation demonstration PbB Existing battery resistance value of existing PbB (A) 33.8 mΩ 87.3 mΩ Battery internal resistance value of (B) 49.9 mΩ 121.4 mΩ ( B) Discharge duration value 11.11 seconds 1.16 seconds 7th operation Demonstration PbB Existing PbB (A) internal battery resistance value 32.8 mΩ 176.1 mΩ (B) internal battery resistance value 67.6 mΩ 189. Discharge duration value of 3 mΩ (B) 12.16 seconds 0.16 seconds 8th operation verification PbB Battery internal resistance value of existing PbB (A) 33.3 mΩ 240. Battery internal resistance value of mΩ (B) 69.2 mΩ 270. Discharge duration value of mΩ (B) 12.56 seconds 0.1 seconds Ninth operation Demonstration PbB Internal battery resistance value of existing PbB (A) 33.1 mΩ 297. mΩ (B) Battery internal resistance value 72.8 mΩ 322. Discharge duration value of mΩ (B) 11.13 seconds 0.1 second 10th operation demonstration PbB Internal resistance value of existing PbB (A) battery 34.2 mΩ 295. Battery internal resistance value of mΩ (B) 65.1 mΩ 211. Discharge duration value of mΩ (B) 17.26 seconds 0.1 seconds 11th operation demonstration PbB Battery internal resistance value of existing PbB (A) 34.8 mΩ 124. Battery internal resistance value of mΩ (B) 80.5 mΩ 132. Discharge duration value of mΩ (B) 15.57 seconds 0.6 seconds 12th operation verification PbB Battery internal resistance value of existing PbB (A) 33.6 mΩ 129.9 mΩ Battery internal resistance value of (B) 81.7 mΩ Discharge duration value of 156.6 mΩ (B) 18.17 seconds 0.1 seconds

【0015】[0015]

【発明の効果】上記、12回反復の運転数値と観察か
ら、実証PbBは第12回運転に於いても正常な電池機
能を保っているが、一方の既存PbBは、第4回運転後
の(A)電池内部抵抗値と(B)放電持続時間値が電池
機能停止状態を示している。又、第12回運転後の観察
では、既存PbBの負極と正極はサルフェーション皮膜
で覆われていたが、実証PbBの負極4及び正極5は何
らの異常もなかった。
From the above operation values and observations of the 12th repetition, the demonstration PbB maintains the normal battery function even in the twelfth operation, while the existing PbB has the same function after the fourth operation. (A) The battery internal resistance value and (B) the discharge duration time value indicate the battery function stop state. Further, according to the observation after the twelfth operation, the negative electrode and the positive electrode of the existing PbB were covered with the sulfation film, but the negative electrode 4 and the positive electrode 5 of the demonstration PbB did not have any abnormality.

【0016】以上の効果から、本件セパレータ3は、急
速充電にともなうサルフェーションの起因である電池内
部抵抗の増幅を防ぎPbBの急速充電を可能にした。
From the above effects, the separator 3 of the present invention prevented the amplification of the internal resistance of the battery, which is the cause of sulfation caused by the rapid charging, and enabled the rapid charging of PbB.

【0017】又、本件セパレータ3は、LiBに於いて
も上記同様の効果により急速充電にともなうデントライ
トの起因である電池内部抵抗の増幅を防ぎ、それら電池
の急速充電に於いても有効に作用する。
The separator 3 according to the present invention also prevents the amplification of the internal resistance of the battery, which is caused by the dentite, due to the rapid charging of LiB by the same effect as described above, and effectively acts also in the rapid charging of these batteries. I do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本件セパレータの、粒状活性炭に於ける実施例
を示す縦断概略図
FIG. 1 is a schematic longitudinal sectional view showing an embodiment of a granular activated carbon of the present separator.

【図2】本件セパレータの、繊維状活性炭に於ける実施
例を示す縦断概略図
FIG. 2 is a schematic longitudinal sectional view showing an embodiment of the present separator in a fibrous activated carbon.

【図3】本件セパレータを用いた、鉛二次電池の実施例
を示す縦断概略図
FIG. 3 is a schematic longitudinal sectional view showing an embodiment of a lead secondary battery using the present separator.

【符号の説明】[Explanation of symbols]

1 粒状活性炭 2 繊維状活性炭 3 セパレータ 4 負極(鉛) 5 正極(酸化鉛) 6 電池槽 7 負極端子 8 正極端子 REFERENCE SIGNS LIST 1 granular activated carbon 2 fibrous activated carbon 3 separator 4 negative electrode (lead) 5 positive electrode (lead oxide) 6 battery tank 7 negative electrode terminal 8 positive electrode terminal

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年3月1日(2001.3.1)[Submission date] March 1, 2001 (2001.3.1)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】電池の活性炭複合状セパレータActivated carbon composite separator for batteries

【特許請求の範囲】[Claims]

【0001】[0001]

【発明の属する技術分野】本発明は、セパレータを利用
した活性炭の電池応用技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for applying activated carbon to a battery using a separator.

