JP5359582B2 - Hardened tool steel material - Google Patents

Hardened tool steel material Download PDF

Info

Publication number
JP5359582B2
JP5359582B2 JP2009140981A JP2009140981A JP5359582B2 JP 5359582 B2 JP5359582 B2 JP 5359582B2 JP 2009140981 A JP2009140981 A JP 2009140981A JP 2009140981 A JP2009140981 A JP 2009140981A JP 5359582 B2 JP5359582 B2 JP 5359582B2
Authority
JP
Japan
Prior art keywords
tool steel
region
carbides
quenching
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009140981A
Other languages
Japanese (ja)
Other versions
JP2009215656A (en
Inventor
弘孝 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2009140981A priority Critical patent/JP5359582B2/en
Publication of JP2009215656A publication Critical patent/JP2009215656A/en
Application granted granted Critical
Publication of JP5359582B2 publication Critical patent/JP5359582B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tool steel material for quenching having a metallic structure which can more surely obtain uniform, fine crystal grains by quenching-tempering. <P>SOLUTION: Disclosed is a tool steel material for quenching comprising 0.1 to 0.8 mass% C, and having a metallic structure where a region dense in carbides in which the number of carbides with an equivalent circle diameter of 0.1 to 0.5 &mu;m in 100 &mu;m<SP>2</SP>is &ge;300 pieces upon observation at the magnification of 10,000 times and a region B thin in carbides in which the number of the carbides with an equivalent circle diameter of 0.1 to 0.5 &mu;m in 100 &mu;m<SP>2</SP>is smaller by &ge;100 pieces to the region A are intermingled. Preferably, the number of the carbides with an equivalent circle diameter of 0.1 to 0.5 &mu;m observed in 100 &mu;m<SP>2</SP>of the region B is &ge;200 pieces. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、焼入れ焼戻しにより、均一微細な結晶粒を得ることができる金属組織を有する焼入れ用工具鋼素材に関するものである。   The present invention relates to a tool steel material for quenching having a metal structure capable of obtaining uniform fine crystal grains by quenching and tempering.

焼入れ焼戻しにより均一微細な結晶粒を得る手法として、焼入れ用工具鋼素材の製造過程で変態を繰り返すことが挙げられる。この方法は熱間加工後にマルテンサイト、ベイナイト変態域まで冷却し、その後Ac3点以上で完全にオーステナイト変態させ、焼きなましを行った後、焼入れ焼戻しするといった熱処理方法がその例である。
また、焼入れ用工具鋼素材の焼きなまし状態での金属組織は、炭化物を均一に分散させた金属組織であるほうが好ましいとされる。
しかし、原因不明の結晶粒異常成長が報告されており、その原因としては
(1)逆マルテンサイト変態説(非特許文献1)、
(2)結晶方位規制説(非特許文献2)、
(3)残留オーステナイト合体説(非特許文献3)
などが知られている。
As a technique for obtaining uniform fine crystal grains by quenching and tempering, it is possible to repeat transformation in the process of manufacturing a tool steel material for quenching. An example of this method is a heat treatment method in which the steel is cooled to a martensite and bainite transformation region after hot working, then completely austenite transformed at the Ac3 point or higher, annealed, and then quenched and tempered.
In addition, the metal structure in the annealed state of the tool steel material for quenching is preferably a metal structure in which carbides are uniformly dispersed.
However, unexplained abnormal grain growth has been reported.
(1) Reverse martensitic transformation theory (Non-Patent Document 1),
(2) Crystal orientation regulation theory (Non-Patent Document 2),
(3) Residual austenite coalescence theory (Non-patent Document 3)
Etc. are known.

特開2001−294974号公報JP 2001-294974 A

逆マルテンサイト変態説:松田ら;鉄と鋼60,2(1974)p.226.Reverse Martensitic Transformation Theory: Matsuda et al .; Iron and Steel 60, 2 (1974) p.226. 結晶方位規制説:渡辺ら:鉄と鋼61,1(1975)p.96.Crystal orientation regulation theory: Watanabe et al .: Iron and steel 61,1 (1975) p.96. 残留オーステナイト合体説:S.T.Kimminsand D.J.Gooch;Metal science 17,(1983)p.519.Residual austenite coalescence: S.T.Kimminsand D.J.Gooch; Metal science 17, (1983) p.519.

従来の結晶粒微細化方法では、焼きなまし状態での金属組織が均一な組織であっても、焼入れ焼戻し後に均一微細な結晶粒を得ることができない現象が起こりえた。これは、焼入れ処理の保持温度、加熱速度、冷却速度等の条件が不適当であった時に起こり易く、これらの解決手法として、保持温度の見直し、急速加熱、急速冷却による対策が行われてきた。
しかし、昨今の製品の大型化に伴いこれらの対策では物理的に対策不可能な事例も生じてきた。例えば、加熱速度が遅いと結晶粒が粗大に成長するため、加熱速度をできるだけ速くする対策がとられているが、製品の熱伝達係数は一定であり、製品が大型になるほど加熱速度は遅くなり、また、冷却速度も遅くなる傾向にあった。また、原因不明の結晶粒の異常成長が報告されており、完全に均一微細な結晶粒を得ることができないという課題があった。
本発明の目的は、焼入れ焼戻しにより、より確実に均一微細な結晶粒を得ることができる金属組織を有する焼入れ用工具鋼素材を提供することである。
In the conventional crystal grain refinement method, even if the metal structure in the annealed state is a uniform structure, a phenomenon that uniform fine crystal grains cannot be obtained after quenching and tempering may occur. This is likely to occur when conditions such as the holding temperature, heating rate, and cooling rate of the quenching process are inappropriate, and as a solution to these problems, measures have been taken by reviewing the holding temperature, rapid heating, and rapid cooling. .
However, with the recent increase in size of products, there have been cases where these measures cannot be physically addressed. For example, if the heating rate is slow, the crystal grains grow coarsely, so measures are taken to increase the heating rate as much as possible, but the heat transfer coefficient of the product is constant, and the heating rate becomes slower as the product becomes larger. Also, the cooling rate tended to be slow. Further, abnormal growth of crystal grains of unknown cause has been reported, and there has been a problem that it is impossible to obtain completely uniform fine crystal grains.
The objective of this invention is providing the tool steel raw material for hardening which has a metal structure which can obtain a uniform fine crystal grain more reliably by quenching and tempering.

