JP2002118300A - Oxide thermoelectric element manufactured by discharge plasma sintering method - Google Patents

Oxide thermoelectric element manufactured by discharge plasma sintering method

Info

Publication number
JP2002118300A
JP2002118300A JP2000310272A JP2000310272A JP2002118300A JP 2002118300 A JP2002118300 A JP 2002118300A JP 2000310272 A JP2000310272 A JP 2000310272A JP 2000310272 A JP2000310272 A JP 2000310272A JP 2002118300 A JP2002118300 A JP 2002118300A
Authority
JP
Japan
Prior art keywords
oxide
sintering
type semiconductor
type
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000310272A
Other languages
Japanese (ja)
Other versions
JP3462462B2 (en
Inventor
Yoshinobu Fujishiro
芳伸 藤代
Masanobu Tanno
正信 淡野
Hiroyoshi Takagi
弘義 高木
Kunihiro Maeda
邦裕 前田
Motoyuki Miyata
素之 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FINE CERAMICS RES ASS
Fine Ceramics Research Association
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
FINE CERAMICS RES ASS
Fine Ceramics Research Association
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FINE CERAMICS RES ASS, Fine Ceramics Research Association, National Institute of Advanced Industrial Science and Technology AIST filed Critical FINE CERAMICS RES ASS
Priority to JP2000310272A priority Critical patent/JP3462462B2/en
Publication of JP2002118300A publication Critical patent/JP2002118300A/en
Application granted granted Critical
Publication of JP3462462B2 publication Critical patent/JP3462462B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a junction type oxide thermoelectric element material and its manufacturing method where two or more kinds of semiconductor oxides are jointed. SOLUTION: In a method for manufacturing a junction type oxide thermoelectric element material, a conductive metal oxide compound containing alkali metal and transition metal of p-type semiconductor characteristics, a perovskite compound having an n-type semiconductor characteristics, and a conductive oxide powder containing zinc oxide of wurtzite type structure, are laminated by at least two layers. The oxide thermoelectric element is bonded by discharge plasma sintering process with pulse electrification under a pressure. A composite oxide thermoelectric conversion element material, in which p-type semiconductor material is jointed to an n-type semiconductor material, is provided where the conductive metal oxide containing alkali metal and transition metal of p-type semiconductor characteristics, the perovskite compound having n-type semiconductor characteristics, and the conductive oxide powder containing zinc oxide of wurtzite type structure are laminated by at least two layers, which is discharge-plasma-sintered with pulse electrification under a pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、2種類以上の材料
が接合した接合型酸化物熱電素子に関するものであり、
さらに詳しくは、放電プラズマ焼結法により、p型半導
体材料とn型半導体材料が接合した多結晶焼結体の複合
酸化物熱電変換素子を製造する方法及びそれにより得ら
れる酸化物熱電素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a junction type oxide thermoelectric element in which two or more materials are joined,
More specifically, the present invention relates to a method for producing a composite oxide thermoelectric conversion element of a polycrystalline sintered body in which a p-type semiconductor material and an n-type semiconductor material are joined by a discharge plasma sintering method, and an oxide thermoelectric element obtained by the method. It is.

【0002】[0002]

【従来の技術】2種類以上の酸化物半導体が接合するセ
ラミックス素子は、センサー素子や電子部品等への応用
において重要な材料である。高温でのセンサーや電極材
料等への利用においては、耐酸化性に優れる酸化物系半
導体材料を用いた素子の利用が期待されている。例え
ば、p−n接合を形成した半導体に温度差を付加するこ
とにより、ゼーベック効果により生じる電位差を利用す
る熱電変換材料へのセラミックス素子の利用は、廃熱エ
ネルギーの有効利用において重要である。特に、酸化物
半導体を接合した素子は、廃棄物焼却炉や自動車排ガス
等の700℃以上の温度で使用できるため、その開発が
望まれている。本発明は、このような2種類以上の半導
体酸化物が接合した多結晶焼結体の複合素子を容易に形
成する技術とそれにより得られる接合型酸化物熱電材料
に関する。
2. Description of the Related Art A ceramic element to which two or more kinds of oxide semiconductors are bonded is an important material in application to a sensor element, an electronic component and the like. In applications to sensors and electrode materials at high temperatures, the use of devices using oxide-based semiconductor materials having excellent oxidation resistance is expected. For example, the use of a ceramic element for a thermoelectric conversion material utilizing a potential difference generated by the Seebeck effect by adding a temperature difference to a semiconductor having a pn junction is important in the effective use of waste heat energy. In particular, an element to which an oxide semiconductor is bonded can be used at a temperature of 700 ° C. or more, such as in a waste incinerator or an automobile exhaust gas. The present invention relates to a technique for easily forming a composite element of a polycrystalline sintered body in which two or more types of semiconductor oxides are joined, and to a junction type oxide thermoelectric material obtained by the technique.

【0003】従来、p−n接合型熱電変換素子として実
用化されているものは、主にビスマスーテルル合金系や
鉄シリサイド合金系等の金属系のものであり、常圧焼結
やホットプレス焼結が主に利用されている。一方、研究
段階であるが、強相関電子系酸化物(NaCo2 4
等)や固溶制御型ZnO系等の金属熱電材料に匹敵する
熱電材料特性(熱電効率10%以上)を持つような酸化
物半導体が報告され始めている。それらの酸化物半導体
からなるp−n接合型熱電変換素子の作成において、p
型及びn型のそれぞれの酸化物半導体材料を組合せる場
合、ビスマスーテルル等の金属合金系と異なり、必ずし
も組成や結晶構造が類似する材料の組合せでは同等の起
電力や導電性を示さないので、熱電素子性能を向上させ
るには異種材料の接合を行わなくてはならない。
[0003] Conventionally, a pn junction type thermoelectric conversion element which has been put into practical use is mainly a metal type such as a bismuth-tellurium alloy type or an iron silicide alloy type, and is sintered under normal pressure or hot press sintering. Is mainly used. On the other hand, in the research stage, strongly correlated electron oxides (NaCo 2 O 4
Etc.) and oxide semiconductors having thermoelectric material properties (thermoelectric efficiency of 10% or more) comparable to metal thermoelectric materials such as a solid solution controlled ZnO-based material have begun to be reported. In the production of a pn junction type thermoelectric conversion element made of such an oxide semiconductor,
When the oxide semiconductor materials of the n-type and n-type are combined, unlike a metal alloy system such as bismuth tellurium, a combination of materials having similar compositions and crystal structures does not necessarily show the same electromotive force and conductivity. In order to improve device performance, joining of different materials must be performed.

