JP2002127343A - Biodegradable thermoforming sheet-shaped material and container - Google Patents

Biodegradable thermoforming sheet-shaped material and container

Info

Publication number
JP2002127343A
JP2002127343A JP2000330920A JP2000330920A JP2002127343A JP 2002127343 A JP2002127343 A JP 2002127343A JP 2000330920 A JP2000330920 A JP 2000330920A JP 2000330920 A JP2000330920 A JP 2000330920A JP 2002127343 A JP2002127343 A JP 2002127343A
Authority
JP
Japan
Prior art keywords
sheet
polylactic acid
thermoforming
acid
biodegradable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000330920A
Other languages
Japanese (ja)
Other versions
JP3797868B2 (en
Inventor
Norio Yoshiga
法夫 吉賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2000330920A priority Critical patent/JP3797868B2/en
Publication of JP2002127343A publication Critical patent/JP2002127343A/en
Application granted granted Critical
Publication of JP3797868B2 publication Critical patent/JP3797868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Abstract

PROBLEM TO BE SOLVED: To provide biodegradable thermoforming sheet-shaped materials and containers which can be directly touched with foods or the like due to high hygienic properties and excel is a heat resistant property and an impact resistance property. SOLUTION: A biodegradable thermoforming sheet-shaped materials is made of a base substrate mainly consisting of a resin mixture. The resin mixture is composed of a polylactic acid polymer and an aliphatic polyester sharing 20% or more in weight of which glass transition temperature is equal to or lower than 0 deg.C and melting temperature is equal to or higher than 80 deg.C. A layer consisting of a polylactic acid polymer is laminated to at least one surface of the base substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は生分解性熱成形用シ
ート状物および容器に関し、特に、耐熱性、耐衝撃性に
優れた生分解性熱成形用シート状物および容器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biodegradable thermoformed sheet and container, and more particularly to a biodegradable thermoformed sheet and container excellent in heat resistance and impact resistance.

【0002】[0002]

【従来の技術】プラスチック製品の廃棄処理問題が近年
クローズアップされてきた。ポリエチレン、ポリプロピ
レン、ポリエチレンテレフタレート(PET)等のプラ
スチック材料は燃焼時の発熱量が多く、燃焼処理中に燃
焼炉をいためるおそれがあり、また現在でも使用量の多
いポリ塩化ビニルはその自己消化性のため燃焼すること
ができない。このような焼却できない材料も含めプラス
チック製品は土中に埋設処理されることが多いが、これ
らは化学的に安定で生分解性がないため、ほとんど分解
されることなく残留し、蓄積される。そのため、ゴミ処
理用地の能力を短期間で飽和させてしまう。そこで、燃
焼熱量が低く、かつ人体等に安全である生分解性の材料
が要求され、多くの研究がなされてきた。その一つとし
て、ポリ乳酸が知られている。ポリ乳酸は、燃焼熱量が
ポリエチレンの半分以下であり、土中や水中で自然に加
水分解が進行し、次いで微生物により無害な分解物とな
る。現在、ポリ乳酸を用いたフィルムやシート、ボトル
などの容器(成形物)等の開発が盛んに行われている。
しかし、ポリ乳酸のフィルムやシートそのままでは、脆
くて耐衝撃性に劣っているので、その熱成形品は用途が
限定されていた。一方、ポリ乳酸以外の脂肪族ポリエス
テルは、食品衛生性を保証する溶出試験には合格するも
のの、溶出してくる溶出物の安全性が保証されていない
ため、食品と直接接触する用途には適さないという欠点
があった。
2. Description of the Related Art In recent years, the problem of disposal of plastic products has been highlighted. Plastic materials such as polyethylene, polypropylene and polyethylene terephthalate (PET) generate a large amount of heat during combustion, which may damage the combustion furnace during the burning process. Can not burn. Plastic products, including materials that cannot be incinerated, are often buried in the soil, but since they are chemically stable and have no biodegradability, they remain and accumulate almost without decomposition. Therefore, the capacity of the garbage disposal site is saturated in a short period of time. Therefore, a biodegradable material that has a low heat of combustion and is safe for the human body or the like has been demanded, and much research has been made. As one of them, polylactic acid is known. Polylactic acid has a combustion calorie less than half that of polyethylene, and hydrolyzes naturally in soil or water, and then becomes a harmless degradation product by microorganisms. At present, the development of containers (molded products) such as films, sheets, bottles and the like using polylactic acid is actively conducted.
However, since the polylactic acid film or sheet as it is is brittle and inferior in impact resistance, the use of the thermoformed product has been limited. On the other hand, aliphatic polyesters other than polylactic acid pass the dissolution test that guarantees food hygiene, but are not suitable for applications that directly come into contact with food because the safety of the eluted substances eluted is not guaranteed. There was a disadvantage that there was no.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記問題点を
解決すべくなされたものであり、本発明の目的は、透明
性に優れ、人体等に対する安全性が高く、食品等と直接
に接する使用も可能であり、かつ、耐熱性、耐衝撃性に
優れた生分解性熱成形用シートならびに容器を提供する
ことにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide excellent transparency, high safety to the human body, etc., and direct contact with foods and the like. An object of the present invention is to provide a biodegradable thermoforming sheet and a container which can be used and have excellent heat resistance and impact resistance.