【0002】[0002]

【従来の技術】電池のセパレータ(以下、セパレータ)
とは、絶縁体からなる、紙類、ガラスマット、或いは微
孔を有する合成樹脂の膜と不織布等、或いは微孔を有す
るセラミック等の材質からなっていて、正極材と負極材
間隔の正確性を満たす物理的条件と電解液拡散性、ガス
透過性、イオン伝導性、等、電気化学上求められる条件
を満たしている(以下、セパレータ機能)電池部材であ
る。
2. Description of the Related Art Battery separators (hereinafter, separators)
Is a material such as paper, glass mat, or synthetic resin film and nonwoven fabric with micropores, or ceramics with micropores, made of an insulator. The battery member satisfies the physical conditions that satisfy the conditions and the electrochemically required conditions such as electrolyte solution diffusivity, gas permeability, and ion conductivity (hereinafter, referred to as a separator function).

【0003】又、電池に於いて、粉状、破砕状、球状か
らなる粒状活性炭(以下、粒状活性炭)或いは繊維状活
性炭は、サルフェーション及びデントライトを抑える作
用があることが知られている、例えば特開平9−245
772がある他、集電体としても広く使われている。
[0003] In a battery, granular, crushed, or spherical granular activated carbon (hereinafter, granular activated carbon) or fibrous activated carbon is known to have an effect of suppressing sulfation and dentite. JP-A-9-245
In addition to 772, it is widely used as a current collector.

【0004】[0004]

【発明が解決しようとする課題】電池の急速充放電は不
可欠条件になりつつある、とりわけ鉛系二次電池(以
下、PbB)及びリチウム系二次電池(以下、LiB)
の急速充放電は既存諸装置の至便性上早急に確立すべき
技術であり、他の種の電池も同様な状況にある。然し乍
ら、急速充放電に係る未充電状態或いは過放電状態にと
もなう電池内部抵抗増幅を起因にして生成するPbBの
酸化鉛膜状析出物(以下、サルフェーション)及びLi
Bのリチウム樹枝状析出物(以下、デントライト)の発
生が、それら電池の急速充放電使用を阻んでおり解決す
べき問題である。
The rapid charging and discharging of batteries is becoming an indispensable condition. In particular, lead-based secondary batteries (hereinafter, PbB) and lithium-based secondary batteries (hereinafter, LiB)
Is a technology that should be quickly established for the convenience of existing devices, and other types of batteries are in the same situation. However, PbB lead oxide film-like precipitates (hereinafter referred to as "sulfation") and Li, which are generated due to an increase in the internal resistance of the battery due to an uncharged state or an overdischarged state related to rapid charge and discharge, and Li.
The generation of lithium dendritic precipitates of B (hereinafter referred to as dendrites) is a problem to be solved because they hinder the rapid charge / discharge use of these batteries.

【0005】[0005]

【課題を解決するための手段】本発明は、電池内に活性
炭を介在せしめた構造によって前記問題を解決するもの
であるが、振動等の原因によって電池内に活性炭が拡散
すると、活性炭が伝導体になって負極と正極を短絡し電
池を破損する原因になる。そこで本発明では、
The present invention solves the above problem by a structure in which activated carbon is interposed in a battery. However, when activated carbon diffuses into a battery due to vibration or the like, the activated carbon becomes a conductor. As a result, the negative electrode and the positive electrode are short-circuited and the battery is damaged. Therefore, in the present invention,

【0006】請求項1に於いて、セパレータに活性炭を
接着或いは溶着の方法で固着する(以下、活性炭複合セ
パレータ)形態により、電池内に介在せしめた活性炭の
拡散を防ぐ方法とした。
According to the first aspect of the present invention, the activated carbon is fixed to the separator by bonding or welding (hereinafter referred to as activated carbon composite separator) to prevent diffusion of the activated carbon interposed in the battery.

【0007】請求項2に於いて、セパレータが活性炭を
包み覆う(以下、活性炭内蔵セパレータ)形態により、
電池内に介在せしめた活性炭の拡散を防ぐ方法とした。
According to the second aspect of the present invention, the separator wraps and covers the activated carbon (hereinafter, the activated carbon built-in separator).
A method was adopted to prevent the diffusion of activated carbon interposed in the battery.

