JP2002097371A - Heat-conductive polymer composition and heat-conductive molding - Google Patents

Heat-conductive polymer composition and heat-conductive molding

Info

Publication number
JP2002097371A
JP2002097371A JP2000285601A JP2000285601A JP2002097371A JP 2002097371 A JP2002097371 A JP 2002097371A JP 2000285601 A JP2000285601 A JP 2000285601A JP 2000285601 A JP2000285601 A JP 2000285601A JP 2002097371 A JP2002097371 A JP 2002097371A
Authority
JP
Japan
Prior art keywords
heat
graphitized carbon
polymer composition
carbon fiber
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000285601A
Other languages
Japanese (ja)
Inventor
Masayuki Hida
雅之 飛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polymatech Co Ltd
Original Assignee
Polymatech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymatech Co Ltd filed Critical Polymatech Co Ltd
Priority to JP2000285601A priority Critical patent/JP2002097371A/en
Publication of JP2002097371A publication Critical patent/JP2002097371A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PROBLEM TO BE SOLVED: To obtain both a heat-conductive polymer composition and a heat- conductive molding having high thermal conductivity capable of effectively radiating an intense heat generated from electric parts, electronic parts, etc. SOLUTION: This heat-conductive polymer composition comprises a polymer material and a graphitized carbon fiber as a heat-conductive filler, the graphitized carbon fiber contains boron and interplanar spacing (d002) between graphite layers exhibiting a degree of graphitization by an X-ray diffraction method of a graphitized carbon fiber is <0.3360 nm. The content of boron is preferably 0.1-10 wt.% based on the graphitized carbon fiber. The peak intensity ratio of (P101/P100) of (101) diffraction peak to (100) diffraction peak is preferably >=1.70. The graphitized carbon fiber is obtained by using a mesophase pitch as a raw material, spinning, infusibilizing, carbonizing, grinding and graphitizing in the presence of a boron-containing graphitization catalyst. This heat-conductive molding is obtained by molding and processing the heat- conductive polymer composition into a fixed shape.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い熱伝導性を発
揮できる熱伝導性高分子組成物及び熱伝導性成形体に関
するものである。さらに詳しくは、電気部品や電子部品
に使用される各種半導体素子や電源、光源などから発生
する熱を効果的に放散させる特定の黒鉛化炭素繊維を含
有する熱伝導性高分子組成物及び熱伝導性成形体に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermally conductive polymer composition capable of exhibiting high thermal conductivity and a thermally conductive molded article. More specifically, a heat conductive polymer composition containing a specific graphitized carbon fiber that effectively dissipates heat generated from various semiconductor elements, power supplies, light sources, and the like used for electric components and electronic components, and heat conduction The present invention relates to a molded article.

【0002】[0002]

【従来の技術】最近、電子機器の高性能化、小型化、軽
量化に伴う半導体パッケージの高密度実装化やLSIの
高集積化、高速化などによって、電子機器から発生する
熱対策が非常に重要な課題になっている。通常、発熱す
る素子の熱を拡散させるには、熱伝導性の良い金属やセ
ラミックス製のプリント配線基板を使用する方法、基板
内に熱を放散させるサーマルビアホールを形成する方
法、半導体パッケージ材料として熱伝導性の良い金属や
セラミックス或いは樹脂を使用する方法が行われてい
る。また、発熱源と放熱器の間や熱源と金属製伝熱板の
間の接触熱抵抗を下げる目的で、熱伝導率の大きな高分
子グリスや柔軟性のある熱伝導性高分子組成物からなる
シート材料を介在させたり、熱拡散板や筐体などに熱伝
導性高分子組成物からなる成形加工品を用いたりしてい
る。
2. Description of the Related Art In recent years, due to the high performance, miniaturization, and weight reduction of electronic devices, high-density mounting of semiconductor packages and high integration and high speed of LSIs have taken very serious measures against heat generated from electronic devices. It is an important issue. Normally, to spread the heat of the element that generates heat, a method using a printed wiring board made of metal or ceramics with good thermal conductivity, a method of forming a thermal via hole for dissipating heat in the board, and a method of using heat as a semiconductor package material A method using a metal, ceramics, or resin having good conductivity has been used. In addition, in order to reduce the contact thermal resistance between the heat source and the radiator or between the heat source and the metal heat transfer plate, a sheet material composed of a polymer grease with a high thermal conductivity or a flexible heat conductive polymer composition Or a molded product made of a heat conductive polymer composition is used for a heat diffusion plate, a casing, or the like.

【0003】これらの熱伝導性が要求される高分子組成
物には、従来、合成樹脂やゴムなどの高分子材料中に熱
伝導率の大きい酸化アルミニウムや窒化ホウ素、窒化ア
ルミニウム、酸化マグネシウム、酸化亜鉛、炭化ケイ
素、石英、水酸化アルミニウムなどの金属酸化物、金属
窒化物、金属炭化物、金属水酸化物などの充填剤を充填
する方法が実施されている。しかし、必ずしも充分に大
きな熱伝導性は得られていなかった。
Conventionally, polymer compositions requiring such thermal conductivity include aluminum oxide, boron nitride, aluminum nitride, magnesium oxide, and oxide having high thermal conductivity in polymer materials such as synthetic resins and rubbers. Methods of filling fillers such as metal oxides such as zinc, silicon carbide, quartz, and aluminum hydroxide, metal nitrides, metal carbides, and metal hydroxides have been implemented. However, a sufficiently high thermal conductivity has not always been obtained.

【0004】一方、熱伝導性をさらに向上させる目的
で、熱伝導率の大きい炭素繊維や黒鉛粉末を高分子材料
に充填させた様々な熱伝導性高分子材料が提案されてい
る。例えば、特開平9−283955号公報には特定の
アスペクト比の黒鉛化炭素繊維をシリコーンゴムなどの
高分子に分散した熱伝導性シートが記載されている。ま
た、特開平10−298433号公報には結晶面間隔が
0.330〜0.340nmの球状黒鉛粉末をシリコー
ンゴムに配合した組成物及び放熱シートが開示されてい
る。
On the other hand, for the purpose of further improving the thermal conductivity, various thermal conductive polymer materials in which carbon fiber or graphite powder having a high thermal conductivity is filled in a polymer material have been proposed. For example, JP-A-9-283955 discloses a heat conductive sheet in which graphitized carbon fibers having a specific aspect ratio are dispersed in a polymer such as silicone rubber. JP-A-10-298433 discloses a composition in which spherical graphite powder having a crystal plane spacing of 0.330 to 0.340 nm is blended with silicone rubber and a heat dissipation sheet.

【0005】[0005]

【発明が解決しようとする課題】ところで、黒鉛化炭素
繊維は石油ピッチ又は石炭ピッチを原料とし、紡糸、不
融化、炭化後に高温で熱処理して黒鉛化することにより
得られる。特開平9−283955号公報に記載の技術
では、熱伝導性充填剤として黒鉛質炭素繊維を使用して
いるものの、その黒鉛質炭素繊維のアスペクト比が3未
満であるというに過ぎず、黒鉛化度を高めることに配慮
されておらず、黒鉛化度が充分でないものと考えられ
る。
By the way, graphitized carbon fibers can be obtained by using petroleum pitch or coal pitch as a raw material, spinning, infusibilizing, carbonizing and then heat-treating at a high temperature to graphitize. According to the technology described in Japanese Patent Application Laid-Open No. 9-283955, although graphitic carbon fibers are used as a thermally conductive filler, the graphitic carbon fibers only have an aspect ratio of less than 3 and are graphitized. Therefore, it is considered that the degree of graphitization is not sufficient.

【0006】また、特開平10−298433号公報に
記載の技術においても、黒鉛化度を高める点に配慮され
ておらず、黒鉛化度が充分でないものと考えられる。従
って、得られる高分子組成物及び熱伝導性シートの熱伝
導性を充分に向上させることができず、より一層大きな
熱伝導性のニーズに応えることができないという問題が
あった。
Further, the technique described in Japanese Patent Application Laid-Open No. 10-298433 does not take into consideration the point of increasing the degree of graphitization, and it is considered that the degree of graphitization is not sufficient. Therefore, there has been a problem that the thermal conductivity of the obtained polymer composition and the thermal conductive sheet cannot be sufficiently improved, and it is not possible to meet the needs of a higher thermal conductivity.

【0007】本発明は、上述のような従来技術に存在す
る問題点に着目してなされたものである。その目的とす
るところは、電気部品や電子部品などから発生する多大
な熱を効果的に放散できる高い熱伝導性を有する熱伝導
性高分子組成物及び熱伝導性成形体を提供するものであ
る。
The present invention has been made by focusing on the problems existing in the prior art as described above. It is an object of the present invention to provide a thermally conductive polymer composition and a thermally conductive molded article having high thermal conductivity capable of effectively dissipating a large amount of heat generated from electric components and electronic components. .

【0008】[0008]

【課題を解決するための手段】本発明者は、高分子材料
に含有させる黒鉛化炭素繊維の構造を様々な観点から鋭
意研究した結果、ホウ素を含有させた黒鉛化炭素繊維を
配合することにより、一層高い熱伝導性を有する熱伝導
性高分子組成物及び熱伝導性成形体を見出し、本発明を
完成した。
Means for Solving the Problems The present inventors have conducted intensive studies on the structure of graphitized carbon fibers to be contained in a polymer material from various viewpoints, and have found that by blending graphitized carbon fibers containing boron. The present inventors have found a heat conductive polymer composition and a heat conductive molded product having higher heat conductivity, and have completed the present invention.

【0009】すなわち、本発明における請求項1に記載
の発明の熱伝導性高分子組成物は、高分子材料と、熱伝
導性充填剤として黒鉛化炭素繊維とを含有する熱伝導性
高分子組成物であって、黒鉛化炭素繊維はホウ素を含有
するとともに、黒鉛化炭素繊維のX線回折法による黒鉛
化度を表す黒鉛層間の面間隔(d002)が0.336
0nm未満であることを特徴とするものである。
That is, the heat conductive polymer composition according to the first aspect of the present invention comprises a polymer material and a graphitized carbon fiber as a heat conductive filler. The graphitized carbon fiber contains boron and has a plane spacing (d002) between graphite layers representing the degree of graphitization of the graphitized carbon fiber by an X-ray diffraction method of 0.336.
It is characterized by being less than 0 nm.

【0010】請求項2に記載の発明の熱伝導性高分子組
成物は、請求項1に係る発明において、前記ホウ素の含
有量が黒鉛化炭素繊維に対して0.1〜10重量%であ
るとともに、黒鉛化炭素繊維のX線回折法による(10
1)回折ピークと(100)回折ピークのピーク強度比
(P101/P100)が1.70以上であることを特
徴とするものである。
In a second aspect of the present invention, the content of the boron is 0.1 to 10% by weight based on the graphitized carbon fiber. At the same time, X-ray diffraction of graphitized carbon fiber (10
1) The peak intensity ratio (P101 / P100) between the diffraction peak and the (100) diffraction peak is 1.70 or more.

【0011】請求項3に記載の発明の熱伝導性高分子組
成物は、請求項1又は請求項2に係る発明において、前
記黒鉛化炭素繊維が、メソフェーズピッチを原料とし、
紡糸、不融化及び炭化後に粉砕し、その後ホウ素単体及
びホウ素化合物の少なくとも一種よりなる黒鉛化触媒の
共存下で黒鉛化されて得られ、繊維直径が5〜20μm
及び平均粒径が5〜500μmである。
In a third aspect of the present invention, there is provided the thermally conductive polymer composition according to the first or second aspect, wherein the graphitized carbon fibers are formed from a mesophase pitch as a raw material,
Spinning, infusibilization and grinding after carbonization and then graphitization in the co-presence of a graphitization catalyst consisting of at least one of boron alone and a boron compound, resulting in a fiber diameter of 5-20 μm
And the average particle size is 5 to 500 μm.