【0004】しかしながら、異種材料では、組成や結晶
構造に起因して、熱膨張係数や反応による界面相形成に
よる亀裂形成や接触抵抗の向上等の材料間のマッチング
に問題があるため、直接、常圧焼結やホットプレス焼結
により熱電素子を製造することは難しい。また、押出し
成形による2種類の材料の積層化も、燃料電池酸化物電
極や触媒層の製造において試みられており、その応用が
期待できるが、焼成後の収縮による層剥離等の問題があ
るため、容易ではない。そのため、各々の酸化物半導体
を常圧焼結やホットプレス焼結した調製した多結晶材料
を白金や金等の金属ペースト又は薄板をバインダーとし
て利用し接合する、多段のプロセスを用いる場合が多
い。また、小型化や他の部品とのシステム化等を考慮す
ると、低コストで一つのプロセスにより、容易に、直
接、異種材料を接合する素子調製技術の開発が望まれて
いる。
However, different materials have problems in matching between materials, such as a thermal expansion coefficient, crack formation due to the formation of an interface phase due to a reaction, and improvement in contact resistance, due to the composition and crystal structure. It is difficult to manufacture a thermoelectric element by pressure sintering or hot press sintering. Also, lamination of two types of materials by extrusion has been tried in the production of fuel cell oxide electrodes and catalyst layers, and its application can be expected, but there is a problem such as delamination due to shrinkage after firing. ,It's not easy. Therefore, in many cases, a multi-stage process is used in which a prepared polycrystalline material obtained by sintering each oxide semiconductor under normal pressure or hot press and using a metal paste such as platinum or gold or a thin plate as a binder is joined. Also, in consideration of miniaturization, systematization with other components, and the like, it is desired to develop an element preparation technology for easily and directly joining different materials by a single process at a low cost.

【0005】2種類以上の酸化物半導体材料を2層以上
に多層化する接合型酸化物熱電素子を容易なプロセスで
調製する技術は、直列型電池による起電力の制御におい
て重要である。さらに、プロセスの簡素化によるコスト
ダウン、センサー材料等の他部品としての集積化及び小
型化も重要となるため、その手法の開発が望まれる。従
来行われているような常圧焼結やホットプレス焼結によ
り製造した各材料を、目的とする形状に加工後、金属ペ
ースト等のバインダーにより数層張合わせる場合、加工
及び接合プロセスが複雑になる。そのため、少ないプロ
セスでより簡単に製造する方法が必要であり、材料強度
等の製品性能向上やコスト低下を試みる必要がある。ま
た、各々焼結した材料をバインダーにより接合した場
合、バインダー層と酸化物半導体とのショットキー障壁
による電気抵抗や材料自身との反応等、様々な問題があ
るため、できるだけバインダーを使用せず、より短時間
で2種類以上の材料が接合した接合型酸化物熱電素子を
製造する技術が必要とされる。
A technique for preparing a junction-type oxide thermoelectric element in which two or more oxide semiconductor materials are formed into two or more layers by an easy process is important in controlling electromotive force by a series-type battery. Further, cost reduction by simplification of the process and integration and miniaturization as other components such as sensor materials are also important. When each material manufactured by conventional normal pressure sintering or hot press sintering is processed into the target shape and then several layers are bonded with a binder such as metal paste, the processing and joining process becomes complicated. Become. Therefore, there is a need for a simpler manufacturing method with a small number of processes, and it is necessary to try to improve product performance such as material strength and reduce costs. In addition, when the respective sintered materials are joined with a binder, there are various problems such as electric resistance due to a Schottky barrier between the binder layer and the oxide semiconductor and a reaction with the material itself. There is a need for a technique for manufacturing a junction oxide thermoelectric element in which two or more types of materials are joined in a shorter time.

【0006】一方、金属系の熱電素子や金属傾斜機能材
料の接合方法として、放電プラズマ焼結を利用する方法
が知られる。これは、真空下で導電性粒子に直流パルス
電流を流し、粒子間で生じるプラズマ放電により粒子を
活性化させて焼結を行うプロセスである。この方法で
は、局部的な粒子界面反応により焼結が進むため、短時
間で焼結が進み、粒子成長が進まないので、微細な粒子
からなる組織が形成できる。これらの焼結法を用いる各
種酸化物セラミックスの焼結がいろいろと試みられてい
るが、2種類以上の材料が接合した酸化物熱電素子製造
への利用は試みられていない。また、導電性の熱電半導
体酸化物を用いる多結晶体の製造において、その電気特
性と熱伝導特性の双方の制御が重要であり、焼結法等の
製造プロセスの違いによる多結晶体中の微細組織による
特性制御が期待できる。
On the other hand, as a joining method of a metal-based thermoelectric element or a metal functionally gradient material, a method utilizing discharge plasma sintering is known. This is a process in which a DC pulse current is applied to conductive particles under vacuum, and the particles are activated by plasma discharge generated between the particles to perform sintering. In this method, sintering proceeds due to a local particle interface reaction, so that sintering proceeds in a short time and particle growth does not proceed, so that a structure composed of fine particles can be formed. Various attempts have been made to sinter various oxide ceramics using these sintering methods, but no attempt has been made to use them in the manufacture of oxide thermoelectric elements in which two or more materials are joined. In addition, in the production of a polycrystalline body using a conductive thermoelectric semiconductor oxide, it is important to control both the electrical properties and the heat conduction properties. The property control by the organization can be expected.

【0007】このように、2種類以上の2層以上の酸化
物半導体の接合による多結晶酸化物熱電素子を、短時間
で一段のプロセスで製造する方法は重要であるが、常圧
焼結やホットプレス焼結では、異種材料の接合による界
面反応や残留歪みによる亀裂形成等、接合型熱電素子と
しての性能低下の問題がある。また、各多結晶材料を金
属ペースト等のバインダーを用いて接合する場合でも、
バインダーと酸化物半導体間の接触抵抗の発生や強度低
下、さらには、多段プロセスによる工程の複雑化や高コ
スト化が考えられる。
As described above, a method of manufacturing a polycrystalline oxide thermoelectric element by bonding two or more oxide semiconductors of two or more layers in a short time in a single-stage process is important. In hot press sintering, there is a problem of deterioration in performance as a junction type thermoelectric element, such as an interfacial reaction due to joining of dissimilar materials and crack formation due to residual strain. Also, when joining each polycrystalline material using a binder such as a metal paste,
It is conceivable that contact resistance between the binder and the oxide semiconductor may be generated or strength may be reduced, and further, the process may be complicated and cost may be increased by a multi-step process.