【0004】[0004]

【課題を解決するための手段】本発明者等は、上記課題
を解決すべく鋭意検討した結果、本発明を完成するに至
った。即ち本発明の生分解性熱成形用シート状物は、ポ
リ乳酸系重合体に、ガラス転移温度が0℃以下、融点が
80℃以上の脂肪族ポリエステルを20重量%以上配合
した樹脂組成物を主成分とするベース基材の少なくとも
一方の面に、ポリ乳酸系重合体からなる層を設けたこと
を特徴とする。ここで、前記脂肪族ポリエステルは、重
量平均分子量2万〜30万であり、かつ、下記一般式
(1)の構造を有することができる。
Means for Solving the Problems The present inventors have made intensive studies to solve the above problems, and as a result, have completed the present invention. That is, the biodegradable sheet for thermoforming of the present invention comprises a resin composition comprising a polylactic acid-based polymer and an aliphatic polyester having a glass transition temperature of 0 ° C. or less and a melting point of 80 ° C. or more, 20% by weight or more. A layer comprising a polylactic acid-based polymer is provided on at least one surface of a base material as a main component. Here, the aliphatic polyester may have a weight average molecular weight of 20,000 to 300,000 and may have a structure represented by the following general formula (1).

【化2】 (式中、RおよびRは、炭素数2〜10のアルキレ
ン基またはシクロアルキレン基である。nは、重量平均
分子量が2万〜30万となるのに必要な重合度である。
n個のRまたはRは、それぞれ同一でも異なってい
てもよい。また、式中には、エステル結合残基に代え
て、ウレタン結合残基および/またはカーボネート結合
残基を重量平均分子量の0〜5%含有する。) また、前記脂肪族ポリエステルの重量平均分子量は15
万〜25万であることが好ましい。また、前記ポリ乳酸
系重合体は、D−乳酸:L−乳酸=100:0〜94:
6または0:100〜6:94であることができる。ま
た、前記ポリ乳酸系重合体の重量平均分子量は10万〜
30万であることができる。本発明の容器は、上記生分
解性熱成形用シート状物を熱成形して形成されたことを
特徴とする。本発明の食品用容器は、上記生分解性熱成
形用シート状物を熱成形して形成されたことを特徴とす
る。
Embedded image (In the formula, R 1 and R 2 are an alkylene group or a cycloalkylene group having 2 to 10 carbon atoms. N is a degree of polymerization necessary for a weight average molecular weight of 20,000 to 300,000.
The n R 1 or R 2 may be the same or different. In the formula, a urethane bond residue and / or a carbonate bond residue are contained in place of the ester bond residue in an amount of 0 to 5% of the weight average molecular weight. The weight average molecular weight of the aliphatic polyester is 15
It is preferably from 10,000 to 250,000. In addition, the polylactic acid-based polymer is D-lactic acid: L-lactic acid = 100: 0 to 94:
6 or 0: 100 to 6:94. The polylactic acid-based polymer has a weight average molecular weight of 100,000 to
It can be 300,000. The container of the present invention is characterized by being formed by thermoforming the above biodegradable sheet for thermoforming. The food container of the present invention is formed by thermoforming the biodegradable sheet for thermoforming.

【0005】[0005]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の生分解性熱成形用シート状物は、ベース基材の
少なくとも一方の面にポリ乳酸系重合体からなる層を有
する。本発明におけるベース基材は、ポリ乳酸系重合体
に、ガラス転移温度が0℃以下、融点が80℃以上の脂
肪族ポリエステル(脂環族も含む。以下同様。)を20
重量%以上配合した樹脂組成物を主成分とする。すなわ
ち、上記脂肪族ポリエステルとポリ乳酸系重合体との合
計重量中、脂肪族ポリエステルを20重量%以上含有す
る樹脂組成物からなるベース基材でもよい。製造方法に
もよるが、脂肪族ポリエステルの割合が少なすぎるとシ
ート状物の伸びが10%を下回り、もろくて通常の使用
に適さない。耐衝撃性を改良するためには、脂肪族ポリ
エステルの割合が重量で20%以上であることが必要で
あり、好ましくは30%以上である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The biodegradable sheet for thermoforming of the present invention has a layer made of a polylactic acid-based polymer on at least one surface of a base substrate. The base substrate in the present invention is composed of a polylactic acid-based polymer and an aliphatic polyester (including an alicyclic group; the same applies hereinafter) having a glass transition temperature of 0 ° C. or lower and a melting point of 80 ° C. or higher.
The main component is a resin composition blended in an amount of at least% by weight. That is, a base substrate made of a resin composition containing 20% by weight or more of the aliphatic polyester based on the total weight of the aliphatic polyester and the polylactic acid-based polymer may be used. Although it depends on the production method, if the proportion of the aliphatic polyester is too small, the elongation of the sheet-like material is less than 10%, and it is brittle and unsuitable for normal use. In order to improve the impact resistance, the proportion of the aliphatic polyester needs to be 20% or more by weight, preferably 30% or more.

【0006】ここでシート状物とは、シート又はフィル
ムをいう。JISにおける定義上、シートとは、薄く、
一般にその厚さが長さと幅のわりには小さな平らな製品
をいい、フィルムとは、長さ及び幅に比べて厚さが極め
て小さく、最大厚さが任意に限定されている薄い平らな
製品で、通例、ロールの形で供給されるものをいう(J
IS K 6900)。したがって、シートの中でも厚
さの特に薄いものがフィルムであるといえる。しかし、
シートとフィルムとの境界は定かでなく、明確に区別す
ることは困難であるので、本願においては、上記のとお
り、シートとフィルムの両方を含んだ概念として「シー
ト状物」の用語を使用する。
Here, the sheet-like material refers to a sheet or a film. By definition in JIS, a sheet is thin,
Generally speaking, it refers to a flat product whose thickness is small in terms of length and width, and a film is a thin flat product whose thickness is extremely small compared to its length and width and whose maximum thickness is arbitrarily limited. , Usually supplied in the form of a roll (J
IS K 6900). Therefore, it can be said that a sheet having a particularly small thickness among the sheets is a film. But,
Since the boundary between the sheet and the film is not clear and it is difficult to clearly distinguish it, in the present application, as described above, the term “sheet-like material” is used as a concept including both the sheet and the film. .