【0012】請求項4に記載の発明の熱伝導性成形体
は、請求項1から請求項3のいずれか一項に記載の熱伝
導性高分子組成物を所定形状に成形加工して得られるも
のである。
According to a fourth aspect of the present invention, there is provided a thermally conductive molded article obtained by molding the thermally conductive polymer composition according to any one of the first to third aspects into a predetermined shape. Things.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態について
詳細に説明する。熱伝導性高分子組成物は、高分子材料
と、熱伝導性充填剤として黒鉛化炭素繊維とを含有し、
黒鉛化炭素繊維はホウ素を含有し、かつ黒鉛化炭素繊維
のX線回折法による黒鉛化度を表す黒鉛層間の面間隔
(d002)が0.3360nm未満であるものであ
る。ホウ素を含有することにより、黒鉛化炭素繊維を製
造する際に黒鉛化を促進する触媒効果を発揮することが
でき、黒鉛化度の高い黒鉛化炭素繊維が得られる。黒鉛
化度の高い黒鉛化炭素繊維は、従来の黒鉛化炭素繊維よ
りも高い熱伝導性を発現することができる。ホウ素の含
有量は、黒鉛化炭素繊維に対して0.1〜10重量%で
あることが望ましい。この含有量が0.1重量%未満で
は黒鉛化を促進する触媒効果を充分に発揮することがで
きず、10重量%を越える量を含有させても触媒効果の
さらなる向上は見込めず、かえって多量のホウ素による
弊害が発生する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail. The heat conductive polymer composition contains a polymer material and a graphitized carbon fiber as a heat conductive filler,
The graphitized carbon fiber contains boron and has a plane spacing (d002) between graphite layers, which indicates the degree of graphitization of the graphitized carbon fiber by X-ray diffraction, is less than 0.3360 nm. By containing boron, a catalytic effect of promoting graphitization can be exerted when producing graphitized carbon fibers, and graphitized carbon fibers having a high degree of graphitization can be obtained. Graphitized carbon fibers having a high degree of graphitization can exhibit higher thermal conductivity than conventional graphitized carbon fibers. The boron content is desirably 0.1 to 10% by weight based on the graphitized carbon fibers. If the content is less than 0.1% by weight, the catalytic effect of promoting graphitization cannot be sufficiently exhibited, and even if the content exceeds 10% by weight, further improvement of the catalytic effect cannot be expected. The harmful effects of boron occur.

【0014】黒鉛化炭素繊維のX線回折法による黒鉛化
度は、黒鉛層間の面間隔(d002)及び(101)回
折ピークと(100)回折ピークのピーク強度比(P1
01/P100)で表されるが、黒鉛層間の面間隔(d
002)は0.3360nm未満であることが必要であ
る。これにより、黒鉛化炭素繊維の黒鉛化度が高く、黒
鉛結晶の層間隔が狭くなり、得られる熱伝導性高分子組
成物、さらには熱伝導性成形体の熱伝導性が向上する。
黒鉛層間の面間隔(d002)の下限値は、理論値とし
て算出される0.3354である。
The graphitization degree of the graphitized carbon fiber by the X-ray diffraction method is determined by the plane spacing (d002) between the graphite layers and the peak intensity ratio (P1) between the (101) diffraction peak and the (100) diffraction peak.
01 / P100), but the surface spacing (d) between the graphite layers
002) needs to be less than 0.3360 nm. As a result, the degree of graphitization of the graphitized carbon fibers is high, the layer spacing between the graphite crystals is reduced, and the thermal conductivity of the resulting thermally conductive polymer composition and further the thermal conductivity of the thermally conductive molded article are improved.
The lower limit of the surface distance (d002) between graphite layers is 0.3354 calculated as a theoretical value.

【0015】また、(101)回折ピークと(100)
回折ピークのピーク強度比(P101/P100)は
1.70以上であることが好ましい。これにより、黒鉛
結晶の大きさも大きくなって、熱伝導性高分子組成物、
さらには熱伝導性成形体の熱伝導性が改善される。ピー
ク強度比(P101/P100)の上限値は、ホウ素を
含有する黒鉛化炭素繊維の場合、3程度である。
The (101) diffraction peak and the (100)
The peak intensity ratio (P101 / P100) of the diffraction peak is preferably 1.70 or more. Thereby, the size of the graphite crystal also increases, and the heat conductive polymer composition,
Further, the thermal conductivity of the thermally conductive molded article is improved. The upper limit of the peak intensity ratio (P101 / P100) is about 3 in the case of graphitized carbon fibers containing boron.

【0016】ここで、X線回折法とは、CuKαをX線
源、標準物質に高純度シリコンを使用し、炭素粉末に対
し回折パターンを測定するものである。そして、その
(002)回折パターンのピーク位置、半値幅から、そ
れぞれ格子面間隔(d002)を求め、(001)回折
ピークと(100)回折ピークのピーク強度比(P10
1/P100)の測定は、得られた回折線図にベースラ
インを引き、このベースラインから(101)(2θ≒
44.5度)、(100)(2θ≒42.5度)の各ピ
ークの高さを測定し、(101)の回折ピーク高さ(P
101)を(100)回折ピーク高さ(P100)で除
して求める。
Here, the X-ray diffraction method uses CuKα as an X-ray source and high-purity silicon as a standard substance, and measures a diffraction pattern of carbon powder. Then, from the peak position and half width of the (002) diffraction pattern, the lattice spacing (d002) is obtained, and the peak intensity ratio (P10) between the (001) diffraction peak and the (100) diffraction peak is obtained.
In the measurement of (1 / P100), a baseline is drawn on the obtained diffraction diagram, and (101) (2θ ≒) is drawn from the baseline.
44.5 degrees), the height of each peak of (100) (2θ ≒ 42.5 degrees) was measured, and the diffraction peak height of (101) (P
101) divided by the (100) diffraction peak height (P100).

【0017】さらに、黒鉛化炭素繊維が、メソフェーズ
ピッチを原料とし、紡糸、不融化及び炭化後に粉砕し、
その後、ホウ素化合物の共存下で黒鉛化されたもので、
繊維直径が5〜20μm、平均粒径が5〜500μmで
あるホウ素含有黒鉛化炭素繊維の粉末であることが好ま
しい。
Further, the graphitized carbon fiber is pulverized after spinning, infusibilizing and carbonizing using the mesophase pitch as a raw material,
After that, it was graphitized in the presence of a boron compound,
The powder is preferably a boron-containing graphitized carbon fiber powder having a fiber diameter of 5 to 20 μm and an average particle diameter of 5 to 500 μm.

【0018】その理由については定かではないが、黒鉛
化炭素繊維を高分子材料中に分散させた場合、組成物と
して熱の伝達経路が本発明で規定した黒鉛結晶のパラメ
ータ及びホウ素含有量と非常に良く相関しているものと
考えられ、熱伝導率の大きい熱伝導性高分子組成物及び
熱伝導性成形体が得られる。
Although the reason is not clear, when the graphitized carbon fiber is dispersed in a polymer material, the heat transfer path as a composition is very different from the graphite crystal parameters and boron content specified in the present invention. Thus, a thermally conductive polymer composition having a high thermal conductivity and a thermally conductive molded article can be obtained.

【0019】なお、黒鉛化炭素繊維の形態としては、特
に限定されるものではなく、通常の繊維状の形態が維持
された粉砕品や切断品のほか、マイクロコイル状、ウィ
スカー状、単層或いは多層ナノチューブ状のものを含ん
でいる。
The form of the graphitized carbon fiber is not particularly limited, and may be a pulverized product or a cut product in which the usual fibrous form is maintained, as well as a micro coil, whisker, single layer or Includes multi-walled nanotubes.

【0020】次いで、黒鉛化炭素繊維の製造方法につい
て記述する。黒鉛化炭素繊維の原料としては、任意の黒
鉛化が容易な炭化水素化合物を使用することができる。
例えば、ナフタレン、フェナントレンなどの縮合多環炭
化水素化合物や石油、石炭系ピッチなどの縮合複素環化
合物などを挙げることができる。特に、石油系ピッチ、
石炭系ピッチ、好ましくは光学的異方性ピッチ、すなわ
ちメソフェーズピッチを用いることによって、高い熱伝
導性の高分子組成物及び熱伝導性成形体が得られる。こ
のメソフェーズピッチとしては、紡糸可能ならば特に限
定されるものでないけれども、メソフェーズ含有量10
0%のものが、高熱伝導化と、紡糸性、品質の安定性の
面からも好ましい。
Next, a method for producing graphitized carbon fiber will be described. As a raw material of the graphitized carbon fiber, any hydrocarbon compound that can be easily graphitized can be used.
Examples thereof include condensed polycyclic hydrocarbon compounds such as naphthalene and phenanthrene, and condensed heterocyclic compounds such as petroleum and coal-based pitch. In particular, petroleum pitch,
By using a coal-based pitch, preferably an optically anisotropic pitch, that is, a mesophase pitch, a polymer composition having high thermal conductivity and a thermally conductive molded article can be obtained. The mesophase pitch is not particularly limited as long as it can be spun, but has a mesophase content of 10%.
0% is also preferable from the viewpoint of high thermal conductivity, spinnability and stability of quality.

【0021】上記の原料を、常法によって溶融紡糸し、
不融化し、さらに炭化処理した後に所定の粒度に粉砕す
る。その後に黒鉛化処理を行う。原料ピッチを溶融紡糸
する方法としては、特に限定されるものではなく、メル
トスピニング法、メルトブロー法、遠心紡糸法、渦流紡
糸法などの種々の方法を採用することができるが、紡糸
時の生産性や得られる黒鉛化炭素繊維の品質の観点から
はメルトブロー法が好ましい。メルトブロー時の紡糸孔
の大きさとしては、直径が好ましくは0.1〜0.5m
m、さらに好ましくは0.15〜0.3mmである。そ
の直径が0.5mmを越えると、繊維直径が25μm以
上と大きくなりやすく、かつ繊維直径がバラツキ易くな
り品質管理上も好ましくない。一方、直径が0.1mm
に満たないと、紡糸時に目詰まりが生じやすく、また紡
糸ノズルの製作が困難になるので好ましくない。
The above-mentioned raw material is melt-spun by a conventional method,
After infusibilizing and further carbonizing, it is pulverized to a predetermined particle size. Thereafter, a graphitization process is performed. The method for melt-spinning the raw material pitch is not particularly limited, and various methods such as a melt spinning method, a melt blow method, a centrifugal spinning method, and a vortex spinning method can be adopted. The melt blow method is preferred from the viewpoint of the quality of the obtained graphitized carbon fiber. As the size of the spinning hole at the time of melt blowing, the diameter is preferably 0.1 to 0.5 m.
m, more preferably 0.15 to 0.3 mm. If the diameter exceeds 0.5 mm, the fiber diameter tends to be as large as 25 μm or more, and the fiber diameter tends to fluctuate, which is not preferable in quality control. On the other hand, the diameter is 0.1 mm
If it is less than the above range, clogging tends to occur during spinning, and it becomes difficult to manufacture a spinning nozzle, which is not preferable.

【0022】紡糸速度は、生産性の面からは好ましくは
毎分500m以上、さらに好ましくは毎分1500m以
上、特に好ましくは毎分2000m以上である。紡糸温
度は、原料ピッチにより多少変化するが、原料ピッチの
軟化点以上でピッチが変質しない温度以下であれば良
く、通常は300〜400℃、好ましくは300〜38
0℃である。また、メルトブロー法は、数十ポイズ以下
の低粘度で紡糸し、かつ高速冷却することによって、黒
鉛層面が繊維軸に平行に配列しやすくなる利点もある。
The spinning speed is preferably 500 m / min or more, more preferably 1500 m / min or more, particularly preferably 2000 m / min or more from the viewpoint of productivity. The spinning temperature varies somewhat depending on the raw material pitch, but it may be a temperature not lower than the softening point of the raw material pitch but not lower than the softening point of the raw material pitch, and is usually 300 to 400 ° C, preferably 300 to 38 ° C.
0 ° C. In addition, the melt blow method has an advantage that the graphite layer surface can be easily arranged in parallel to the fiber axis by spinning at a low viscosity of several tens of poise or less and cooling at a high speed.

【0023】原料ピッチの軟化点も特に限定されるもの
ではないが、前記紡糸温度との関係から、軟化点が低
く、また不融化反応速度の速いものの方が、製造コスト
及び安定性の面で有利である。従って、原料ピッチの軟
化点は、好ましくは230〜350℃、さらに好ましく
は250〜310℃である。
Although the softening point of the raw material pitch is not particularly limited, those having a low softening point and a high infusibilization reaction rate are preferable in view of the production cost and stability in view of the spinning temperature. It is advantageous. Therefore, the softening point of the raw material pitch is preferably from 230 to 350C, more preferably from 250 to 310C.