【0008】請求項3に於いて、セパレータの繊維に活
性炭を絡めた(以下、活性炭混成セパレータ)形態によ
り、電池内に介在せしめた活性炭の拡散を防ぐ方法とし
た。
According to a third aspect of the present invention, there is provided a method for preventing diffusion of activated carbon interposed in a battery by using a form in which activated carbon is entangled with fibers of a separator (hereinafter, activated carbon hybrid separator).

【0009】[0009]

【発明の詳細な説明】 請求項1に於いて、セパレータに粒状活性炭を接着する
にあたりセパレータに接着剤を塗布するには、凸版印
刷、凹版印刷、孔版印刷、等の方法が好ましい。上記、
孔版印刷方法に於いて、セパレータ上にセパレータ機能
を侵さない最小限の間隔(以下、適宜な間隔)で孔状の
目開き(以下、目開き)が設けてあるスクリーンを設置
し、次に、スクリーン上に接着剤をローラーで拡散圧着
すると、スクリーンの目開きを通過した接着剤が適宜な
間隔でセパレータに塗布される。次に、接着剤を塗布し
た状態のセパレータ上に粒状活性炭を散布すると、接着
剤塗布形状と同形状に適宜な間隔を保って粒状活性炭と
セパレータが固着する。尚、繊維状活性炭に於いても同
様の接着工程でセパレータと固着する。
DETAILED DESCRIPTION OF THE INVENTION In the first aspect of the present invention, a method of letterpress printing, intaglio printing, stencil printing, or the like is preferable for applying an adhesive to the separator in bonding the granular activated carbon to the separator. the above,
In the stencil printing method, a screen provided with perforated apertures (hereinafter, apertures) is provided on the separator at a minimum interval that does not impair the separator function (hereinafter, an appropriate interval), and then, When the adhesive is spread and pressed on the screen by a roller, the adhesive that has passed through the openings of the screen is applied to the separator at appropriate intervals. Next, when the granular activated carbon is sprayed on the separator coated with the adhesive, the granular activated carbon and the separator are fixed at the same shape as the adhesive applied shape at an appropriate interval. The fibrous activated carbon is fixed to the separator in the same bonding step.

【0010】又、請求項1に於いて、セパレータに粒状
活性炭或いは繊維状活性炭を溶着するには、そのセパレ
ータが高分子材であれば、セパレータ上のそれら活性炭
に任意の圧力をかけながら高周波を付与する誘電溶着加
工或いは前記同様な工程で、高分子材が熱溶着する例え
ば130℃程度の加熱を施す溶着加工が適切である。
According to the first aspect of the present invention, in order to deposit granular activated carbon or fibrous activated carbon on the separator, if the separator is a polymer material, a high frequency is applied while applying any pressure to the activated carbon on the separator. In the dielectric welding process to be applied or the same process as above, a welding process in which the polymer material is thermally welded, for example, heating at about 130 ° C. is appropriate.

【0011】尚、Incidentally,

【0009】或いはOr,

【0010】の項で記した工程をセパレータの両面に施
して粒状活性炭或いは繊維状活性炭を固着すると、それ
ら活性炭の固着量が倍増し電池内部抵抗の増幅をより強
く抑える効果をもつた活性炭複合セパレータが構成され
る。
When the steps described in the above paragraph are performed on both surfaces of the separator to fix the granular activated carbon or fibrous activated carbon, the amount of the activated carbon fixed is doubled, and the activated carbon composite separator has the effect of suppressing the amplification of the battery internal resistance more strongly. Is configured.

【0012】請求項2に於いて、セパレータに粒状或い
は繊維状の活性炭を内蔵するには、扁平な袋状或いはチ
ューブ状のセパレータにそれら活性炭を挿入し、挿入し
た箇所を密閉すればよい。
According to the present invention, in order to incorporate granular or fibrous activated carbon into the separator, the activated carbon may be inserted into a flat bag-shaped or tube-shaped separator, and the inserted portion may be sealed.

【0013】請求項3に於いて、粒状の活性炭或いは繊
維状活性炭を、セパレータの繊維に絡ませるには、例え
ば、電池用セパレータに多く用いられている不織布の代
表的製法である、繊維シート層(以下、フリース)の中
に熱接着性繊維を混合し溶融させて繊維間を結合するサ
ーマルボンド法では、フリース中にそれら活性炭を混和
すればよい。
According to the third aspect of the present invention, in order to entangle the granular activated carbon or the fibrous activated carbon with the fibers of the separator, for example, a fiber sheet layer which is a typical method of producing a nonwoven fabric often used for battery separators is used. In the thermal bonding method in which heat-bondable fibers are mixed and melted in a fleece (hereinafter referred to as fleece), the activated carbon may be mixed in the fleece.