【0007】本発明において使用されるベース基材のポ
リ乳酸系重合体、およびベース基材の少なくとも一方の
面に設けられる層を構成するポリ乳酸系重合体は、構造
単位がL−乳酸であるポリ(L−乳酸)、構造単位がD
−乳酸であるポリ(D−乳酸)、構造単位がL−乳酸及
びD−乳酸であるポリ(DL−乳酸)やこれらの混合体
を主成分とするものをいう。本発明においては、さらに
は、後述する他のヒドロキシカルボン酸単位との共重合
体であってもよく、また少量の鎖延長剤残基を含んでも
よい。ポリ乳酸の構成としてはD−乳酸:L−乳酸=1
00:0〜94:6または0:100〜6:94である
ことが好ましい。かかる範囲を外れる構成のポリ乳酸
は、結晶性が低くなり耐熱性に劣るものとなる。ポリ乳
酸に共重合される上記他のヒドロキシカルボン酸単位と
しては、乳酸の光学異性体(L−乳酸に対してはD−乳
酸、D−乳酸に対してはL−乳酸)、グリコール酸、3
−ヒドロキシ酪酸、4−ヒドロキシ酪酸、2−ヒドロキ
シ−n−酪酸、2−ヒドロキシ−3,3−ジメチル酪
酸、2−ヒドロキシ−3−メチル酪酸、2−メチル乳
酸、2−ヒドロキシカプロン酸等の2官能脂肪族ヒドロ
キシカルボン酸やカプロラクトン、ブチロラクトン、バ
レロラクトン等のラクトン類が挙げられる。
The polylactic acid-based polymer of the base material used in the present invention and the polylactic acid-based polymer constituting the layer provided on at least one surface of the base material have a structural unit of L-lactic acid. Poly (L-lactic acid), whose structural unit is D
-Poly (D-lactic acid) which is lactic acid, poly (DL-lactic acid) whose structural unit is L-lactic acid and D-lactic acid, or a mixture thereof as a main component. In the present invention, the copolymer may further be a copolymer with another hydroxycarboxylic acid unit described below, or may contain a small amount of a chain extender residue. The composition of polylactic acid is D-lactic acid: L-lactic acid = 1
It is preferably 00: 0 to 94: 6 or 0: 100 to 6:94. Polylactic acid having a configuration outside this range has low crystallinity and poor heat resistance. The other hydroxycarboxylic acid units copolymerized with polylactic acid include optical isomers of lactic acid (D-lactic acid for L-lactic acid, L-lactic acid for D-lactic acid), glycolic acid,
2-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy-n-butyric acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-methyllactic acid, 2-hydroxycaproic acid, etc. Examples include functional aliphatic hydroxycarboxylic acids and lactones such as caprolactone, butyrolactone, and valerolactone.

【0008】ポリ乳酸系重合体の重合方法としては、縮
合重合法、開環重合法等公知の方法を採用することがで
きる。例えば、縮合重合法では、L−乳酸またはD−乳
酸、あるいはこれらの混合物等を直接脱水縮合重合して
任意の組成を有するポリ乳酸系重合体を得ることができ
る。また、開環重合法(ラクチド法)では、乳酸の環状
2量体であるラクチドを、必要に応じて重合調節剤等を
用いながら、適当な触媒を使用してポリ乳酸系重合体を
得ることができる。
As the polymerization method of the polylactic acid polymer, known methods such as a condensation polymerization method and a ring-opening polymerization method can be employed. For example, in the condensation polymerization method, L-lactic acid or D-lactic acid, or a mixture thereof can be directly subjected to dehydration condensation polymerization to obtain a polylactic acid-based polymer having an arbitrary composition. In the ring-opening polymerization method (lactide method), lactide, which is a cyclic dimer of lactic acid, is obtained by using a suitable catalyst and a suitable catalyst to obtain a polylactic acid-based polymer. Can be.

【0009】本発明において使用されるポリ乳酸系重合
体は、重量平均分子量が6万〜70万であることが好ま
しく、より好ましくは8万〜40万、特に好ましくは1
0万〜30万である。分子量が小さすぎると機械物性や
耐熱性等の実用物性がほとんど発現されず、大きすぎる
と溶融粘度が高すぎて成形加工性に劣る。
The polylactic acid-based polymer used in the present invention preferably has a weight average molecular weight of 60,000 to 700,000, more preferably 80,000 to 400,000, and particularly preferably 1 to 400,000.
It is between 10,000 and 300,000. If the molecular weight is too small, practical physical properties such as mechanical properties and heat resistance are hardly exhibited, and if it is too large, the melt viscosity is too high and molding processability is poor.

【0010】本発明に使用されるポリ乳酸系重合体を用
いて食品衛生性試験の溶出試験を行うと、かかる試験に
おいて溶出してくるものは、ラクチド、乳酸のオリゴマ
ー、乳酸である。ラクチドは体内に吸収されても直ぐに
乳酸に変化し、乳酸及び乳酸のオリゴマーはそれぞれ食
品添加物として使用されているものであり、人体等に対
する安全性は保障されている。
When a dissolution test of a food hygiene test is performed using the polylactic acid-based polymer used in the present invention, lactide, oligomers of lactic acid, and lactic acid are eluted in the test. Lactide is immediately converted to lactic acid even if it is absorbed into the body, and lactic acid and oligomers of lactic acid are each used as food additives, and their safety to the human body and the like is guaranteed.