本発明は上述の課題に鑑みてなされたものである。
すなわち本発明は、質量%でC:0.1〜0.8%、Si:2.0%以下、Mn:2.0%以下、Cr:1.0〜15.0%、Mo:10.0%以下を含有し、更にNi:4.0%以下、V:4.0%以下、W:10.0%以下、Co:10.0%以下、の何れか1種以上を含有して残部はFe及び不可避的不純物でなる焼入れ用工具鋼素材であって、該工具鋼素材の金属組織を10000倍で観察した時、100μm中に円相当径0.1〜0.5μmの炭化物個数が300個以上形成されている炭化物が密な領域Aと、該領域Aに対して、100μm中に円相当径0.1〜0.5μmの炭化物個数が100個以上少ない炭化物が疎な領域Bとが混在する金属組織でなる焼入れ用工具鋼素材である。
好ましくは、領域Bの100μm中に見られる円相当径0.1〜0.5μmの炭化物個数は200個以上である焼入れ用工具鋼素材である。
The present invention has been made in view of the above problems.
That is, in the present invention, C: 0.1 to 0.8% , Si: 2.0% or less, Mn: 2.0% or less, Cr: 1.0 to 15.0%, Mo: 10. It contains 0% or less, and further contains at least one of Ni: 4.0% or less, V: 4.0% or less, W: 10.0% or less, Co: 10.0% or less. The balance is a tool steel material for quenching composed of Fe and inevitable impurities , and the number of carbides having an equivalent circle diameter of 0.1 to 0.5 μm in 100 μm 2 when the metallographic structure of the tool steel material is observed at a magnification of 10,000 times Region A in which 300 or more of the carbides are formed, and a region in which the number of carbides having an equivalent circle diameter of 0.1 to 0.5 μm in 100 μm 2 is less than 100 in the region A. It is a tool steel material for quenching made of a metal structure mixed with B.
Preferably, it is a tool steel material for quenching in which the number of carbides having an equivalent circle diameter of 0.1 to 0.5 μm found in 100 μm 2 of the region B is 200 or more.

本発明によれば、従来の結晶粒微細化には炭化物を均一に分散させるという知見とは全く異なる考え方で焼入れ用工具鋼素材の金属組織を制御することで、より確実に均一微細な結晶粒を得ることができる。 According to the present invention, by controlling the metallographic structure of the tool steel material for quenching with a completely different concept from the knowledge of uniformly dispersing carbide in conventional crystal grain refinement, it is possible to more reliably obtain uniform crystal grains. Can be obtained.

本発明の金属組織(領域A)の10000倍の電子顕微鏡写真である。It is a 10,000 times as many electron micrographs of the metal structure (area | region A) of this invention. 本発明の金属組織(領域B)の10000倍の電子顕微鏡写真である。It is a 10,000 times as many electron micrographs of the metal structure (area | region B) of this invention. 本発明の金属組織(領域A、B)の電子顕微鏡写真である。It is an electron micrograph of the metal structure (regions A and B) of the present invention. 従来技術にて得られた金属組織の10000倍の電子顕微鏡写真である。It is a 10,000 times electron micrograph of the metal structure obtained by the prior art. 本発明工具鋼素材の製造方法のヒートパターンを示す模式図である。It is a schematic diagram which shows the heat pattern of the manufacturing method of this invention tool steel raw material.

上述したように、本発明の最大の特徴は、焼入れ焼戻しにより均一微細な結晶粒を得ることができる焼入れ用工具鋼素材の金属組織にある。以下に本発明を詳しく説明する。
先ず、本発明では質量%でC:0.1〜0.8%を含有する焼入れ用工具鋼素材を本発明の対象とする。
C含有量を0.1〜0.8%とした理由は、C量が0.1%未満では、C量が少なすぎて、特に結晶粒内においてCが不足し炭化物が析出しなく、0.8%以上ではCが過剰になり、炭化物が密な領域と炭化物が疎な領域との差がなくなり、焼入れ焼戻しにより均一微細な結晶粒を得るための金属組織を得ることができなくなるためである。
好ましくはC:0.2〜0.6%であり、更に好ましくは0.25〜0.55%である。
As described above, the greatest feature of the present invention resides in the metal structure of a tool steel material for quenching that can obtain uniform fine crystal grains by quenching and tempering. The present invention is described in detail below.
First, in this invention, the tool steel raw material for hardening containing C: 0.1-0.8% by mass% is made into the object of this invention.
The reason why the C content is 0.1 to 0.8% is that when the C content is less than 0.1%, the C content is too small, particularly in the crystal grains, C is insufficient and carbides are not precipitated. If it is .8% or more, C becomes excessive, there is no difference between the carbide dense region and the carbide sparse region, and it becomes impossible to obtain a metal structure for obtaining uniform fine crystal grains by quenching and tempering. is there.
Preferably it is C: 0.2-0.6%, More preferably, it is 0.25-0.55%.

次に金属組織について説明する。
金属組織において、本発明の焼入れ用工具鋼素材と、従来好ましいと言われていた焼入れ用工具鋼素材とは大きく異なる。
従来好ましいとされている金属組織に調整した焼入れ用工具鋼素材として350mm(t)×350mm(w)×1500mm(l)の大型化鋼材から金属組織観察用試験片を切出し、観察した。従来方法により得られた焼入れ用工具鋼素材(焼入れ前の焼きなまし状態)の金属組織を図4に示す。
観察は焼入れ用工具鋼素材から切出した試験片を4%ナイタール腐食後、走査電子顕微鏡(SEM)を用いて10000倍で観察したものであり、100μm中に円相当径0.1〜0.5μmの炭化物が100〜150個形成された炭化物が均一に分散させた金属組織である。なお、従来材の化学組成はC:0.39%、Si:0.96%、Mn:0.43%、Cr:5.11%、Mo:1.21%、Ni:0.23%、V:0.81%含有して残部はFeであり、金属組織調整方法は後述する実施例にて示すことにする。
Next, the metal structure will be described.
In the metal structure, the tool steel material for quenching according to the present invention is greatly different from the tool steel material for quenching which has been said to be preferable in the past.
A specimen for observation of metal structure was cut out from a large steel material of 350 mm (t) × 350 mm (w) × 1500 mm (l) as a tool steel material for quenching adjusted to a metal structure which has been considered to be preferable. FIG. 4 shows the metal structure of the tool steel material for quenching (annealed state before quenching) obtained by the conventional method.
Observed after 4% nital corrosion test pieces cut out from the tool steel material for hardening, which was observed at 10,000-fold using a scanning electron microscope (SEM), circle equivalent diameter from 0.1 to 0 in 100 [mu] m 2. A metal structure in which 100 to 150 carbides of 5 μm are uniformly dispersed. The chemical composition of the conventional material is C: 0.39%, Si: 0.96%, Mn: 0.43%, Cr: 5.11%, Mo: 1.21%, Ni: 0.23%, V: 0.81% contained with the balance being Fe, and the metal structure adjustment method will be shown in the examples described later.