【0014】尚、請求項1に記載の活性炭複合セパレー
タと、請求項2に記載の活性炭内蔵セパレータと、請求
項3に記載の活性炭混成セパレータに於いては、セパレ
ータの形状以外は活性炭が電池内に介在する位置或いは
作用など全て共通であるので、請求項2及び請求項3に
於ける実施例及び発明の効果の説明は、請求項1に於け
る実施例及び発明の効果と重複するので省略し、発明の
実施の形態と図面の簡単な説明についてのみ記載する。
In the activated carbon composite separator according to the first aspect, the activated carbon built-in separator according to the second aspect, and the activated carbon hybrid separator according to the third aspect, except for the shape of the separator, activated carbon is contained in the battery. Since the position and the function of intervening are all common, the description of the effects of the embodiment and the invention in claims 2 and 3 is omitted because they overlap with the effects of the embodiment and the invention in claim 1. Only the embodiments of the invention and brief descriptions of the drawings are described.

【0015】[0015]

【発明の実施の形態】請求項1に於ける実施の形態つい
て図面を参照して説明する。図1に於いて、
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a first embodiment of the present invention; In FIG.

【0009】項の工程を経た接着剤4がセパレータ3上
に塗布されている状態で粒状活性炭1をセパレータ3に
散布すると、粒状活性炭1はセパレータ3上に固着し活
性炭複合セパレータを構成する。
When the granular activated carbon 1 is sprayed on the separator 3 in a state where the adhesive 4 having undergone the step described above is applied on the separator 3, the granular activated carbon 1 is fixed on the separator 3 to form an activated carbon composite separator.

【0016】図2に於いて、In FIG. 2,

【0009】項の工程を経た接着剤4がセパレータ3上
に塗布されている状態で繊維状活性炭2をセパレータ3
に載置すると、繊維状活性炭2はセパレータ3上に固着
し活性炭複合セパレータを構成する。
[0009] The fibrous activated carbon 2 is applied to the separator 3 while the adhesive 4 having been subjected to the above-mentioned step is applied on the separator 3.
, The fibrous activated carbon 2 adheres to the separator 3 to form an activated carbon composite separator.

【0017】請求項2に於ける実施の形態ついて図面を
参照して説明する。図3に於いて、粒状活性炭1は、
An embodiment according to claim 2 will be described with reference to the drawings. In FIG. 3, the granular activated carbon 1 is

【0012】の工程を経て連鎖しているチューブ状セパ
レータ3と密閉部9からなる構造によって覆われた、活
性炭内蔵セパレータを構成する。
A separator with a built-in activated carbon, which is covered by a structure composed of the tubular separator 3 and the sealing portion 9 which are linked through the above steps, is constituted.

【0018】図4に於いて、繊維状活性炭2は、In FIG. 4, the fibrous activated carbon 2 is

【0012】の工程を経て扁平な袋状のセパレータ3と
密閉部9からなる構造によって覆われた、活性炭内蔵セ
パータを構成する。
Through the steps described above, a separator with a built-in activated carbon, which is covered with a structure including the flat bag-shaped separator 3 and the sealing portion 9, is formed.

【0019】請求項3に於ける実施の形態ついて図面を
参照して説明する。図5に於いて、粒状活性炭1は、
An embodiment according to claim 3 will be described with reference to the drawings. In FIG. 5, the granular activated carbon 1 is

【0013】の工程を経てセパレータの繊維に絡んで固
定した、活性炭混成セパレータを構成する。
[0013] An activated carbon hybrid separator fixed by being entangled with the fibers of the separator through the above steps.

【0020】図6に於いて、電解液11と、負極端子7
を連結して鉛負極活物質からなる負極5と正極端子8を
連結して酸化鉛正極活物質からなる正極6と、それら負
極5と正極6を一定間隔に保っていて両面に粒状活性炭
1を固着した活性炭複合セパレータの各部材が、電池槽
10に内設してある状態でPbBが構成されている。
In FIG. 6, an electrolyte 11 and a negative electrode terminal 7 are shown.
Are connected to each other, and a negative electrode 5 made of a lead negative electrode active material and a positive electrode terminal 8 are connected to each other to form a positive electrode 6 made of a lead oxide positive electrode active material. The PbB is formed in a state where each of the fixed activated carbon composite separator members is provided inside the battery tank 10.

【0021】図7に於いて、電解液11と、負極端子7
を連結して鉛負極活物質からなる負極5と正極端子8を
連結して酸化鉛正極活物質からなる正極6と、それら負
極5と正極6を一定間隔に保っていて粒状活性炭1を内
蔵した活性炭内蔵セパレータの各部材が、電池槽10に
内設してある状態でPbBが構成されている。
In FIG. 7, an electrolyte 11 and a negative electrode terminal 7
The negative electrode 5 made of a lead negative electrode active material and the positive electrode terminal 8 are connected to connect a positive electrode 6 made of a lead oxide positive electrode active material, and the negative electrode 5 and the positive electrode 6 are kept at a constant interval to incorporate the granular activated carbon 1. PbB is formed in a state where each member of the activated carbon built-in separator is provided inside the battery tank 10.