【0011】本発明において使用される脂肪族ポリエス
テルは、そのガラス転移温度(以下、「Tg」と略す
る。)が0℃以下、融点(Tm)が80℃以上の脂肪族
ポリエステルである。ガラス転移温度(Tg)が0℃を
超えるとポリ乳酸の耐衝撃性改良効果が無くなり、融点
(Tm)が80℃未満では耐熱性に劣ることとなる。上
記脂肪族ポリエステルとしては、脂肪族ジカルボン酸単
位および脂肪族ジオール単位を主成分とする重合体が挙
げられる。なお、本発明においては、生分解性の脂肪族
ポリエステルを用いることが好ましい。脂肪族ポリエス
テルを調整するには、直接法、間接法等公知の方法を採
用することができる。例えば、直接法は、脂肪族ジカル
ボン酸単位と脂肪族ジオール単位を、これらの成分中に
含まれる水分、あるいは重合中に発生する水分を除去し
ながら、直接重合して高分子量物を得る方法である。間
接法は、オリゴマー程度に重合した後、上記ポリ乳酸系
重合体の場合と同様、少量の鎖延長剤を使用して高分子
量化する間接的な製造方法である。
The aliphatic polyester used in the present invention is an aliphatic polyester having a glass transition temperature (hereinafter abbreviated as “Tg”) of 0 ° C. or lower and a melting point (Tm) of 80 ° C. or higher. When the glass transition temperature (Tg) exceeds 0 ° C., the effect of improving the impact resistance of polylactic acid is lost, and when the melting point (Tm) is less than 80 ° C., the heat resistance is poor. Examples of the aliphatic polyester include polymers mainly composed of aliphatic dicarboxylic acid units and aliphatic diol units. In the present invention, it is preferable to use a biodegradable aliphatic polyester. To adjust the aliphatic polyester, known methods such as a direct method and an indirect method can be adopted. For example, the direct method is a method of obtaining a high molecular weight product by directly polymerizing an aliphatic dicarboxylic acid unit and an aliphatic diol unit while removing water contained in these components or water generated during polymerization. is there. The indirect method is an indirect production method in which a small amount of a chain extender is used to increase the molecular weight after polymerization to the degree of an oligomer, as in the case of the polylactic acid-based polymer.

【0012】脂肪族ジカルボン酸単位としては、コハク
酸、アジピン酸、スベリン酸、セバシン酸、ドデカン二
酸等の脂肪族ジカルボン酸、またはこれらの無水物や誘
導体が挙げられる。一方、脂肪族ジオール単位として
は、エチレングリコール、ブタンジオール、ヘキサンジ
オール、オクタンジオール、シクロペンタンジオール、
シクロヘキサンジオール、シクロヘキサンジメタノール
等の脂肪族ジオール、またはこれらの誘導体が挙げられ
る。脂肪族ジカルボン酸単位および脂肪族ジオール単位
はいずれも、炭素数2〜10のアルキレン基またはシク
ロアルキレン基を有する、2官能性化合物を主成分とす
るものが好ましい。また、これら脂肪族ジカルボン酸単
位あるいは脂肪族ジオール単位は2種類以上を用いても
構わない。
Examples of the aliphatic dicarboxylic acid unit include aliphatic dicarboxylic acids such as succinic acid, adipic acid, suberic acid, sebacic acid and dodecane diacid, and anhydrides and derivatives thereof. On the other hand, as the aliphatic diol unit, ethylene glycol, butanediol, hexanediol, octanediol, cyclopentanediol,
Examples thereof include aliphatic diols such as cyclohexanediol and cyclohexanedimethanol, and derivatives thereof. Both the aliphatic dicarboxylic acid unit and the aliphatic diol unit are preferably composed mainly of a bifunctional compound having an alkylene group or a cycloalkylene group having 2 to 10 carbon atoms. Further, two or more aliphatic dicarboxylic acid units or aliphatic diol units may be used.

【0013】本発明においては、脂肪族ポリエステルの
重量平均分子量が2万〜30万の範囲であることが好ま
しく、さらに好ましくは15〜25万である。脂肪族ポ
リエステルの重量平均分子量は、小さすぎるとポリマー
としての性質が劣り、また、大きすぎると溶融粘度が高
くなりすぎて、ポリ乳酸との混合性の低下や、ポリ乳酸
と同様にシートにするときの押出成形性の低下を招く。
In the present invention, the weight average molecular weight of the aliphatic polyester is preferably in the range of 20,000 to 300,000, more preferably 150,000 to 250,000. If the weight average molecular weight of the aliphatic polyester is too small, the properties as a polymer are inferior, and if it is too large, the melt viscosity becomes too high, and the mixing property with polylactic acid is reduced, and a sheet is formed like polylactic acid. In some cases, the extrudability decreases.

【0014】本発明においては、下記一般式(1)の構
造を有する脂肪族ポリエステルを好ましく用いることが
できる。
In the present invention, an aliphatic polyester having a structure represented by the following general formula (1) can be preferably used.

【化3】 (式中、RおよびRは、炭素数2〜10のアルキレ
ン基またはシクロアルキレン基である。nは、重量平均
分子量が2万〜30万となるのに必要な重合度である。
n個のRまたはRは、それぞれ同一でも異なってい
てもよい。また、式中には、エステル結合残基に代え
て、ウレタン結合残基および/またはカーボネート結合
残基を重量平均分子量の0〜5%含有する。)
Embedded image (In the formula, R 1 and R 2 are an alkylene group or a cycloalkylene group having 2 to 10 carbon atoms. N is a degree of polymerization necessary for a weight average molecular weight of 20,000 to 300,000.
The n R 1 or R 2 may be the same or different. In the formula, a urethane bond residue and / or a carbonate bond residue are contained in place of the ester bond residue in an amount of 0 to 5% of the weight average molecular weight. )

【0015】本発明に特に好適に用いられる脂肪族ポリ
エステルとしては、例えば、ポリエチレンスベレート、
ポリエチレンセバケート、ポリエチレンデカンジカルボ
キシレート、ポリブチレンサクシネート、ポリブチレン
アジペート、ポリブチレンセバケート、ポリブチレンサ
クシネートアジペートやこれらの共重合体が挙げられ
る。
As the aliphatic polyester particularly preferably used in the present invention, for example, polyethylene suberate,
Examples include polyethylene sebacate, polyethylene decane dicarboxylate, polybutylene succinate, polybutylene adipate, polybutylene sebacate, polybutylene succinate adipate, and copolymers thereof.