【0008】[0008]

【発明が解決しようとする課題】このような状況の中
で、本発明者らは、上記従来技術に鑑みて、上記従来法
のような問題がなく、2種以上の半導体酸化物が接合し
た多結晶焼結体の複合素子を容易に形成することが可能
な新しい方法を開発することを目標として鋭意研究を積
み重ねた結果、特定の導電性酸化物の粉末を2層以上重
ね、加圧下で放電プラズマ焼結することにより所期の目
的を達成し得ることを見出し、かかる知見に基づいて、
本発明を完成するに至った。本発明は、接合と焼結を一
度で行い、2種以上の半導体酸化物が多層に接合した多
結晶焼結体の複合素子を容易に形成する方法を提供する
ことを目的とするものである。また、本発明は、放電プ
ラズマ焼結法により製造した接合型酸化物熱電材料を提
供することを目的とするものである。また、本発明は、
例えば、NaCo24 とアルミ固溶型酸化亜鉛からな
るπ型の多結晶酸化物熱電素子等の、p−n接合型酸化
物熱電素子を放電プラズマ焼結により一段階で製造する
方法を提供することを目的とするものである。
Under these circumstances, the present inventors, in view of the above prior art, have found that two or more types of semiconductor oxides have been joined without the problem of the above conventional method. As a result of intensive research aimed at developing a new method capable of easily forming a composite element of a polycrystalline sintered body, two or more layers of a specific conductive oxide powder were stacked, By finding that the intended purpose can be achieved by spark plasma sintering, based on such knowledge,
The present invention has been completed. An object of the present invention is to provide a method for easily forming a composite element of a polycrystalline sintered body in which two or more types of semiconductor oxides are bonded in a multilayer by performing bonding and sintering at one time. . Another object of the present invention is to provide a junction type oxide thermoelectric material manufactured by a discharge plasma sintering method. Also, the present invention
For example, a method for manufacturing a pn junction type oxide thermoelectric element such as a π-type polycrystalline oxide thermoelectric element composed of NaCo 2 O 4 and aluminum solid solution type zinc oxide by discharge plasma sintering in one step is provided. It is intended to do so.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
の本発明は、以下の技術的手段から構成される。 (1)2種以上の半導体酸化物が接合した多結晶酸化物
焼結体を接合と焼結を一段階で行って製造する方法であ
って、2種以上の異種組成の導電性酸化物の粉末を2層
以上重ね、加圧下でパルス通電による放電プラズマ焼結
により接合及び焼結して複合素子材料を製造することを
特徴とする接合型酸化物熱電素子材料の製造方法。 (2)p型半導体特性を有するアルカリ金属及び遷移金
属を含む導電性金属酸化物化合物とn型半導体特性を有
するペロブスカイト化合物ならびにウルツ鉱型構造の酸
化亜鉛を含む導電性酸化物の粉末を2層以上重ね、パル
ス通電による放電プラズマ焼結法により2種類以上の材
料が数ナノ〜マイクロメータサイズの粒子間で直接接合
した接合型酸化物熱電素子材料を製造する前記(1)に
記載の方法。 (3)前記(2)に記載の方法で製造してなる複合素子
材料であって、p型半導体特性を有するアルカリ金属及
び遷移金属を含む導電性金属酸化物とn型半導体特性を
有するペロブスカイト化合物ならびにウルツ鉱型構造の
酸化亜鉛を含む導電性酸化物の粉末を2層以上重ね、加
圧下でパルス通電による放電プラズマ焼結をすることに
より得られる、p型半導体材料とn型半導体材料が接合
した複合酸化物熱電変換素子材料。
The present invention for solving the above-mentioned problems comprises the following technical means. (1) A method for producing a polycrystalline oxide sintered body in which two or more kinds of semiconductor oxides are joined by performing joining and sintering in one stage, wherein two or more kinds of conductive oxides having different compositions are used. A method for producing a junction type oxide thermoelectric element material, comprising stacking two or more layers of powder, and joining and sintering them by discharge plasma sintering under pulsed pressure under pressure to produce a composite element material. (2) Two layers of a conductive metal oxide compound containing an alkali metal and a transition metal having p-type semiconductor characteristics, a perovskite compound having n-type semiconductor characteristics, and a conductive oxide powder containing zinc oxide having a wurtzite structure The method according to (1) above, wherein a bonded oxide thermoelectric element material in which two or more kinds of materials are directly bonded between particles of several nanometers to micrometers in size by a discharge plasma sintering method by pulse current application. (3) A composite device material produced by the method according to (2), wherein the conductive metal oxide contains an alkali metal and a transition metal having p-type semiconductor characteristics and a perovskite compound having n-type semiconductor characteristics. A p-type semiconductor material and an n-type semiconductor material obtained by stacking two or more layers of conductive oxide powder containing zinc oxide having a wurtzite structure and performing discharge plasma sintering under pulsed current under pressure Composite oxide thermoelectric conversion element material.

【0010】[0010]

【発明の実施の形態】次に、本発明について更に詳細に
説明する。本発明は、上記の課題を解決するために、次
の技術的手段を採用する。 1.酸化物熱電素子の放電プラズマ法による焼結 多結晶酸化物熱電材料の熱電性能を向上させる上で、多
結晶バルク体中の粒子径の大きさ等の組織制御が重要で
ある。その一つとして、焼結時の粒子成長を抑え、数マ
イクロメータ以下の微細な粒子からなる組織を形成する
ことは熱伝導性の制御等が可能となる。また、真空中で
電気を導通しながら焼結することにより物質中の電子キ
ャリア濃度の向上を促し導電性の向上につながる。そこ
で、金属系の熱電材料素子としての利用が検討されてい
るp型半導体特性を有するアルカリ金属及び遷移金属を
含む導電性金属酸化物化合物、例えば、NaCo2 O4
又はNa,Li固溶型正方晶酸化ニッケル等と、n型半
導体特性を有するウルツ鉱型構造の酸化亜鉛等の導電性
酸化物のそれぞれの出発粉体を加圧下、真空中で放電プ
ラズマ焼結することを検討した。その結果、結晶粒子径
が小さい多結晶組織からなるバルク体が900℃付近の
低温で3〜5分程の短時間で製造できた。熱電性能はp
型のNaCo24 多結晶体及びn型の酸化亜鉛多結晶
体にて1℃の温度差で、200μVほどの熱起電力が得
られた。
Next, the present invention will be described in more detail. The present invention employs the following technical means in order to solve the above problems. 1. Sintering of oxide thermoelectric element by discharge plasma method In order to improve the thermoelectric performance of the polycrystalline oxide thermoelectric material, it is important to control the structure such as the size of the particle diameter in the bulk polycrystalline body. As one of them, controlling the growth of particles during sintering and forming a structure composed of fine particles of several micrometers or less makes it possible to control thermal conductivity and the like. Further, sintering while conducting electricity in a vacuum promotes an increase in the electron carrier concentration in the substance, which leads to an improvement in conductivity. Therefore, a conductive metal oxide compound containing an alkali metal and a transition metal having p-type semiconductor properties, which is being considered for use as a metal-based thermoelectric material element, such as NaCo2 O4
Alternatively, spark plasma sintering of starting powders of Na, Li solid solution type tetragonal nickel oxide or the like and a conductive oxide such as wurtzite type zinc oxide having n-type semiconductor characteristics in a vacuum under pressure. Considered to do. As a result, a bulk body having a polycrystalline structure with a small crystal particle diameter was produced at a low temperature of around 900 ° C. in a short time of about 3 to 5 minutes. Thermoelectric performance is p
With a temperature difference of 1 ° C., a thermoelectromotive force of about 200 μV was obtained between the polycrystalline NaCo 2 O 4 and the polycrystalline n-type zinc oxide.