続いて、本発明で規定する金属組織について説明する。化学組成は上記の従来材と同じである。
本発明の金属組織は、10000倍で観察した時、100μm中に円相当径0.1〜0.5μmの炭化物個数が300個以上形成されている炭化物が密な領域Aを有し、この領域Aに対して、100μm中に円相当径0.1〜0.5μmの炭化物個数が100個以上少ない炭化物が疎な領域Bが混在する金属組織を呈する。
すなわち、本発明で規定する金属組織は、従来材の金属組織に見られる炭化物個数より多くの炭化物が形成され、且つ炭化物が密集する、炭化物が密な領域を有するため、炭化物が微細・不均一分散と言う、特殊な金属組織を呈する。
なお、金属組織は、10000倍で観察した時、100μm中に円相当径0.1〜0.5μmの炭化物個数が300個以上形成されている炭化物が密な領域を領域Aとし、領域Aと比較し炭化物が疎な領域(100μm中に円相当径0.1〜0.5μmの炭化物個数が領域Aに対し、100個以上少ない)を領域Bとして記す。
Then, the metal structure prescribed | regulated by this invention is demonstrated. The chemical composition is the same as the above-mentioned conventional material.
The metal structure of the present invention has a dense region A in which 300 or more carbides having an equivalent circle diameter of 0.1 to 0.5 μm are formed in 100 μm 2 when observed at a magnification of 10,000 times. The region A exhibits a metal structure in which a region B in which the number of carbides having an equivalent circle diameter of 0.1 to 0.5 μm is less than 100 is sparse is mixed in 100 μm 2 .
That is, the metal structure defined in the present invention has a carbide dense region in which a larger number of carbides than the number of carbides found in the metal structure of the conventional material are formed, and the carbides are dense. It exhibits a special metal structure called dispersion.
When the metallographic structure is observed at a magnification of 10,000, the region A is defined as a region having a dense carbide in which 300 or more carbides having an equivalent circle diameter of 0.1 to 0.5 μm are formed in 100 μm 2. A region where carbides are sparse compared to (the number of carbides having an equivalent circle diameter of 0.1 to 0.5 μm in 100 μm 2 is 100 or more less than region A) is referred to as region B.

本発明の焼入れ用工具鋼素材として350mm(t)×350mm(w)×1500mm(l)の大型化鋼材から金属組織観察用試験片を切出し、観察した。
観察は焼入れ用工具鋼素材から切出した試験片を4%ナイタール腐食後、走査電子顕微鏡(SEM)を用いて10000倍で観察したものであり、領域Aを図1に、領域Bを図2に示す。上述した領域Aと領域Bの観察は、観察面をランダムに選んだ10視野以上の視野にて炭化物の分布状況を測定するものとするが、領域Aは旧オーステナイト粒界かその近傍に見られ、領域Bは旧オーステナイト粒の粒内に相当する個所に見られることが多い。
そのため、ランダムに観察する視野には、旧オーステナイト粒界かその近傍の個所と、旧オーステナイト粒内の2つの視野は必須で観察する。
As a tool steel material for quenching according to the present invention, a specimen for metallographic observation was cut out from a large-sized steel material of 350 mm (t) × 350 mm (w) × 1500 mm (l) and observed.
The observation was made by observing a specimen cut out from a tool steel material for quenching at a magnification of 10,000 using a scanning electron microscope (SEM) after 4% nital corrosion. Region A in FIG. 1 and region B in FIG. Show. In the observation of the above-described region A and region B, the distribution state of carbide is measured in a field of view of 10 fields or more with the observation surface selected at random, but the area A is found at or near the prior austenite grain boundary. The region B is often found in a portion corresponding to the inside of the prior austenite grains.
Therefore, for the visual field to be observed at random, the prior austenite grain boundary or its vicinity and the two visual fields in the prior austenite grain are essential.

本発明において上述の炭化物が密な領域Aと炭化物が疎な領域Bとが混在する金属組織とすることが重要であり、この混合組織とすることで、焼き入れ焼戻し後に均一微細な結晶粒を得ることができる。
この結晶粒微細化機構は、領域Aは0.1〜0.5μmと微細な炭化物が数多く存在し、領域Bは領域Aに対し炭化物の個数が100個以上少ないため、焼き入れ加熱すると固溶した炭素濃度は領域Aが領域Bより高くなり、領域Aの変態点が領域Bの変態点より低くなり、領域Aから優先的にオーステナイトへ変態する。
領域Aより先に変態したオーステナイトは粒成長するが、次いで領域Bもオーステナイトへ変態し、領域Aより先に変態したオーステナイトの成長を抑制する効果があるためである。また、微細な炭化物が多数析出しているため、焼き入れ加熱により生成するオーステナイトの核生成サイトが増加し、お互いの結晶粒が粒成長を抑制しあうことで焼き入れ焼戻し後に均一微細な結晶粒を得ることができると考えている。
In the present invention, it is important to have a metal structure in which the above-described carbide-rich region A and carbide-sparse region B are mixed. By using this mixed structure, uniform fine crystal grains can be obtained after quenching and tempering. Can be obtained.
In this grain refinement mechanism, region A has many fine carbides of 0.1 to 0.5 μm, and region B has less than 100 carbides compared to region A. The carbon concentration of the region A is higher than that of the region B, the transformation point of the region A is lower than the transformation point of the region B, and transformation from the region A to austenite is performed preferentially.
This is because the austenite transformed prior to the region A is grain-grown, but the region B is also transformed to austenite and has the effect of suppressing the growth of austenite transformed prior to the region A. In addition, since many fine carbides are precipitated, the number of nucleation sites of austenite generated by quenching heating increases, and each crystal grain suppresses grain growth, so that uniform fine crystal grains after quenching and tempering. I believe you can get

そのため、領域Aと領域Bとの間には、結晶粒微細化機構が得られるに必要な炭素濃度と、部分的な炭素濃度の差が必要になる。しかも、固溶し易い大きさの炭化物個数が特定個数以上の差をもって存在しなければ上記の結晶粒微細化効果は得られない。
そのため、焼入れ加熱時に基地に固溶し易すく、且つ結晶粒微細化が得られるに必要な、優先的な変態が実現できる大きさとして、0.1〜0.5μmの大きさの炭化物サイズとその個数が300個以上と規定した。この本発明で規定する炭化物個数が少なくても、或いは/更に炭化物のサイズが0.1〜0.5μmの大きさ以外となっても、結晶粒微細化機構が得られるに必要な炭素濃度は不十分となるか、部分的な炭素濃度の差が不十分となり結晶粒微細化効果が得られない。
また、結晶粒微細化に必要な炭素濃度差を得るために炭化物が疎な領域Bは領域Aよりも100μm中に円相当径0.1〜0.5μmの炭化物が100個以上少ないと規定した理由は、炭化物個数の差が領域Aと領域Bとで100個未満であると炭素の濃度差が少なく、結晶粒微細化効果が得られないためである。
Therefore, a difference between the carbon concentration necessary for obtaining a crystal grain refining mechanism and a partial carbon concentration is required between the region A and the region B. In addition, if the number of carbides having a size that is easy to dissolve is not greater than a specific number, the above-described crystal grain refining effect cannot be obtained.
Therefore, it is easy to dissolve in the base at the time of quenching heating, and as a size capable of realizing the preferential transformation necessary to obtain crystal grain refinement, a carbide size of 0.1 to 0.5 μm and The number was defined as 300 or more. Even if the number of carbides defined in the present invention is small or / and the size of the carbide is other than 0.1 to 0.5 μm, the carbon concentration necessary for obtaining the crystal grain refining mechanism is Insufficient or partial difference in carbon concentration is insufficient, and the effect of crystal grain refinement cannot be obtained.
Further, in order to obtain a carbon concentration difference necessary for crystal grain refinement, the region B in which the carbides are sparse is defined as having 100 or less carbides having an equivalent circle diameter of 0.1 to 0.5 μm in the region 100 μm 2 than the region A. The reason for this is that if the difference in the number of carbides is less than 100 between region A and region B, the difference in carbon concentration is small and the effect of crystal grain refinement cannot be obtained.