【0016】溶融粘度の向上のために、脂肪族ポリエス
テルには分岐を設ける目的で3官能以上のカルボン酸、
アルコールあるいはヒドロキシカルボン酸を用いること
ができる。具体的には、リンゴ酸、酒石酸、クエン酸、
トリメリット酸、ピロメリット酸あるいはペンタエリス
リットやトリメチロールプロパン等の多官能性成分を用
いることができる。これらの多官能成分を多量に用いる
と、得られる多官能ポリエステルが架橋構造を有して熱
可塑性でなくなったり、熱可塑性であっても部分的に高
度に架橋構造を有するミクロゲルが生じ、シートにした
ときにフィッシュアイとなる恐れがある。従って、これ
ら多官能性成分が脂肪族ポリエステル中に含まれる割合
は極くわずかであることが必要であり、ポリマーの化学
的性質、物理的性質を大きく左右しない程度に制限され
る。
In order to improve the melt viscosity, the aliphatic polyester has a trifunctional or higher carboxylic acid for the purpose of providing a branch.
Alcohol or hydroxycarboxylic acid can be used. Specifically, malic acid, tartaric acid, citric acid,
Polyfunctional components such as trimellitic acid, pyromellitic acid or pentaerythrit or trimethylolpropane can be used. If a large amount of these polyfunctional components are used, the resulting polyfunctional polyester may have a crosslinked structure and become non-thermoplastic, or even if it is thermoplastic, a microgel having a partially highly crosslinked structure may be produced, and May cause fisheye. Therefore, it is necessary that the proportion of these polyfunctional components contained in the aliphatic polyester is extremely small, and is limited to such a degree that the chemical properties and physical properties of the polymer are not largely affected.

【0017】さらに必要に応じ、少量共重合成分とし
て、テレフタル酸のような非脂肪族ジカルボン酸および
/またはビスフェノールAのエチレンオキサイド付加物
のような非脂肪族ジオールや、乳酸および/または乳酸
以外のヒドロキシカルボン酸を用いてもよい。
Further, if necessary, a non-aliphatic dicarboxylic acid such as terephthalic acid and / or a non-aliphatic diol such as an ethylene oxide adduct of bisphenol A, lactic acid and / or a compound other than lactic acid may be used as a small copolymerization component. Hydroxycarboxylic acids may be used.

【0018】本発明においては、上記脂肪族ポリエステ
ルとともに、または脂肪族ポリエステルに代えて、ポリ
乳酸系重合体と脂肪族ポリエステルとのブロック共重合
体(一部をエステル交換された生成物、少量の鎖延長剤
残基を含む生成物等も含む)を使用することができる。
このブロック共重合体は、任意の方法で調整することが
できる。例えば、ポリ乳酸系重合体または脂肪族ポリエ
ステルのいずれか一方を別途重合体として準備してお
き、該重合体の存在下で他方の構成モノマーを重合させ
る。通常は、予め準備した脂肪族ポリエステルの存在下
でラクチドの重合を行うことにより、ポリ乳酸と脂肪族
ポリエステルのブロック共重合体を得る。基本的には、
脂肪族ポリエステルを共存させる点が相違するだけで、
ラクチド法でポリ乳酸系重合体を調整する場合と同様に
して重合を行うことができる。この場合、ラクチドの重
合が進行すると同時に、ポリ乳酸と脂肪族ポリエステル
の間で適度なエステル交換反応が起こり、比較的ランダ
ム性が高い共重合体が得られる。出発物質として、ウレ
タン結合を有する脂肪族ポリエステルウレタンを用いた
場合には、エステル−アミド交換も生成する。
In the present invention, a block copolymer of a polylactic acid-based polymer and an aliphatic polyester (a partially transesterified product, a small amount thereof) may be used together with or instead of the aliphatic polyester. (Including products containing chain extender residues).
This block copolymer can be adjusted by any method. For example, one of a polylactic acid-based polymer and an aliphatic polyester is separately prepared as a polymer, and the other constituent monomer is polymerized in the presence of the polymer. Usually, lactide is polymerized in the presence of an aliphatic polyester prepared in advance to obtain a block copolymer of polylactic acid and an aliphatic polyester. Basically,
The only difference is that the aliphatic polyester coexists,
The polymerization can be carried out in the same manner as in the case of preparing a polylactic acid-based polymer by the lactide method. In this case, at the same time as the polymerization of lactide proceeds, an appropriate transesterification reaction occurs between the polylactic acid and the aliphatic polyester, and a copolymer having relatively high randomness can be obtained. When an aliphatic polyester urethane having a urethane bond is used as a starting material, ester-amide exchange also occurs.

【0019】本発明のシート状物を構成する各層には、
諸物性を調整する目的で、熱安定剤、光安定剤、光吸収
剤、滑剤、可塑剤、無機充填材、着色剤、顔料等を添加
することもできる。
Each of the layers constituting the sheet of the present invention includes:
For the purpose of adjusting various physical properties, a heat stabilizer, a light stabilizer, a light absorber, a lubricant, a plasticizer, an inorganic filler, a colorant, a pigment, and the like can be added.

【0020】本発明の多層シート状物の製造方法として
は、通常の多層になったTダイ、Iダイ、丸ダイを用い
て、該樹脂の融点以上の温度で溶融押出しし、ダイスの
中やダイスを出口で積層するいわゆる共押出し法や、別
々に溶融押出ししてシート化した後、接着剤を用いて積
層するドライラミネート、ウエットラミネート等が挙げ
られる。シート状物の厚さは、通常の熱成形技術に使用
できる程度の厚さであれば特に制限されず、具体的に
は、総厚さが約0.03〜2.0mmの範囲であること
が好ましい。
The method for producing the multilayer sheet-like material of the present invention is as follows: a conventional multilayered T-die, I-die, and round die are melt-extruded at a temperature not lower than the melting point of the resin; Examples include a so-called co-extrusion method in which dies are laminated at an outlet, and dry lamination and wet lamination in which melt extrusion is performed separately to form a sheet and then laminated using an adhesive. The thickness of the sheet material is not particularly limited as long as it can be used for ordinary thermoforming technology, and specifically, the total thickness is in a range of about 0.03 to 2.0 mm. Is preferred.