【0022】図1、図2、図3、図4、図5の、粒状活
性炭1繊維状活性炭2セパレータ3接着剤4は、活性炭
複合セパレータ及び活性炭内蔵セパレータ及び活性炭混
成セパレータの構造を説明する概略拡大図で、実際の構
造はそれら各部材が緻密に連鎖している。又、図5及び
図6の電池構造は、化学電池の基本的構成を示したもの
で、活性炭複合セパレータ或いは活性炭内蔵セパレータ
を用いた電池の形状を限定するものではない。
The granular activated carbon 1, fibrous activated carbon 2, separator 3 and adhesive 4 shown in FIGS. 1, 2, 3, 4 and 5 are schematic diagrams for explaining the structures of an activated carbon composite separator, an activated carbon built-in separator and an activated carbon hybrid separator. In the enlarged view, in the actual structure, those members are closely linked. 5 and 6 show the basic structure of a chemical battery, and do not limit the shape of a battery using an activated carbon composite separator or a separator incorporating activated carbon.

【0023】[0023]

【実施例】図6から、サルフェーションを抑える働きを
確認するために、短時間にサルフェーションを形成せし
めるシュミレーションとして、電池規格表示6N2−2
A−8の3セル構造既存PbBの1セルに、粒状活性炭
からなる活性炭複合セパレータを用いて実証のPbB
(以下、実証PbB)とし、比較のための1セルは既存
PbB現状品を用いた。又、双方セルには電解液、充電
及び放電、短絡等、全て同条件に於いて、以下の(A)
(B)(C)からなる運転を施した。 (A)2.5V定電圧で60分充電後、充電後電池内部
抵抗を測定。 (B)1A定電流で終止電圧を1.7Vとして放電後、
終止電圧1.7V時点の電池内部抗と終止電圧1.7V
迄の放電持続時間を測定。 (C)終止電圧1.7V迄放電後、負極端子7と正極端
子8を60分短絡。 以上の実証運転を12回反復した一連の運転各数値を以
下に記した。
FIG. 6 shows a battery standard indication 6N2-2 as a simulation for forming sulfation in a short time in order to confirm the function of suppressing sulfation.
A-8 3-cell structure PbB demonstrated using an activated carbon composite separator made of granular activated carbon in one cell of existing PbB
(Hereinafter referred to as PbB), and one cell for comparison was an existing PbB as-is product. In both cells, under the same conditions such as electrolyte, charge and discharge, short circuit, etc., the following (A)
The operation consisting of (B) and (C) was performed. (A) After charging at a constant voltage of 2.5 V for 60 minutes, the internal resistance of the battery after charging was measured. (B) After discharging with a final voltage of 1.7 V at a constant current of 1 A,
The internal resistance of the battery at the end voltage of 1.7 V and the end voltage of 1.7 V
Measure the duration of discharge up to. (C) After discharging to a final voltage of 1.7 V, the negative electrode terminal 7 and the positive electrode terminal 8 were short-circuited for 60 minutes. A series of operation values obtained by repeating the above demonstration operation 12 times is shown below.