【0024】紡糸後のピッチ系炭素繊維は、常法により
不融化処理する。不融化処理方法としては、例えば二酸
化窒素や酸素などの酸化性ガス雰囲気中で加熱処理する
方法や、硝酸やクロム酸などの酸化性水溶液中で処理す
る方法、さらには光やγ線などにより重合処理する方法
などを採用することができる。より簡便な不融化処理方
法は空気中で加熱処理する方法であり、原料により若干
異なるが、平均昇温速度は好ましくは3℃/分以上、さ
らに好ましくは5℃/分以上で、350℃程度まで昇温
させながら加熱処理すると良い。
The pitch-based carbon fiber after spinning is infusibilized by a conventional method. Examples of the infusibilizing method include a method of performing a heat treatment in an oxidizing gas atmosphere such as nitrogen dioxide or oxygen, a method of performing a treatment in an oxidizing aqueous solution such as nitric acid or chromic acid, and a method of polymerizing by light or γ-rays. A processing method or the like can be adopted. A simpler infusibilization treatment method is a heat treatment method in the air, which differs slightly depending on the raw material, but the average heating rate is preferably 3 ° C / min or more, more preferably 5 ° C / min or more, and about 350 ° C. It is preferable to perform heat treatment while raising the temperature up to the temperature.

【0025】炭素繊維の粉砕方法しては、不融化処理し
た繊維の段階で実施しても良いが、不融化処理した繊維
を、好ましくは250〜1500℃、さらに好ましくは
500〜900℃の温度で不活性ガス中で軽度に炭化し
た後、粉砕することが好ましい。軽度に炭化とは、炭素
繊維が実質上処理温度に達した状態であることを意味
し、具体的には処理雰囲気温度で10分以上処理するこ
とを意味する。不融化した繊維を250〜1500℃の
温度で軽度に炭化して粉砕すると、粉砕後の繊維の縦割
れを抑制できることと、粉砕時に新たに表面に露出した
黒鉛層面がより高温での黒鉛化処理時に縮重合反応、環
化反応が進みやすくなる傾向があり、さらに高い熱伝導
性高分子組成物及び熱伝導性成形体が得やすくなり好ま
しい。
The carbon fiber may be pulverized at the stage of the infusibilized fiber, but the infusibilized fiber is preferably subjected to a temperature of 250 to 1500 ° C., more preferably 500 to 900 ° C. It is preferable to pulverize after slightly carbonizing in an inert gas. The term “lightly carbonized” means that the carbon fiber has substantially reached the processing temperature, specifically, the processing is performed at a processing atmosphere temperature for 10 minutes or more. When the infusibilized fiber is lightly carbonized and pulverized at a temperature of 250 to 1500 ° C., the longitudinal cracking of the pulverized fiber can be suppressed, and the graphite layer surface newly exposed to the surface during pulverization can be graphitized at a higher temperature. Occasionally, the condensation polymerization reaction and the cyclization reaction tend to proceed easily, and a higher heat conductive polymer composition and a heat conductive molded article are more easily obtained, which is preferable.

【0026】繊維を1500℃を越える温度で炭化或い
は黒鉛化してから粉砕すると、繊維軸方向に発達した黒
鉛層面に沿って開裂が発生し易くなり、粉砕された炭素
繊維の全表面積中に占める破断面表面積の割合が大きく
なり、熱伝達しにくくなるので好ましくない。また、2
50℃未満の温度では炭化がほとんど起こらず、炭化処
理する効果が得られない。
If the fiber is carbonized or graphitized at a temperature exceeding 1500 ° C. and then pulverized, the fiber is apt to be cleaved along the graphite layer surface developed in the fiber axis direction, and the crushed carbon fiber occupies the entire surface area. Since the ratio of the cross-sectional surface area becomes large and heat transfer becomes difficult, it is not preferable. Also, 2
At a temperature lower than 50 ° C., carbonization hardly occurs, and the effect of carbonizing cannot be obtained.

【0027】不融化後又は軽度な炭化後の繊維を粉砕す
るには、ビクトリーミル、ジェットミル、高速回転ミル
などの粉砕機或いはチョップド繊維で用いる切断機を利
用することが有効である。この粉砕を効率良く実施する
ためには、上記各種方法に共通することであるが、例え
ばプレートを取り付けたローターを高速に回転すること
により、繊維軸に対し直角方向に繊維を寸断する方法が
適切である。粉砕された繊維の繊維長は、ローターの回
転数、プレートの角度などを調整することにより制御さ
れる。粉砕方法としては、ボールミルなどの磨砕機によ
る方法もあるが、これらの方法によると繊維の直角方向
への加圧力が働き、繊維軸方向への縦割れの発生が多く
なるので不適当である。
In order to pulverize the fiber after infusibilization or mild carbonization, it is effective to use a pulverizer such as a Victory mill, a jet mill, a high-speed rotating mill, or a cutter used for chopped fibers. In order to carry out this pulverization efficiently, it is common to the above-mentioned various methods that, for example, a method of cutting fibers in a direction perpendicular to the fiber axis by rotating a rotor attached with a plate at high speed is appropriate. It is. The fiber length of the crushed fibers is controlled by adjusting the number of rotations of the rotor, the angle of the plate, and the like. As a pulverizing method, there is a method using a grinder such as a ball mill. However, these methods are unsuitable because a pressing force in a direction perpendicular to the fiber acts and longitudinal cracks in the fiber axis direction increase.

【0028】次いで、炭素繊維粉砕品に黒鉛化触媒を添
加して黒鉛化処理を行う。黒鉛化触媒としては、炭化ホ
ウ素、酸化ホウ素、窒化ホウ素などのホウ素化合物及び
ホウ素単体から選ばれる少なくとも一種が使用される。
黒鉛化触媒の添加量は、炭素繊維粉砕品に対して、ホウ
素含有量として0.1〜10重量%が好ましい。0.1
重量%未満では触媒作用が不充分で、黒鉛化が進展しに
くい。一方、ホウ素添加量の多い方が電気絶縁性を付与
する目的の場合には望ましいが、10重量%を越える
と、粉砕粒子表面に析出したホウ素化合物が大量に発生
し、粒子同士の凝集が進行して大きな塊状粒子が生成
し、その後の解砕処理でも粉砕品の粒度調整が困難にな
り、歩留まりも悪くなるので好ましくない。ホウ素添加
量はより好ましくは0.5〜8重量%、さらに好ましく
は1.0〜5重量%である。なお、この黒鉛化触媒の添
加量が実質上黒鉛化後に得られる黒鉛化炭素繊維中のホ
ウ素含有量となるが、厳密には黒鉛化炭素繊維に取り込
まれない黒鉛化触媒が存在し、それが熱伝導性成形体を
製造する分級工程で除去されるため、黒鉛化炭素繊維中
のホウ素含有量は黒鉛化触媒の添加量よりも若干少なく
なる。
Next, a graphitization treatment is performed by adding a graphitization catalyst to the ground carbon fiber product. As the graphitization catalyst, at least one selected from boron compounds such as boron carbide, boron oxide, and boron nitride and boron alone is used.
The amount of the graphitization catalyst to be added is preferably from 0.1 to 10% by weight as the boron content based on the pulverized carbon fiber product. 0.1
If the amount is less than 10% by weight, the catalytic action is insufficient, and the graphitization hardly progresses. On the other hand, a larger amount of boron is desirable for the purpose of imparting electrical insulation, but if it exceeds 10% by weight, a large amount of boron compound precipitated on the surface of the pulverized particles is generated, and aggregation of the particles proceeds. As a result, large lumpy particles are generated, and it is difficult to adjust the particle size of the crushed product even in the subsequent crushing treatment, and the yield is unfavorably reduced. The added amount of boron is more preferably 0.5 to 8% by weight, further preferably 1.0 to 5% by weight. In addition, although the amount of the graphitization catalyst substantially becomes the boron content in the graphitized carbon fiber obtained after graphitization, there is a graphitization catalyst that is not strictly incorporated into the graphitized carbon fiber, The boron content in the graphitized carbon fiber is slightly smaller than the addition amount of the graphitization catalyst because it is removed in the classification step of producing the thermally conductive molded body.

【0029】また、処理温度は、好ましくは2500℃
以上、さらに好ましくは2700℃以上、特に好ましく
は3000℃以上であり、このような高温で処理するこ
とによって黒鉛構造が発達する。その結果、得られる黒
鉛化炭素繊維の繊維長さ方向の熱伝導率は好ましくは8
00W/m・K以上、さらに好ましくは1000W/m・
K以上、特に好ましくは1200W/m・K以上であ
る。
The processing temperature is preferably 2500 ° C.
As described above, the temperature is more preferably 2700 ° C. or more, and particularly preferably 3000 ° C. or more. By treating at such a high temperature, a graphite structure develops. As a result, the thermal conductivity in the fiber length direction of the obtained graphitized carbon fiber is preferably 8
00 W / m · K or more, more preferably 1000 W / m · K
K or more, particularly preferably 1200 W / m · K or more.

【0030】黒鉛化処理された粉末状繊維の繊維直径は
5〜20μm、平均粒径が10〜500μm、密度が
2.22g/cm3以上であることが好ましい。繊維直
径は5〜20μmの範囲が工業的に生産しやすく、得ら
れる熱伝導性高分子組成物及び熱伝導性成形体の熱伝導
性が大きくなる。平均粒径が10μmより小さいと黒鉛
化炭素繊維同士の接触が少なくなり、熱の伝達経路が不
充分になって熱伝導性高分子組成物及び熱伝導性成形体
の熱伝導性が劣ってしまう。一方、500μmよりも大
きいと、黒鉛化炭素繊維が嵩高くなって高分子材料中に
高濃度で充填することが困難になるので好ましくない。
さらに好ましい繊維直径は5〜15μm、平均粒径は1
5〜100μm、さらに繊維直径は8〜12μm、平均
粒径は15〜45μmの範囲が好適である。なお、上記
の平均粒径は、レーザー回折方式による粒度分布から算
出することができる。
The graphitized powdery fibers preferably have a fiber diameter of 5 to 20 μm, an average particle diameter of 10 to 500 μm, and a density of 2.22 g / cm 3 or more. When the fiber diameter is in the range of 5 to 20 μm, industrial production is easy, and the heat conductivity of the heat conductive polymer composition and the heat conductive molded article obtained becomes large. When the average particle size is smaller than 10 μm, the contact between the graphitized carbon fibers decreases, the heat transfer path becomes insufficient, and the thermal conductivity of the thermally conductive polymer composition and the thermally conductive molded product deteriorates. . On the other hand, if it is larger than 500 μm, the graphitized carbon fiber becomes bulky and it becomes difficult to fill the polymer material with a high concentration, which is not preferable.
More preferably, the fiber diameter is 5 to 15 μm and the average particle diameter is 1
The range of 5 to 100 μm, the fiber diameter is preferably 8 to 12 μm, and the average particle size is preferably 15 to 45 μm. The average particle size can be calculated from the particle size distribution by a laser diffraction method.

【0031】黒鉛化された炭素繊維の表面処理を目的と
して、黒鉛化炭素繊維の表面を予め電解酸化などによる
酸化処理を施したり、カップリング剤やサイジング剤で
処理することによってマトリックスである高分子材料と
の濡れ性や充填性を向上させたり、高分子材料と粉末界
面の剥離強度を改良したりすることができる。また、黒
鉛化炭素繊維の表面に金属やセラミックスなどを無電解
メッキ法、電解メッキ法、真空蒸着法、スパッタリング
法、イオンプレーティング法などによる物理的蒸着法、
化学的蒸着法、塗装法、浸漬法、微細粒子を機械的に固
着させるメカノケミカル法などの方法によって被覆させ
ることもできる。
For the purpose of surface treatment of the graphitized carbon fiber, the surface of the graphitized carbon fiber is subjected to an oxidation treatment such as electrolytic oxidation in advance, or a treatment with a coupling agent or a sizing agent. It is possible to improve the wettability with the material and the filling property, and to improve the peel strength at the interface between the polymer material and the powder. Also, physical vapor deposition methods such as electroless plating, electrolytic plating, vacuum vapor deposition, sputtering, and ion plating are used to deposit metals and ceramics on the surface of graphitized carbon fibers.
Coating can also be performed by a method such as a chemical vapor deposition method, a coating method, a dipping method, or a mechanochemical method of mechanically fixing fine particles.

【0032】さらに、熱伝導性高分子組成物には、上述
の黒鉛化炭素繊維のほかに、他の粉末形状や繊維形状の
金属やセラミックス、具体的には、銀、銅、金、酸化ア
ルミニウム、酸化マグネシウム、窒化ホウ素、窒化アル
ミニウム、窒化ケイ素、炭化ケイ素、水酸化アルミニウ
ムなどや金属被覆樹脂などの従来の熱伝導性高分子組成
物及び熱伝導性成形体に使用されている熱伝導率が大き
な充填剤や、従来の黒鉛化炭素繊維又は黒鉛化されてい
ない炭素繊維、天然黒鉛、人造黒鉛、メソカーボンマイ
クロビーズ、ウィスカー状、マイクロコイル状又はナノ
チューブ状のカーボンを併用することも可能である。
Further, in addition to the above-mentioned graphitized carbon fibers, other powdery or fibrous metals and ceramics, specifically, silver, copper, gold, aluminum oxide The thermal conductivity used in conventional thermally conductive polymer compositions and thermally conductive molded articles, such as magnesium oxide, boron nitride, aluminum nitride, silicon nitride, silicon carbide, aluminum hydroxide, and metal-coated resins, It is also possible to use a large filler, conventional graphitized carbon fiber or non-graphitized carbon fiber, natural graphite, artificial graphite, mesocarbon microbeads, whisker-like, microcoil-like or nanotube-like carbon in combination. .