【0021】本発明においては、本発明の生分解性熱成
形用シートを、赤外線ヒーター、熱板ヒーター、熱風な
どにより成形温度になるまで予熱し、熱成形し、容器等
を形成することができる。熱成形の方法としては、真空
成形法、プラグアシスト成形法、圧空成形法、雄雌型成
形法、成形雄形に沿ってシートを変形した後成形雄型を
拡張する方法などがある。なお、容器の形状、大きさ等
は、用途等に応じて適宜選択されるものとする。本発明
のシート状物は表裏面がポリ乳酸系重合体からなる層で
覆われているので、製造された容器は人体等に安全であ
り、直接食品を入れる容器としても使用できる。
In the present invention, the biodegradable thermoforming sheet of the present invention can be preheated to a molding temperature by an infrared heater, a hot plate heater, hot air or the like, and thermoformed to form a container or the like. . Examples of the thermoforming method include a vacuum forming method, a plug assist forming method, a pressure forming method, a male and female mold forming method, and a method of expanding a formed male mold after deforming a sheet along a formed male form. Note that the shape, size, and the like of the container are appropriately selected according to the use and the like. Since the sheet-like material of the present invention has its front and back surfaces covered with a layer made of a polylactic acid-based polymer, the manufactured container is safe for the human body and the like, and can be used as a container for directly containing food.

【0022】[0022]

【実施例】以下に実施例を用いて具体的に説明するが、
これらにより本発明は何ら制限を受けるものではない。 (実施例1)直径が25mmの同方向小型2軸押出機を
用いて、ポリ乳酸(カーギル社製、商品名「EcoPL
A4040D」)と、本発明に係る脂肪族ポリエステル
としてポリブチレンサクシネート/アジペート(昭和高
分子株式会社製、商品名「ビオノーレ#3003」、ガ
ラス転移温度−45℃))とを、70/30の重量比で
混合溶融した後、210℃でストランド形状に押し出し
てペレットを作製した。中層用の押出機として直径65
mmの単軸押出機を、表層用押出機として直径40mm
の単軸押出機とマルチマニフォールドダイを用いた。2
10℃で、作製したペレットを直径65mmの中層用押
出機に供給し、ポリ乳酸(カーギル社製、商品名「Ec
oPLA4040D」)を直径40mmの表層用単軸押
出機に供給して、押し出し、その後キャスティングロー
ルにて急冷して、中層の厚みが180μm、表層の厚み
が各10μmの2種3層の総厚み200μmのシート状
物を得た。得られたシート状物を用いて、CKD社製の
熱盤接触加熱式圧空成形機により、成形温度100℃、
成形圧力0.3MPaの条件下で、直径100mm、深
さ30mmの容器を成形した。得られた容器は表層がポ
リ乳酸から成るため、直接食品と接触しても人体等に安
全で何ら問題はない。また、中層のベース層は、本発明
に係る脂肪族ポリエステルとしてポリブチレンサクシネ
ート/アジペートを30重量%添加しているので、耐衝
撃性に優れており、得られた容器に水100ccを入れ
てヒートーシール蓋材で密閉した後、1mの高さからコ
ンクリートの床に落下させても割れなかった。なお、本
発明のシート状物は耐熱性にも優れているので、熱成形
にも適していることが分かった。
The present invention will be described in detail with reference to the following examples.
The present invention is not limited by these. (Example 1) A polylactic acid (trade name "EcoPL" manufactured by Cargill Co., Ltd.) was produced using a coaxial small twin-screw extruder having a diameter of 25 mm.
A4040D ") and polybutylene succinate / adipate (manufactured by Showa Polymer Co., Ltd., trade name" Bionore # 3003 ", glass transition temperature -45 ° C) as the aliphatic polyester according to the present invention, at a ratio of 70/30. After mixing and melting at a weight ratio, the mixture was extruded into a strand shape at 210 ° C. to produce a pellet. 65 extruder for middle layer
mm single screw extruder was used as a surface layer extruder with a diameter of 40 mm.
A single screw extruder and a multi-manifold die were used. 2
At 10 ° C., the prepared pellets were fed to a 65 mm diameter middle layer extruder, and polylactic acid (trade name “Ec” manufactured by Cargill Co., Ltd.) was added.
oPLA4040D ") is supplied to a surface-layer single-screw extruder having a diameter of 40 mm, extruded, and then quenched by a casting roll. The middle layer has a thickness of 180 µm, and the surface layer has a thickness of 10 µm. Was obtained. Using the obtained sheet-like material, a molding temperature of 100 ° C. was obtained using a hot plate contact heating type pressure air molding machine manufactured by CKD
Under a condition of a molding pressure of 0.3 MPa, a container having a diameter of 100 mm and a depth of 30 mm was molded. Since the surface layer of the obtained container is made of polylactic acid, even if it comes into direct contact with food, it is safe for the human body and there is no problem. The middle base layer is excellent in impact resistance because 30% by weight of polybutylene succinate / adipate is added as the aliphatic polyester according to the present invention, and 100 cc of water is put in the obtained container. After sealing with a heat-seal lid, it did not crack when dropped on a concrete floor from a height of 1 m. In addition, since the sheet-shaped material of this invention was also excellent in heat resistance, it turned out that it is suitable also for thermoforming.