【0011】 2.酸化物熱電素子の放電プラズマによる直接接合 上記1と同様に、加圧下の通電による焼結過程におい
て、p型及びn型の酸化物半導体を焼結と接合を同時に
行えれば、各酸化物半導体バルクの組織制御による電気
的・熱的特性の向上とともに、p型及びn型の両酸化物
半導体間の機械的な接合と電気的な接合を一度に形成で
きる。そこで、放電プラズマ焼結法を用い、p型半導体
特性を有するアルカリ金属及び遷移金属を含む導電性金
属酸化物化合物、例えば、NaCo2 4 又はNa,L
i固溶型正方晶酸化ニッケル等と、n型半導体特性を有
するウルツ鉱型構造の酸化亜鉛等の導電性酸化物のそれ
ぞれの出発粉体を交互に積層させ、加圧下、真空中で放
電プラズマ焼結することを検討した。その結果、p−n
接合型酸化物熱電素子を一段階で製造できた。また、そ
れら素子の抵抗は常圧焼結に比べて低くなることが分か
った。さらに、NaCo24 と2mol%アルミ固溶
型酸化亜鉛からなるπ型の多結晶酸化物熱電素子での熱
起電力は約400℃の温度差で約80mVの起電力が得
られた。
[0011] 2. Direct Bonding of Oxide Thermoelectric Elements by Discharge Plasma As in the case of 1 above, if sintering and bonding of p-type and n-type oxide semiconductors can be performed simultaneously in the sintering process by energization under pressure, each oxide semiconductor With the improvement of the electrical and thermal characteristics by controlling the structure of the bulk, mechanical and electrical bonding between both the p-type and n-type oxide semiconductors can be formed at once. Therefore, using a discharge plasma sintering method, a conductive metal oxide compound containing an alkali metal and a transition metal having p-type semiconductor characteristics, for example, NaCo 2 O 4 or Na, L
The starting powders of i solid solution type tetragonal nickel oxide and the like and conductive oxides such as zinc oxide having a wurtzite type structure having n-type semiconductor characteristics are alternately laminated, and the discharge plasma is applied under vacuum and under pressure. We considered sintering. As a result, pn
A junction-type oxide thermoelectric element could be manufactured in one step. In addition, it was found that the resistance of these elements was lower than that of normal pressure sintering. Further, the thermoelectromotive force of a π-type polycrystalline oxide thermoelectric element composed of NaCo 2 O 4 and 2 mol% aluminum solid solution type zinc oxide was about 80 mV at a temperature difference of about 400 ° C.

【0012】本発明は、2種類以上の酸化物半導体をそ
れぞれの原料粉体を2層以上に積層して、加圧下、真空
中での放電プラズマにより直接、低温及び短時間で、一
段階プロセスによりp型及びn型の酸化物半導体が接合
した酸化物熱電素子を製造する方法と、得られる素子材
料を提供するものである。出発原料としては、常圧焼結
やホットプレス焼結等で用いられる、混合及び固体反応
後ボールミルにより得られたp型半導体特性を有するア
ルカリ金属及び遷移金属を含む導電性金属酸化物化合
物、例えば、NaCo24 、Na、Li固溶型正方晶
酸化ニッケル、ビスマスやストロンチウムが固溶した超
格子構造を有するCa2 Co25 のような層状化合
物、及び過剰酸素の生成による正孔キャリアによるホッ
ピング電子伝導が見られる遷移金属を含む酸化物等と、
n型半導体特性を有するウルツ鉱型構造の酸化亜鉛、ペ
ロブスカイト構造のチタン酸塩、ニオブ酸塩、ルチル型
構造の酸化スズや酸化チタン、及び電子キャリアの移動
が可能なバンド形成による電子伝導が見られる遷移金属
や希土類金属を含む酸化物等の導電性酸化物のそれぞれ
の粉体原料が用いられる。粉体の粒度は、1ナノメート
ルより小さな超微小粉体から数〜数十マイクロメートル
の微小粉体で、これらの出発粉体原料を放電プラズマ焼
結装置のカーボンダイス中で粉体として積み重ね、真空
中で両試料間に両方向から荷重をかけ加圧し、カーボン
ダイス及び試料へ直流パルス通電し、生成する放電プラ
ズマによる発熱を利用し、焼結を行う。上記焼結方法に
おいて、圧力は、10MPa〜47MPa、時間は、1
分から5分、温度は、600℃〜900℃、印加電流電
圧は、1〜3KA、1〜10Vで温度により自動的に制
御されることが好ましい。
The present invention provides a one-stage process in which two or more oxide semiconductors are stacked in two or more layers of respective raw material powders and directly under low pressure and in a short time by discharge plasma in a vacuum under pressure. The present invention provides a method for producing an oxide thermoelectric element in which p-type and n-type oxide semiconductors are joined together, and the resulting element material. As a starting material, a conductive metal oxide compound containing an alkali metal and a transition metal having a p-type semiconductor characteristic obtained by a ball mill after mixing and solid reaction, which is used in normal pressure sintering or hot press sintering, for example, , NaCo 2 O 4 , Na, Li solid solution type tetragonal nickel oxide, layered compounds such as Ca 2 Co 2 O 5 having a superlattice structure in which bismuth and strontium are dissolved, and hole carriers due to generation of excess oxygen An oxide containing a transition metal in which hopping electron conduction is observed, and
Electron conduction due to wurtzite-type zinc oxide, perovskite-type titanate and niobate, rutile-type tin oxide and titanium oxide having n-type semiconductor characteristics, and band formation capable of moving electron carriers were observed. Powdered materials of the conductive oxides such as oxides containing transition metals and rare earth metals are used. The particle size of the powder is from ultra fine powder smaller than 1 nanometer to fine powder of several to several tens of micrometers, and these starting powder materials are stacked as powder in a carbon die of a discharge plasma sintering device. Then, a load is applied between the two samples in a vacuum in both directions to apply pressure, a DC pulse is applied to the carbon die and the samples, and sintering is performed using heat generated by the generated discharge plasma. In the sintering method, the pressure is 10 MPa to 47 MPa, and the time is 1 MPa.
It is preferable that the temperature is automatically controlled at a temperature of 600 ° C. to 900 ° C. and an applied current voltage of 1 to 3 KA and 1 to 10 V for 5 to 5 minutes.