【0033】なお、最終製品として特に電気絶縁性が要
求される用途においては、酸化アルミニウム、酸化マグ
ネシウム、窒化ホウ素、窒化アルミニウム、窒化ケイ
素、炭化ケイ素及び水酸化アルミニウムから選ばれる少
なくとも一種の電気絶縁性を有する熱伝導性充填剤を併
用することが好ましい。また、組成物の粘度を低下させ
るためには、揮発しやすい有機溶剤や反応性可塑剤を添
加すると効果的である。
In applications where electrical insulation is particularly required as a final product, at least one kind of electrical insulation selected from aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon nitride, silicon carbide, and aluminum hydroxide is used. It is preferable to use a thermally conductive filler having the following in combination. Further, in order to lower the viscosity of the composition, it is effective to add an organic solvent or a reactive plasticizer which is easily volatilized.

【0034】次に、高分子材料は特に限定されるもので
はないが、通常の熱可塑性樹脂、熱可塑性エラストマ
ー、硬化性樹脂、架橋ゴムなどを用途と要求性能に応じ
て選択すれば良い。例えば、熱伝導性接着剤用として
は、エポキシ樹脂やポリイミド、アクリル樹脂などの接
着性高分子が好ましく、成形材料用としては、熱可塑性
樹脂、熱可塑性エラストマー、熱硬化性樹脂、架橋ゴム
などを選択する。
Next, the polymer material is not particularly limited, but ordinary thermoplastic resins, thermoplastic elastomers, curable resins, crosslinked rubbers, etc. may be selected according to the application and required performance. For example, for a thermally conductive adhesive, an adhesive polymer such as an epoxy resin, a polyimide, or an acrylic resin is preferable, and for a molding material, a thermoplastic resin, a thermoplastic elastomer, a thermosetting resin, a crosslinked rubber, or the like. select.

【0035】具体的な熱可塑性樹脂としては、ポリエチ
レン、ポリプロピレン、エチレン−プロピレン共重合体
などのエチレン−αオレフィン共重合体、ポリメチルペ
ンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢
酸ビニル、エチレン−酢酸ビニル共重合体、ポリビニル
アルコール、ポリアセタール、ポリフッ化ビニリデンや
ポリテトラフルオロエチレンなどのフッ素樹脂、ポリエ
チレンテレフタレート、ポリブチレンテレフタレート、
ポリエチレンナフタレート、ポリスチレン、ポリアクリ
ロニトリル、スチレン−アクリロニトリル共重合体、A
BS樹脂、ポリフェニレンエーテル及び変性PPE樹
脂、脂肪族及び芳香族ポリアミド類、ポリイミド、ポリ
アミドイミド、ポリメタクリル酸及びそのメチルエステ
ルなどのポリメタクリル酸エステル類、ポリアクリル酸
類、ポリカーボネート、ポリフェニレンスルフィド、ポ
リサルホン、ポリエーテルサルホン、ポリエーテルニト
リル、ポリエーテルケトン、ポリケトン、液晶ポリマ
ー、シリコーン樹脂、アイオノマーなどが挙げられる。
Specific thermoplastic resins include polyethylene, polypropylene, ethylene-α-olefin copolymers such as ethylene-propylene copolymer, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, ethylene acetate, and the like. Vinyl acetate copolymer, polyvinyl alcohol, polyacetal, fluororesin such as polyvinylidene fluoride and polytetrafluoroethylene, polyethylene terephthalate, polybutylene terephthalate,
Polyethylene naphthalate, polystyrene, polyacrylonitrile, styrene-acrylonitrile copolymer, A
BS resin, polyphenylene ether and modified PPE resin, aliphatic and aromatic polyamides, polyimide, polyamideimide, polymethacrylic acid esters such as polymethacrylic acid and its methyl ester, polyacrylic acids, polycarbonate, polyphenylene sulfide, polysulfone, poly Examples include ether sulfone, polyether nitrile, polyether ketone, polyketone, liquid crystal polymer, silicone resin, and ionomer.

【0036】また、熱可塑性エラストマーとしては、ス
チレン−ブタジエン又はスチレン−イソプレンブロック
共重合体とその水添重合体及びスチレン系熱可塑性エラ
ストマー、オレフィン系熱可塑性エラストマー、塩化ビ
ニル系熱可塑性エラストマー、ポリエステル系熱可塑性
エラストマー、ポリウレタン系熱可塑性エラストマー、
ポリアミド系熱可塑性エラストマーなどの繰返し成形加
工ができてリサイクルが可能なものなどが挙げられる。
The thermoplastic elastomers include styrene-butadiene or styrene-isoprene block copolymers and hydrogenated polymers thereof, styrene-based thermoplastic elastomers, olefin-based thermoplastic elastomers, vinyl chloride-based thermoplastic elastomers, and polyester-based thermoplastic elastomers. Thermoplastic elastomer, polyurethane-based thermoplastic elastomer,
Examples thereof include polyamide-based thermoplastic elastomers and the like that can be repeatedly molded and can be recycled.

【0037】硬化性樹脂や架橋ゴムとしては、エポキシ
樹脂、ポリイミド、ビスマレイミド、ベンゾシクロブテ
ン、フェノール樹脂、不飽和ポリエステル、ジアリルフ
タレート、シリコーン樹脂、ポリウレタン、ポリイミド
シリコーン、熱硬化型ポリフェニレンエーテル樹脂及び
変性PPE樹脂、天然ゴム、ブタジエンゴム、イソプレ
ンゴム、スチレン−ブタジエン共重合ゴム、ニトリルゴ
ム、水添ニトリルゴム、クロロプレンゴム、エチレン−
プロピレン共重合ゴム、塩素化ポリエチレン、クロロス
ルホン化ポリエチレン、ブチルゴム及びハロゲン化ブチ
ルゴム、フッ素ゴム、ウレタンゴム、シリコーンゴムな
どの架橋ゴムなどが挙げられる。
Examples of the curable resin and crosslinked rubber include epoxy resin, polyimide, bismaleimide, benzocyclobutene, phenol resin, unsaturated polyester, diallyl phthalate, silicone resin, polyurethane, polyimide silicone, thermosetting polyphenylene ether resin, and modified resin. PPE resin, natural rubber, butadiene rubber, isoprene rubber, styrene-butadiene copolymer rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene-
Cross-linked rubbers such as propylene copolymer rubber, chlorinated polyethylene, chlorosulfonated polyethylene, butyl rubber and halogenated butyl rubber, fluorine rubber, urethane rubber, silicone rubber and the like can be mentioned.

【0038】熱伝導性高分子組成物は、これらの高分子
材料のなかでもシリコーンゴム、エポキシ樹脂、ポリウ
レタン、不飽和ポリエステル、ポリイミド、ビスマレイ
ミド、ベンゾシクロブテン、フッ素樹脂、ポリフェニレ
ンエーテル樹脂及び熱可塑性エラストマーより選ばれる
少なくとも1種、さらに好ましくは、シリコーンゴム、
エポキシ樹脂、ポリイミド、ポリウレタン及び熱可塑性
エラストマーより選ばれる少なくとも1種の高分子材料
を用いることが、耐熱性などの温度特性や電気的信頼性
の観点から好ましい。
The thermally conductive polymer composition includes, among these polymer materials, silicone rubber, epoxy resin, polyurethane, unsaturated polyester, polyimide, bismaleimide, benzocyclobutene, fluororesin, polyphenylene ether resin, and thermoplastic resin. At least one selected from elastomers, more preferably silicone rubber,
It is preferable to use at least one polymer material selected from an epoxy resin, a polyimide, a polyurethane, and a thermoplastic elastomer from the viewpoint of temperature characteristics such as heat resistance and electrical reliability.

【0039】また、誘電率、誘電正接が小さくて高周波
領域での特性を要求される配線基板用途などには、フッ
素樹脂、熱硬化型ポリフェニレンエーテル樹脂、変性P
PE樹脂、ポリオレフィン系樹脂などが好ましい。さら
に、これらの高分子材料から選択される複数の高分子材
料からなるポリマーアロイを使用しても差し支えない。
また、硬化性樹脂又は架橋ゴムの架橋方法については、
熱硬化に限定されず、光硬化、湿気硬化などの公知の架
橋方法による高分子材料を使用することができる。
Further, for a wiring board application requiring a low dielectric constant and a low dielectric loss tangent and characteristics in a high frequency region, a fluororesin, a thermosetting polyphenylene ether resin, a modified P
PE resins, polyolefin-based resins and the like are preferred. Further, a polymer alloy composed of a plurality of polymer materials selected from these polymer materials may be used.
Also, regarding the method of crosslinking the curable resin or the crosslinked rubber,
The polymer material is not limited to heat curing, and a polymer material obtained by a known crosslinking method such as light curing or moisture curing can be used.

【0040】熱伝導性高分子組成物に添加させる黒鉛化
炭素繊維の量は、高分子材料100重量部当り、20〜
500重量部が好ましく、40〜300重量部がさらに
好ましい。20重量部よりも少ないと得られる熱伝導性
高分子組成物及び熱伝導性成形体の熱伝導率が小さくて
放熱特性が劣る。一方、500重量部を越えると組成物
の粘度が増大して黒鉛化炭素繊維を高分子材料中に均一
分散させることが困難になり、かつ気泡の混入が避けら
れず好ましくない。
The amount of the graphitized carbon fibers to be added to the thermally conductive polymer composition is 20 to 100 parts by weight of the polymer material.
500 parts by weight is preferable, and 40 to 300 parts by weight is more preferable. If the amount is less than 20 parts by weight, the heat conductivity of the obtained heat conductive polymer composition and heat conductive molded article is small, and the heat radiation property is inferior. On the other hand, if it exceeds 500 parts by weight, the viscosity of the composition increases, and it becomes difficult to uniformly disperse the graphitized carbon fibers in the polymer material.

【0041】高分子材料と所定量の黒鉛化炭素繊維を混
合し、必要に応じて脱泡操作などを行って目的とする熱
伝導性高分子組成物を製造する際には、通常のブレンダ
ー、ミキサー、ロール、押出機などによる混合又は混練
装置を使用することができる。得られた熱伝導性高分子
組成物は、プレス成形法、押出成形法、射出成形法、注
型成形法、ブロー成形法、カレンダー成形法などのほ
か、液状組成物の場合には、塗装法、印刷法、ディスペ
ンサー法、ポッティング法などの方法で加工することが
できる。
When a polymer material and a predetermined amount of graphitized carbon fiber are mixed, and a defoaming operation or the like is performed as required to produce a desired heat conductive polymer composition, a conventional blender is used. A mixing or kneading device using a mixer, a roll, an extruder, or the like can be used. The obtained thermally conductive polymer composition is prepared by a press molding method, an extrusion molding method, an injection molding method, a casting molding method, a blow molding method, a calender molding method, and, in the case of a liquid composition, a coating method. , Printing, dispenser, potting, and the like.

【0042】圧縮成形法、注型成形法、押出成形法、ブ
レード成形法、カレンダー成形法などによって、所定形
状に成形加工することによって、放熱特性にすぐれた熱
伝導性成形体を製造することができる。高分子材料に低
硬度の架橋ゴムや熱可塑性エラストマーを使用すれば、
熱伝導性に優れた柔軟な熱伝導性シートを得ることがで
きる。
By molding into a predetermined shape by a compression molding method, a casting molding method, an extrusion molding method, a blade molding method, a calender molding method, etc., it is possible to produce a thermally conductive molded body having excellent heat radiation characteristics. it can. By using low hardness crosslinked rubber or thermoplastic elastomer for polymer material,
A flexible heat conductive sheet having excellent heat conductivity can be obtained.