【0024】 第1回運転 実証PbB 既存PbB (A)の電池内部抵抗値 38.8mΩ 33.3mΩ (B)の電池内部抵抗値 65.1mΩ 59.8mΩ (B)の放電持続時間値 17.26秒 21.43秒 第2回運転 実証PbB 既存PbB (A)の電池内部抵抗値 40.2mΩ 41.7mΩ (B)の電池内部抵抗値 59.4mΩ 72.8mΩ (B)の放電持続時間値 9.15秒 6.12秒 第3回運転 実証PbB 既存PbB (A)の電池内部抵抗値 39.3mΩ 37.7mΩ (B)の電池内部抵抗値 61.2mΩ 69.3mΩ (B)の放電持続時間値 13.54秒 10.50秒 第4回運転 実証PbB 既存PbB (A)の電池内部抵抗値 40.1mΩ 67.2mΩ (B)の電池内部抵抗値 58.6mΩ 107.8mΩ (B)の放電持続時間値 13.53秒 2.03秒 第5回運転 実証PbB 既存PbB (A)の電池内部抵抗値 35.2mΩ 78.1mΩ (B)の電池内部抵抗値 52.8mΩ 112.9mΩ (B)の放電持続時間値 12.09秒 1.32秒 第6回運転 実証PbB 既存PbB (A)の電池内部抵抗値 33.8mΩ 87.3mΩ (B)の電池内部抵抗値 49.9mΩ 121.4mΩ (B)の放電持続時間値 11.11秒 1.16秒 第7回運転 実証PbB 既存PbB (A)の電池内部抵抗値 32.8mΩ 176.1mΩ (B)の電池内部抵抗値 67.6mΩ 189.3mΩ (B)の放電持続時間値 12.16秒 0.16秒 第8回運転 実証PbB 既存PbB (A)の電池内部抵抗値 33.3mΩ 240.mΩ (B)の電池内部抵抗値 69.2mΩ 270.mΩ (B)の放電持続時間値 12.56秒 0.1秒 第9回運転 実証PbB 既存PbB (A)の電池内部抵抗値 33.1mΩ 297.mΩ (B)の電池内部抵抗値 72.8mΩ 322.mΩ (B)の放電持続時間値 11.13秒 0.1秒 第10回運転 実証PbB 既存PbB (A)の電池内部抵抗値 34.2mΩ 295.mΩ (B)の電池内部抵抗値 65.1mΩ 211.mΩ (B)の放電持続時間値 17.26秒 0.1秒 第11回運転 実証PbB 既存PbB (A)の電池内部抵抗値 34.8mΩ 124.mΩ (B)の電池内部抵抗値 80.5mΩ 132.mΩ (B)の放電持続時間値 15.57秒 0.6秒 第12回運転 実証PbB 既存PbB (A)の電池内部抵抗値 33.6mΩ 129.9mΩ (B)の電池内部抵抗値 81.7mΩ 156.6mΩ (B)の放電持続時間値 18.17秒 0.1秒First Operation Demonstration PbB Battery internal resistance of existing PbB (A) 38.8 mΩ 33.3 mΩ Battery internal resistance of (B) 65.1 mΩ 59.8 mΩ (B) Discharge duration 17.26 Second 21.43 seconds Second operation demonstration PbB Battery internal resistance of existing PbB (A) 40.2 mΩ 41.7 mΩ Battery internal resistance of (B) 59.4 mΩ 72.8 mΩ (B) Discharge duration 9 .15 seconds 6.12 seconds Third operation demonstration PbB Battery internal resistance of existing PbB (A) 39.3 mΩ 37.7 mΩ Battery internal resistance of (B) 61.2 mΩ 69.3 mΩ (B) Discharge duration Value 13.54 seconds 10.50 seconds 4th operation Demonstration PbB Battery internal resistance value of existing PbB (A) 40.1 mΩ 67.2 mΩ Battery internal resistance value of (B) 58.6 mΩ 107.8 mΩ (B) Duration value 13.53 seconds 2.03 seconds Fifth operation Demonstration PbB Internal battery resistance value of existing PbB (A) 35.2 mΩ 78.1 mΩ (B) Battery internal resistance value 52.8 mΩ 112.9 mΩ (B) Discharge duration value of 12.09 seconds 1.32 seconds 6th operation demonstration PbB Existing battery resistance value of existing PbB (A) 33.8 mΩ 87.3 mΩ Battery internal resistance value of (B) 49.9 mΩ 121.4 mΩ ( B) Discharge duration value 11.11 seconds 1.16 seconds 7th operation Demonstration PbB Existing PbB (A) internal battery resistance value 32.8 mΩ 176.1 mΩ (B) internal battery resistance value 67.6 mΩ 189. Discharge duration value of 3 mΩ (B) 12.16 seconds 0.16 seconds 8th operation verification PbB Battery internal resistance value of existing PbB (A) 33.3 mΩ 240. mΩ (B) Battery internal resistance value 69.2 mΩ 270. Discharge duration value of mΩ (B) 12.56 seconds 0.1 seconds 9th operation Demonstration PbB Existing battery resistance of PbB (A) 33.1 mΩ 297. mΩ (B) Battery internal resistance value 72.8 mΩ 322. Discharge duration value of mΩ (B) 11.13 seconds 0.1 second 10th operation demonstration PbB Internal resistance value of existing PbB (A) battery 34.2 mΩ 295. Battery internal resistance value of mΩ (B) 65.1 mΩ 211. Discharge duration value of mΩ (B) 17.26 seconds 0.1 seconds 11th operation demonstration PbB Internal battery resistance value of existing PbB (A) 34.8 mΩ 124. Battery internal resistance value of mΩ (B) 80.5 mΩ 132. Discharge duration value of mΩ (B) 15.57 seconds 0.6 seconds 12th operation demonstration PbB Internal battery resistance value of existing PbB (A) 33.6 mΩ 129.9 mΩ Battery internal resistance value of (B) 81.7 mΩ Discharge duration value of 156.6 mΩ (B) 18.17 seconds 0.1 seconds