【0013】これにより、接合と焼結を一段階で行っ
て、p型半導体特性を有するアルカリ金属及び遷移金属
を含む導電性金属酸化物化合物、例えば、NaCo2
4 又はNa,Li固溶型正方晶酸化ニッケル等と、n型
半導体特性を有するウルツ鉱型構造の酸化亜鉛等の導電
性酸化物が微粒子として接合した多結晶体の酸化物半導
体素子を容易に製造することができる。さらに、製造温
度及び時間は、通常の常圧焼結やホットプレス焼結に比
べ小さくすることができる。また、生成するそれぞれの
多結晶バルク体は、数マイクロメータの微細な粒子から
なる組織を形成し、電気的な導電性も常圧焼結法に比べ
向上する。
Thus, the joining and sintering are performed in one step, and a conductive metal oxide compound containing an alkali metal and a transition metal having p-type semiconductor characteristics, for example, NaCo 2 O
4 or a polycrystalline oxide semiconductor element in which a conductive oxide such as a wurtzite type zinc oxide having an n-type semiconductor characteristic and a conductive oxide such as a zinc oxide having a wurtzite structure having an n-type semiconductor characteristic are easily bonded as fine particles. Can be manufactured. Further, the production temperature and time can be reduced as compared with ordinary normal pressure sintering and hot press sintering. In addition, each of the polycrystalline bulk bodies formed forms a structure composed of fine particles of several micrometers, and the electrical conductivity is improved as compared with the normal pressure sintering method.

【0014】本発明の方法は、次のような利点を有す
る。 (1)焼結と異種組成の酸化物の接合が容易にできる。 (2)数種の酸化物半導体粒子が多層に接合した材料の
製造が容易にできる。 (3)数ナノ〜マイクロメータサイズの微小な粒子界面
間での半導体酸化物の結合が容易に行える。 (4)他方法に比べて短時間で焼結及び接合が行える。 (5)雰囲気制御によるキャリア濃度制御が行える。
The method of the present invention has the following advantages. (1) Sintering and joining of oxides of different compositions can be facilitated. (2) A material in which several kinds of oxide semiconductor particles are joined in a multilayer can be easily manufactured. (3) Bonding of semiconductor oxides between fine particle interfaces of several nanometers to micrometers can be easily performed. (4) Sintering and joining can be performed in a shorter time than in other methods. (5) Carrier concentration control by atmosphere control can be performed.

【0015】また、上記方法で得られた複合素子材料は
次のような特性を有する。 (1)数マイクロメータの微細な粒子からなる組織を有
する。 (2)多層に接合した接合型多結晶バルク体が生成す
る。 (3)導電性は、通常の固相反応による製造法に比べ
て、同等もしくは一桁ほど高い特性を有する。そのた
め、作製素子の抵抗値も低下する。 (4)熱起電力は導電性の向上にともない若干低い値と
なるが、通常の固相反応による製造法と同じオーダーの
起電力特性を有する。 (5)粒子成長が進まず粒子界面が増加するため多結晶
体の熱伝導性は低下する。 (6)加圧下での焼結のため緻密な焼結体が生成しやす
い。 (7)n型/p型半導体粒子間界面での接合により材料
間の接着性が良い。
The composite device material obtained by the above method has the following characteristics. (1) It has a structure composed of fine particles of several micrometers. (2) A junction type polycrystalline bulk body joined in multiple layers is generated. (3) The conductivity is equal to or higher by an order of magnitude than that of a production method using a normal solid-phase reaction. Therefore, the resistance value of the manufactured element also decreases. (4) Although the thermal electromotive force becomes a slightly lower value as the conductivity is improved, the electromotive force has the same order of magnitude as the electromotive force characteristic of a production method using a usual solid phase reaction. (5) Since the grain growth does not progress and the grain interface increases, the thermal conductivity of the polycrystal decreases. (6) A dense sintered body is easily formed due to sintering under pressure. (7) Adhesion between materials is good due to bonding at the interface between n-type / p-type semiconductor particles.

【0016】[0016]

【実施例】以下、実施例により本発明をさらに具体的に
説明するが、本発明はこれらの実施例によって何ら限定
されるものではない。 実施例 (1)前駆体粉末の調製 図1及び表1に示すように、市販の酸化亜鉛及びアルミ
ナ粉末を所定比でボールミルにて24時間混合し、n型
のアルミ固溶型酸化亜鉛の前駆体粉末を調製した(ZA
01及びZA02)。また、炭酸ナトリウム及び四酸化
三コバルトをボールミルで乾式混合後、880℃、20
時間のフラックス反応によりNaCo2 4 を合成した
(NC880)。さらに、炭酸ナトリウムと酸化ニッケ
ルを所定比でボールミルにより24時間混合し、850
℃、80時間フラックス反応によりNa0.05Ni0.95
を合成し、さらに、Li2 Oを所定量混合しボールミル
にて6時間混合した後、ペレット成形し1250℃、4
時間反応させナトリウムーリチウム固溶型正方晶酸化ニ
ッケル(NN05)を調製した。それぞれの出発原料
は、再度ボールミルにて粉砕後、網目250マイクロメ
ータの篩いで分級し、図2に示すように、ZA01−N
C880、ZA02−NC880、ZA01−NN05
及びZA02−NN05の組合せで各粉末(図2では、
SampleA、Bとして示した)を約6gづづ内径3
0mmのグラファイトカーボンダイス(グラファイト
型:φ30mm×60mm)中に交互に積み重ねた。
The present invention will now be described in more detail with reference to the following examples.
Although described, the present invention is not limited by these Examples.
It is not something to be done. Examples (1) Preparation of precursor powder As shown in FIG. 1 and Table 1, commercially available zinc oxide and aluminum
The powder is mixed in a ball mill at a predetermined ratio for 24 hours, and n-type
Of aluminum oxide solid solution type zinc oxide was prepared (ZA
01 and ZA02). Also, sodium carbonate and tetroxide
After dry-mixing tricobalt with a ball mill, 880 ° C, 20
Time flux reactionTwo OFourWas synthesized
(NC880). In addition, sodium carbonate and nickel oxide
At a predetermined ratio by a ball mill for 24 hours.
At 80 ° C. for 80 hours0.05Ni0.95O
And further, LiTwo O is mixed in a predetermined amount and a ball mill
After mixing for 6 hours at 1,250 ° C.,
Reaction time for sodium-lithium solid solution type tetragonal oxide
A nickel (NN05) was prepared. Each starting material
Is milled again with a ball mill,
The mixture was sieved with a sieve, and as shown in FIG.
C880, ZA02-NC880, ZA01-NN05
And ZA02-NN05 in combination with each powder (in FIG. 2,
Samples A and B) were weighed in approx.
0mm graphite carbon dice (graphite
(Type: φ30 mm × 60 mm).