【0043】この熱伝導性シートの硬度は、用途に応じ
て決定すれば良いが、使用時の応力緩和性と追随性に関
しては柔軟なほど、すなわち低硬度ほど有利である。具
体的には、ショアーA硬度で好ましくは70以下、さら
に好ましくは40以下、特に好ましくはアスカーC硬度
で30以下のゲル状のシリコーンゴムや熱可塑性エラス
トマーを高分子材料として使用した低硬度の熱伝導性シ
ートが好適である。なお、熱伝導性シートの厚みについ
ては限定されないが、50μm〜10mmが好ましく、
特に200μm〜5mmの範囲が好ましい。50μmよ
りも薄いと製造しにくいとともに取り扱いにくくなり、
10mmよりも厚くなると熱抵抗が大きくなるので好ま
しくない。
The hardness of the heat conductive sheet may be determined according to the intended use, but the softer, that is, the lower the hardness, the more advantageous the stress relaxation property and the followability during use. Specifically, a low-hardness heat using a gel silicone rubber or a thermoplastic elastomer having a Shore A hardness of preferably 70 or less, more preferably 40 or less, and particularly preferably an Asker C hardness of 30 or less as a polymer material. Conductive sheets are preferred. The thickness of the heat conductive sheet is not limited, but preferably 50 μm to 10 mm,
In particular, the range of 200 μm to 5 mm is preferable. If it is thinner than 50 μm, it is difficult to manufacture and difficult to handle,
If the thickness is more than 10 mm, the thermal resistance increases, which is not preferable.

【0044】熱伝導性高分子組成物は、高い熱伝導性が
要求される放熱板、熱伝導性シート、配線基板、半導体
パッケージ用部材、ヒートシンク、ヒートスプレッダ
ー、筐体などに応用することができる。
The heat conductive polymer composition can be applied to a heat sink, a heat conductive sheet, a wiring board, a member for a semiconductor package, a heat sink, a heat spreader, a housing, etc., which require high heat conductivity. .

【0045】以上のような熱伝導性高分子組成物及び熱
伝導性成形体の適用例を図1〜図4を用いて説明する。
図1(a)に示すように、プリント配線基板11上には
半導体素子12が配設されるとともに、その半導体素子
12を覆うように放熱器14が支持部材14aを介して
支持されている。半導体素子12と放熱器14との間に
は前述した熱伝導性シート13が介装されている。そし
て、その熱伝導性シート13により、半導体素子12か
らの熱を放熱器14へ伝導し、放熱効果を向上させてい
る。
An application example of the above-described heat conductive polymer composition and heat conductive molded article will be described with reference to FIGS.
As shown in FIG. 1A, a semiconductor element 12 is provided on a printed wiring board 11, and a radiator 14 is supported via a support member 14a so as to cover the semiconductor element 12. The above-described heat conductive sheet 13 is interposed between the semiconductor element 12 and the radiator 14. Then, the heat from the semiconductor element 12 is transmitted to the radiator 14 by the heat conductive sheet 13 to improve the heat radiation effect.

【0046】図1(b)に示すように、プリント配線基
板11上には半導体素子12が配設されるとともに、プ
リント配線基板11と半導体素子12との間には熱伝導
性シート13が介装されている。
As shown in FIG. 1B, a semiconductor element 12 is provided on the printed wiring board 11, and a heat conductive sheet 13 is interposed between the printed wiring board 11 and the semiconductor element 12. Is equipped.

【0047】図1(c)に示すように、プリント配線基
板11上には半導体素子12が配設され、その上には熱
伝導性シート13を介して前記熱伝導性高分子組成物の
射出成形により成形され上面が凹凸状をなすヒートシン
ク15が載置されている。なお、ヒートシンク15の上
面形状は、実際には剣山状、ギザギザ状又はスリット状
の形状が主体となっている。
As shown in FIG. 1C, a semiconductor element 12 is provided on a printed wiring board 11, and the heat conductive polymer composition is injected onto the semiconductor element 12 via a heat conductive sheet 13. A heat sink 15 formed by molding and having an uneven upper surface is mounted. In addition, the upper surface shape of the heat sink 15 is mainly a sword-like shape, a jagged shape, or a slit shape.

【0048】図1(d)に示すように、プリント配線基
板11上には複数の実装部品16が配設され、その上に
は熱伝導性シート13を介して熱伝導性高分子組成物の
射出成形により製造された筐体17が載置されている。
As shown in FIG. 1D, a plurality of mounting components 16 are provided on the printed wiring board 11, and a thermal conductive polymer composition A housing 17 manufactured by injection molding is placed.

【0049】図2に示すように、プリント配線基板11
上には半導体素子12が配設されるとともに、その上に
は前記熱伝導性高分子組成物により形成された熱伝導性
グリス18を介してヒートスプレッダー19が載置され
ている。
As shown in FIG. 2, the printed wiring board 11
A semiconductor element 12 is provided on the upper side, and a heat spreader 19 is placed on the semiconductor element 12 via a heat conductive grease 18 formed of the heat conductive polymer composition.

【0050】図3に示すように、ダイパッド20上には
熱伝導性高分子組成物により形成された熱伝導性接着剤
21により半導体チップ22が接着されている。その半
導体チップ22はボンディングワイヤー23を介してリ
ードフレーム24に接続されている。これらの部品は封
止剤25によって封止されている。
As shown in FIG. 3, a semiconductor chip 22 is bonded on a die pad 20 by a heat conductive adhesive 21 formed of a heat conductive polymer composition. The semiconductor chip 22 is connected to a lead frame 24 via a bonding wire 23. These components are sealed by a sealant 25.

【0051】図1〜図3に示すように、発熱する素子と
伝熱部材間に、熱伝導性高分子組成物からなる熱伝導性
シート13やペースト状の熱伝導性グリス18や熱伝導
性接着剤21を、発熱する半導体素子12、電源或いは
光源などと伝熱部材である放熱器14、冷却器、ヒート
シンク15、ヒートスプレッダー19、ダイパッド2
0、プリント配線基板11、冷却ファン、ヒートパイプ
或いは筐体17などの間に介在させることによって電子
部品を製造することができる。そして、課題である発熱
対策を施すことが可能になる。
As shown in FIGS. 1 to 3, a heat conductive sheet 13 made of a heat conductive polymer composition, a heat conductive grease 18 in a paste form, a heat conductive The adhesive 21 is heated by a semiconductor element 12 that generates heat, a power source or a light source, and a radiator 14, a cooler, a heat sink 15, a heat spreader 19, and a die pad 2 that are heat transfer members.
Electronic components can be manufactured by interposing them between the printed wiring board 11, the cooling fan, the heat pipe, the housing 17, and the like. Then, it becomes possible to take measures against heat generation, which is a problem.

【0052】以上の実施形態によって発揮される効果を
以下にまとめて記載する。・ 実施形態で説明した熱伝
導性高分子組成物によれば、黒鉛化炭素繊維はホウ素を
含有していることから、黒鉛化炭素繊維を製造する際に
黒鉛化を促進する触媒効果を発揮することができ、黒鉛
化度の高い黒鉛化炭素繊維が得られる。しかも、黒鉛化
炭素繊維の黒鉛層間の面間隔(d002)が0.336
0nm未満であることから、黒鉛化炭素繊維の黒鉛化度
が高く、黒鉛結晶の層間隔が狭くなり、得られる熱伝導
性高分子組成物、さらには熱伝導性成形体の熱伝導性が
向上する。従って、熱伝導性高分子組成物さらには熱伝
導性高分子成形体は、電気部品や電子部品などから発生
する多大な熱を効果的に放散できる高い熱伝導性を発揮
することができる。
The effects exerted by the above embodiments will be summarized below. According to the heat conductive polymer composition described in the embodiment, since the graphitized carbon fiber contains boron, it exhibits a catalytic effect of promoting graphitization when producing the graphitized carbon fiber. Thus, a graphitized carbon fiber having a high degree of graphitization can be obtained. In addition, the surface spacing (d002) between the graphite layers of the graphitized carbon fiber is 0.336.
Since it is less than 0 nm, the degree of graphitization of the graphitized carbon fiber is high, the layer spacing of the graphite crystals is narrow, and the thermal conductivity of the resulting thermally conductive polymer composition and the thermally conductive molded article are improved. I do. Therefore, the thermally conductive polymer composition and the thermally conductive polymer molded article can exhibit high thermal conductivity that can effectively dissipate a large amount of heat generated from electric components, electronic components, and the like.

【0053】・ また、ホウ素の含有量が黒鉛化炭素繊
維に対して0.1〜10重量%であることにより、黒鉛
化炭素繊維の黒鉛化度を確実に高めることができる。し
かも、黒鉛化炭素繊維のX線回折法による(101)回
折ピークと(100)回折ピークのピーク強度比(P1
01/P100)が1.70以上であることにより、黒
鉛結晶の大きさも大きくでき、さらに高い熱伝導性を発
揮することができる。
Further, when the content of boron is 0.1 to 10% by weight with respect to the graphitized carbon fiber, the degree of graphitization of the graphitized carbon fiber can be reliably increased. In addition, the peak intensity ratio (P1) between the (101) diffraction peak and the (100) diffraction peak of the graphitized carbon fiber by the X-ray diffraction method is described.
(01 / P100) is 1.70 or more, the size of the graphite crystal can be increased, and higher thermal conductivity can be exhibited.

【0054】・ 黒鉛化炭素繊維が、メソフェーズピッ
チを原料とし、紡糸、不融化及び炭化後に粉砕し、その
後ホウ素化合物の共存下で黒鉛化して得られたものであ
る場合、粉砕後の黒鉛化炭素繊維の縦割れを防ぐことが
でき、黒鉛化処理時に縮重合反応や環化反応が進みやす
くなり、一層高い熱伝導性を発揮することができる。
When the graphitized carbon fiber is obtained by spinning, infusibilizing, and carbonizing, using pulverized mesophase pitch as a raw material, and then graphitizing in the presence of a boron compound, the graphitized carbon fiber after pulverization is used. Longitudinal cracking of the fiber can be prevented, the condensation polymerization reaction and the cyclization reaction can easily proceed during the graphitization treatment, and higher thermal conductivity can be exhibited.

【0055】・ 上記の熱伝導性高分子組成物を射出成
形法などによって所定形状に成形することにより、熱伝
導性に優れた熱伝導性成形体を容易に得ることができ
る。
By molding the above thermally conductive polymer composition into a predetermined shape by an injection molding method or the like, a thermally conductive molded article having excellent thermal conductivity can be easily obtained.

【0056】[0056]

【実施例】以下、実施例及び比較例を挙げて前記実施形
態をさらに具体的に説明するが、本発明はこれらの実施
例によって何ら制限されるものではない。 (黒鉛化炭素繊維の試作例1)光学異方性で比重1.2
5の石油系メソフェーズピッチを原料として、幅3mm
のスリットの中に直径0.2mmφの紡糸孔を有するダ
イスを使用し、スリットから加熱空気を噴出させて、紡
糸温度360℃で溶融ピッチを牽引して平均直径13μ
mのピッチ系繊維を製造した。紡出された繊維をベルト
上に捕集したマットを、空気中で室温から300℃まで
平均昇温速度6℃/分で昇温して不融化処理した。引続
き、この不融化処理繊維を700℃で軽度に炭化処理し
た後、高速回転ミルで粉砕し平均粒径20μmの炭素繊
維粉砕品を得た。
EXAMPLES Hereinafter, the embodiments will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. (Prototype Example 1 of Graphitized Carbon Fiber) Specific Gravity in Optical Anisotropy of 1.2
5 petroleum-based mesophase pitch as raw material, width 3mm
Using a die having a spinning hole with a diameter of 0.2 mmφ in the slit of the above, heated air is blown out of the slit, and the molten pitch is pulled at a spinning temperature of 360 ° C., and the average diameter is 13 μm.
m pitch-based fibers were produced. The mat in which the spun fibers were collected on a belt was infused by raising the temperature in the air from room temperature to 300 ° C. at an average rate of 6 ° C./min. Subsequently, the infusibilized fiber was lightly carbonized at 700 ° C., and then pulverized with a high-speed rotating mill to obtain a pulverized carbon fiber having an average particle diameter of 20 μm.

