JP2002105587A - Superhigh purity carbon steel in which controlling ranges of strength and ductility are wide - Google Patents

Superhigh purity carbon steel in which controlling ranges of strength and ductility are wide

Info

Publication number
JP2002105587A
JP2002105587A JP2000298534A JP2000298534A JP2002105587A JP 2002105587 A JP2002105587 A JP 2002105587A JP 2000298534 A JP2000298534 A JP 2000298534A JP 2000298534 A JP2000298534 A JP 2000298534A JP 2002105587 A JP2002105587 A JP 2002105587A
Authority
JP
Japan
Prior art keywords
less
ppm
steel
mass ppm
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000298534A
Other languages
Japanese (ja)
Other versions
JP4863240B2 (en
Inventor
Kenji Abiko
兼次 安彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2000298534A priority Critical patent/JP4863240B2/en
Publication of JP2002105587A publication Critical patent/JP2002105587A/en
Application granted granted Critical
Publication of JP4863240B2 publication Critical patent/JP4863240B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce superhigh purity carbon steel whose strength and elongation can be controlled to wide ranges only by the control of production conditions such as heat treatment. SOLUTION: This steel has a steel composition containing, by mass, 0.02 to 0.8% C, and the balance Fe with inevitable impurities controlled to <=100 ppm. Additionally, one or more kinds selected from <=50 ppm Si, <=50 ppm Mn, <=50 ppm Al, <=50 ppm B, <=50 ppm Cr, <=50 ppm Mo, <=50 ppm Cu, <=50 ppm Ni, <=50 ppm Nb, <=50 ppm Ti and <=50 ppm V are further incorporated therein.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車や船舶の外
板、電子機器部材、洗濯機や電子レンジなどの家電機器
用外装材、機械・工具部材など、広範な用途に供しうる
超高純度鋼であり、特に強度および延性を加工,各種熱
処理を施すことにより、広範囲に制御できる超高純度炭
素鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-high purity material which can be used in a wide range of applications, such as outer plates of automobiles and ships, electronic equipment members, exterior materials for home appliances such as washing machines and microwave ovens, and machine and tool members. The present invention relates to an ultra-high-purity carbon steel that can be controlled in a wide range by processing strength and ductility and performing various heat treatments.

【0002】[0002]

【従来の技術】炭素鋼は、自動車や船舶の外板、電子機
器部材、洗濯機や電子レンジなどの家電機器用外装材、
機械・工具部材など、様々な分野で使用されている。そ
して、これらの用途に使用される鋼に求められる強度も
またさまざまであるため、これら分野で用いられる鋼は
加工や熱処理を施すことにより用途に応じた特性になる
よう制御される。その際、加工や熱処理だけでは必要な
特性が得られない場合、あるいはこれら加工や熱処理が
設備の制約等の理由で実施困難な場合には、一般に、用
途に応じた合金元素を添加することにより、強度や延性
の確保を図っている。
2. Description of the Related Art Carbon steel is used for outer panels of automobiles and ships, electronic equipment members, exterior materials for home appliances such as washing machines and microwave ovens,
It is used in various fields such as machinery and tool members. Since the strength required for steels used in these applications is also various, steels used in these fields are controlled by processing or heat treatment to have characteristics according to the applications. At that time, if the required characteristics cannot be obtained only by processing or heat treatment, or if these processing or heat treatment is difficult to be performed due to restrictions of equipment, etc., generally, by adding an alloy element according to the application, , Strength and ductility are ensured.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、鋼の用
途が増えるにしたがい、必要な強度、延性のレベルも多
種となり、鋼に用いられる合金元素の種類、またその添
加量が従来にもまして一層多様化してきた。このため
に、製造上での成分(鋼種)管理が従来よりも一層煩雑
になるという問題が生じてきた。このような場合に、1
つの鋼種で加工、熱処理を変えるだけで広範な強度、延
性を具えた炭素鋼が供給できれば、工程の煩雑さがなく
なり、その管理が容易となる筈である。そこで、本発明
は、強度や伸びが熱処理などの製造条件の変更のみで、
強度および延性を広範囲に制御しうる超高純度炭素鋼を
提供することを目的とする。
However, as the applications of steel increase, the required strength and ductility levels also increase, and the types of alloying elements used in steel and the amount of addition thereof are more varied than before. It has become. For this reason, a problem has arisen that the management of components (steel type) in manufacturing becomes more complicated than in the past. In such a case, 1
If carbon steel with a wide range of strength and ductility can be supplied simply by changing the processing and heat treatment of the two steel types, the process should be less complicated and its management would be easier. Therefore, in the present invention, the strength and elongation are only changed by changing the manufacturing conditions such as heat treatment.
It is an object of the present invention to provide an ultra-high purity carbon steel capable of controlling strength and ductility in a wide range.