【0017】[0017]

【表1】 [Table 1]

【0018】(2)放電プラズマ焼結 実施例2 試料を入れたグラファイトカーボンダイスを、10-2
orr程の真空にし、30〜40MPaの加圧下、直流
パルス印加により900〜1150℃で、3〜5分間、
放電プラズマ装置(住友石炭鉱業社製Dr.Sinte
r)により放電プラズマ焼結を行った。焼結中、印可荷
重は一定に調節した。図3に、30MPaの加圧下、9
00℃、3分の焼結により得られたZA02−NC88
0の接合型酸化物熱電素子、さらに接合部破断面の及び
各領域のEDX分析結果を示す。また、図4〜7には、
ZA01−NC880、ZA02−NC880、ZA0
1−NN05及びZA02−NN05の接合部のSEM
写真を示す。
(2) Spark Plasma Sintering Example 2 A graphite carbon die containing a sample was placed in a 10 -2 t
Approximately orr, and under a pressure of 30 to 40 MPa, applying a DC pulse at 900 to 1150 ° C. for 3 to 5 minutes,
Discharge plasma device (Dr. Sine manufactured by Sumitomo Coal Mining Co., Ltd.)
r), spark plasma sintering was performed. During sintering, the applied load was kept constant. FIG. 3 shows that under pressure of 30 MPa, 9
ZA02-NC88 obtained by sintering at 00 ° C for 3 minutes
The EDX analysis results of the junction type oxide thermoelectric element of No. 0, the fracture surface of the junction, and each region are shown. In addition, FIGS.
ZA01-NC880, ZA02-NC880, ZA0
SEM of junction of 1-NN05 and ZA02-NN05
A photograph is shown.

【0019】上記により、放電プラズマ焼結により各酸
化物半導体間の接合と焼結が一度で行えた。また、実験
を行ったアルミ固溶型酸化亜鉛及びNaCo24 の組
成も焼結前後で変化がなく、放電プラズマ焼結によるナ
トリウムの蒸発もほとんど見られなかった。EDX分析
では接合部での反応相の形成は確認されなかった。同様
に、ZA01−NC880、ZA01−NN05及びZ
A02−NN05でも多結晶酸化物半導体の短時間での
焼結と接合が同時にできた。
As described above, the joining and sintering between the respective oxide semiconductors can be performed at once by the discharge plasma sintering. In addition, the compositions of the aluminum-dissolved zinc oxide and NaCo 2 O 4 in the experiment did not change before and after sintering, and almost no sodium was evaporated by spark plasma sintering. EDX analysis did not confirm the formation of a reaction phase at the junction. Similarly, ZA01-NC880, ZA01-NN05 and Z
Even with A02-NN05, sintering and joining of the polycrystalline oxide semiconductor in a short time could be performed simultaneously.

【0020】放電プラズマ焼結後のNaCo24 多結
晶体では5μm程の繊維状粒子が絡まったような組織が
見られ、粒子間には隙間が見られた。一方、アルミ固溶
型酸化亜鉛では2μm以下の微細な粒子からなる多結晶
体組織が確認できた。また、EDXではアルミナ単独組
成の粒子は観察できなかったことから、混合したアルミ
ナは酸化亜鉛に固溶したと考えられる。さらに、酸化ニ
ッケルでは10μmほどの比較的大きな粒子からなる多
結晶焼結体組織が見られた。また、同様に焼結温度を1
000及び1150℃に上げた場合、アルミ固溶型酸化
亜鉛は焼結されたが、NC880及びNNは溶融蒸発し
たため、遷移金属系の酸化物半導体との焼結と接合の同
時形成では900℃付近の放電プラズマ焼結がもっとも
良かった。上記により、通常の常圧焼結やホットプレス
焼結に比べて低温で焼成と接合が同時にできた。
The structure of the NaCo 2 O 4 polycrystal after the discharge plasma sintering was such that fibrous particles of about 5 μm were entangled, and gaps were observed between the particles. On the other hand, in the case of aluminum solid solution type zinc oxide, a polycrystalline structure composed of fine particles of 2 μm or less was confirmed. In addition, since particles having a single composition of alumina could not be observed in EDX, it is considered that the mixed alumina dissolved in zinc oxide. Furthermore, in the case of nickel oxide, a polycrystalline sintered body structure composed of relatively large particles of about 10 μm was observed. Similarly, the sintering temperature is set to 1
When the temperature was increased to 000 and 1150 ° C., the aluminum solid solution type zinc oxide was sintered, but NC880 and NN were melted and evaporated. Was the best. As described above, sintering and joining were simultaneously performed at a lower temperature than in ordinary normal pressure sintering or hot press sintering.

【0021】(3)酸化物半導体素子の特性 900℃、3分の放電プラズマ焼結法により製造した代
表的なZA02−NC880酸化物半導体素子のそれぞ
れの酸化物半導体の電気抵抗、熱起電力(ゼーベック係
数)の温度変化を図8に示す。また、図2のような5x
5x15mmのπ型素子を用い、各温度差でのZA02
−NC880酸化物半導体素子の熱起電力とセル抵抗の
温度変化を図9に示す。ZA02及びNC880の電気
抵抗は常圧焼結により製造したものに比べて低下した。
また、放電プラズマ焼結により製造したZA02及びN
C880多結晶体の熱起電力は常圧焼結のものより若干
低下した。これは、真空下での直流パルス放電により部
分的な酸化還元によりキャリアとなる酸素欠陥等が生成
しやすくなるため、キャリア濃度が増加し、それにとも
ない、抵抗が低下したと考えられる。一方、それらのキ
ャリア濃度の増加は、材料の伝導度を同時に向上させる
ため、ゼーベック係数は減少すると考えられる。それぞ
れの酸化物半導体の熱起電力は200μV/Kほどと高
い値であった。さらに、試作したZA02−NC880
酸化物半導体π型素子では、出力抵抗1〜10 K o
hmで、800℃(温度差約400℃)において約83
mVの起電力を示した。
(3) Characteristics of Oxide Semiconductor Device The electric resistance and the thermoelectromotive force of each oxide semiconductor of a typical ZA02-NC880 oxide semiconductor device manufactured by a discharge plasma sintering method at 900 ° C. for 3 minutes ( FIG. 8 shows the temperature change of the Seebeck coefficient). Also, as shown in FIG.
Using a 5 × 15 mm π-type element, ZA02 at each temperature difference
FIG. 9 shows the temperature change of the thermoelectromotive force and the cell resistance of the -NC880 oxide semiconductor element. The electrical resistance of ZA02 and NC880 was lower than those manufactured by normal pressure sintering.
ZA02 and N2 produced by spark plasma sintering
The thermoelectromotive force of C880 polycrystal was slightly lower than that of normal pressure sintering. This is considered to be due to the fact that oxygen vacancies and the like serving as carriers are likely to be generated by partial oxidation-reduction by DC pulse discharge under vacuum, so that the carrier concentration increases and the resistance decreases accordingly. On the other hand, it is considered that the Seebeck coefficient decreases because the increase in the carrier concentration simultaneously increases the conductivity of the material. The thermal electromotive force of each oxide semiconductor was a high value of about 200 μV / K. Furthermore, the prototype ZA02-NC880
In an oxide semiconductor π-type element, the output resistance is 1 to 10 Ko.
hm at 800 ° C. (temperature difference about 400 ° C.)
An electromotive force of mV was shown.