【0057】この炭素繊維粉砕品に対し、炭化ホウ素を
3重量%混合し、黒鉛るつぼに入れ、蓋をして3℃/分
の速度で3000℃まで昇温し、さらに3000℃で1
時間保持してから自然降温し、ホウ素を含有する黒鉛化
炭素繊維粉砕品を製造した。このホウ素含有黒鉛化炭素
繊維粉砕品の試作品1の密度、繊維直径、平均粒径、X
線回折パラメータ、繊維長さ方向の熱伝導率及びホウ素
含有量の測定結果を表1に示す。 (黒鉛化炭素繊維の試作例2)光学異方性で比重1.2
5の石油系メソフェーズピッチを原料として、幅3mm
のスリットの中に直径0.2mmφの紡糸孔を有するダ
イスを使用し、スリットから加熱空気を噴出させて、紡
糸温度360℃で溶融ピッチを牽引して平均直径15μ
mのピッチ製繊維を製造した。紡出された繊維をベルト
上に捕集したマットを、空気中で室温から300℃まで
平均昇温速度6℃/分で昇温して不融化処理した。引続
き、この不融化処理繊維を700℃で軽度に炭化処理し
た後、高速回転ミルで粉砕し平均粒径25μmの炭素繊
維粉砕品を得た。
The carbon fiber pulverized product was mixed with 3% by weight of boron carbide, placed in a graphite crucible, covered with a lid, and heated to 3000 ° C. at a rate of 3 ° C./min.
After holding for a while, the temperature was naturally lowered to produce a pulverized graphitized carbon fiber product containing boron. The density, fiber diameter, average particle size, and X of prototype 1 of this pulverized boron-containing graphitized carbon fiber
Table 1 shows the measurement results of the line diffraction parameters, the thermal conductivity in the fiber length direction, and the boron content. (Prototype Example 2 of Graphitized Carbon Fiber) Specific Gravity in Optical Anisotropy of 1.2
5 petroleum-based mesophase pitch as raw material, width 3mm
Using a die having a spinning hole with a diameter of 0.2 mm in the slit of the above, hot air is blown out of the slit, and the molten pitch is pulled at a spinning temperature of 360 ° C. and the average diameter is 15 μm.
m pitch fibers were produced. The mat in which the spun fibers were collected on a belt was infused by raising the temperature in the air from room temperature to 300 ° C. at an average rate of 6 ° C./min. Subsequently, the infusibilized fiber was lightly carbonized at 700 ° C. and then pulverized with a high-speed rotating mill to obtain a pulverized carbon fiber having an average particle diameter of 25 μm.

【0058】この炭素繊維粉砕品に対し、炭化ホウ素と
窒化ホウ素を4重量%ずつ合計8重量%混合し、黒鉛る
つぼに入れ、蓋をして3℃/分の速度で3100℃まで
昇温し、さらに3100℃で1時間保持してから自然降
温し、ホウ素を含有する黒鉛化炭素繊維粉砕品を製造し
た。このホウ素含有黒鉛化炭素繊維粉砕品の試作品1の
密度、繊維直径、平均粒径、X線回折パラメータ、繊維
長さ方向の熱伝導率及びホウ素含有量の測定結果を表1
に示す。 (黒鉛化炭素繊維の試作例3、4)比較用に用いたホウ
素を含有しない黒鉛化炭素繊維は、上記の試作例1、2
で、ホウ素化合物を含有せずに黒鉛化した黒鉛化炭素繊
維2種類(試作例3、試作例4)の密度、繊維直径、平
均粒径、X線回折パラメータ、繊維長さ方向の熱伝導率
及びホウ素含有量の測定結果を表1に記した。
The ground carbon fiber product was mixed with boron carbide and boron nitride in a total of 8% by weight, each of 4% by weight, placed in a graphite crucible, covered, and heated to 3100 ° C. at a rate of 3 ° C./min. After further holding at 3100 ° C. for 1 hour, the temperature was naturally lowered to produce a pulverized graphitized carbon fiber containing boron. Table 1 shows the measurement results of the density, fiber diameter, average particle diameter, X-ray diffraction parameters, thermal conductivity in the fiber length direction, and boron content of prototype 1 of this pulverized boron-containing graphitized carbon fiber product.
Shown in (Prototype Examples 3 and 4 of Graphitized Carbon Fiber) The graphitized carbon fibers containing no boron used for comparison are the same as those of the above-mentioned prototype examples 1 and 2.
The density, fiber diameter, average particle diameter, X-ray diffraction parameters, and thermal conductivity in the fiber length direction of two types of graphitized carbon fibers graphitized without containing a boron compound (Prototype Examples 3 and 4) And the measurement results of the boron content are shown in Table 1.

【0059】[0059]

【表1】 (実施例1)付加型の液状シリコーゴム(東レダウコー
ニングシリコーン株式会社製)100重量部、シランカ
ップリング剤で表面処理を施した試作例1のホウ素を含
有する黒鉛化炭素繊維160重量部、酸化アルミニウム
粉末(昭和電工株式会社製)50重量部、水酸化アルミ
ニウム粉末(昭和電工株式会社製)40重量部からなる
組成物を混合分散して熱伝導性高分子組成物を調製し
た。この熱伝導性高分子組成物を加熱プレス成形し、厚
み2mmの熱伝導性シートを作製した。得られた熱伝導
性シートのアスカーC硬度は11、厚み方向の熱伝導率
は3.2W/m・Kであった。 (実施例2)黒鉛化炭素繊維として試作例2のホウ素を
含有する黒鉛化炭素繊維を使用した以外は実施例1と同
様に熱伝導性高分子組成物を調製し、加熱プレス成形し
て厚み2mmの熱伝導性シートを作製した。得られた熱
伝導性シートのアスカーC硬度は10、厚み方向の熱伝
導率は3.4W/m・Kであった。 (比較例1)付加型の液状シリコーゴム(東レダウコー
ニングシリコーン株式会社製)100重量部、シランカ
ップリング剤で表面処理を施した試作例3のホウ素を含
有しない従来の黒鉛化炭素繊維160重量部、酸化アル
ミニウム粉末(昭和電工株式会社製)50重量部、水酸
化アルミニウム粉末(昭和電工株式会社製)40重量部
からなる組成物を混合分散して熱伝導性高分子組成物を
調製した。この熱伝導性高分子組成物を加熱プレス成形
して厚み2mmの熱伝導性シートを作製した。得られた
熱伝導性シートのアスカーC硬度は10、厚み方向の熱
伝導率は2.8W/m・Kであった。 (比較例2)黒鉛化炭素繊維として試作例4のホウ素を
含有しない従来の黒鉛化炭素繊維を使用した以外は比較
例1と同様に熱伝導性高分子組成物を調製し、加熱プレ
ス成形して厚み2mmの熱伝導性シートを作製した。得
られた熱伝導性シートのアスカーC硬度は10、厚み方
向の熱伝導率は2.9W/m・Kであった。 (実施例3)低硬度スチレン系熱可塑性エラストマー
(理研ビニル工業株式会社製)100重量部、試作例1
のホウ素を含有する黒鉛化炭素繊維100重量部、窒化
ホウ素粉末(電気化学工業株式会社製)20重量部、水
酸化アルミニウム粉末(昭和電工株式会社製)40重量
部からなる組成物を2軸押出機で混練してペレット状の
熱伝導性高分子組成物を調製した。この熱伝導性高分子
組成物を押出成形して厚み3mmの熱伝導性シートを作
製した。得られた熱伝導性シートのショアA硬度は6
5、熱伝導率は2.5W/m・Kであった。 (実施例4)黒鉛化炭素繊維として試作例2のホウ素を
含有する黒鉛化炭素繊維を使用した以外は実施例3と同
様に熱伝導性高分子組成物を調製し、射出成形して厚み
3mmの熱伝導性シートを作製した。得られた熱伝導性
シートのショアA硬度は66、熱伝導率は2.7W/m
・Kであった。 (比較例3)スチレン系熱可塑性エラストマー(理研ビ
ニル工業株式会社製)100重量部、試作例3のホウ素
を含有しない従来の黒鉛化炭素繊100重量部、窒化ホ
ウ素粉末(電気化学工業株式会社製)20重量部、水酸
化アルミニウム粉末(昭和電工株式会社製)40重量部
からなる組成物を2軸押出機で混練してペレット状の熱
伝導性高分子組成物を調製した。この熱伝導性高分子組
成物を押出成形して厚み3mmの熱伝導性シートを作製
した。得られた熱伝導性シートのショアA硬度は65、
熱伝導率は2.1W/m・Kであった。 (実施例5)高分子材料としてポリアセタール樹脂(旭
化成工業株式会社製)100重量部、シランカップリン
グ剤で表面処理を施した試作例2のホウ素を含有する黒
鉛化炭素繊維70重量部及び酸化アルミニウム粉末(昭
和電工株式会社製)30重量部からなる組成物を2軸押
出機で混練してペレット状の熱伝導性高分子組成物を調
製した。この熱伝導性高分子組成物を射出成形して厚み
3mmの熱伝導性成形体を作製した。得られた熱伝導性
成形体の熱伝導率は2.3W/m・Kであった。 (比較例4)高分子材料としてポリアセタール樹脂(旭
化成工業株式会社製)100重量部、シランカップリン
グ剤で表面処理を施した試作例4のホウ素を含有しない
従来の黒鉛化炭素繊維70重量部、酸化アルミニウム粉
末(昭和電工株式会社製)30重量部からなる組成物を
2軸押出機で混練してペレット状の熱伝導性高分子組成
物を調製した。この熱伝導性高分子組成物を射出成形し
て厚み3mmの熱伝導性成形体を作製した。得られた熱
伝導性成形体の熱伝導率は1.9W/m・Kであった。 (実施例6)接着性高分子材料としてアミン系硬化剤を
含むビスフェノールF型エポキシ樹脂(油化シェルエポ
キシ株式会社製)100重量部、シランカップリング剤
で表面処理を施した試作例2のホウ素を含有する黒鉛化
炭素繊維160重量部、酸化アルミニウム粉末(昭和電
工株式会社製)40重量部からなる組成物を混合し、接
着剤である熱伝導性高分子組成物を調製した。この熱伝
導性高分子組成物を熱硬化させた厚み1mmの板状試験
片を作製した。得られた板状試験片の熱伝導率は3.2
W/m・Kであった。 (比較例5)接着性高分子としてアミン系硬化剤を含む
ビスフェノールF型エポキシ樹脂(油化シェルエポキシ
株式会社製)100重量部、シランカップリング剤で表
面処理を施した試作例4のホウ素を含有しない従来の黒
鉛化炭素繊維160重量部、酸化アルミニウム粉末(昭
和電工株式会社製)40重量部からなる組成物を混合
し、接着剤である熱伝導性高分子組成物を調製した。こ
の熱伝導性高分子組成物を熱硬化させた厚み1mmの板
状試験片を作製した。得られた板状試験片の熱伝導率は
2.8W/m・Kであった。 (実施例7)図1(c)に記すプリント配線基板11に
実装した半導体素子12と伝熱部材となるヒートシンク
15の間に、実施例1の熱伝導性シート13を配置して
半導体装置を組み立てた。装置に通電し10分後の熱抵
抗を測定したところ、0.12℃/Wであった。 (比較例6)実施例7と同様のプリント配線基板11に
実装した半導体素子12と伝熱部材となるヒートシンク
15の間に、比較例1の熱伝導性シートを配置して半導
体装置を組み立てた。装置に通電し10分後の熱抵抗を
測定したところ、0.17℃/Wであった。
[Table 1] (Example 1) 100 parts by weight of addition type liquid silicone rubber (manufactured by Toray Dow Corning Silicone Co., Ltd.), 160 parts by weight of the boron-containing graphitized carbon fiber of Trial Production Example 1 subjected to surface treatment with a silane coupling agent, oxidation A composition comprising 50 parts by weight of aluminum powder (manufactured by Showa Denko KK) and 40 parts by weight of aluminum hydroxide powder (manufactured by Showa Denko KK) was mixed and dispersed to prepare a thermally conductive polymer composition. This heat conductive polymer composition was subjected to heat press molding to produce a heat conductive sheet having a thickness of 2 mm. The Asker C hardness of the obtained heat conductive sheet was 11, and the heat conductivity in the thickness direction was 3.2 W / m · K. (Example 2) A heat conductive polymer composition was prepared in the same manner as in Example 1 except that the boron-containing graphitized carbon fiber of Prototype Example 2 was used as the graphitized carbon fiber, and the thickness was formed by hot press molding. A 2 mm heat conductive sheet was produced. The Asker C hardness of the obtained heat conductive sheet was 10, and the heat conductivity in the thickness direction was 3.4 W / m · K. (Comparative Example 1) 100 parts by weight of addition-type liquid silicone rubber (manufactured by Toray Dow Corning Silicone Co., Ltd.), and 160 parts by weight of the conventional boron-free graphitized carbon fiber of Prototype Example 3 subjected to a surface treatment with a silane coupling agent A composition comprising 50 parts by weight of aluminum oxide powder (manufactured by Showa Denko KK) and 40 parts by weight of aluminum hydroxide powder (manufactured by Showa Denko KK) was mixed and dispersed to prepare a heat conductive polymer composition. This heat conductive polymer composition was press-molded by heating to produce a heat conductive sheet having a thickness of 2 mm. The Asker C hardness of the obtained heat conductive sheet was 10, and the heat conductivity in the thickness direction was 2.8 W / m · K. (Comparative Example 2) A heat conductive polymer composition was prepared in the same manner as in Comparative Example 1 except that the conventional graphitized carbon fiber containing no boron of Trial Production Example 4 was used as the graphitized carbon fiber, and was subjected to heat press molding. To produce a heat conductive sheet having a thickness of 2 mm. The Asker C hardness of the obtained heat conductive sheet was 10, and the heat conductivity in the thickness direction was 2.9 W / m · K. (Example 3) Low-hardness styrene-based thermoplastic elastomer (manufactured by Riken Vinyl Industry Co., Ltd.) 100 parts by weight, Prototype Example 1
A composition comprising 100 parts by weight of graphitized carbon fiber containing boron, 20 parts by weight of boron nitride powder (manufactured by Denki Kagaku Kogyo KK), and 40 parts by weight of aluminum hydroxide powder (manufactured by Showa Denko KK) is biaxially extruded. The mixture was kneaded with a mixer to prepare a pellet-shaped heat conductive polymer composition. This heat conductive polymer composition was extruded to produce a heat conductive sheet having a thickness of 3 mm. Shore A hardness of the obtained heat conductive sheet is 6
5. Thermal conductivity was 2.5 W / m · K. (Example 4) A heat conductive polymer composition was prepared in the same manner as in Example 3 except that the boron-containing graphitized carbon fiber of Prototype Example 2 was used as the graphitized carbon fiber, and injection-molded to a thickness of 3 mm. Was produced. The obtained heat conductive sheet has a Shore A hardness of 66 and a heat conductivity of 2.7 W / m.
-It was K. (Comparative Example 3) 100 parts by weight of styrene-based thermoplastic elastomer (manufactured by Riken Vinyl Industry Co., Ltd.), 100 parts by weight of conventional graphitized carbon fiber not containing boron of Prototype Example 3, boron nitride powder (manufactured by Denki Kagaku Kogyo Co., Ltd.) ) A composition consisting of 20 parts by weight and 40 parts by weight of aluminum hydroxide powder (manufactured by Showa Denko KK) was kneaded with a twin-screw extruder to prepare a pellet-shaped heat conductive polymer composition. This heat conductive polymer composition was extruded to produce a heat conductive sheet having a thickness of 3 mm. Shore A hardness of the obtained heat conductive sheet is 65,
The thermal conductivity was 2.1 W / m · K. (Example 5) 100 parts by weight of a polyacetal resin (manufactured by Asahi Kasei Kogyo Co., Ltd.) as a polymer material, 70 parts by weight of the boron-containing graphitized carbon fiber of Trial Production Example 2 subjected to a surface treatment with a silane coupling agent, and aluminum oxide A composition composed of 30 parts by weight of powder (manufactured by Showa Denko KK) was kneaded with a twin-screw extruder to prepare a pellet-shaped heat conductive polymer composition. This thermally conductive polymer composition was injection molded to produce a thermally conductive molded article having a thickness of 3 mm. The thermal conductivity of the obtained thermally conductive molded body was 2.3 W / m · K. (Comparative Example 4) 100 parts by weight of a polyacetal resin (manufactured by Asahi Kasei Kogyo Co., Ltd.) as a polymer material, 70 parts by weight of the conventional boron-free graphitized carbon fiber of Prototype Example 4 subjected to a surface treatment with a silane coupling agent, A composition comprising 30 parts by weight of aluminum oxide powder (manufactured by Showa Denko KK) was kneaded with a twin-screw extruder to prepare a pellet-shaped heat conductive polymer composition. This thermally conductive polymer composition was injection molded to produce a thermally conductive molded article having a thickness of 3 mm. The thermal conductivity of the obtained thermally conductive molded body was 1.9 W / m · K. (Example 6) 100 parts by weight of a bisphenol F-type epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd.) containing an amine-based curing agent as an adhesive polymer material, and boron of prototype example 2 in which surface treatment was performed with a silane coupling agent Was mixed with 40 parts by weight of aluminum oxide powder (manufactured by Showa Denko KK) to prepare a thermally conductive polymer composition as an adhesive. A 1 mm-thick plate-shaped test piece was prepared by thermally curing the heat conductive polymer composition. The thermal conductivity of the obtained plate-shaped test piece was 3.2.
W / m · K. (Comparative Example 5) 100 parts by weight of a bisphenol F-type epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd.) containing an amine-based curing agent as an adhesive polymer, and boron of Trial Production Example 4 subjected to surface treatment with a silane coupling agent were used. A composition comprising 160 parts by weight of conventional graphitized carbon fiber not containing and 40 parts by weight of aluminum oxide powder (manufactured by Showa Denko KK) was mixed to prepare a heat conductive polymer composition as an adhesive. A 1 mm-thick plate-shaped test piece was prepared by thermally curing the heat conductive polymer composition. The thermal conductivity of the obtained plate-shaped test piece was 2.8 W / m · K. (Embodiment 7) The heat conductive sheet 13 of Embodiment 1 is arranged between the semiconductor element 12 mounted on the printed wiring board 11 shown in FIG. Assembled. It was 0.12 ° C./W when the thermal resistance was measured 10 minutes after the device was energized. Comparative Example 6 A semiconductor device was assembled by disposing the heat conductive sheet of Comparative Example 1 between a semiconductor element 12 mounted on a printed wiring board 11 similar to that of Example 7 and a heat sink 15 serving as a heat transfer member. . It was 0.17 ° C./W when the thermal resistance was measured 10 minutes after the device was energized.