ところで、結晶粒微細化機構が得られるに必要な炭素濃度と、部分的な炭素濃度の差をより確実に実現するには、領域A、領域B共に、固溶し易い大きさの炭化物が主体となっているのが良く、10000倍で観察した時に確認できる炭化物総個数の80%以上(好ましくは90%以上、更に好ましくは95%以上)が0.1〜0.5μmの大きさであるのが良い。
また、領域Aの0.1〜0.5μmの大きさの炭化物個数といっても、観察する視野によって個数のバラツキが生じるため、領域Bを特定するための領域Aの炭化物個数は、少なくとも10000倍を3視野観察・測定した平均値を領域Aの炭化物個数の基準とすると良い。
なお、領域Bの炭化物個数の下限としては200個未満となると結晶粒微細化効果が得にくくなることから領域Bの100μm中に円相当径0.1〜0.5μmの炭化物個数の下限は200個とするのが良い。
また、領域Aとしては、100μm中に円相当径0.1〜0.5μmの炭化物が300個以上の範囲で多く含まれるほど、焼入れ加熱時のオーステナイト生成の核となり、より焼入れ焼戻しによる結晶粒微細化が望める。領域Aの炭化物個数の上限は例えば含有するC量や、炭化物形成元素量によって変化するため、上限を設定するのは難しいが、経験的には、実質的に100μm中に円相当径0.1〜0.5μmの炭化物が600個程度形成されるのが限界である。
By the way, in order to more surely realize the difference between the carbon concentration necessary for obtaining the crystal grain refining mechanism and the partial carbon concentration, both the region A and the region B are mainly composed of carbides having a size that is easily dissolved. 80% or more (preferably 90% or more, more preferably 95% or more) of the total number of carbides that can be confirmed when observed at 10000 times is 0.1 to 0.5 μm. Is good.
Further, even if the number of carbides having a size of 0.1 to 0.5 μm in the region A is varied depending on the field of view to be observed, the number of carbides in the region A for specifying the region B is at least 10,000. The average value obtained by observing and measuring the double field of view is preferably used as a reference for the number of carbides in the region A.
In addition, as the lower limit of the number of carbides in the region B is less than 200, it is difficult to obtain a crystal grain refining effect. Therefore, the lower limit of the number of carbides having an equivalent circle diameter of 0.1 to 0.5 μm in 100 μm 2 of the region B is 200 is good.
Further, as the region A, the more the carbide having an equivalent circle diameter of 0.1 to 0.5 μm is contained in the range of 300 or more in 100 μm 2 , the core of austenite generation at the time of quenching heating, and the more the crystal by quenching and tempering Fine grain can be expected. C amount and the upper limit of the carbide number of region A containing for example, to vary with a carbide forming element content, but it is difficult to set an upper limit, Empirically, the circle equivalent diameter 0 in substantially 100 [mu] m 2. The limit is that about 600 1-0.5 μm carbides are formed.

本発明の金属組織の更に好ましい形態について説明する。
本発明の金属組織は、残留オーステナイトが実質的にないことが望ましい。残留オーステナイトが過度に残留すると焼きなまし状態で時効割れの原因となったり、焼き入れ加熱時に残留オーステナイトを起点に粗大なオーステナイトが生成される恐れがある。そのため、本発明では残留オーステナイトは実質的にないことが望ましい。
なお、残留オーステナイトが実質的にないというのは、エックス線回折にて定量的に測定し、残留オーステナイトは0を含む1%以内であれば残留オーステナイトが実質的にないとする。
A more preferable embodiment of the metal structure of the present invention will be described.
The metal structure of the present invention desirably has substantially no retained austenite. If the retained austenite remains excessively, it may cause aging cracking in the annealed state, or coarse austenite may be generated starting from the retained austenite during quenching heating. Therefore, in the present invention, it is desirable that there is substantially no retained austenite.
The fact that there is substantially no retained austenite is measured quantitatively by X-ray diffraction, and the retained austenite is substantially absent if it is within 1% including 0.

本発明の熱処理方法に適用する工具鋼の組成としては、質量%で0.1〜0.8%、Si:2.0%以下、Mn:2.0%以下、Cr:1.0〜15.0%、Mo:10.0%以下を含有し、更にNi:4.0%以下、V:4.0%以下、W:10.0%以下、Co:10.0%以下、の何れか1種以上を含有して残部はF及び不可避的不純物でなるものを用いると良い。
以下に、前記の好ましい組成の範囲について説明する。なお、含有量は質量%で表している。
Si:2.0%以下
Siは工具鋼において溶解時の脱酸剤として添加される。しかし、多量に添加すると靱性が低下する。そのため、本発明では2.0%以下とした。好ましくは0.15〜1.20%である。
Mn:2.0%以下
Mnは工具鋼において溶解時の脱酸および脱硫剤として添加される。しかし、多量に添加すると靱性が低下する。そのため、本発明では2.0%以下とした。好ましくは0.30〜1.00%である。
Cr:1.0〜15.0%
Crは工具鋼において焼入れ性を向上させ、引張り強さや靱性を改善するという目的で添加される。しかし、多量に添加すると逆に靱性が低下する。そのため本発明では1.0〜15.0%とした。好ましくは1.0〜13.0%、更に好ましくは1.0〜6.0%である。
Mo:10.0%以下
Moは工具鋼において焼入れ性を向上させる。また、焼戻しにより微細な炭化物を形成し、高温引張り強さを増大させるという目的で添加される。しかし、多量に添加すると逆に靱性が低下する。そのため本発明では10.00%以下とした。好ましくは0.20〜5.00%であり、更に好ましくは0.20〜2.5%である。
The set formed of tool steel to be applied to the heat treatment method of the present invention, from .1 to 0.8% by mass%, Si: 2.0% or less, Mn: 2.0% or less, Cr: 1.0 to 15.0%, Mo: 10.0% or less, Ni: 4.0% or less, V: 4.0% or less, W: 10.0% or less, Co: 10.0% or less It is preferable to use at least one of them and the balance being Fe and unavoidable impurities .
Below, the range of the said preferable composition is demonstrated. In addition, content is represented by the mass%.
Si: 2.0% or less Si is added as a deoxidizer during melting in tool steel. However, when added in a large amount, the toughness decreases. Therefore, in the present invention, it was made 2.0% or less. Preferably it is 0.15 to 1.20%.
Mn: 2.0% or less Mn is added as a deoxidizing and desulfurizing agent during melting in tool steel. However, when added in a large amount, the toughness decreases. Therefore, in the present invention, it was made 2.0% or less. Preferably it is 0.30 to 1.00%.
Cr: 1.0-15.0%
Cr is added for the purpose of improving hardenability in tool steel and improving tensile strength and toughness. However, if added in a large amount, the toughness is reduced. Therefore, in this invention, it was set as 1.0 to 15.0%. Preferably it is 1.0 to 13.0%, and more preferably 1.0 to 6.0%.
Mo: 10.0% or less Mo improves hardenability in tool steel. Further, it is added for the purpose of forming fine carbides by tempering and increasing the high-temperature tensile strength. However, if added in a large amount, the toughness is reduced. Therefore, in the present invention, it was made 10.00% or less. Preferably it is 0.20 to 5.00%, More preferably, it is 0.20 to 2.5%.