【0022】以上の実施例により、p型及びn型の酸化
物半導体粒子を交互に積み重ね、加圧下900℃付近で
3〜5分間、放電プラズマ焼結を行うことにより、焼結
と異種組成の酸化物の接合が容易にできることが分かっ
た。また、試料量の調製と積層数により、数種の酸化物
半導体粒子が多層に接合する材料の製造も簡単に行える
ことが分かった。
According to the above-described embodiment, p-type and n-type oxide semiconductor particles are alternately stacked, and subjected to discharge plasma sintering at about 900 ° C. for 3 to 5 minutes under pressure, whereby sintering and heterogeneous composition are performed. It was found that the bonding of oxides was easy. In addition, it was found that the production of a material in which several kinds of oxide semiconductor particles are bonded in a multilayer can be easily performed by adjusting the sample amount and the number of layers.

【0023】[0023]

【発明の効果】本発明により、1)2種以上の半導体酸
化物の接合と焼結を一度で行うことができる、2)焼結
と異種組成の酸化物の接合が容易にできる、3)数種の
酸化物半導体粒子が多層に接合する財用の製造を簡単に
行うことができる、4)2種以上の半導体酸化物が接合
した多結晶焼結体の複合素子を容易に形成することがで
きる、p−n接合型熱電変換素子を簡便に製造すること
ができる、5)ナノ〜ミクロサイズの粒子界面での直接
的な接合が可能であり、それにより半導体接合による特
性が利用できる、6)焼結時間が短いため微細粒子から
なる緻密な組織をもつ多結晶材料が合成できる、という
格別の効果が得られる。
According to the present invention, 1) bonding and sintering of two or more kinds of semiconductor oxides can be performed at once, 2) sintering and bonding of oxides of different compositions can be easily performed, and 3). It is possible to easily manufacture a product in which several kinds of oxide semiconductor particles are joined in a multilayer manner. 4) To easily form a composite element of a polycrystalline sintered body in which two or more kinds of semiconductor oxides are joined. 5) It is possible to easily manufacture a pn junction type thermoelectric conversion element. 5) It is possible to perform direct bonding at the nano- to micro-size particle interface, thereby utilizing the characteristics of the semiconductor bonding. 6) Since the sintering time is short, a special effect that a polycrystalline material having a fine structure composed of fine particles can be synthesized can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】試料の調製法を示す。FIG. 1 shows a method for preparing a sample.

【図2】放電プラズマ焼結法の略図を示す。FIG. 2 shows a schematic of the spark plasma sintering method.

【図3】放電プラズマ焼結により製造したZA02−N
C880接合型酸化物熱電素子とその接合部及び各組織
のEDX分析結果を示す。
FIG. 3 shows ZA02-N manufactured by spark plasma sintering
3 shows EDX analysis results of a C880 junction-type oxide thermoelectric element, its junction, and each structure.

【図4】ZA01−NC880接合型酸化物熱電素子の
破断面のSEM像を示す。
FIG. 4 shows an SEM image of a fractured surface of a ZA01-NC880 junction type oxide thermoelectric element.

【図5】ZA02−NC880接合型酸化物熱電素子の
破断面のSEM像を示す。
FIG. 5 shows a SEM image of a fracture surface of a ZA02-NC880 junction type oxide thermoelectric element.

【図6】ZA01−NN05接合型酸化物熱電素子の破
断面のSEM像を示す。
FIG. 6 shows a SEM image of a fractured surface of a ZA01-NN05 junction type oxide thermoelectric element.

【図7】ZA02−NN05接合型酸化物熱電素子の破
断面のSEM像を示す。
FIG. 7 shows an SEM image of a fractured surface of a ZA02-NN05 junction type oxide thermoelectric element.

【図8】放電プラズマ焼結により製造したZA01焼結
体の電気抵抗及びゼーベック係数の温度変化を示す。
FIG. 8 shows the temperature change of electric resistance and Seebeck coefficient of a ZA01 sintered body manufactured by spark plasma sintering.

【図9】放電プラズマ焼結により製造したNC880焼
結体の電気抵抗及びゼーベック係数の温度変化を示す。
FIG. 9 shows the temperature change of electric resistance and Seebeck coefficient of an NC880 sintered body manufactured by spark plasma sintering.

【図10】ZA01−NC880接合型π型酸化物熱電
素子(図3)の熱起電力の温度変化を示す。
FIG. 10 shows the temperature change of the thermoelectromotive force of the ZA01-NC880 junction type π-type oxide thermoelectric element (FIG. 3).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 淡野 正信 愛知県名古屋市名東区平和が丘1丁目70番 地 猪子石住宅9棟306号 (72)発明者 高木 弘義 愛知県春日井市上条町1−5−2、藤和シ ティーコープ春日井駅前 (72)発明者 前田 邦裕 茨城県日立市台原町2−14−16 (72)発明者 宮田 素之 愛知県名古屋市中村区鈍池2丁目53番地 ライオンズマンション岩塚A205 Fターム(参考) 4G026 BA02 BA03 BB02 BB03 BB37 BC01 BE03 BG05 BG22 BG25 BH06  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masanobu Aano 1-70 Heiwagaoka, Meito-ku, Nagoya-shi, Aichi Prefecture Inogishi House 9 Building 306 (72) Inventor Hiroyoshi Takagi 1 Kamijo-cho, Kasugai-shi, Aichi Prefecture −5-2, Towa City Corp Kasugai Ekimae (72) Inventor Kunihiro Maeda 2-14-16, Taiharacho, Hitachi City, Ibaraki Prefecture (72) Inventor Motoyuki Miyata 2-53 Naruike, Nakamura-ku, Nagoya City, Aichi Prefecture The Lions Apartment Iwazuka A205 F-term (reference) 4G026 BA02 BA03 BB02 BB03 BB37 BC01 BE03 BG05 BG22 BG25 BH06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 2種以上の半導体酸化物が接合した多結
晶酸化物焼結体を接合と焼結を一段階で行って製造する
方法であって、2種以上の異種組成の導電性酸化物の粉
末を2層以上重ね、加圧下でパルス通電による放電プラ
ズマ焼結により接合及び焼結して複合素子材料を製造す
ることを特徴とする接合型酸化物熱電素子材料の製造方
法。
1. A method for producing a polycrystalline oxide sintered body in which two or more kinds of semiconductor oxides are joined by performing joining and sintering in one step, wherein the conductive oxide has two or more kinds of different compositions. A method for producing a junction type oxide thermoelectric element material, comprising laminating two or more layers of material powder, joining under pressure and sintering by discharge plasma sintering by pulsed electric current to produce a composite element material.
【請求項2】 p型半導体特性を有するアルカリ金属及
び遷移金属を含む導電性金属酸化物化合物とn型半導体
特性を有するペロブスカイト化合物ならびにウルツ鉱型
構造の酸化亜鉛を含む導電性酸化物の粉末を2層以上重
ね、パルス通電による放電プラズマ焼結法により2種類
以上の材料が数ナノ〜マイクロメータサイズの粒子間で
直接接合した接合型酸化物熱電素子材料を製造する請求
項1に記載の方法。
2. A powder of a conductive metal oxide compound containing an alkali metal and a transition metal having a p-type semiconductor characteristic, a perovskite compound having an n-type semiconductor characteristic, and a conductive oxide powder containing a zinc oxide having a wurtzite structure. 2. The method according to claim 1, wherein two or more kinds of materials are directly bonded between particles of several nanometers to micrometers in size by a discharge plasma sintering method using a pulsed electric current to form a bonded oxide thermoelectric element material. .
【請求項3】 請求項2に記載の方法で製造してなる複
合素子材料であって、p型半導体特性を有するアルカリ
金属及び遷移金属を含む導電性金属酸化物とn型半導体
特性を有するペロブスカイト化合物ならびにウルツ鉱型
構造の酸化亜鉛を含む導電性酸化物の粉末を2層以上重
ね、加圧下でパルス通電による放電プラズマ焼結をする
ことにより得られる、p型半導体材料とn型半導体材料
が接合した複合酸化物熱電変換素子材料。
3. A composite element material produced by the method according to claim 2, wherein the conductive metal oxide contains an alkali metal and a transition metal having p-type semiconductor characteristics and a perovskite having n-type semiconductor characteristics. A p-type semiconductor material and an n-type semiconductor material obtained by stacking two or more layers of a compound and a conductive oxide powder containing zinc oxide having a wurtzite structure and performing discharge plasma sintering under pulsed current under pressure are obtained. Bonded composite oxide thermoelectric conversion element material.
JP2000310272A 2000-10-11 2000-10-11 Oxide thermoelectric element manufactured by spark plasma sintering Expired - Lifetime JP3462462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000310272A JP3462462B2 (en) 2000-10-11 2000-10-11 Oxide thermoelectric element manufactured by spark plasma sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000310272A JP3462462B2 (en) 2000-10-11 2000-10-11 Oxide thermoelectric element manufactured by spark plasma sintering

Publications (2)

Publication Number Publication Date
JP2002118300A true JP2002118300A (en) 2002-04-19
JP3462462B2 JP3462462B2 (en) 2003-11-05

Family

ID=18790263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000310272A Expired - Lifetime JP3462462B2 (en) 2000-10-11 2000-10-11 Oxide thermoelectric element manufactured by spark plasma sintering

Country Status (1)

Country Link
JP (1) JP3462462B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239039A (en) * 2008-03-27 2009-10-15 Oki Denki Bosai Kk Electrothermal conversion temperature sensor and method for manufacturing the same
WO2011065457A1 (en) * 2009-11-27 2011-06-03 昭和電工株式会社 Laminate and manufacturing method for same
JP5686417B2 (en) * 2010-05-28 2015-03-18 学校法人東京理科大学 Thermoelectric conversion module manufacturing method and thermoelectric conversion module
US9065011B2 (en) 2007-06-22 2015-06-23 Murata Manufacturing Co., Ltd. Thermoelectric conversion element, thermoelectric conversion module, method for producing thermoelectric conversion element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01231383A (en) * 1988-03-10 1989-09-14 Murata Mfg Co Ltd Thermoelement material of ceramic semiconductor
JP2000034173A (en) * 1998-07-13 2000-02-02 Asahi Optical Co Ltd Production of compound sintered compact
JP2000226215A (en) * 1999-02-02 2000-08-15 Agency Of Ind Science & Technol Oxide member for thermoelectric conversion element
JP2000252526A (en) * 1998-06-30 2000-09-14 Matsushita Electric Ind Co Ltd Skutterudite thermoelectric material, thermocouple and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01231383A (en) * 1988-03-10 1989-09-14 Murata Mfg Co Ltd Thermoelement material of ceramic semiconductor
JP2000252526A (en) * 1998-06-30 2000-09-14 Matsushita Electric Ind Co Ltd Skutterudite thermoelectric material, thermocouple and manufacture thereof
JP2000034173A (en) * 1998-07-13 2000-02-02 Asahi Optical Co Ltd Production of compound sintered compact
JP2000226215A (en) * 1999-02-02 2000-08-15 Agency Of Ind Science & Technol Oxide member for thermoelectric conversion element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9065011B2 (en) 2007-06-22 2015-06-23 Murata Manufacturing Co., Ltd. Thermoelectric conversion element, thermoelectric conversion module, method for producing thermoelectric conversion element
JP2009239039A (en) * 2008-03-27 2009-10-15 Oki Denki Bosai Kk Electrothermal conversion temperature sensor and method for manufacturing the same
WO2011065457A1 (en) * 2009-11-27 2011-06-03 昭和電工株式会社 Laminate and manufacturing method for same
US9096471B2 (en) 2009-11-27 2015-08-04 Showa Denko K.K. Method for producing a layered material
JP5686417B2 (en) * 2010-05-28 2015-03-18 学校法人東京理科大学 Thermoelectric conversion module manufacturing method and thermoelectric conversion module

Also Published As

Publication number Publication date
JP3462462B2 (en) 2003-11-05

Similar Documents

Publication Publication Date Title
US10510940B2 (en) Thermoelectric generator
CN102714269B (en) Process for producing nanocomposite thermoelectric conversion material
WO2011013529A1 (en) Thermoelectric conversion material, and thermoelectric conversion module using same
EP2913857B1 (en) Mg-Si THERMOELECTRIC CONVERSION MATERIAL, METHOD FOR PRODUCING SAME, SINTERED BODY FOR THERMOELECTRIC CONVERSION, THERMOELECTRIC CONVERSION ELEMENT, AND THERMOELECTRIC CONVERSION MODULE
JP2012231025A (en) Thermoelectric conversion module
US20180323358A1 (en) Method for pre-processing semiconducting thermoelectric materials for metallization, interconnection and bonding
WO2021153550A1 (en) Thermoelectric conversion module
JP2000252526A5 (en)
JP5686417B2 (en) Thermoelectric conversion module manufacturing method and thermoelectric conversion module
WO2004105144A1 (en) Thermoelectric material and method for producing same
JP2013197265A (en) Thermoelectric conversion module
JP2001217469A (en) Thermoelectric conversion element and its manufacturing method
WO2014010588A1 (en) Thermoelectric conversion material, thermoelectric conversion module using same, and method for manufacturing thermoelectric conversion material
JP2002118300A (en) Oxide thermoelectric element manufactured by discharge plasma sintering method
JPH07202274A (en) Thermoelectric device and its manufacture
US11349058B2 (en) Thermoelectric half-cell and method of production
WO2010001822A1 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
Skomedal et al. Long term stability testing of oxide unicouple thermoelectric modules
JP5218285B2 (en) Thermoelectric conversion material
JP2011003640A (en) Method for manufacturing thermoelectric conversion module and thermoelectric conversion module
JP2002368292A (en) Thermoelectric conversion module for high temperature
JP2001189497A (en) Thermoelectric conversion element and manufacturing method therefor
JPH11298052A (en) Thermoelectric element, thermoelectric material and manufacture thereof
JP2005191431A (en) Thermoelectric transducer
JP2018019014A (en) Thermoelectric conversion material, and thermoelectric conversion module arranged by use thereof

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350