【0060】以上のように、実施例1及び実施例2は、
従来のホウ素を含有しない黒鉛化炭素繊維を使用した比
較例1及び比較例2よりも熱伝導率が高く、実施例3及
び実施例4は、比較例3よりも熱伝導率が高い。また、
実施例5は、比較例4よりも熱伝導率が高く、実施例6
は、比較例5よりも熱伝導率が高い。
As described above, Embodiments 1 and 2
The thermal conductivity is higher than Comparative Examples 1 and 2 using conventional graphitized carbon fibers containing no boron, and Examples 3 and 4 have higher thermal conductivity than Comparative Example 3. Also,
Example 5 had a higher thermal conductivity than Comparative Example 4, and Example 6
Has a higher thermal conductivity than Comparative Example 5.

【0061】また、実施例7のように、より高度な熱伝
導性が要求される発熱量が多い半導体素子12と筐体1
7やヒートシンク15などの放熱器との間隙、或いは半
導体素子12とプリント配線基板11やダイパッド20
との間隙に熱伝導性シート13を介在させると、比較例
6に比べて熱抵抗値を小さくすることができる。従っ
て、発熱量が大きくても電気的な障害を発生させること
なく、正常に作動する電子部品を提供することができ
る。さらに、本発明の熱伝導性高分子組成物を成形加工
して、任意の形状の熱伝導性に優れる筐体17やヒート
シンク15、プリント配線基板11などを製造すること
ができる。
Further, as in the seventh embodiment, the semiconductor element 12 and the housing 1 which generate a large amount of heat and require higher thermal conductivity are required.
7 or a gap between the heat sink 15 and a radiator, or the semiconductor element 12 and the printed wiring board 11 or the die pad 20.
When the heat conductive sheet 13 is interposed in the gap between the first and second embodiments, the thermal resistance value can be reduced as compared with Comparative Example 6. Accordingly, it is possible to provide an electronic component that operates normally without causing an electrical trouble even if the heat generation amount is large. Further, the heat conductive polymer composition of the present invention can be molded and processed to produce a housing 17, a heat sink 15, a printed wiring board 11, and the like of any shape having excellent heat conductivity.

【0062】なお、前記実施形態を次のように変更して
具体化することができる。 ・ ホウ素単体又はホウ素化合物からなる黒鉛化触媒を
メソフェーズピッチよりなる原料に予め配合したり、紡
糸時、不融化時又は炭化時に配合してもよい。
The above embodiment can be embodied with the following modifications. A graphitization catalyst composed of boron alone or a boron compound may be previously blended with a raw material composed of mesophase pitch, or may be blended during spinning, infusibility, or carbonization.

【0063】・ 前記図1(b)及び図1(c)に示す
熱伝導性シート13を熱伝導性接着剤21又は熱伝導性
グリス18に置き換えてもよい。 ・ 図1(a)に示す支持部材14aを熱伝導性成形体
で構成したり、図3に示す封止剤25を熱伝導性高分子
組成物から形成したりしてもよい。これらの構成によ
り、熱の放散効果を高めることができる。
The heat conductive sheet 13 shown in FIGS. 1B and 1C may be replaced with a heat conductive adhesive 21 or a heat conductive grease 18. The support member 14a shown in FIG. 1A may be made of a thermally conductive molded body, or the sealant 25 shown in FIG. 3 may be made of a thermally conductive polymer composition. With these configurations, the heat dissipation effect can be enhanced.

【0064】・ 熱伝導性高分子組成物中の黒鉛化炭素
繊維を一定方向に配向させ、その方向への熱伝導性を高
めてもよい。その方法としては、流動場又はせん断場を
利用する方法、磁場を利用する方法、電場を利用する方
法などが挙げられる。これらの方法うち、黒鉛化炭素繊
維の比較的大きい異方性磁化率を利用し、熱伝導性高分
子組成物に外部から強磁場を印加して黒鉛化炭素繊維を
磁力線と平行に配向させる方法が効率的で、かつ配向方
向を任意に設定できる点から好ましい。
The graphitized carbon fibers in the thermally conductive polymer composition may be oriented in a certain direction to increase the thermal conductivity in that direction. Examples of the method include a method using a flow field or a shear field, a method using a magnetic field, a method using an electric field, and the like. Among these methods, a method of utilizing the relatively large anisotropic magnetic susceptibility of the graphitized carbon fiber and applying a strong magnetic field to the thermally conductive polymer composition from the outside to orient the graphitized carbon fiber parallel to the magnetic field lines. Is preferred because it is efficient and the orientation direction can be set arbitrarily.

【0065】さらに、前記実施形態より把握される技術
的思想について記載する。 ・ 前記黒鉛化炭素繊維は、メソフェーズピッチを原料
とし、紡糸、不融化処理した後に不活性ガス中にて炭素
繊維が実質上500〜900℃の処理温度に達した状態
に到って炭化した後、粉砕し、その後ホウ素化合物の共
存下で黒鉛化されるものである請求項3に記載の熱伝導
性高分子組成物。このように構成した場合、粉砕後の繊
維の縦割れを防ぐことができ、より熱伝導性の高い熱伝
導性高分子組成物を得ることができる。
Further, a technical idea grasped from the embodiment will be described. The graphitized carbon fiber is made from mesophase pitch as a raw material, and after spinning and infusibilizing, the carbon fiber reaches a processing temperature of substantially 500 to 900 ° C. in an inert gas and is carbonized. The thermally conductive polymer composition according to claim 3, which is pulverized and then graphitized in the presence of a boron compound. With such a configuration, it is possible to prevent longitudinal cracking of the fiber after pulverization, and to obtain a thermally conductive polymer composition having higher thermal conductivity.

【0066】・ さらに、電気絶縁性を有する熱伝導性
充填剤を含有する請求項1から請求項3のいずれか一項
に記載の熱伝導性高分子組成物。このように構成した場
合、熱伝導性に加えて電気絶縁性をも発揮することがで
きる。
The heat conductive polymer composition according to any one of claims 1 to 3, further comprising a heat conductive filler having electric insulation. With such a configuration, electrical insulation can be exhibited in addition to thermal conductivity.

【0067】・ ホウ素を含有するとともに、黒鉛化炭
素繊維のX線回折法による黒鉛化度を表す黒鉛層間の面
間隔(d002)が0.3360nm未満であることを
特徴とする黒鉛化炭素繊維。この黒鉛化炭素繊維は高い
熱伝導性を発揮することができ、高分子材料に配合され
て熱伝導性高分子組成物として使用される。
A graphitized carbon fiber containing boron and having a plane spacing (d002) between graphite layers representing the degree of graphitization of the graphitized carbon fiber by X-ray diffraction less than 0.3360 nm. This graphitized carbon fiber can exhibit high thermal conductivity and is used as a thermally conductive polymer composition by being blended with a polymer material.

