JPS62174364A - Manufacture of high purity iron-carbon alloy - Google Patents

Manufacture of high purity iron-carbon alloy

Info

Publication number
JPS62174364A
JPS62174364A JP1634886A JP1634886A JPS62174364A JP S62174364 A JPS62174364 A JP S62174364A JP 1634886 A JP1634886 A JP 1634886A JP 1634886 A JP1634886 A JP 1634886A JP S62174364 A JPS62174364 A JP S62174364A
Authority
JP
Japan
Prior art keywords
carbon
iron
pure iron
vacuum
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1634886A
Other languages
Japanese (ja)
Inventor
Ryoji Tanaka
良治 田中
Masayuki Takamura
昌幸 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Gakki Co Ltd
Original Assignee
Nippon Gakki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Gakki Co Ltd filed Critical Nippon Gakki Co Ltd
Priority to JP1634886A priority Critical patent/JPS62174364A/en
Publication of JPS62174364A publication Critical patent/JPS62174364A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the corrosion resistance and cold workability by incorporating carbon into the surface layer of pure iron by vacuum carburization and by uniformly distributing the carbon in the pure iron by vacuum diffusion so as to prevent impurities from entering the pure iron and to obtain an alloy consisting of prescribed amounts of carbon and pure iron. CONSTITUTION:Carbon is incorporated into the surface layer of pure iron having >=99.9wt% purity by vacuum carburization. The carbon is then uniformly distributed in the pure iron by vacuum diffusion to obtain a high purity iron-carbon alloy contg. 0.2-0.8wt% C and >=99.9wt% Fe.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、特定量の炭素を純鉄に含有さ仕た高純度鉄
−炭素合金の製法に関するもので、真空浸炭後に炭素の
拡散処理を行うことにより、優れた強度と耐食性と冷間
加工性と磁気特性を有する鉄−炭素合金を製造するもの
である。
[Detailed Description of the Invention] "Industrial Application Field" This invention relates to a method for producing a high-purity iron-carbon alloy in which pure iron contains a specific amount of carbon, and involves carbon diffusion treatment after vacuum carburization. By doing so, an iron-carbon alloy having excellent strength, corrosion resistance, cold workability, and magnetic properties is produced.

「従来の技術、およびその問題点」 高純度鉄は、一般市販の鉄や鋼に比較して優れた耐食性
と冷間加工性、更には、軟質磁気特性を備えていること
が知られているが、反面、強度に劣る欠点がある。この
欠点を解消するために、高純度鉄に冷間加工を施して強
度向上を図ると、前記耐食性と冷間加工性、更には、軟
質磁性特性までが損なわれる問題がある。従って従来、
優れた耐食性と冷間加工性と磁気特性に加え、高い強度
を備えた鉄鋼材料が望まれている。
"Conventional technology and its problems" High-purity iron is known to have superior corrosion resistance and cold workability, as well as soft magnetic properties, compared to commercially available iron and steel. However, on the other hand, it has the disadvantage of being inferior in strength. In order to overcome this drawback, if high-purity iron is subjected to cold working to improve its strength, there is a problem that the corrosion resistance, cold workability, and even soft magnetic properties are impaired. Therefore, conventionally,
In addition to excellent corrosion resistance, cold workability, and magnetic properties, steel materials with high strength are desired.

ところで、鉄鋼材料においては、炭素等の添加元素の含
有mの大小によって機械特性や磁気特性等の改善を図り
うろことが知られており、従来、添加元素を鉄鋼材料に
含有させる方法として、るつぼ等に溶融状態で保持した
鉄原料に添加元素を混入し、その後に凝固させて材料を
得る溶解鋳造法が知られている。ところがこの溶解鋳造
法を実施して鉄鋼材料を製造する場合、るつぼの内壁を
+1が成する元素の一部がるつぼの溶湯内に移動して溶
湯をtT5染し、得られる鉄鋼材料に不純物を混入させ
る問題があった。
By the way, it is known that mechanical properties, magnetic properties, etc. can be improved in steel materials by changing the content m of additive elements such as carbon, and conventional methods for incorporating additive elements into steel materials include crucible A melting and casting method is known in which additive elements are mixed into an iron raw material held in a molten state, and the material is then solidified. However, when manufacturing steel materials by implementing this melting and casting method, some of the elements forming the +1 on the inner wall of the crucible move into the molten metal of the crucible, dyeing the molten metal with tT5, and introducing impurities into the resulting steel material. There was a problem with mixing.

本発明は、前記問題に鑑みてなされたもので、優れた耐
食性と冷間加工性と軟質磁気特性に加えて高い強度を有
する鉄−炭素合金を製造できる方法を堤供することを目
的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing an iron-carbon alloy that has high strength in addition to excellent corrosion resistance, cold workability, and soft magnetic properties.

「問題点を解決するための手段」 本発明は、前記問題点を解決するために、純度99.9
%以上の純鉄に真空浸炭処理を施して炭素を含浸させ、
引き続き真空雰囲気中で加熱して拡散処理を行うことに
より炭素の均一分布化を行うものであり、前記浸炭工程
においては、浸炭後の断面平均炭素含有量が0.2〜0
.8%になるように浸炭処理を施し、また、炭素以外の
成分を純度99.9%以上の鉄にするものである。
"Means for Solving the Problems" In order to solve the above-mentioned problems, the present invention provides
% or more of pure iron is subjected to vacuum carburizing treatment to impregnate it with carbon,
Subsequently, carbon is uniformly distributed by heating and diffusing in a vacuum atmosphere, and in the carburizing process, the cross-sectional average carbon content after carburizing is 0.2 to 0.
.. It is carburized to a purity of 8%, and the components other than carbon are made into iron with a purity of 99.9% or more.

以下に本願発明製法を更に詳細に説明する。The manufacturing method of the present invention will be explained in more detail below.

本願発明製法の実施にあたっては、まず、原料として純
度99.9%以上の純度の純鉄を用意する。ここで、原
料として純度99.9%以上の純鉄を用いるのは、最終
的に製造される鉄−炭素合金において、炭素を除く成分
を純度99,9%以上の純鉄にするためである。また、
実際に使用する原料の形状は特に問わないが、後の工程
において浸炭工程を経て原料の表面から炭素を含浸させ
拡散させろ関係から、拡散に時間のかかるような大きな
形状の原れトは好ましくなく、従って原料の形状は棒体
や線状体、あるいは薄板状等が好ましい。そしてこの際
、棒体や線状体であれば、その直径を3mm以下に、板
状体や条体であれば、厚さを1mm以下にすることか望
ましい。
In implementing the manufacturing method of the present invention, first, pure iron with a purity of 99.9% or more is prepared as a raw material. The reason why pure iron with a purity of 99.9% or more is used as a raw material is to make the components other than carbon into pure iron with a purity of 99.9% or more in the iron-carbon alloy that is finally produced. . Also,
The shape of the raw material actually used does not matter in particular, but since carbon will be impregnated and diffused from the surface of the raw material through the carburizing process in the subsequent process, it is not preferable to use a raw material with a large shape that takes time to diffuse. Therefore, the shape of the raw material is preferably a rod, a wire, or a thin plate. In this case, it is desirable that the diameter of a rod or a linear body be 3 mm or less, and that the thickness of a plate or strip be 1 mm or less.

次に、前記原料を真空チャンバーに収納し、チャンバー
内部を真空にした後に、チャンバー内の原料を所定温度
に加熱し、その後に炭化水素ガス等の浸炭ガスを大気圧
以下の圧力でチャンバー内部に導入して浸炭処理を行い
、原料の表面部に炭素を含浸させる。前記浸炭工程にお
いては、浸炭後の断面平均炭素含有量が0.2〜0.8
%で炭素以外の成分を純度99.9%以上の純鉄になる
ように浸炭する。この工程において真空浸炭を採用する
のは、炭素以外の不純物元素の混入を防止するためであ
る。従って前述の如く真空浸炭を行うならば、従来の溶
解鋳造法では避けられなかった不純物元素の混入を防止
できる効果がある。なお、この真空浸炭工程において、
真空浸炭における設定温度と浸炭時間、およびガス圧や
炭素ポテンシャル(浸炭後の純鉄表面部に含有させた炭
素蛍を%で示すもの)あるいは、それらのサイクルの組
み合わせ等の諸条件は特に限定するものではないが、次
の工程で行う拡散処理の条件との組み合わせにおいて、
原料の形状と得られる製品の所要炭素濃度との兼合いで
適宜選択して各条件を設定するものとする。
Next, the raw material is stored in a vacuum chamber, the interior of the chamber is evacuated, the raw material in the chamber is heated to a predetermined temperature, and then a carburizing gas such as hydrocarbon gas is injected into the chamber at a pressure below atmospheric pressure. The material is introduced and carburized to impregnate the surface of the raw material with carbon. In the carburizing step, the cross-sectional average carbon content after carburizing is 0.2 to 0.8.
%, components other than carbon are carburized to become pure iron with a purity of 99.9% or more. The reason why vacuum carburizing is employed in this step is to prevent contamination of impurity elements other than carbon. Therefore, if vacuum carburizing is performed as described above, it is possible to prevent the contamination of impurity elements, which was unavoidable in the conventional melting and casting method. In addition, in this vacuum carburizing process,
Conditions such as the set temperature and carburizing time in vacuum carburizing, gas pressure and carbon potential (expressing the carbon content in percentage on the surface of pure iron after carburizing), or the combination of these cycles are particularly limited. However, in combination with the conditions of the diffusion treatment performed in the next step,
Each condition shall be appropriately selected and set depending on the shape of the raw material and the required carbon concentration of the product to be obtained.

次いで、浸炭ガスを前記チャンバーから除去した後に、
前記浸炭処理を施した原料をチャンバー内の真空中で加
熱して原料表面部に含浸させた炭素を原料内部に拡散さ
せ、原料内部の炭素分布を均一化する。この拡散工程に
おいては、真空中で拡散処理を行うことにより、原料の
純度を保持できるとともに、原料表面を光輝面にするこ
とができる。また、炭素を拡散させる際に、原料を真空
中に保持することによって、旧工程の浸炭処理中に原料
内に混入した水素を追い出すことができる。
Then, after removing the carburizing gas from the chamber,
The raw material subjected to the carburizing treatment is heated in a vacuum in a chamber to diffuse the carbon impregnated into the raw material surface into the raw material, thereby making the carbon distribution inside the raw material uniform. In this diffusion step, by performing the diffusion treatment in a vacuum, the purity of the raw material can be maintained and the surface of the raw material can be made into a bright surface. Furthermore, by holding the raw material in a vacuum when diffusing carbon, it is possible to drive out hydrogen that was mixed into the raw material during the carburizing process in the old process.

なお、拡散処理の温度や時間は前記した真空浸炭におけ
る諸条件の設定理由と同様な理由により適宜設定して良
い。
Note that the temperature and time of the diffusion treatment may be appropriately set for the same reasons as the reasons for setting various conditions in the vacuum carburizing described above.

続いて所定時間の真空拡散処理が終了したならば、原料
を冷却して製品を得る。この冷却方法については、真空
中での炉冷、放冷または不活性ガスを導入した冷却操作
等のいずれを行っても良いが、前記浸炭工程や真空拡散
工程において粗大化したオーステナイト結晶粒を微細化
するために、700℃以下に一度冷却した後に再度80
0〜900℃に加熱して冷却する熱処理を施すことが望
ましい。
Subsequently, when the vacuum diffusion treatment for a predetermined period of time is completed, the raw material is cooled to obtain a product. As for this cooling method, any of the following methods may be used: furnace cooling in a vacuum, standing cooling, or cooling operation by introducing an inert gas. After cooling to below 700℃, the
It is desirable to perform heat treatment by heating to 0 to 900°C and cooling.

以上の如き手順によって製造された鉄−炭素合金は、炭
素含有量0.2〜08%で、炭素を除く成分が99.9
%以上の純鉄であり、炭素が内部で均一に分散した鉄−
炭素合金である。この鉄−炭素合金は、純鉄なみの優れ
た耐食性と冷間加工性と軟質磁気特性に加えて高い強度
ら有している。
The iron-carbon alloy produced by the above procedure has a carbon content of 0.2 to 08% and a component other than carbon of 99.9%.
% pure iron with carbon uniformly dispersed inside.
It is a carbon alloy. This iron-carbon alloy has excellent corrosion resistance, cold workability, and soft magnetic properties comparable to pure iron, as well as high strength.

この合金の製造法において、炭素含有量を0.2〜0.
8%となるように限定したのは、炭素含有mが0.2%
未満では、強度不足になり、炭素含有量が0.8%を越
える値では靭性と延性が不足するためである。また、炭
素を除く成分を純度99.9%以上の純鉄になるように
限定したのは、純度99.9%未満の鉄では、純鉄なみ
の耐食性や冷間加工性、軟質磁気特性を得ることができ
ないためである。
In the manufacturing method of this alloy, the carbon content is set to 0.2 to 0.
The carbon content was limited to 8% when the carbon content m was 0.2%.
If the carbon content is less than 0.8%, the strength will be insufficient, and if the carbon content exceeds 0.8%, the toughness and ductility will be insufficient. In addition, the reason why we limited the components other than carbon to pure iron with a purity of 99.9% or higher is because iron with a purity of less than 99.9% does not have the same corrosion resistance, cold workability, and soft magnetic properties as pure iron. This is because they cannot be obtained.

前述の如く製造された鉄−炭素合金は、そのまま使用し
ても良いし、更に、焼鈍処理と冷間加工を施して極細線
や箔に加工して使用しても良い。
The iron-carbon alloy produced as described above may be used as it is, or may be further processed into ultrafine wire or foil by annealing and cold working.

なお、前記の鉄−炭素合金は、主として耐食生を重視す
る用途であるならば、カッティングブレードや振動板、
ボンディングワイヤー、各種複合材料用の線や薄板等に
好適であり、主として磁気特性を重視する用途であるな
らば、着磁板やシールド材、磁芯等に好適である。
In addition, if the above-mentioned iron-carbon alloy is used mainly for corrosion resistance, it can be used for cutting blades, diaphragms,
It is suitable for bonding wires, wires and thin plates for various composite materials, etc., and is suitable for magnetized plates, shielding materials, magnetic cores, etc. if the purpose is to place emphasis on magnetic properties.

「作用 」 真空中で浸炭処理を施し次いで炭素を拡散させるために
、不純物の混入を防止しつつ炭素を均一化でき、炭素を
除いた成分を99.9%以上の純鉄としているために、
純鉄が本来有する優れた耐食生と冷間加工性と軟質磁気
特性を有し、更に炭素を0.2〜0.8%の範囲で含有
させているために純鉄を越える強度を有する。
``Function'' Because the carburizing process is performed in a vacuum and the carbon is then diffused, the carbon can be homogenized while preventing the contamination of impurities, and since the component excluding carbon is more than 99.9% pure iron,
It has excellent corrosion resistance, cold workability, and soft magnetic properties that pure iron inherently has, and because it contains carbon in the range of 0.2 to 0.8%, it has strength exceeding that of pure iron.

「実施例1」 試料として、純度99.95%の純鉄製冷間圧延材から
なり、厚さ0 、3 mm、幅100mm、長さ300
mmの薄板を複数枚用意し、これらの薄板試料に以下に
示すa−dの各処理を施して各薄板製品A−Dを作製し
、各薄板製品A−Dについて、引張り強さくMPa)と
伸び(%)と腐食減量(mg/am”・月)と最大透磁
率(μm)を測定し、その測定結果を第1表に示した。
"Example 1" The sample was made of cold-rolled pure iron material with a purity of 99.95%, and had a thickness of 0.3 mm, a width of 100 mm, and a length of 300 mm.
A plurality of thin plates with a diameter of The elongation (%), corrosion loss (mg/am"/month), and maximum magnetic permeability (μm) were measured, and the measurement results are shown in Table 1.

処理a;冷間圧延材のまま(製品A) 処理b:焼鈍処理を施す(850℃に1時間加熱した後
に炉冷する処理)(製品B) 処理C:真空浸炭と拡散処理と冷却処理を施す本願発明
製法を行う(真空浸炭は90 0℃に加熱して30分間、プロパンガ ス雰囲気に保持することによって行い、薄板の表面部の
炭素含有量を0.8%(Cポテンシャル0.8%)とす
る処理とした。また、拡散処理は真空中で900 °Cに加熱して1時間保持することによって行い、冷却
処理は900℃から65 0°Cまで炉冷した後に再加熱して850°Cに1時間
保持した後に炉冷する処理とした。)(製品C) 処理d:ガス浸炭と拡散処理と冷却処理を施す(ガス浸
炭は900℃に加熱して30 分間、RX変成ガス雰囲気に保持する ことによって行い、Cポテンシャル0 8%にする処理とした。また、拡散処 理はRX変成ガス雰囲気でCポテンシャル0.5%にす
る処理とし、冷却処理 は前記処理Cにおける冷却処理と同等 の処理とした。)(製品D) 第1表 比較例: 製品A、B、D なお、第1表において、化学成分のFeの欄は、各試料
におけるC(炭素)を除いた残分中のFe(鉄)の含有
量を示し、化学成分のCの欄は、試料中の炭素含有量を
示している。また、腐食減量とは、3%NaC1水溶液
に浸漬した場合の月ごとの減量を示している。
Treatment a: Cold-rolled material as it is (product A) Treatment b: Annealing treatment (heating to 850°C for 1 hour and then furnace cooling) (product B) Treatment C: Vacuum carburizing, diffusion treatment, and cooling treatment (Vacuum carburizing is carried out by heating to 900°C and holding in a propane gas atmosphere for 30 minutes, and the carbon content on the surface of the thin plate is reduced to 0.8% (C potential: 0.8%). ).Also, the diffusion treatment was performed by heating to 900 °C in a vacuum and holding it for 1 hour, and the cooling treatment was performed by furnace cooling from 900 °C to 650 °C and then reheating to 850 °C. (Product C) Treatment d: Gas carburizing, diffusion treatment, and cooling treatment (Gas carburizing involves heating to 900°C for 30 minutes in an RX metamorphic gas atmosphere. The C potential was set to 0.5% in an RX metamorphic gas atmosphere, and the cooling process was the same as the cooling process in Process C. ) (Product D) Comparative examples in Table 1: Products A, B, D In Table 1, the column for Fe in the chemical components indicates the Fe content in each sample after excluding C (carbon). The content of Fe (iron) in the sample is shown, and the column C of the chemical component shows the carbon content in the sample. Moreover, the corrosion weight loss indicates the monthly weight loss when immersed in a 3% NaCl aqueous solution.

第1表より、本願発明製法によって製造された薄板製品
Cは、製品A(純鉄)に匹敵する引張り強さを有し、製
品B(純鉄の焼鈍H>に匹敵する伸びを有し、製品A(
純鉄)より優秀な耐食生を示し、製品A(純鉄)より格
段に優れた軟質磁気特性を示すことが明らかである。ま
た、製品A−Cの各個に示されるFeの含有量を比較す
ると、本願発明製法によって製造された製品Cは、ガス
浸炭を行って製造された製品りに比較して、鉄の含有m
において製品A、Bの含有量に極めて近い値となってい
るために、真空浸炭工程と真空拡散処理工程中に炭素以
外の不純物元素の混入がほとんど生じなかったことを示
している。
From Table 1, the thin plate product C manufactured by the manufacturing method of the present invention has a tensile strength comparable to product A (pure iron), an elongation comparable to product B (annealed pure iron H>), Product A (
It is clear that it exhibits better corrosion resistance than Product A (pure iron) and exhibits much better soft magnetic properties than Product A (pure iron). In addition, when comparing the Fe content shown in each of products A to C, product C manufactured by the manufacturing method of the present invention has a higher iron content than the product manufactured by gas carburizing.
Since the content is very close to that of products A and B, this shows that almost no impurity elements other than carbon were mixed in during the vacuum carburizing process and the vacuum diffusion process.

「実施例2」 試料として、純度99゜99%の純鉄と純度99.45
%の鉄からなり、前記第1実施例の各薄板と同一寸法で
冷間圧延材からなる2種類の薄板を用意するとともに、
純度99.97%の純鉄からなり、直径1.01長さ3
00mmの冷間圧延材からなる線材を用意し、各試料に
ついて実施例1の製品Cに施した処理と同等の処理を施
して製品E 、F 、Gを製造し、各製品について引張
り強さと伸びと腐食減量と最大透磁率を測定し、その結
果を第2表に示した。
“Example 2” As samples, pure iron with a purity of 99°99% and pure iron with a purity of 99.45
% of iron and having the same dimensions as each of the thin plates of the first embodiment and made of cold rolled material,
Made of 99.97% pure iron, diameter 1.01 length 3
A wire rod made of 00mm cold-rolled material was prepared, and each sample was subjected to the same treatment as that applied to product C in Example 1 to produce products E, F, and G. The tensile strength and elongation of each product were determined. The corrosion weight loss and maximum magnetic permeability were measured, and the results are shown in Table 2.

第2表 比較例:   製品F 第2表より、炭素を除いた部分の鉄含有量を99.46
%とした製品Fにあっては、本願発明製法で製造された
製品E、Gに比較して伸び特性と耐食性に劣り、最大透
磁率も低下して(1ろこと力(明らかである。
Comparative example in Table 2: Product F From Table 2, the iron content in the part excluding carbon is 99.46.
%, product F is inferior in elongation properties and corrosion resistance compared to products E and G manufactured by the manufacturing method of the present invention, and the maximum magnetic permeability is also lower (1 rotation force (obviously).

「実施例3」 試料として、純度99.95%の鉄からなり、前記第1
実施例の各薄板と同一寸法の冷間圧延材からなる薄板を
複数枚用意するとともに、真空浸炭のCボテンシャルを
4通りに変えて前記第1実施例と同様の処理を施し、各
製品H,I、J、Kを製造し、各製品H,I、J、Kに
ついて、引張り強さと伸びと腐食減量と最大透磁率を測
定し、その結果を第3表に示した。なお、製品Hの試料
(こルよCポテンシャルで0.4%の浸炭処理を施し、
製品lの試料には0.7%の浸炭処理を施し、製品Jの
試料には0.9%の浸炭処理を施し、製品にの試料には
1.2%の浸炭処理を施しである。
"Example 3" The sample was made of iron with a purity of 99.95%, and the first
A plurality of thin plates made of cold-rolled material having the same dimensions as each of the thin plates in the examples were prepared, and the same treatment as in the first example was performed by changing the vacuum carburizing C botential in four ways, and each product H, I, J, and K were manufactured, and the tensile strength, elongation, corrosion loss, and maximum magnetic permeability of each product H, I, J, and K were measured, and the results are shown in Table 3. In addition, a sample of product H (carburized by 0.4% at Koruyo C potential,
The sample for Product I was carburized to a level of 0.7%, the sample for Product J was carburized to a level of 0.9%, and the sample for Product J was carburized to a level of 1.2%.

第3表 比較例:   製品I(、K 第3表より明らかなように、本願発明製法によって得ら
れる炭素含有量の下限である0 2%に比較して更に低
い炭素含有ff1(0,1%)を有する製品■(にあっ
ては、引張り強さに劣り、本願発明製法によって得られ
る炭素含有量の上限である0゜8%に比較して更に高い
炭素含有[(0,9%)を有する製品Kにおいては伸び
と最大透磁率が低くなっている。
Table 3 Comparative Example: Product I (, K As is clear from Table 3, the carbon content ff1 (0,1% ) has inferior tensile strength, and has a higher carbon content [(0.9%) than the upper limit of 0.8% of carbon content obtained by the manufacturing method of the present invention. Product K has lower elongation and lower maximum permeability.

「製造例4」 実施例1で製造した製品Cに冷間加工を施してその厚さ
を0.05mmにするとともに、その後に800℃に1
時間加熱し、炉冷することにより焼鈍して薄板製品りを
製造した。この薄板製品しについて引張り強さと伸びと
腐食減量と最大透磁率を測定し、その結果を第4表に示
した。
"Manufacturing Example 4" Product C manufactured in Example 1 was cold worked to a thickness of 0.05 mm, and then heated to 800°C for 1
A sheet product was produced by annealing by heating for a period of time and cooling in a furnace. The tensile strength, elongation, corrosion loss, and maximum magnetic permeability of this thin plate product were measured, and the results are shown in Table 4.

第4表 第4表から明らかなように、薄板製品りは、引張り強さ
と伸びと最大透磁率においていずれも優秀な値を示して
いる。従って、本願発明製法によって製造された薄板製
品Cに、冷間圧延加工を施し、焼鈍処理を施した場合に
も、優れた引張り強さと伸びと最大透磁率を有する製品
を製造できろことが明らかになった。
Table 4 As is clear from Table 4, the thin plate products exhibit excellent values in terms of tensile strength, elongation, and maximum magnetic permeability. Therefore, it is clear that a product having excellent tensile strength, elongation, and maximum magnetic permeability can be manufactured even when cold rolling and annealing are performed on the thin plate product C manufactured by the manufacturing method of the present invention. Became.

「発明の効果」 以上説明したように本発明は、真空浸炭法によハ乞七恍
小ホ石1−リ1十委ん(Ib沁1  貞窃h’r−,散
々几理にょうて炭素を拡散させて均一化するために、不
純物を純鉄内に混入させることなく、鉄−炭素合金を製
造できる効果がある。また、炭素を0.2〜08%含有
させ、その池の成分を純度99.9%以上の純鉄にして
いるために、純鉄が示す優れた耐食性と冷間加工性と軟
質磁気特性を備え、その上、高い強度を有する鉄−炭素
合金を製造することができる。
``Effects of the Invention'' As explained above, the present invention utilizes a vacuum carburizing method to reduce the number of small stones. In order to diffuse and homogenize carbon, it is possible to produce an iron-carbon alloy without mixing impurities into pure iron.In addition, by containing 0.2 to 08% carbon, the composition of the pond By using pure iron with a purity of 99.9% or higher, we can produce an iron-carbon alloy that has the excellent corrosion resistance, cold workability, and soft magnetic properties that pure iron exhibits, and also has high strength. I can do it.

Claims (1)

【特許請求の範囲】[Claims] 純度99.9%(重量%、以下同じ)以上の純鉄に真空
浸炭法によって炭素を含有させ、引き続き真空中で拡散
処理を行うことにより炭素の均一分布化を行い、炭素含
有量0.2〜0.8%で炭素以外の成分を純度99.9
%以上の純鉄とした高純度鉄−炭素合金の製法。
Carbon is added to pure iron with a purity of 99.9% (weight %, the same applies hereinafter) or higher using a vacuum carburizing method, followed by diffusion treatment in a vacuum to achieve a uniform distribution of carbon, resulting in a carbon content of 0.2%. ~0.8% and purity of components other than carbon is 99.9
% or more of pure iron.Production method of high purity iron-carbon alloy.
JP1634886A 1986-01-28 1986-01-28 Manufacture of high purity iron-carbon alloy Pending JPS62174364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1634886A JPS62174364A (en) 1986-01-28 1986-01-28 Manufacture of high purity iron-carbon alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1634886A JPS62174364A (en) 1986-01-28 1986-01-28 Manufacture of high purity iron-carbon alloy

Publications (1)

Publication Number Publication Date
JPS62174364A true JPS62174364A (en) 1987-07-31

Family

ID=11913864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1634886A Pending JPS62174364A (en) 1986-01-28 1986-01-28 Manufacture of high purity iron-carbon alloy

Country Status (1)

Country Link
JP (1) JPS62174364A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105587A (en) * 2000-09-29 2002-04-10 Kenji Abiko Superhigh purity carbon steel in which controlling ranges of strength and ductility are wide
CN1300367C (en) * 2005-02-01 2007-02-14 *** Manufacturing method of ferrocarbon
JP2009544852A (en) * 2006-07-24 2009-12-17 スウエイジロク・カンパニー Metal article having a high concentration of interstitial components

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105587A (en) * 2000-09-29 2002-04-10 Kenji Abiko Superhigh purity carbon steel in which controlling ranges of strength and ductility are wide
CN1300367C (en) * 2005-02-01 2007-02-14 *** Manufacturing method of ferrocarbon
JP2009544852A (en) * 2006-07-24 2009-12-17 スウエイジロク・カンパニー Metal article having a high concentration of interstitial components

Similar Documents

Publication Publication Date Title
CN100482846C (en) Hot dip alloyed zinc coated steel sheet and method for production thereof
CN115141984B (en) High-entropy austenitic stainless steel and preparation method thereof
JPS5887244A (en) Copper base spinodal alloy strip and manufacture
DE1433817A1 (en) Process for the manufacture of non-aging iron sheets with a particularly low carbon content
US3355265A (en) Method of producing ductile coated steel and novel product
JPS62174364A (en) Manufacture of high purity iron-carbon alloy
US3975193A (en) Powder metallurgy process for producing stainless steel stock
US3399086A (en) Dispersion hardening of metal
EP4186986A1 (en) Method for manufacturing hot-dip galvanized steel sheet, and steel sheet and vehicle component
US3615917A (en) Process for diffusing silicon into sheet steel
US3399084A (en) Method of making aluminum bronze articles
US2170844A (en) Hardening refractory metals
US3074829A (en) Titanium article
CN110541130A (en) Stainless steel for medical instruments and preparation method thereof
KR940002684B1 (en) Copper-iron-cobalt-titanium alloy with high mechanial and electrical characteristics and its production process
JPH08502099A (en) Zirconium-based materials, products for use in nuclear reactor cores made from the same, and methods of making such products
US2819194A (en) Method of aging titanium base alloys
US3681152A (en) Method of siliconizing
US3484307A (en) Copper base alloy
JPH10176249A (en) Ferritic stainless steel material and its production
KR20060125820A (en) High silicon steel and its manufacture process
JPH02240242A (en) Stainless steel wire having excellent high strength characteristics and its manufacture
KR102472842B1 (en) Method for producing ferrotitanium with improved elongation and ferrotitanium produced thereby
JP3053605B2 (en) Metal members with excellent toughness and wear resistance
JP2691713B2 (en) Method for producing Cr-Ni-based stainless steel having excellent hot workability