【0004】[0004]

【課題を解決するための手段】大量生産に適した高炉−
転炉法、あるいは電炉法等の一般的に採用されている工
程で炭素鋼を製造すると、鋼中にはその製造工程で意図
しない不純物元素が多量に混入してしまう。このように
不可避的に混入する不純物元素としては、P,S,O,
Nなどが代表的なものとして挙げられる。発明者らは、
こうした不可避的不純物元素を減らし、炭素のほかはで
きるかぎり高純度化した炭素鋼を製造し、その機械特性
について研究を行った。その研究過程で、上記不純物元
素だけではなく、従来は着目されていなかった元素を含
む不純物元素の含有量を極少量に制限すると、当初の課
題が達成できることを知見した。
Blast furnace suitable for mass production
When carbon steel is manufactured by a generally used process such as a converter method or an electric furnace method, a large amount of unintended impurity elements are mixed in the steel in the manufacturing process. The impurity elements inevitably mixed as described above include P, S, O,
N is a typical example. The inventors have
By reducing such unavoidable impurities, carbon steel was produced with the highest possible purity except for carbon, and its mechanical properties were studied. In the course of the research, it was found that the initial problem can be achieved by limiting the content of not only the above-mentioned impurity elements but also the impurity elements including elements which have not been focused on before to a very small amount.

【0005】かかる知見に基づいて完成した本発明は、
C:0.02〜0.8 mass%と残部はFeおよび100 mass ppm以
下に規制した不可避的不純物とからなることを特徴とす
る強度および延性の制御範囲が大きい超高純度炭素鋼で
ある。また、上記発明において、鋼組成がさらに、Si:
50 mass ppm 以下、Mn:50 mass ppm 以下、Al:50 mas
s ppm 以下、B:50 mass ppm 以下、Cr:50 mass ppm
以下、Mo:50 mass ppm 以下、Cu:50 mass ppm 以下、
Ni:50 mass ppm 以下、Nb:50 mass ppm 以下、Ti:50
mass ppm 以下およびV:50 mass ppm 以下のうちから
選ばれるいずれか1種または2種以上を含有してもよ
い。これらの発明において、不可避的不純物としての
P、Sをそれぞれ50 mass ppm 以下に規制することが望
ましい。なお、本発明にかかる超高純度炭素鋼は、所望
の特性を得ることあるいは用途に応じ、焼入れ、焼戻
し、焼鈍し等の各種の熱処理を施すことにより、実用に
供することができる。
The present invention, which has been completed based on such findings,
C: An ultra-high-purity carbon steel having a large control range of strength and ductility characterized by being composed of 0.02 to 0.8 mass% and the balance being Fe and inevitable impurities restricted to 100 massppm or less. In the above invention, the steel composition further comprises Si:
50 mass ppm or less, Mn: 50 mass ppm or less, Al: 50 mas
s ppm or less, B: 50 mass ppm or less, Cr: 50 mass ppm
Below, Mo: 50 mass ppm or less, Cu: 50 mass ppm or less,
Ni: 50 mass ppm or less, Nb: 50 mass ppm or less, Ti: 50
Any one or more selected from mass ppm or less and V: 50 mass ppm or less may be contained. In these inventions, it is desirable that each of P and S as unavoidable impurities be regulated to 50 mass ppm or less. The ultrahigh-purity carbon steel according to the present invention can be put to practical use by obtaining desired properties or performing various heat treatments such as quenching, tempering, and annealing according to the application.