【0068】[0068]

【発明の効果】以上詳述したように、本発明によれば次
のような効果を奏する。請求項1に記載の発明の熱伝導
性高分子組成物によれば、電気部品や電子部品などから
発生する多大な熱を効果的に放散できる高い熱伝導性を
発揮することができる。
As described above, according to the present invention, the following effects can be obtained. ADVANTAGE OF THE INVENTION According to the heat conductive polymer composition of the invention of Claim 1, the high heat conductivity which can dissipate much heat generated from an electric component, an electronic component, etc. can be exhibited.

【0069】請求項2に記載の発明の熱伝導性高分子組
成物によれば、請求項1に係る発明の効果に加え、黒鉛
結晶の大きさも大きくでき、さらに高い熱伝導性を発揮
することができる。
According to the heat conductive polymer composition of the second aspect of the present invention, in addition to the effect of the first aspect of the present invention, the size of the graphite crystal can be increased, and a higher thermal conductivity can be exhibited. Can be.

【0070】請求項3に記載の発明の熱伝導性高分子組
成物によれば、請求項1又は請求項2に係る発明の効果
に加え、粉砕後の黒鉛化炭素繊維の縦割れを防ぐことが
でき、黒鉛化処理時に縮重合反応や環化反応が進みやす
くなり、一層高い熱伝導性を発揮することができる。
According to the heat conductive polymer composition of the invention described in claim 3, in addition to the effect of the invention according to claim 1 or 2, it is possible to prevent longitudinal cracking of the pulverized graphitized carbon fiber. The condensation polymerization reaction and the cyclization reaction can easily proceed during the graphitization treatment, and a higher thermal conductivity can be exhibited.

【0071】請求項4に記載の発明の熱伝導性成形体に
よれば、請求項1から請求項3のいずれか一項に係る発
明の効果を有効に発揮させることができる。
According to the thermally conductive molded article of the invention described in claim 4, the effects of the invention according to any one of claims 1 to 3 can be effectively exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 (a)〜(d)は、熱伝導性成形体又は熱伝
導性高分子組成物の適用例を示す側面図。
FIGS. 1A to 1D are side views showing application examples of a thermally conductive molded article or a thermally conductive polymer composition.

【図2】 熱伝導性高分子組成物からなる熱伝導性グリ
スの適用例を示す側面図。
FIG. 2 is a side view showing an application example of a heat conductive grease made of a heat conductive polymer composition.

【図3】 熱伝導性高分子組成物からなる熱伝導性接着
剤の適用例を示す断面図。
FIG. 3 is a cross-sectional view showing an application example of a heat conductive adhesive made of a heat conductive polymer composition.

【符号の説明】[Explanation of symbols]

13…熱伝導性成形体としての熱伝導性シート、17…
熱伝導性成形体としての筐体、18…熱伝導性高分子組
成物からなる熱伝導性グリス、21…熱伝導性高分子組
成物からなる熱伝導性接着剤。
13 ... a heat conductive sheet as a heat conductive molded body, 17 ...
A housing as a heat conductive molded body, 18: a heat conductive grease made of a heat conductive polymer composition, 21 ... a heat conductive adhesive made of a heat conductive polymer composition.

フロントページの続き Fターム(参考) 4F071 AA01 AB03 AB27 AD01 AD06 AF44 AH12 BC01 BC07 4J002 AC011 AC021 BB031 BB061 BB121 BB151 BB171 BB231 BB241 BB271 BC031 BC061 BD041 BD101 BD121 BD141 BD151 BE021 BF021 BG011 BG101 BN151 BP011 CB001 CC041 CD001 CF061 CF071 CG001 CH071 CH091 CJ001 CK001 CM041 CN011 CN031 CP031 DA026 FA046 FB076 GQ02 5F036 AA01 BA23 BD21 Continued on the front page F term (reference) 4F071 AA01 AB03 AB27 AD01 AD06 AF44 AH12 BC01 BC07 4J002 AC011 AC021 BB031 BB061 BB121 BB151 BB171 BB231 BB241 BB271 BC031 BC061 BD041 BD101 BD121 BD141 BD151 BE021 CB011 BG01 CF011 BG01 CF011 BG01 CH091 CJ001 CK001 CM041 CN011 CN031 CP031 DA026 FA046 FB076 GQ02 5F036 AA01 BA23 BD21

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高分子材料と、熱伝導性充填剤として黒
鉛化炭素繊維とを含有する熱伝導性高分子組成物であっ
て、黒鉛化炭素繊維はホウ素を含有するとともに、黒鉛
化炭素繊維のX線回折法による黒鉛化度を表す黒鉛層間
の面間隔(d002)が0.3360nm未満であるこ
とを特徴とする熱伝導性高分子組成物。
1. A thermally conductive polymer composition containing a polymer material and graphitized carbon fibers as a thermally conductive filler, wherein the graphitized carbon fibers contain boron and are graphitized carbon fibers. A heat conductive polymer composition, characterized in that the plane distance (d002) between graphite layers, which indicates the degree of graphitization according to the X-ray diffraction method, is less than 0.3360 nm.
【請求項2】 前記ホウ素の含有量が黒鉛化炭素繊維に
対して0.1〜10重量%であるとともに、黒鉛化炭素
繊維のX線回折法による(101)回折ピークと(10
0)回折ピークのピーク強度比(P101/P100)
が1.70以上であることを特徴とする請求項1に記載
の熱伝導性高分子組成物。
2. The method according to claim 1, wherein the boron content is 0.1 to 10% by weight with respect to the graphitized carbon fiber, and the (101) diffraction peak and (10)
0) Peak intensity ratio of diffraction peaks (P101 / P100)
The thermally conductive polymer composition according to claim 1, wherein is equal to or greater than 1.70.
【請求項3】 前記黒鉛化炭素繊維が、メソフェーズピ
ッチを原料とし、紡糸、不融化及び炭化後に粉砕し、そ
の後ホウ素単体及びホウ素化合物の少なくとも一種より
なる黒鉛化触媒の共存下で黒鉛化されて得られ、繊維直
径が5〜20μm及び平均粒径が5〜500μmである
請求項1又は請求項2に記載の熱伝導性高分子組成物。
3. The graphitized carbon fiber is pulverized after spinning, infusibilizing, and carbonizing using mesophase pitch as a raw material, and then graphitized in the presence of a graphitizing catalyst comprising at least one of boron alone and a boron compound. The thermally conductive polymer composition according to claim 1 or 2, which is obtained and has a fiber diameter of 5 to 20 µm and an average particle size of 5 to 500 µm.
【請求項4】 請求項1から請求項3のいずれか一項に
記載の熱伝導性高分子組成物を所定形状に成形加工して
得られる熱伝導性成形体。
4. A thermally conductive molded product obtained by molding the thermally conductive polymer composition according to claim 1 into a predetermined shape.
JP2000285601A 2000-09-20 2000-09-20 Heat-conductive polymer composition and heat-conductive molding Pending JP2002097371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000285601A JP2002097371A (en) 2000-09-20 2000-09-20 Heat-conductive polymer composition and heat-conductive molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000285601A JP2002097371A (en) 2000-09-20 2000-09-20 Heat-conductive polymer composition and heat-conductive molding

Publications (1)

Publication Number Publication Date
JP2002097371A true JP2002097371A (en) 2002-04-02

Family

ID=18769642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000285601A Pending JP2002097371A (en) 2000-09-20 2000-09-20 Heat-conductive polymer composition and heat-conductive molding

Country Status (1)

Country Link
JP (1) JP2002097371A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265441A (en) * 2005-03-25 2006-10-05 Mitsubishi Engineering Plastics Corp Heat-conductive resin molded article and method for producing the same
JP2008266659A (en) * 2008-08-11 2008-11-06 Efuko Kk Non-crosslinking resin composition and thermally conductive molded product using it
JP2010155576A (en) * 2008-12-29 2010-07-15 Sumitomo Rubber Ind Ltd Run-flat tire
US7813245B2 (en) 2005-09-30 2010-10-12 Yamaha Corporation Optical disk image forming device, optical disk image forming method and optical disk
JP2012167139A (en) * 2011-02-10 2012-09-06 Toray Ind Inc Polyphenylene sulfide resin composition, and molded article comprising the same
JP2013016606A (en) * 2011-07-04 2013-01-24 Daikin Ind Ltd Cooling structure of power module
US10256188B2 (en) 2016-11-26 2019-04-09 Texas Instruments Incorporated Interconnect via with grown graphitic material
US10529641B2 (en) 2016-11-26 2020-01-07 Texas Instruments Incorporated Integrated circuit nanoparticle thermal routing structure over interconnect region
US10811334B2 (en) 2016-11-26 2020-10-20 Texas Instruments Incorporated Integrated circuit nanoparticle thermal routing structure in interconnect region
US10861763B2 (en) 2016-11-26 2020-12-08 Texas Instruments Incorporated Thermal routing trench by additive processing
US11004680B2 (en) 2016-11-26 2021-05-11 Texas Instruments Incorporated Semiconductor device package thermal conduit
US11676880B2 (en) 2016-11-26 2023-06-13 Texas Instruments Incorporated High thermal conductivity vias by additive processing

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265441A (en) * 2005-03-25 2006-10-05 Mitsubishi Engineering Plastics Corp Heat-conductive resin molded article and method for producing the same
US7813245B2 (en) 2005-09-30 2010-10-12 Yamaha Corporation Optical disk image forming device, optical disk image forming method and optical disk
JP2008266659A (en) * 2008-08-11 2008-11-06 Efuko Kk Non-crosslinking resin composition and thermally conductive molded product using it
JP2010155576A (en) * 2008-12-29 2010-07-15 Sumitomo Rubber Ind Ltd Run-flat tire
JP2012167139A (en) * 2011-02-10 2012-09-06 Toray Ind Inc Polyphenylene sulfide resin composition, and molded article comprising the same
JP2013016606A (en) * 2011-07-04 2013-01-24 Daikin Ind Ltd Cooling structure of power module
US10256188B2 (en) 2016-11-26 2019-04-09 Texas Instruments Incorporated Interconnect via with grown graphitic material
US10529641B2 (en) 2016-11-26 2020-01-07 Texas Instruments Incorporated Integrated circuit nanoparticle thermal routing structure over interconnect region
US10790228B2 (en) 2016-11-26 2020-09-29 Texas Instruments Incorporated Interconnect via with grown graphitic material
US10811334B2 (en) 2016-11-26 2020-10-20 Texas Instruments Incorporated Integrated circuit nanoparticle thermal routing structure in interconnect region
US10861763B2 (en) 2016-11-26 2020-12-08 Texas Instruments Incorporated Thermal routing trench by additive processing
US11004680B2 (en) 2016-11-26 2021-05-11 Texas Instruments Incorporated Semiconductor device package thermal conduit
US11676880B2 (en) 2016-11-26 2023-06-13 Texas Instruments Incorporated High thermal conductivity vias by additive processing

Similar Documents

Publication Publication Date Title
JP4759122B2 (en) Thermally conductive sheet and thermally conductive grease
JP4833398B2 (en) Method for producing thermally conductive molded body
EP1199328B1 (en) Thermally conductive polymer sheet
JP4772239B2 (en) Graphitized carbon powder and thermally conductive composite composition
JP4663153B2 (en) Thermally conductive composite composition
JP4714371B2 (en) Thermally conductive molded body and method for producing the same
JP4891011B2 (en) Carbon fiber assembly suitable for reinforcement and heat dissipation materials
JP2002097372A (en) Heat-conductive polymer composition and heat-conductive molding
JP2009191392A (en) Pitch-based carbon fiber filer and molded article using the same
JP5015366B2 (en) Thermally conductive molded body and method for producing the same
JP2002097371A (en) Heat-conductive polymer composition and heat-conductive molding
JP2002088249A (en) Thermoconductive polymer composition and thermoconductive molded body
JP2008208316A (en) Carbon fiber composite material
JP2008049607A (en) Heat-conductive laminate with bonded thin film of electrical insulation
JP2008248462A (en) Pitch based carbon fiber filler and molded article using the same
JP5015490B2 (en) Thermally conductive filler and composite molded body using the same
JP2008189867A (en) Composite material of carbon fiber-reinforced thermoplastic resin
JP2010065123A (en) Heat-conductive molding
JP2009108425A (en) Carbon fiber and composite material using the same
JPWO2008108482A1 (en) Pitch-based carbon fiber, method for producing the same, and molded body
JP2009030215A (en) Carbon fiber and molded article using the same
JP2002088256A (en) Thermally conductive polymeric composition and thermally conductive molded product
JP2008189866A (en) Heat radiation material comprising carbon fiber-reinforced thermosetting resin
JP4971958B2 (en) Sheet-like thermally conductive molded body
JP2009108423A (en) Thermally conductive filler and molded product using the same