Ni:4.00%以下
Niは工具鋼において焼入れ性を向上させ、靱性を改善するという目的で添加される。しかし、多量に添加すると変態点を下げ、高温強度が低下する。そのため本発明では4.00%以下とした。好ましくは2.0%以下である。
V:4.00%以下
Vは工具鋼において結晶粒を細かくし靱性を向上させる。また、焼戻しにより高硬度の炭窒化物を形成し、引張強度を増大させるという目的で添加される。しかし、多量に添加すると逆に靱性が低下する。そのため本発明では4.00%以下とした。好ましくは0.10〜1.10%である。
W:10.00%以下
Wは工具鋼において焼入れ性を向上させる。また、焼戻しにより微細な炭化物を形成し、高温引張り強さを増大させるという目的で添加される。しかし、多量に添加すると逆に靱性が低下する。そのため本発明では4.00%以下とした。好ましくは0.10〜1.10%である。
Ni: 4.00% or less Ni is added for the purpose of improving hardenability and improving toughness in tool steel. However, if added in a large amount, the transformation point is lowered and the high-temperature strength is lowered. Therefore, in the present invention, it was made 4.00% or less. Preferably it is 2.0% or less.
V: 4.00% or less V improves the toughness by making crystal grains finer in tool steel. Further, it is added for the purpose of forming a high hardness carbonitride by tempering and increasing the tensile strength. However, if added in a large amount, the toughness is reduced. Therefore, in the present invention, it was made 4.00% or less. Preferably it is 0.10 to 1.10%.
W: 10.00% or less W improves hardenability in tool steel. Further, it is added for the purpose of forming fine carbides by tempering and increasing the high-temperature tensile strength. However, if added in a large amount, the toughness is reduced. Therefore, in the present invention, it was made 4.00% or less. Preferably it is 0.10 to 1.10%.

Co:10.00%以下
Coは工具鋼において赤熱硬性を増し、高温引張強度を増大させるという目的で添加される。本発明では10.00%以下とした。
以上、説明する元素以外は実質的にFeとしているが、不可避的に含有する不純物も当然含まれる。また、例えばNb、Tiは、結晶粒を微細化するのに有効な元素であるため、靱性が劣化させない程度の0.20%以下の範囲で含有させても良い。
また、Alは炭素の拡散を早くする元素であり、パーライト変態で炭化物の析出を促進させる効果があるため、0.20%以下の範囲で含有させても良い。
Co: 10.00% or less Co is added for the purpose of increasing red hot hardness and increasing high-temperature tensile strength in tool steel. In the present invention, it was made 10.00% or less.
As mentioned above, although it is substantially Fe except the element demonstrated, naturally the impurity contained inevitably is also contained. Further, for example, Nb and Ti are effective elements for refining crystal grains, and therefore may be contained in a range of 0.20% or less to the extent that toughness does not deteriorate.
Al is an element that accelerates the diffusion of carbon, and has the effect of promoting precipitation of carbides by pearlite transformation. Therefore, Al may be contained in a range of 0.20% or less.

以下に本発明の金属組織を有する焼入れ用工具鋼素材の製造方法を図5に示すヒートパターンを用いて説明する。
炭化物が析出するに必要な0.1〜0.8%のC含有量を有し、好ましくは上述した好適な範囲内の化学組成を有する工具鋼の素材を1050〜1250℃に加熱して熱間加工を行う(図5には図示なし)。加熱温度は工具鋼素材の塑性加工性を考慮し、完全にオーステナイト組織とするため1050℃以上とした。また、1250℃以上では工具鋼素材が部分的溶融する可能性があるため1050〜1250℃の範囲とした。好ましくは1070〜1170℃の範囲内である。また、加熱・保持の時間は長時間保持するにつれ、オーステナイト結晶粒が粗大に成長することを考慮して適宜決定すればよく、3〜10時間程度であれば十分である。
なお、工具鋼素材の熱間加工では自由鍛造、型打鍛造といった熱間鍛造を適用するとよく、熱間加工のその他の条件としては、熱間加工終了温度は工具鋼素材の表面温度が950〜1050℃の範囲であれば良く、鍛造比は熱間加工においてより歪を蓄積させるため5より大きいことが好ましい。
The manufacturing method of the tool steel raw material for hardening which has the metal structure of this invention below is demonstrated using the heat pattern shown in FIG.
A tool steel material having a C content of 0.1 to 0.8% necessary for precipitation of carbides and preferably having a chemical composition within the above-mentioned preferred range is heated to 1050 to 1250 ° C. Inter-working is performed (not shown in FIG. 5). Considering the plastic workability of the tool steel material, the heating temperature was set to 1050 ° C. or higher in order to obtain a complete austenite structure. Moreover, since the tool steel raw material may partially melt at 1250 ° C. or higher, the temperature range is set to 1050 to 1250 ° C. Preferably it exists in the range of 1070-1170 degreeC. Further, the heating and holding time may be appropriately determined in consideration of the fact that the austenite crystal grains grow coarsely as it is held for a long time, and about 3 to 10 hours is sufficient.
In the hot working of the tool steel material, it is preferable to apply hot forging such as free forging and die forging. As other conditions for the hot working, the hot working finish temperature is 950 to 950. It may be in the range of 1050 ° C., and the forging ratio is preferably larger than 5 in order to accumulate more strain in hot working.

そして、上記の熱間加工終了後、工具鋼素材の表面温度が500〜700℃となるまで空冷以上の冷却速度で冷却を行う(図5中の(1))。
熱間加工終了後の工具鋼素材温度は結晶粒界に炭化物が析出可能な温度にある。熱間加工終了後に過剰に結晶粒界に炭化物が析出した場合、焼入れ焼戻しを行うと、炭化物が結晶粒界に残存し、靱性を阻害するという問題がある。そのため、結晶粒界に炭化物が析出し難い700℃以下の温度域まで冷却を急ぐ必要がある。
この時の冷却は、粒界炭化物のノーズにかからない程度の速さで冷却することとし、工具鋼素材の断面寸法がおおよそ300mm(t)×300mm(w)よりも小さいものは空冷とし、それ以上に大きいものは、ファンにてカゼを当てて強制冷却すると良く、おおよそ25℃/minの速さであれば良い。
そして、上記の冷却により結晶粒界に炭化物が析出し難い700℃以下の温度域まで冷却を行うが、過度に低い温度まで冷却するとオーステナイトがベイナイトに変態する可能性があり、ベイナイト変態してしまうとその後の等温保持にて炭化物の析出を制御できないという問題がある。これを抑制するために、空冷以上での冷却の下限は500℃とした。
And after completion | finish of said hot processing, it cools with the cooling rate more than air cooling until the surface temperature of a tool steel raw material becomes 500-700 degreeC ((1) in FIG. 5).
The tool steel material temperature after hot working is at a temperature at which carbides can be precipitated at the grain boundaries. In the case where carbide is excessively precipitated at the crystal grain boundary after the hot working is finished, there is a problem that if quenching and tempering is performed, the carbide remains in the crystal grain boundary and the toughness is inhibited. For this reason, it is necessary to urge cooling to a temperature range of 700 ° C. or lower where carbides are unlikely to precipitate at the grain boundaries.
Cooling at this time is performed at a speed that does not affect the nose of the grain boundary carbide, and if the cross-sectional dimension of the tool steel material is smaller than about 300 mm (t) x 300 mm (w), air cooling is performed. Larger ones may be forcedly cooled by applying a fan with a fan, and may be about 25 ° C./min.
Then, cooling is performed to a temperature range of 700 ° C. or less where carbides are not easily precipitated at the grain boundaries by the above cooling, but austenite may be transformed into bainite when cooled to an excessively low temperature, resulting in bainite transformation. And there is a problem that the precipitation of carbide cannot be controlled by the subsequent isothermal holding. In order to suppress this, the lower limit of cooling above air cooling was set to 500 ° C.

次に、工具鋼素材の表面温度が500〜700℃となるまで空冷以上の冷却速度で冷却の後、加熱炉に工具鋼の素材を入材し、400〜700℃の温度に加熱・保持を行う(図5中の(2))。
400〜700℃に限定した理由は700℃より高いと先に述べた通り結晶粒界に炭化物が析出し、400℃より低いとベイナイトに変態する可能性があるためである。なお、加熱・保持の時間は長時間保持すると、その時点でベイナイトに変態する可能性があると言ったことを考慮して適宜決定すればよく、0.5〜5時間程度であれば十分である。この処理により、被熱処理材の中心部までパーライトノーズ以下の温度に均熱化をする。
Next, after cooling at a cooling rate of air cooling or higher until the surface temperature of the tool steel material reaches 500 to 700 ° C., the tool steel material is placed in a heating furnace and heated and held at a temperature of 400 to 700 ° C. Perform ((2) in FIG. 5).
The reason why the temperature is limited to 400 to 700 ° C. is that if the temperature is higher than 700 ° C., carbides precipitate at the grain boundaries as described above, and if the temperature is lower than 400 ° C., there is a possibility of transformation into bainite. Note that the heating / holding time may be appropriately determined in consideration of the fact that, when held for a long time, there is a possibility of transformation to bainite at that time, and it is sufficient if it is about 0.5 to 5 hours. is there. By this treatment, the temperature is equalized to a temperature equal to or lower than the pearlite nose up to the center of the heat-treated material.

次に、前記400〜700℃の温度に加熱・保持した工具鋼素材の素材温度を高める加熱を行なって(図5中の(3))工具鋼素材温度をパーライトノーズからマイナス100℃の温度域に高め、該パーライトノーズからマイナス100℃の温度域にて加熱・保持を行い(図5中の(4))、冷却(図5中の(5))して工具鋼中間素材とする。
パーライトノーズからマイナス100℃の温度域としたのは、この範囲内では図1に示すような旧オーステナイト粒界近傍は炭化物が密に、旧オーステナイト粒内部は炭化物が疎に析出した金属組織が得られるためであり、焼鈍後に行う焼入れ焼戻しによって結晶粒微細化を達成するに必要な金属組織に調整するためである。
パーライトノーズより高温側では炭化物がほぼ均一に分散したパーライト組織となり、パーライトノーズからマイナス100℃より低い温度では、パーライト変態が終了するまでの時間が長くなり、旧オーステナイト粒界近傍は炭化物が密に、旧オーステナイト粒内部は炭化物が疎に析出した金属組織を得がたいという問題があり、焼鈍後に行う焼入れ焼戻しによって結晶粒径の微細化がはかれない。そのため、本発明ではパーライトノーズからマイナス100℃の温度域とした。
なお、加熱・保持の時間はパーライト変態開始後、パーライト変態終了まで保持するといったことを考慮して適宜決定すればよく、10〜50時間程度であれば十分である。
Next, heating is performed to increase the material temperature of the tool steel material heated and held at the temperature of 400 to 700 ° C. ((3) in FIG. 5). The tool steel material temperature is changed from pearlite nose to a temperature range of −100 ° C. Then, heating and holding from the pearlite nose in a temperature range of minus 100 ° C. ((4) in FIG. 5) and cooling ((5) in FIG. 5) to obtain a tool steel intermediate material.
The temperature range of −100 ° C. from the pearlite nose is that within this range, as shown in FIG. 1, a metal structure in which carbides are densely deposited in the vicinity of the prior austenite grain boundaries and carbides are loosely precipitated in the former austenite grains is obtained. This is to adjust the metal structure necessary to achieve grain refinement by quenching and tempering after annealing.
On the higher temperature side than the pearlite nose, the carbide has a pearlite structure in which the carbides are almost uniformly dispersed, and at a temperature lower than minus 100 ° C. from the pearlite nose, the time until the pearlite transformation is completed becomes long. In the former austenite grains, there is a problem that it is difficult to obtain a metal structure in which carbides are sparsely precipitated, and the crystal grain size is not refined by quenching and tempering after annealing. Therefore, in this invention, it was set as the temperature range of minus 100 degreeC from pearlite nose.
The heating / holding time may be appropriately determined in consideration of holding from the start of pearlite transformation to the end of pearlite transformation, and it is sufficient if it is about 10 to 50 hours.

以下の実施例で本発明を更に詳しく説明する。
まず表1に示す組成の工具鋼を溶解し、10Tonの鋼塊を得た。この鋼塊を3分割し、1分割材を本発明とする工具鋼素材、1分割材を従来例の工具鋼素材とした。
The following examples further illustrate the present invention.
First, tool steel having the composition shown in Table 1 was melted to obtain a 10-ton steel ingot. The steel ingot was divided into three parts, and a tool steel material according to the present invention was used as a one-piece material, and a tool steel material of a conventional example was used as the one-piece material.

この工具鋼素材を1100℃に加熱し、8時間保持を行った。そして、熱間鍛造(熱間プレス)にて熱間加工を行った。この時の加工率は18%(鍛造比5.5)とし、350mm(t)×350mm(w)×1500mm(l)に仕上げた。熱間加工終了温度は表面温度が950℃であった。
そして、工具鋼素材の表面温度が550℃となるまでファンにてカゼを吹き当てることによる強制冷却を行い(図5中の(1))、熱間加工時に固溶していた炭素がその冷却過程において結晶粒界にネット状の炭化物として析出するということを防止するために、900℃付近もカゼを吹き当てる強制冷却とした。なお、表面温度は放射温度計を用いて測定した。
その後450℃の加熱炉に工具鋼素材を入材し、450℃の温度で3時間保持を行い(図5中の(2))、次いで前記450℃の温度に加熱・保持した素材の素材温度をパーライトノーズからマイナス100℃の温度域内の725℃の温度に素材温度を高める加熱を行い(図5中の(3))、20時間保持を行った後(図5中の(4))、炉冷し(図5中の(5))て焼入れ用工具鋼素材とした。なお、表1に示す工具鋼のパーライトノーズの温度は775℃であった。
また、従来例として、マルテンサイト、ベイナイト変態域まで冷却し、その後Ac3点以上で完全にオーステナイト変態させ、焼きなましを行った従来材の焼入れ用工具鋼素材とした。なお、熱間鍛造条件は本発明の焼入れ用の工具鋼素材製造条件と同一とした。
This tool steel material was heated to 1100 ° C. and held for 8 hours. And hot working was performed by hot forging (hot pressing). The processing rate at this time was 18% (forging ratio 5.5), and finished to 350 mm (t) × 350 mm (w) × 1500 mm (l). The hot working finish temperature was 950 ° C. at the surface temperature.
Then, forced cooling is performed by blowing a case with a fan until the surface temperature of the tool steel material reaches 550 ° C. ((1) in FIG. 5), and the carbon that has been dissolved during hot working is cooled. In order to prevent precipitation as a net-like carbide in the crystal grain boundary during the process, forced cooling was performed by spraying caseo at around 900 ° C. The surface temperature was measured using a radiation thermometer.
After that, the tool steel material is put into a 450 ° C. heating furnace, held at a temperature of 450 ° C. for 3 hours ((2) in FIG. 5), and then the material temperature of the material heated and held at the temperature of 450 ° C. Is heated from the pearlite nose to a temperature of 725 ° C. within the temperature range of minus 100 ° C. ((3) in FIG. 5), and after holding for 20 hours ((4) in FIG. 5), The furnace steel was cooled ((5) in FIG. 5) to obtain a tool steel material for quenching. The temperature of the pearlite nose of the tool steel shown in Table 1 was 775 ° C.
Moreover, as a conventional example, the steel was cooled to the martensite and bainite transformation region, and then completely austenite transformed at the Ac3 point or higher, thereby obtaining a conventional tool steel material for quenching that was annealed. The hot forging conditions were the same as the conditions for producing the tool steel material for quenching according to the present invention.

この本発明の工具鋼及び比較例の焼入れ用工具鋼素材から金属組織観察用の試験片を切り出して、金属組織観察を行った。4%ナイタール腐食後、査電子顕微鏡(SEM)を用いて10000倍で金属組織を10視野観察し、その画像を三谷商事株式会社製画像解析ソフト「WinROOF(R)」にて解析することで100μm中に存在する炭化物個数及び炭化物サイズを確認した。
本発明にて得られた金属組織を図3に示す。図3(a)は100倍の電子顕微鏡写真であり、図3(b)は図3(a)中に白枠で囲った部分の拡大写真(×400)である。図3で白く見える個所は領域Aであり、黒色の個所が領域Bである。領域Aは旧オーステナイト粒界とその近傍に見られるのが分かる。なお、炭化物が密な領域Aを図1に、炭化物が疎な領域Bを図2に示す。図1及び図2は10000倍の電子顕微鏡写真である。従来材も焼入れ用工具鋼素材から切出した試験片を4%ナイタール腐食後、走査電子顕微鏡(SEM)を用いて10000倍で観察した。従来材の金属組織を図4に示す。
A test specimen for observing the metal structure was cut out from the tool steel of the present invention and the quenched tool steel material of the comparative example, and the metal structure was observed. After 4% Nital corrosion, 10 fields of view of the metal structure were observed at 10,000 times using a scanning electron microscope (SEM), and the image was analyzed with image analysis software “WinROOF®” manufactured by Mitani Corporation. The number of carbides present in 2 and the carbide size were confirmed.
The metal structure obtained by the present invention is shown in FIG. FIG. 3A is a 100 × electron micrograph, and FIG. 3B is an enlarged photograph (× 400) of a portion surrounded by a white frame in FIG. 3A. The portion that appears white in FIG. 3 is the region A, and the black portion is the region B. It can be seen that region A is seen at the prior austenite grain boundary and its vicinity. A region A in which carbides are dense is shown in FIG. 1, and a region B in which carbides are sparse is shown in FIG. 1 and 2 are 10000 × electron micrographs. A test piece cut from a tool steel material for quenching was also observed at 10,000 times using a scanning electron microscope (SEM) after 4% nital corrosion. The metal structure of the conventional material is shown in FIG.

そして、本発明の焼入れ用工具鋼素材及び従来材の焼入れ用工具鋼素材からエックス線回折用試験片を採取し、広角エックス線回折装置を用い、測定条件はターゲットCo、電圧40KV、電流200mAにて残留オーステナイトの有無を確認し、本発明材及び従来材の残留オーステナイトは確認できなかった(残留オーステナイト量は0%だった)。
また、本発明の焼入れ用工具鋼素材及び従来材の焼入れ用工具鋼素材の走査電子顕微鏡(SEM)を用いて10000倍で観察した時、100μm中に円相当径0.1〜0.5μmの炭化物の個数の結果については表2及び表3に示す。
Then, specimens for X-ray diffraction were sampled from the quenching tool steel material of the present invention and the conventional quenching tool steel material, and remained at a target Co, a voltage of 40 KV, and a current of 200 mA using a wide-angle X-ray diffraction apparatus. The presence or absence of austenite was confirmed, and the retained austenite of the present invention material and the conventional material could not be confirmed (the amount of retained austenite was 0%).
Further, when observed at 10,000 times using a scanning electron microscope (SEM) of the quenching tool steel material of the present invention and the conventional quenching tool steel material, an equivalent circle diameter of 0.1 to 0.5 μm in 100 μm 2 Tables 2 and 3 show the results of the number of carbides.

先ず、画像解析の結果から、本発明の焼入れ用工具鋼素材の金属組織は、炭化物の析出形態としては、ある一定方向に連なって析出するのではなく、それぞれの炭化物が方位性を持たず分散し、針状比が1〜2と言った、特徴的な金属組織となっていた。
また、金属組織を10000倍で観察した時、100μm中に円相当径0.1〜0.5μmの炭化物個数が300個以上形成されている炭化物が密な領域Aを有し、該金属組織中には100μm中に円相当径0.1〜0.5μmの炭化物個数が領域Aに対し、100個以上少ない炭化物が疎な領域Bが混在する金属組織であることを確認した。
従来材においては、焼入れ用工具鋼素材から切出した試験片を4%ナイタール腐食後、走査電子顕微鏡(SEM)を用いて10000倍で観察したものであり、100μm中に円相当径0.1〜0.5μmの炭化物がおよそ100〜150個形成された炭化物が均一に分散する金属組織であった。
First, from the results of image analysis, the metal structure of the tool steel material for quenching according to the present invention is not precipitated continuously in a certain direction as a carbide precipitation form, but each carbide is dispersed without orientation. However, it had a characteristic metal structure with an acicular ratio of 1-2.
Further, when the metal structure is observed at a magnification of 10,000, the carbide structure in which 300 or more carbides having an equivalent circle diameter of 0.1 to 0.5 μm are formed in 100 μm 2 has a dense region A, and the metal structure It was confirmed that in 100 μm 2 , the number of carbides having an equivalent circle diameter of 0.1 to 0.5 μm in the region A was a metal structure in which a region B in which 100 or more carbides were sparse was mixed.
In the conventional material, a specimen cut from a tool steel material for quenching was observed at 10,000 times using a scanning electron microscope (SEM) after 4% nital corrosion, and an equivalent circle diameter of 0.1 in 100 μm 2. It was a metal structure in which approximately 100 to 150 carbides of ˜0.5 μm were uniformly dispersed.

次に、本発明の工具鋼、比較例の工具鋼をAc3点以上の温度の1030℃に加熱して焼入れし、その後、600℃にて焼戻しを1回行った。なお、加熱保持時間は焼入れ時が2時間、焼戻し時は7時間とした。
本発明の工具鋼及び比較例の工具鋼から金属組織観察用の試験片を切り出し、平均結晶粒度を測定した結果を表4に示す。
Next, the tool steel of the present invention and the tool steel of the comparative example were heated to 1030 ° C. at a temperature of Ac3 point or higher and quenched, and then tempered once at 600 ° C. The heating and holding time was 2 hours during quenching and 7 hours during tempering.
Table 4 shows the results of cutting out test pieces for observing the metal structure from the tool steel of the present invention and the tool steel of the comparative example and measuring the average crystal grain size.

以上説明したように本願発明の金属組織を有する焼入れ用工具鋼素材を用い、焼入れ焼戻しを行うことで、均一微細な結晶粒を得ることができ、且つ平均結晶粒度番号で8番より細粒となり、靱性が大幅に向上する効果がある。   As explained above, by using the tool steel material for quenching having the metal structure of the present invention and quenching and tempering, uniform fine crystal grains can be obtained, and the average grain size number becomes finer than No. 8. The toughness is greatly improved.

本願発明の金属組織を有する焼入れ用工具鋼素材を用いれば、焼入れ焼戻しにより均一微細な結晶粒を得ることから工具鋼の靱性が要求される用途に利用可能である。   If the tool steel material for quenching having the metal structure of the present invention is used, uniform fine crystals can be obtained by quenching and tempering, so that it can be used for applications requiring toughness of tool steel.

Claims (2)

質量%でC:0.1〜0.8%、Si:2.0%以下、Mn:2.0%以下、Cr:1.0〜15.0%、Mo:10.0%以下を含有し、更にNi:4.0%以下、V:4.0%以下、W:10.0%以下、Co:10.0%以下、の何れか1種以上を含有して残部はFe及び不可避的不純物でなる焼入れ用工具鋼素材であって、該工具鋼素材の金属組織を10000倍で観察した時、100μm中に円相当径0.1〜0.5μmの炭化物個数が300個以上形成されている炭化物が密な領域Aと、該領域Aに対して、100μm中に円相当径0.1〜0.5μmの炭化物個数が100個以上少ない炭化物が疎な領域Bとが混在する金属組織でなることを特徴とする焼入れ用工具鋼素材。 C: 0.1 to 0.8% by mass% , Si: 2.0% or less, Mn: 2.0% or less, Cr: 1.0 to 15.0%, Mo: 10.0% or less Furthermore, Ni: 4.0% or less, V: 4.0% or less, W: 10.0% or less, Co: 10.0% or less, and the balance is Fe and inevitable A tool steel material for quenching made of mechanical impurities , and when the metallographic structure of the tool steel material is observed at a magnification of 10,000, 300 or more carbides having an equivalent circle diameter of 0.1 to 0.5 μm are formed in 100 μm 2. The region A in which the carbides are dense and the region B in which the number of carbides having an equivalent circle diameter of 0.1 to 0.5 μm is less than 100 in 100 μm 2 are sparse with respect to the region A are mixed. A tool steel material for quenching characterized by comprising a metal structure. 領域Bの100μm中に見られる円相当径0.1〜0.5μmの炭化物個数は200個以上であることを特徴とする請求項1に記載の焼入れ用工具鋼素材。 The tool steel material for quenching according to claim 1, wherein the number of carbides having an equivalent circle diameter of 0.1 to 0.5 µm seen in 100 µm 2 of region B is 200 or more.
JP2009140981A 2009-06-12 2009-06-12 Hardened tool steel material Active JP5359582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009140981A JP5359582B2 (en) 2009-06-12 2009-06-12 Hardened tool steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009140981A JP5359582B2 (en) 2009-06-12 2009-06-12 Hardened tool steel material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005240734A Division JP4423608B2 (en) 2005-08-23 2005-08-23 Hardened tool steel material

Publications (2)

Publication Number Publication Date
JP2009215656A JP2009215656A (en) 2009-09-24
JP5359582B2 true JP5359582B2 (en) 2013-12-04

Family

ID=41187790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009140981A Active JP5359582B2 (en) 2009-06-12 2009-06-12 Hardened tool steel material

Country Status (1)

Country Link
JP (1) JP5359582B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5991564B2 (en) 2014-05-28 2016-09-14 日立金属株式会社 Hot tool material and hot tool manufacturing method
CN106574335B (en) 2014-07-23 2019-06-18 日立金属株式会社 Hot working has material, the manufacturing method of hot working tool and hot working tool
KR101828228B1 (en) 2014-09-26 2018-02-09 히타치 긴조쿠 가부시키가이샤 Cold tool material and method for manufacturing cold tool
CN107429345B (en) 2016-03-18 2019-04-19 日立金属株式会社 The manufacturing method of cold-working tool materials and cold-working tool
CN112725688B (en) * 2020-11-25 2022-06-07 河钢股份有限公司 Cold and hot dual-purpose steel for thread rolling die and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294974A (en) * 2000-04-12 2001-10-26 Hitachi Metals Ltd Tool steel excellent in machinability and small in dimensional change cause by heat treatment and its producing method

Also Published As

Publication number Publication date
JP2009215656A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
JP5093118B2 (en) Tool steel manufacturing method
JP5812048B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
JP4423608B2 (en) Hardened tool steel material
JP6319437B2 (en) Steel for cold forging
CN103124801A (en) Case hardened steel and method for producing same
CN107406949B (en) Steel wire for machine structural parts
JP5288259B2 (en) Pre-quenching method and quenching method for martensitic tool steel
JP5576785B2 (en) Steel material excellent in cold forgeability and manufacturing method thereof
JP2004143482A (en) High strength cold formed spring steel wire and its production method
JP2017048459A (en) Steel wire for machine structure component
JP5359582B2 (en) Hardened tool steel material
CN113195768B (en) Wire rod capable of omitting softening heat treatment and method for producing same
JP4425368B2 (en) Manufacturing method of high carbon steel sheet with excellent local ductility
JP4835972B2 (en) Method for producing tool steel intermediate material and method for producing tool steel
JP6569845B1 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP2017106048A (en) Steel wire for machine structural component
JP3725666B2 (en) Manufacturing method of carburized shaft parts
JP5053187B2 (en) Perlite high carbon steel rail with excellent ductility
JP6752624B2 (en) Manufacturing method of carburized steel
JP6705275B2 (en) Hot rolled steel sheet and method for manufacturing hot rolled steel sheet
TWI806526B (en) Steel wire for mechanical structural parts and manufacturing method thereof
TWI812127B (en) Steel wire for mechanical structural parts and manufacturing method thereof
JP2014201812A (en) Method for manufacturing cold forging steel material
CN112996940B (en) Steel wire rod enabling softening heat treatment to be omitted and method for manufacturing same
JP7471068B2 (en) Spheroidizing annealing method for case hardening steel

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130603

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Ref document number: 5359582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350