【0023】(比較例1)実施例1で用いたポリ乳酸と
同様のポリ乳酸を用いて厚さ300μの単層のシート状
物を得た。得られたシート状物を、実施例1と同様にし
て、成形温度100℃、成形圧力0.3MPaで、直径
100mm、深さ30mmの容器を成形した。得られた
容器は人体等に対する安全性は確保されていたが、実施
例1と同様にして、落下試験を行ったところ、容器は破
壊された。
Comparative Example 1 A single-layered sheet having a thickness of 300 μm was obtained using the same polylactic acid as that used in Example 1. The obtained sheet was molded in the same manner as in Example 1 at a molding temperature of 100 ° C. and a molding pressure of 0.3 MPa to form a container having a diameter of 100 mm and a depth of 30 mm. Although the safety of the obtained container for human bodies and the like was ensured, a drop test was performed in the same manner as in Example 1 and the container was broken.

【0024】[0024]

【発明の効果】以上、詳しく説明したように、本発明に
よれば、安全性が高く、食品等と直接接触させて使用す
ることができ、かつ、耐熱性、耐衝撃性にも優れた生分
解性熱成形用シート状物ならびに容器を提供することが
できる。
As described in detail above, according to the present invention, a product which is highly safe, can be used in direct contact with food and the like, and has excellent heat resistance and impact resistance. A degradable sheet for thermoforming and a container can be provided.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 67/02 B65D 1/00 BRQB 67/04 BSF Fターム(参考) 3E033 AA08 AA10 BA13 CA01 CA20 FA01 FA04 3E086 AD04 AD05 AD06 BA04 BA15 BB41 BB90 CA01 4F071 AA43 AA44 AA81 AF52 AH05 BB06 BC01 4F100 AK41A AK41B AK41K AL05A BA02 BA10A BA10B BA16 DA01 GB16 GB23 JA04A JA07A JC00 JJ03 JK10 YY00A 4J002 CF032 CF191 GF00 GG01──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08L 67/02 B65D 1/00 BRQB 67/04 BSF F-term (Reference) 3E033 AA08 AA10 BA13 CA01 CA20 FA01 FA04 3E086 AD04 AD05 AD06 BA04 BA15 BB41 BB90 CA01 4F071 AA43 AA44 AA81 AF52 AH05 BB06 BC01 4F100 AK41A AK41B AK41K AL05A BA02 BA10A BA10B BA16 DA01 GB16 GB23 JA04A JA07A JC00 JJ03 JK10 YY00G01J002 CF02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ポリ乳酸系重合体に、ガラス転移温度が
0℃以下、融点が80℃以上の脂肪族ポリエステルを2
0重量%以上配合した樹脂組成物を主成分とするベース
基材の少なくとも一方の面に、ポリ乳酸系重合体からな
る層を設けたことを特徴とする生分解性熱成形用シート
状物。
1. An aliphatic polyester having a glass transition temperature of 0 ° C. or lower and a melting point of 80 ° C. or higher is added to a polylactic acid-based polymer.
A biodegradable sheet for thermoforming, wherein a layer made of a polylactic acid-based polymer is provided on at least one surface of a base material containing a resin composition blended in an amount of 0% by weight or more.
【請求項2】 前記脂肪族ポリエステルが、重量平均分
子量2万〜30万であり、かつ、下記一般式(1)の構
造を有することを特徴とする請求項1に記載の生分解性
熱成形用シート状物。 【化1】 (式中、RおよびRは、炭素数2〜10のアルキレ
ン基またはシクロアルキレン基である。nは、重量平均
分子量が2万〜30万となるのに必要な重合度である。
n個のRまたはRは、それぞれ同一でも異なってい
てもよい。また、式中には、エステル結合残基に代え
て、ウレタン結合残基および/またはカーボネート結合
残基を重量平均分子量の0〜5%含有する。)
2. The biodegradable thermoforming according to claim 1, wherein the aliphatic polyester has a weight average molecular weight of 20,000 to 300,000 and has a structure represented by the following general formula (1). Sheet-like material. Embedded image (In the formula, R 1 and R 2 are an alkylene group or a cycloalkylene group having 2 to 10 carbon atoms. N is a degree of polymerization necessary for a weight average molecular weight of 20,000 to 300,000.
The n R 1 or R 2 may be the same or different. In the formula, a urethane bond residue and / or a carbonate bond residue are contained in place of the ester bond residue in an amount of 0 to 5% of the weight average molecular weight. )
【請求項3】 前記ポリ乳酸系重合体が、D−乳酸:L
−乳酸=100:0〜94:6または0:100〜6:
94であることを特徴とする請求項1〜2のいずれか一
項に記載の生分解性熱成形用シート状物。
3. The polylactic acid-based polymer is D-lactic acid: L.
-Lactic acid = 100: 0 to 94: 6 or 0: 100 to 6:
94. The biodegradable sheet for thermoforming according to any one of claims 1 to 2, wherein the sheet is 94.
【請求項4】 請求項1〜3のいずれか一項に記載の生
分解性熱成形用シート状物を熱成形して形成されたこと
を特徴とする容器。
4. A container formed by thermoforming the biodegradable sheet for thermoforming according to any one of claims 1 to 3.
【請求項5】 請求項1〜3のいずれか一項に記載の生
分解性熱成形用シート状物を熱成形して形成されたこと
を特徴とする食品用容器。
5. A food container formed by thermoforming the biodegradable sheet for thermoforming according to any one of claims 1 to 3.
JP2000330920A 2000-10-30 2000-10-30 Biodegradable thermoforming sheet and container Expired - Fee Related JP3797868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000330920A JP3797868B2 (en) 2000-10-30 2000-10-30 Biodegradable thermoforming sheet and container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000330920A JP3797868B2 (en) 2000-10-30 2000-10-30 Biodegradable thermoforming sheet and container

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005111570A Division JP4499602B2 (en) 2005-04-08 2005-04-08 Biodegradable thermoforming sheet and container