【0006】[0006]

【発明の実施の形態】はじめに、成分組成を上記範囲に
限定した理由を説明する。 C:0.02〜0.8 mass%;Cは、炭素鋼として必須の元素
であり、強度の向上に寄与する元素である。C含有量
が、0.02 mass %に満たないと、セメンタイトとしての
析出量と固溶強化元素としての量を満足できない。一
方、0.8 mass%を超えると、共析量を超えるCが析出
し、延性を損ない、圧延加工が困難となるので、0.02〜
0.8 mass%の範囲とする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the reasons for limiting the component composition to the above range will be described. C: 0.02 to 0.8 mass%; C is an element essential for carbon steel and is an element that contributes to improvement in strength. If the C content is less than 0.02 mass%, the amount of precipitation as cementite and the amount as a solid solution strengthening element cannot be satisfied. On the other hand, if it exceeds 0.8 mass%, C exceeding the amount of eutectoid precipitates, impairs ductility and makes rolling difficult.
The range is 0.8 mass%.

【0007】不可避的不純物:100 mass ppm以下;本発
明においては、不可避的不純物の含有量を制限すること
がもっとも重要な条件である。不可避的不純物の含有量
が100 mass ppmを超えると、強度、延性の制御範囲が狭
くなり、本発明の目的を達成することができなくなる。
なお、不可避的不純物中でも特にP、Sはその影響が大
きく現れるので、P:50 mass ppm 以下、S:50 mass
ppm 以下に規制することが望ましい。
Inevitable impurities: 100 mass ppm or less; In the present invention, the most important condition is to limit the content of the inevitable impurities. When the content of the unavoidable impurities exceeds 100 mass ppm, the control range of strength and ductility becomes narrow, and the object of the present invention cannot be achieved.
Note that, among the unavoidable impurities, P and S in particular have a significant effect, so P: 50 mass ppm or less, S: 50 mass ppm or less.
It is desirable to regulate to below ppm.

【0008】Si:50 mass ppm 以下、Mn:50 mass ppm
以下、Al:50 mass ppm 以下、B:50mass ppm 以下、C
r:50 mass ppm 以下、Mo:50 mass ppm 以下、Cu:50
massppm 以下、Ni:50 mass ppm 以下、Nb:50 mass pp
m 以下、Ti:50 mass ppm 以下およびV:50 mass ppm
以下;これらの元素は、いずれも上限を50 mass ppm と
して、1種または2種以上を必要に応じて含有させる。
[0008] Si: 50 mass ppm or less, Mn: 50 mass ppm
Below, Al: 50 mass ppm or less, B: 50 mass ppm or less, C
r: 50 mass ppm or less, Mo: 50 mass ppm or less, Cu: 50
mass ppm or less, Ni: 50 mass ppm or less, Nb: 50 mass pp
m or less, Ti: 50 mass ppm or less and V: 50 mass ppm
Hereinafter, one or more of these elements may be contained as necessary, with the upper limit being 50 mass ppm.

【0009】これら元素を添加する目的は以下のとおり
である。すなわち; Si:Siは、鋼中の酸素を酸化物の形態に固定する。しか
し、多すぎると高純度化の意義が消失し、Si系酸化物と
して粒界や粒内に析出し、機械加工性や表面性状に悪影
響を及ぼすため、50 mass ppm 以下とする。 Mn:Mnは、鋼中の酸素を酸化物の形態に固定する。しか
し、多すぎると高純度化の意義が消失し、鋼中のSと結
びつき、MnSとして粒界や粒内に析出し、加工性を阻害
するため、50 mass ppm 以下とする。 Al:Alは、工業的に脱酸元素と使用されるが、鋼中に残
存したものは酸化物を形成して固定される。しかし、多
すぎると高純度化の意義が消失し、Al系酸化物や窒化物
となり、粒界や粒内に析出し、機械加工性や表面性状に
悪影響を及ぼすため、50 mass ppm 以下とする。 B:Bは、数ppm の量でも粒界に偏析し、粒界を強化す
る作用を有するが、多すぎると高純度化の意義が消失
し、酸化物や析出物を形成し加工性を阻害するため、50
mass ppm 以下とする。 Cr:Crは、鋼中酸素と結びついて酸素を固定するととも
に、炭化物や金属間化合物を形成するため、あまり多量
では加工性に有害で、多すぎると高純度化の意義が消失
する。そこで、50 mass ppm 以下に制限する。 Mo:Moは、Crとほぼ同様の特性を持ち、炭化物や金属間
化合物を形成しやすく、多量に含有すると加工性に有害
となり、高純度化の意義が消失する。そこで、50 mass
ppm 以下に制限する。 Cu:Cuは、鋼中では比較的安定な元素として析出する傾
向にある元素であり、微量でも表面性状に影響を及ぼす
元素として知られているが、あまり多量では析出物によ
り延性の低下と酸化被膜の強度や耐食性に悪影響を及ぼ
すため、50 mass ppm 以下に制限する。 Ni:Niは、比較的安定な元素であるが、多量に添加して
も炭素鋼本来の性質を改善させるものではないため、50
mass ppm 以下に制限する。 Nb:Nbは、鋼中の自由なCを固着させる意義があるが、
多すぎると高純度化の意義が消失し、酸化物として粒界
や粒内に析出し有害となるため、50 mass ppm以下に制
限する。 Ti:Tiは、鋼中の自由なCを固定する意義があるが、多
すぎると高純度化の意義が消失し、酸化物として粒界や
粒内に析出し有害となるため、50 mass ppm 以下に制限
する。 V:Vは、Nbと同様の効果が期待されるが、多すぎると
高純度化の意義が消失し、酸化物などの介在物が粒界や
粒内に析出し有害となるため、50 mass ppm 以下に制限
する。
The purpose of adding these elements is as follows. Si: Si fixes oxygen in the steel in the form of oxides. However, if the content is too large, the significance of high purification is lost, and it is precipitated as a Si-based oxide at a grain boundary or in a grain, which adversely affects the machinability and surface properties. Mn: Mn fixes oxygen in the steel in the form of an oxide. However, if the content is too large, the significance of high purification is lost, and it is linked to S in the steel, precipitates as MnS in the grain boundaries and in the grains, and impairs the workability. Al: Al is industrially used as a deoxidizing element, but what remains in the steel forms an oxide and is fixed. However, if the content is too large, the significance of high purification is lost, and Al-based oxides and nitrides are formed, which precipitate at grain boundaries and in the grains and adversely affect the machinability and surface properties. . B: B segregates at the grain boundaries even in the amount of a few ppm, and has the effect of strengthening the grain boundaries. However, if it is too much, the significance of high purification is lost, and oxides and precipitates are formed to impair workability. 50 to
mass ppm or less. Cr: Cr binds to oxygen in steel to fix oxygen and forms carbides and intermetallic compounds. Therefore, if it is too much, it is harmful to workability, and if it is too much, the significance of high purity is lost. Therefore, limit to 50 mass ppm or less. Mo: Mo has almost the same properties as Cr, easily forms carbides and intermetallic compounds, and when contained in a large amount, harms the workability and loses the significance of high purity. So, 50 mass
Limit to ppm or less. Cu: Cu is an element that tends to precipitate as a relatively stable element in steel, and is known as an element that affects the surface properties even in trace amounts. Limit it to 50 mass ppm or less because it has a bad effect on the strength and corrosion resistance of the coating. Ni: Ni is a relatively stable element, but it does not improve the inherent properties of carbon steel even if added in large amounts.
Limit to less than mass ppm. Nb: Nb has the significance of fixing free C in steel,
If the content is too large, the significance of high purification is lost, and it is harmful to precipitate as oxides at the grain boundaries and in the grains. Therefore, the content is limited to 50 mass ppm or less. Ti: Ti has the significance of fixing free carbon in steel, but if it is too much, the significance of high purity is lost, and it is harmful because it precipitates as oxides at grain boundaries and in grains, and is harmful. Restrict to the following. V: V is expected to have the same effect as Nb, but if it is too much, the significance of purification is lost, and inclusions such as oxides precipitate at grain boundaries and in grains and become harmful. Limit to ppm or less.

【0010】本発明鋼では、成分元素を上記鋼組成範囲
とすることにより、1鋼種で、強度、延性を所望の特性
になるように広範囲に制御できるようになる。このよう
な効果が得られる機構は必ずしも明らかではないが、後
述する金属組織から次のようなことが考えられる。すな
わち、本発明鋼を加熱後に徐冷した場合には、一般にみ
られるようなラメラーパーライトを形成せずに、炭化物
が球状化し、球状化した炭化物はコロニーを形成して均
一に分散する。このため、一般のラメラ組織を有する鋼
よりも、金属組織の変形能に優れる。また、強度が同一
のC含有量であれば低くなるため、小さな応力で加工で
き、かつ延性に富む材料を提供できる。また、本発明鋼
を焼入れ処理した場合には、金属組織がマルテンサイト
相以外の異相の残存が極めて少なくなる。このため、残
留した異相による弊害が少なくなる。均質な焼入れが可
能であれば、材料特性の均一性が保たれる。また、焼入
れ性に優れることから、大きな質量、形状でも、焼入れ
が可能になる。
In the steel of the present invention, by setting the component elements within the above-mentioned steel composition range, the strength and ductility can be controlled in a wide range so that desired properties can be obtained with one steel type. The mechanism by which such an effect is obtained is not necessarily clear, but the following may be considered from the metal structure described later. That is, when the steel of the present invention is gradually cooled after heating, carbides are spheroidized without forming lamellar pearlite as generally seen, and the spheroidized carbides form colonies and are uniformly dispersed. For this reason, the deformability of the metal structure is superior to steel having a general lamellar structure. In addition, since the strength becomes lower if the C content is the same, a material that can be processed with a small stress and has high ductility can be provided. Further, when the steel of the present invention is subjected to the quenching treatment, the remaining of a foreign phase other than the martensite phase in the metal structure becomes extremely small. For this reason, adverse effects due to the remaining foreign phase are reduced. If uniform quenching is possible, uniformity of material properties is maintained. In addition, since it has excellent hardenability, it can be hardened even with a large mass and shape.

【0011】このような特性を有する本発明鋼は、とく
に高純度の原料を用いることと、溶解条件について留意
することによって製造することができる。原料となる鉄
および炭素の純度については、いずれも99.99 mass%以
上のものを使用するのが望ましい。また、溶解時には外
部からの汚染を防止するため、例えば超高真空(1×10
−7Torr以下)の雰囲気中で、水冷銅るつぼを使用して
溶解するのがよい。
The steel of the present invention having such characteristics can be produced by using a high-purity raw material and paying attention to melting conditions. Regarding the purity of iron and carbon as raw materials, it is desirable to use those having a purity of 99.99 mass% or more. In addition, in order to prevent external contamination during melting, for example, an ultra-high vacuum (1 × 10
It is preferable to use a water-cooled copper crucible in an atmosphere of ( −7 Torr or less) for dissolution.

【0012】実施例 純度99.99 mass%以上の電解鉄および純度99.999 mass
%以上のグラファイトを、1×10−9Torrの超高真空中
で溶解を開始し鋼塊とした。この鋼塊を、900℃×30分
加熱して断面寸法14mm角に鍛造し、さらに800 ℃×30
分加熱を行って、溝ロールにより直径7mmの丸棒に圧
延した。一方、比較材として、市販鋼の成分の炭素鋼
(比較鋼2)、通常の実験室溶解にて製造可能な比較的
高純度の炭素鋼(比較鋼1)を用いた。これらの鋼の成
分分析結果を表1に示す。これらの丸棒から機械加工に
より引張試験片を採取し、これを 550℃の4×10 −5To
rrの真空雰囲気中にて加熱後、徐冷したものと、急冷
(水冷)したものを試験に供した。試験片寸法は平行部
が長さ20mm、断面寸法3mmφとした。また、引張試
験は、室温にて歪み速度は 4.2×10−5−1の低速度
条件で行った。
Example Electrolytic iron having a purity of 99.99 mass% or more and a purity of 99.999 mass
% Or more of graphite-9Torr ultra high vacuum
To start melting to form a steel ingot. This steel ingot is heated at 900 ° C for 30 minutes
Heat to forge 14 mm square cross section, then 800 ℃ x 30
After heating for a minute, a grooved roll is pressed into a round bar with a diameter of 7 mm.
Delayed. On the other hand, as a comparative material, carbon steel
(Comparative steel 2), which can be manufactured by ordinary laboratory melting
High-purity carbon steel (Comparative Steel 1) was used. The formation of these steels
Table 1 shows the results of the minute analysis. From these round bars to machining
A tensile test piece was collected from the test piece, -5To
After heating in a vacuum atmosphere of rr, slowly cooled and rapidly cooled
(Water cooled) was used for the test. Specimen dimensions are parallel
Had a length of 20 mm and a cross-sectional dimension of 3 mmφ. In addition, tensile test
In the experiment, the strain rate was 4.2 × 10 at room temperature.-5s-1Low speed
Performed under conditions.

【0013】[0013]

【表1】 [Table 1]

【0014】図1は上記超高純度炭素鋼得られた応力−
歪み曲線を比較して示したものである。なお、この図は
歪み(伸び)0の位置を横軸方向に鋼別にシフトして表
している。図1からわかるように、本発明に従う超高純
度炭素鋼は、急冷材では伸びは小さいが強度は高く、ま
た徐冷材では強度は小さいが伸びは著しく大きく、その
変動範囲が比較鋼よりは大きいことがわかる。図1か
ら、それぞれの引張強度および伸びの値を読み取り、そ
の変動範囲をまとめると表2のようになり、発明鋼は、
引張強度の制御範囲が300 〜1330MPa、伸びの制御範
囲が10.0〜50.4%まで変化している。このことから、発
明鋼では、その強度、延性の制御範囲を比較鋼よりも著
しく広くできるといえる。また、発明鋼と比較鋼1の徐
冷材の顕微鏡組織を図1に、急冷材のそれを図2にそれ
ぞれ示す。
FIG. 1 is a graph showing the stress obtained in the ultra-high purity carbon steel.
This is a comparison between strain curves. In this drawing, the position of strain (elongation) 0 is shifted in the horizontal axis direction by steel. As can be seen from FIG. 1, the ultra-high purity carbon steel according to the present invention has a small elongation but a high strength in the quenched material, and a small strength but a very large elongation in the slowly cooled material, and its fluctuation range is larger than that of the comparative steel. I understand. From FIG. 1, the values of the tensile strength and elongation were read, and the fluctuation ranges were summarized as shown in Table 2.
The control range of the tensile strength changes from 300 to 1330 MPa, and the control range of the elongation changes from 10.0 to 50.4%. From this, it can be said that in the invention steel, the control range of the strength and ductility can be remarkably wider than the comparative steel. FIG. 1 shows the microstructures of the gradually cooled material of the invention steel and the comparative steel 1, and FIG. 2 shows that of the rapidly cooled material.

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば、
炭素と鉄以外の不可避的な不純物を極低範囲に制限する
ことにより、炭化物形状、金属組織が有効に作用して、
強度、延性を広範な範囲で制御することが可能となる。
従って、本発明によれば、1つの成分でも熱処理により
強度、靱性を多様に変化させうるので、成分の集約化も
可能になる。
As described above, according to the present invention,
By limiting unavoidable impurities other than carbon and iron to an extremely low range, the carbide shape and metal structure work effectively,
Strength and ductility can be controlled in a wide range.
Therefore, according to the present invention, strength and toughness can be variously changed by heat treatment even with one component, so that components can be integrated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】発明鋼および比較鋼の応力−歪み曲線を示す図
である。
FIG. 1 is a diagram showing stress-strain curves of invention steel and comparative steel.

【図2】発明鋼(a)および比較鋼(b)を徐冷した金
属組織を示す図である。
FIG. 2 is a view showing a metal structure obtained by gradually cooling an invention steel (a) and a comparative steel (b).

【図3】発明鋼(a)および比較鋼(b)を急冷した金
属組織を示す図である。
FIG. 3 is a view showing a metal structure obtained by rapidly cooling an inventive steel (a) and a comparative steel (b).

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 C:0.02〜0.8 mass%と残部はFeおよび
100 mass ppm以下に規制した不可避的不純物とからなる
ことを特徴とする強度および延性の制御範囲が大きい超
高純度炭素鋼。
1. C: 0.02 to 0.8 mass%, the balance being Fe and
Ultra-high-purity carbon steel with a large strength and ductility control range characterized by inevitable impurities controlled to 100 mass ppm or less.
【請求項2】 請求項1において、鋼組成がさらに、S
i:50 mass ppm 以下、Mn:50 mass ppm 以下、Al:50
mass ppm 以下、B:50mass ppm 以下、Cr:50 mass pp
m 以下、Mo:50 mass ppm 以下、Cu:50 massppm 以
下、Ni:50 mass ppm 以下、Nb:50 mass ppm 以下、T
i:50 mass ppm 以下およびV:50 mass ppm 以下のう
ちから選ばれるいずれか1種または2種以上を含有する
ことを特徴とする強度および延性の制御範囲が大きい超
高純度炭素鋼。
2. The steel according to claim 1, wherein the steel composition further comprises S
i: 50 mass ppm or less, Mn: 50 mass ppm or less, Al: 50
mass ppm or less, B: 50 mass ppm or less, Cr: 50 mass pp
m or less, Mo: 50 mass ppm or less, Cu: 50 mass ppm or less, Ni: 50 mass ppm or less, Nb: 50 mass ppm or less, T
An ultra-high purity carbon steel having a large strength and ductility control range, characterized by containing one or more selected from i: 50 mass ppm or less and V: 50 mass ppm or less.
【請求項3】 不可避的不純物としてのP、Sをそれぞ
れ50 mass ppm 以下に規制したことを特徴とする請求項
1または2に記載の超高純度炭素鋼。
3. The ultra-high-purity carbon steel according to claim 1, wherein P and S as unavoidable impurities are each regulated to 50 mass ppm or less.
JP2000298534A 2000-09-29 2000-09-29 Ultra high purity carbon steel with large control range of strength and ductility Expired - Lifetime JP4863240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000298534A JP4863240B2 (en) 2000-09-29 2000-09-29 Ultra high purity carbon steel with large control range of strength and ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000298534A JP4863240B2 (en) 2000-09-29 2000-09-29 Ultra high purity carbon steel with large control range of strength and ductility

Publications (2)

Publication Number Publication Date
JP2002105587A true JP2002105587A (en) 2002-04-10
JP4863240B2 JP4863240B2 (en) 2012-01-25

Family

ID=18780479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000298534A Expired - Lifetime JP4863240B2 (en) 2000-09-29 2000-09-29 Ultra high purity carbon steel with large control range of strength and ductility

Country Status (1)

Country Link
JP (1) JP4863240B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174364A (en) * 1986-01-28 1987-07-31 Nippon Gakki Seizo Kk Manufacture of high purity iron-carbon alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174364A (en) * 1986-01-28 1987-07-31 Nippon Gakki Seizo Kk Manufacture of high purity iron-carbon alloy

Also Published As

Publication number Publication date
JP4863240B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP5620336B2 (en) Steel parts for high fatigue strength and high toughness machine structure and manufacturing method thereof
JP2010539325A (en) Martensitic stainless steel, manufacturing method of parts made from this steel, and parts manufactured by this method
WO2018182480A1 (en) Hot work tool steel
JP2004143482A (en) High strength cold formed spring steel wire and its production method
JP4802435B2 (en) Non-tempered steel with small material anisotropy and excellent strength, toughness and machinability, and method for producing the same
JPWO2012161323A1 (en) Steel parts for machine structure and manufacturing method thereof
JP5801529B2 (en) Non-heat treated steel for hot forging with high bending fatigue strength and small deformation due to repeated stress, and method for producing the same
JP5152440B2 (en) Steel parts for machine structure and manufacturing method thereof
JPH11152542A (en) Non-heattreated steel for hot forging, having high fatigue limit ratio, and its production
JP5359582B2 (en) Hardened tool steel material
JP2019173160A (en) Low alloy steel excellent in hydrogen embrittlement resistance
JP2007513259A (en) Steel wire for cold heading having excellent low temperature impact characteristics and method for producing the same
JP2024500865A (en) Martensitic stainless steel with improved strength and corrosion resistance and its manufacturing method
JP4863240B2 (en) Ultra high purity carbon steel with large control range of strength and ductility
WO2016194377A1 (en) Black heart malleable cast iron and method for manufacturing same
JPH09287056A (en) Wire rod and bar steel excellent on cold forgeability and their production
JP4121416B2 (en) Non-tempered hot forged parts for machine structure and manufacturing method thereof
JP6729265B2 (en) Low alloy steel
JP3751707B2 (en) High-strength bolt wire excellent in strength and ductility and its manufacturing method
JP3907986B2 (en) Method for producing case-hardened steel with excellent cold workability and grain size characteristics
JPH0790495A (en) High strength steel wire and its production
JPH0526850B2 (en)
JPH01234521A (en) Production of high-toughness low-yielding ratio steel material having excellent sulfide stress corrosion cracking resistance
JP3053605B2 (en) Metal members with excellent toughness and wear resistance
KR100530068B1 (en) Steel strip for the automotive reinforcement parts and method of manufacturing thereof

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100426

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4863240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250