【0025】[0025]

【発明の効果】上表運転に於ける、サルフェーションを
形成せしめる為の未充電状態での過放電と短絡からなる
反復運転の一連数値と、12回反復運転後の負極と正極
の観察から発明の効果を以下に説明する。実証PbBは
第12回運転に於いても正常な電池機能を保っている
が、一方の既存PbBは、第4回運転後の(A)電池内
部抵抗値と(B)放電持続時間値が電池機能停止状態を
示している。又、第12回運転後の既存PbB負極と正
極は乳白色系のサルフェーション皮膜で覆われていた
が、実証PbBの負極4及び正極5は何らの異常もなか
った。以上の効果から、粒状活性炭からなる活性炭複合
セパレータは、急速充放電に係るサルフェーションを防
ぎ、電池に至便性と長寿命性をもたらした。
According to the above table operation, the series of numerical values of the repetitive operation consisting of overdischarge and short circuit in the uncharged state for forming sulfation and the observation of the negative electrode and the positive electrode after the 12 repetitive operations in the above table operation show the invention. The effects will be described below. Demonstration PbB maintains a normal battery function even in the twelfth operation, while existing PbB has the battery (A) internal resistance and (B) discharge duration value after the fourth operation The function stop state is shown. The existing PbB negative electrode and the positive electrode after the twelfth operation were covered with a milky white sulfation film, but the negative electrode 4 and the positive electrode 5 of the demonstration PbB did not have any abnormality. From the above effects, the activated carbon composite separator made of granular activated carbon prevented sulfation related to rapid charge and discharge, and provided convenience and long life to the battery.

【0026】[0026]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の、粒状活性炭からなる活性炭複合セパ
レータの縦断概略図
FIG. 1 is a schematic longitudinal sectional view of an activated carbon composite separator comprising granular activated carbon of the present invention.

【図2】本発明の、繊維状活性からなる活性炭複合セパ
レータの縦断概略図
FIG. 2 is a schematic longitudinal sectional view of an activated carbon composite separator made of fibrous activity according to the present invention.

【図3】本発明の、粒状活性炭からなる活性炭内蔵セパ
レータの縦断概略図
FIG. 3 is a schematic longitudinal sectional view of the activated carbon built-in separator made of granular activated carbon of the present invention.

【図4】本発明の、繊維状活性炭からなる活性炭内蔵セ
パレータの縦断概略図
FIG. 4 is a schematic longitudinal sectional view of a separator with a built-in activated carbon made of fibrous activated carbon of the present invention.

【図5】本発明の、粒状活性炭からなる活性炭混成セパ
レータの縦断概略図
FIG. 5 is a schematic longitudinal sectional view of an activated carbon composite separator made of granular activated carbon of the present invention.

【図6】本発明の、粒状活性炭からなる活性炭複合セパ
レータを用いた鉛二次電池の縦断概略図
FIG. 6 is a schematic longitudinal sectional view of a lead secondary battery using an activated carbon composite separator made of granular activated carbon of the present invention.

【図7】本発明の、粒状活性炭からなる活性炭内蔵セパ
レータを用いた鉛二次電池の縦断概略図
FIG. 7 is a schematic longitudinal cross-sectional view of a lead secondary battery using an activated carbon built-in separator made of granular activated carbon of the present invention.

【0027】[0027]

【符号の説明】 1は粒状活性炭 2は繊維状活性炭 3はセパレータ 4は接着剤 5は負極 6は正極 7は負極端子 8は正極端子 9はセパレータ密閉部 10は電池槽 11は電解液[Description of Signs] 1 is granular activated carbon 2 is fibrous activated carbon 3 is a separator 4 is an adhesive 5 is a negative electrode 6 is a positive electrode 7 is a negative electrode terminal 8 is a positive electrode terminal 9 is a separator sealing portion 10 is a battery tank 11 is an electrolytic solution

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】全図[Correction target item name] All figures

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【図2】 FIG. 2

【図3】 FIG. 3

【図4】 FIG. 4

【図5】 FIG. 5

【図6】 FIG. 6

【図7】 FIG. 7

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】表面に比表面積が300m/g以上の炭
化物からなる粒状活性炭或いは繊維状活性炭が接着剤で
固着されている構造を特徴とする二次電池のセパレー
タ。
1. A separator for a secondary battery, wherein a granular activated carbon or a fibrous activated carbon made of a carbide having a specific surface area of 300 m 2 / g or more is fixed to the surface with an adhesive.
JP2000369244A 2000-10-30 2000-10-30 Activated carbon composite separator for battery Pending JP2002134086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000369244A JP2002134086A (en) 2000-10-30 2000-10-30 Activated carbon composite separator for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000369244A JP2002134086A (en) 2000-10-30 2000-10-30 Activated carbon composite separator for battery

Publications (1)

Publication Number Publication Date
JP2002134086A true JP2002134086A (en) 2002-05-10

Family

ID=18839313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000369244A Pending JP2002134086A (en) 2000-10-30 2000-10-30 Activated carbon composite separator for battery

Country Status (1)

Country Link
JP (1) JP2002134086A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006001902T5 (en) 2005-07-20 2008-07-03 Ion Technology Inc. power generating device
WO2012165624A1 (en) * 2011-06-03 2012-12-06 富士シリシア化学株式会社 Separator, electrochemical element, and method for manufacturing separator
JP2013157266A (en) * 2012-01-31 2013-08-15 Yamagata Univ Separator for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP2017515284A (en) * 2014-05-05 2017-06-08 ダラミック エルエルシー Improved lead-acid battery separator, battery and method for producing them
WO2022034918A1 (en) * 2020-08-14 2022-02-17 旭化成株式会社 Separator for lead storage battery and lead storage battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006001902T5 (en) 2005-07-20 2008-07-03 Ion Technology Inc. power generating device
WO2012165624A1 (en) * 2011-06-03 2012-12-06 富士シリシア化学株式会社 Separator, electrochemical element, and method for manufacturing separator
JPWO2012165624A1 (en) * 2011-06-03 2015-02-23 富士シリシア化学株式会社 Separator and electrochemical element
JP2013157266A (en) * 2012-01-31 2013-08-15 Yamagata Univ Separator for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP2017515284A (en) * 2014-05-05 2017-06-08 ダラミック エルエルシー Improved lead-acid battery separator, battery and method for producing them
CN111628132A (en) * 2014-05-05 2020-09-04 戴瑞米克有限责任公司 Improved lead acid battery separator, electrode, battery and method of manufacture and use thereof
JP2021093372A (en) * 2014-05-05 2021-06-17 ダラミック エルエルシー Improved lead-acid battery separators, batteries, and manufacturing methods therefor
US11152647B2 (en) 2014-05-05 2021-10-19 Daramic, Llc Lead-acid battery separators, electrodes, batteries, and methods of manufacture and use thereof
JP7307108B2 (en) 2014-05-05 2023-07-11 ダラミック エルエルシー Improved lead-acid battery separator, carbon sheet and lead-acid battery
WO2022034918A1 (en) * 2020-08-14 2022-02-17 旭化成株式会社 Separator for lead storage battery and lead storage battery
JPWO2022034918A1 (en) * 2020-08-14 2022-02-17
JP7412571B2 (en) 2020-08-14 2024-01-12 旭化成株式会社 Separators for lead-acid batteries and lead-acid batteries

Similar Documents

Publication Publication Date Title
KR101192056B1 (en) Lithium secondary battery and manufacturing method thereof
JP3722797B2 (en) Electrolyte-containing granular electrode for lithium storage battery
US4606982A (en) Sealed lead-acid cell and method
US6225010B1 (en) Lithium ion secondary battery and manufacture thereof
US9012078B2 (en) Method for producing battery electrode
US11133560B2 (en) Insulating tape and li-ion battery adopting the same
KR20080022139A (en) Electrode for lithium ion rechargeable battery
JP2000067920A (en) Solid electrolyte battery
JP2018106984A (en) All-solid-state lithium ion battery
CN110998951A (en) Electrode sheet manufacturing method, all-solid-state battery, and all-solid-state battery manufacturing method
JP2016081829A (en) Method for manufacturing electrode for lithium ion secondary battery
JP2002134086A (en) Activated carbon composite separator for battery
KR20140015841A (en) Lithium secondary battery comprising electrode with double coated layer
US20210399284A1 (en) Lithium ion secondary battery and method for manufacturing same
JP2002042792A (en) Method for manufacturing battery electrode with solid electrolyte layer
CN110168796A (en) Electrochemical appliance
WO2019198454A1 (en) Battery manufacturing method
JP2003217674A (en) Non-aqueous electrolyte battery
JPH11144697A (en) Nonaqueous electrolyte battery
CN111564657B (en) Electrode, all-solid-state battery, and method for manufacturing electrode
JP2004119199A (en) Nonaqueous electrolyte secondary battery
JP5982080B1 (en) Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery
CN205609667U (en) Lithium ion battery pole piece structure
JPH1055798A (en) Sheet-shaped electrode
JP2016058181A (en) Method for manufacturing electrode plate for nonaqueous secondary battery