Publications (2)

Publication Number Publication Date
JP2002127343A true JP2002127343A (en) 2002-05-08
JP3797868B2 JP3797868B2 (en) 2006-07-19

Family

ID=18807351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000330920A Expired - Fee Related JP3797868B2 (en) 2000-10-30 2000-10-30 Biodegradable thermoforming sheet and container

Country Status (1)

Country Link
JP (1) JP3797868B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106417A1 (en) * 2003-05-27 2004-12-09 Asahi Kasei Kabushiki Kaisha Biodegradable resin film or sheet and process for producing the same
WO2005032818A1 (en) * 2003-10-01 2005-04-14 Mitsubishi Plastics, Inc. Biodegradable layered sheet
WO2005063883A1 (en) * 2003-12-22 2005-07-14 Eastman Chemical Company Polymer blends with improved rheology and improved unnotched impact strength
JP2006142812A (en) * 2004-10-19 2006-06-08 Japan Polypropylene Corp Biodegradable resin laminated sheet and its thermoformed article
US7160977B2 (en) 2003-12-22 2007-01-09 Eastman Chemical Company Polymer blends with improved notched impact strength
KR100786005B1 (en) * 2006-08-18 2007-12-14 에스케이씨 주식회사 Multilayered aliphatic polyester film
US7368511B2 (en) 2003-12-22 2008-05-06 Eastman Chemical Company Polymer blends with improved rheology and improved unnotched impact strength
US7368503B2 (en) 2003-12-22 2008-05-06 Eastman Chemical Company Compatibilized blends of biodegradable polymers with improved rheology
CN100439099C (en) * 2003-10-01 2008-12-03 三菱树脂株式会社 Biodegradable layered sheet
US8231954B2 (en) 2009-12-08 2012-07-31 International Paper Co. Thermoformed articles made from reactive extrusion products of biobased materials

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106417A1 (en) * 2003-05-27 2004-12-09 Asahi Kasei Kabushiki Kaisha Biodegradable resin film or sheet and process for producing the same
WO2005032818A1 (en) * 2003-10-01 2005-04-14 Mitsubishi Plastics, Inc. Biodegradable layered sheet
US7235287B2 (en) 2003-10-01 2007-06-26 Mitsubishi Plastics, Inc. Biodegradable laminated sheet
KR101118326B1 (en) 2003-10-01 2012-03-09 미쓰비시 쥬시 가부시끼가이샤 Biodegradable layered sheet
CN100439099C (en) * 2003-10-01 2008-12-03 三菱树脂株式会社 Biodegradable layered sheet
AU2004309338B2 (en) * 2003-12-22 2010-09-09 Novamont Spa Polymer blends with improved notched impact strength
WO2005063883A1 (en) * 2003-12-22 2005-07-14 Eastman Chemical Company Polymer blends with improved rheology and improved unnotched impact strength
US7160977B2 (en) 2003-12-22 2007-01-09 Eastman Chemical Company Polymer blends with improved notched impact strength
AU2004309361B2 (en) * 2003-12-22 2011-01-20 Novamont Spa Polymer blends with improved rheology and improved unnotched impact strength
US7368511B2 (en) 2003-12-22 2008-05-06 Eastman Chemical Company Polymer blends with improved rheology and improved unnotched impact strength
US7368503B2 (en) 2003-12-22 2008-05-06 Eastman Chemical Company Compatibilized blends of biodegradable polymers with improved rheology
JP2006142812A (en) * 2004-10-19 2006-06-08 Japan Polypropylene Corp Biodegradable resin laminated sheet and its thermoformed article
WO2008020726A1 (en) * 2006-08-18 2008-02-21 Skc Co., Ltd. Multilayered aliphatic polyester film
KR100786005B1 (en) * 2006-08-18 2007-12-14 에스케이씨 주식회사 Multilayered aliphatic polyester film
US8231954B2 (en) 2009-12-08 2012-07-31 International Paper Co. Thermoformed articles made from reactive extrusion products of biobased materials

Also Published As

Publication number Publication date
JP3797868B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
JP4417216B2 (en) Biodegradable laminated sheet
JP5465877B2 (en) Polylactic acid-based stretched film
JP3236842B2 (en) Biodegradable bag
JP3138196B2 (en) Biodegradable film or sheet and biodegradable plastic molded product
JP2004204128A (en) Polylactic acid polymer composition for thermoforming, polylactic acid polymer sheet, and thermoformed product using the sheet
WO2004007197A1 (en) Biodegradable laminate sheet and molded item from biodegradable laminate sheet
JP4949604B2 (en) Heat-shrinkable polylactic acid-based laminated film
JP3797868B2 (en) Biodegradable thermoforming sheet and container
JP3084239B2 (en) Biodegradable laminated film
JP2004306286A (en) Polylactic acid type biaxially stretched laminated film
JP4180606B2 (en) Biodegradable sheet, molded body using this sheet, and molding method thereof
JP3718636B2 (en) Heat-shrinkable film
JP4499602B2 (en) Biodegradable thermoforming sheet and container
JP2004202702A (en) Easily tearable laminated polyester film
JP3984492B2 (en) Polylactic acid multilayer sheet for thermoforming and molded product thereof
JP3472549B2 (en) Biodegradable conductive composite sheet, molded article and carrier tape using the same
JP2005219487A (en) Laminated film
JP3421620B2 (en) Document holder
JP4452293B2 (en) Polylactic acid multilayer sheet for thermoforming and molded product thereof
JP4669890B2 (en) Method for producing thermoformed body
JP2005125803A (en) Multilayer biodegradable plastic film
JP2002254584A (en) Biodegradable laminate
JP2007276316A (en) Aliphatic polyester-based composite film
JP4916105B2 (en) Method for producing biaxially stretched polyester laminated film
JP2006015723A (en) Biodegradable biaxially stretched film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees