JP2002069209A - Method for manufacturing particule-dispersed composite material - Google Patents

Method for manufacturing particule-dispersed composite material

Info

Publication number
JP2002069209A
JP2002069209A JP2000259236A JP2000259236A JP2002069209A JP 2002069209 A JP2002069209 A JP 2002069209A JP 2000259236 A JP2000259236 A JP 2000259236A JP 2000259236 A JP2000259236 A JP 2000259236A JP 2002069209 A JP2002069209 A JP 2002069209A
Authority
JP
Japan
Prior art keywords
metal
polymer material
fine particles
dispersed
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000259236A
Other languages
Japanese (ja)
Inventor
Hiromasa Yagyu
裕聖 柳生
Emiko Ekusa
恵美子 江草
Kotaro Kuroda
浩太郎 黒田
Shigehiko Hayashi
茂彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2000259236A priority Critical patent/JP2002069209A/en
Publication of JP2002069209A publication Critical patent/JP2002069209A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a particules dispersed composite material, not containing impurities such as insoluble solvents or surface active agents, by taking a micronized metal and/or metallic oxide in a polymer material in a reduced pressure chamber. SOLUTION: In this method for manufacturing a particulate dispersed composite material, a metallic material 6 and a polymeric material 8 accommodated in their separate containers are placed in a decompressed chamber 3 for vapor deposition and are simultaneously heated for vaporization for the deposition of the metallic material 6 and the polymeric material 8 on a substrate 9 installed in the decompressed chamber 3, which results in a particulate-dispersed composite material with the metal and/or metallic oxide particulates dispersed in the polymeric material. The metallic material 6 and the polymeric material 8 are simultaneously vaporized and the particulates of the metal and/or metallic oxide 6 as vaporized are taken in by the polymeric material 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は微粒子分散複合物の
製造方法に係り、詳しくは減圧した室内で高分子材料に
微粒子化した金属そして/あるいは金属酸化物を捕捉し
た微粒子分散複合物の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fine particle-dispersed composite, and more particularly, to a method for producing a fine-particle-dispersed composite in which a metal and / or metal oxide finely divided into a polymer material is captured in a decompressed chamber. About.

【0002】[0002]

【従来の技術】従来の金属そして/あるいは金属酸化物
からなる微粒子の作製方法としては、溶液中あるいは気
相中で微粒子を作製する方法がある。溶液中で微粒子を
作製する場合には、水溶液に塩化金酸などの化合物を溶
かした後、水溶液中に還元剤を入れて金イオンをコロイ
ド化していた。
2. Description of the Related Art As a conventional method for producing fine particles composed of metal and / or metal oxide, there is a method of producing fine particles in a solution or in a gas phase. When preparing fine particles in a solution, a compound such as chloroauric acid is dissolved in an aqueous solution, and then a reducing agent is added to the aqueous solution to colloid the gold ions.

【0003】一方、気相中で微粒子を作製する方法の場
合には、1)蒸発して得られた金属の微粒子を基板に付
着させ、得られた微粒子を基板から剥ぎ取る、2)蒸発
して得られた金属の微粒子を界面活性剤の蒸気に触れさ
せ、金属微粒子を落としてコロイドとする、3)蒸発し
て得られた金属の微粒子をオイル上に捕捉して粒成長を
起こさせないように集める、などの方法がある。
On the other hand, in the case of a method of producing fine particles in the gas phase, 1) fine particles of metal obtained by evaporation are attached to a substrate, and the obtained fine particles are peeled off from the substrate. The fine metal particles obtained by the above process are exposed to the vapor of a surfactant to drop the fine metal particles into a colloid. 3) The fine metal particles obtained by evaporation are captured on oil so as not to cause grain growth. And collect them.

【0004】更に、他の方法として、特公平6−995
85号公報に、高分子材料を融解後、これにより生じた
物を急速固化した熱力学的に非平衡状態とした高分子層
の表面に金属層を密着させた後、この高分子層を平衡状
態になるまで緩和させることで、該金属層を微粒子化し
た金属もしくは金属酸化物を高分子層内に分散させる方
法が開示されている。
Further, as another method, Japanese Patent Publication No. 6-995
No. 85 discloses that after melting a polymer material, a metal layer is brought into close contact with the surface of a thermodynamically non-equilibrium polymer obtained by rapidly solidifying the resulting material and then equilibrating the polymer layer. A method is disclosed in which a metal or a metal oxide in which the metal layer is finely dispersed is dispersed in a polymer layer by relaxing the metal layer until the metal layer becomes a state.

【0005】[0005]

【発明が解決しようとする課題】しかし、溶液中で微粒
子を作製する方法では、水溶液中には金微粒子以外の還
元剤のような不純物が存在する問題があり、またそのま
までは金微粒子は不安定であり、通常、安定化させるた
めに界面活性剤等を加えていた。一方、気相中で微粒子
を作製する方法の場合でも、1)では微粒子を分散させ
て他の用途に使用することはできず、2)では固体にす
ると凝集して再度分散できず、そして3)ではコロイド
として安定化できないので凝集してしまう問題があっ
た。
However, in the method of producing fine particles in a solution, there is a problem that impurities such as a reducing agent other than the fine gold particles are present in the aqueous solution. Usually, a surfactant or the like is added for stabilization. On the other hand, even in the method of producing fine particles in the gas phase, 1) cannot disperse the fine particles and use them for other purposes. In the case of (2), there is a problem that the particles are aggregated because they cannot be stabilized as colloid.

【0006】更に、高分子層内に微粒子化した金属もし
くは金属酸化物を分散させる方法では、高分子層である
マトリクスが固体であるため、マトリクス表面からの金
属微粒子の分散速度が遅くなり、蒸着した金属が分散で
きずに粒成長が起こり、またマトリクスの厚さが膜状で
薄いことから金属の分散量を高めることが困難であっ
た。
Further, in the method of dispersing fine metal or metal oxide in the polymer layer, the dispersion speed of the metal fine particles from the matrix surface becomes slow because the matrix which is the polymer layer is solid, so that the vapor deposition However, it is difficult to increase the amount of metal dispersion because the metal cannot be dispersed and grain growth occurs, and the thickness of the matrix is thin and thin.

【0007】本発明は、このような問題点を改善するも
のであり、高分子材料に微粒子化した金属そして/ある
いは金属酸化物を減圧した室内で捕捉し、かつ不溶な溶
剤や界面活性剤のような不純物を含まない微粒子分散複
合物の製造方法を提供する。
The present invention has been made to solve such a problem, and it is intended to trap fine particles of metal and / or metal oxide in a polymer material in a decompressed chamber and to remove insoluble solvents and surfactants. A method for producing a fine particle-dispersed composite containing no such impurities is provided.

【0008】[0008]

【課題を解決するための手段】即ち、本願請求項1の発
明は、真空蒸着可能な室内に金属材料と、高分子材料を
それぞれ別々の容器に収容し、これらを同時に加熱蒸発
させて該室内に設置した基板上に金属材料と高分子材料
を蒸着させることにより金属そして/あるいは金属酸化
物の微粒子を高分子材料中に分散させた微粒子分散複合
物の製造方法にある。即ち、本発明では、金属材料と高
分子材料を同時に気化させ、この状態で金属そして/あ
るいは金属酸化物の微粒子を高分子材料で捕捉する。
That is, according to the first aspect of the present invention, a metal material and a polymer material are housed in separate containers in a vacuum-evaporable chamber, and these are heated and evaporated at the same time. The present invention relates to a method for producing a fine particle-dispersed composite in which fine particles of a metal and / or a metal oxide are dispersed in a high-molecular material by depositing a metal material and a high-molecular material on a substrate placed in the above-mentioned method. That is, in the present invention, the metal material and the polymer material are vaporized simultaneously, and in this state, the metal and / or metal oxide fine particles are captured by the polymer material.

【0009】本願請求項2の発明は、 高分子材料がエ
チルセルロース、ポリアミドから選ばれた少なくとも1
種である微粒子分散複合物の製造方法にある。
[0009] The invention of claim 2 of the present application is the invention wherein the polymer material is at least one selected from ethyl cellulose and polyamide.
The present invention relates to a method for producing a seed fine particle dispersion composite.

【0010】本願請求項3の発明は、高分子材料が分子
の末端あるいは側鎖にシアノ基、アミノ基、そしてチオ
ール基から選ばれた少なくとも1種の官能基を有する高
分子あるいはオリゴマーである微粒子分散複合物の製造
方法にある。
[0010] The invention according to claim 3 of the present invention relates to fine particles in which the polymer material is a polymer or an oligomer having at least one functional group selected from a cyano group, an amino group and a thiol group at the terminal or side chain of the molecule. A method for producing a dispersed composite.

【0011】[0011]

【発明の実施の形態】図1は本発明に係わる微粒子の製
造装置の概略図であり、図2は図1の平面図である。本
発明の微粒子の製造装置1では、減圧装置2を装着した
真空装置3内に設けた3組(6本)の支柱10の内2組に
2つのタングステンボード4、5を並列に段差をおいて
設置し、上段のタングステンボード4に金、銀、白金、
銅、鉄、ニッケル、コバルト、スズ、亜鉛、セリウム、
イットリウム等から選ばれた少なくとも1種の金属材料
6を設置した抵抗加熱により蒸発可能にし、下段のタン
グステンボード5に石英容器7を設置してこの中に高分
子材料8を入れる。そしてポリカーボネート、ガラス等
の基板9が中央の1組の支柱10に固定されている。
FIG. 1 is a schematic view of an apparatus for producing fine particles according to the present invention, and FIG. 2 is a plan view of FIG. In the fine particle manufacturing apparatus 1 of the present invention, two tungsten boards 4 and 5 are arranged in parallel with two sets of three sets (six columns) of columns 10 provided in a vacuum apparatus 3 equipped with a decompression apparatus 2 and a step is formed. And put it on the upper tungsten board 4 with gold, silver, platinum,
Copper, iron, nickel, cobalt, tin, zinc, cerium,
At least one type of metal material 6 selected from yttrium or the like is evaporated by resistance heating, and a quartz vessel 7 is placed on a lower tungsten board 5 and a polymer material 8 is put therein. A substrate 9 made of polycarbonate, glass, or the like is fixed to a set of columns 10 at the center.

【0012】尚、2つのタングステンボード4、5を上
下方向に置く必要がなく、同じ高さに並列に設けてもよ
い。また、上位のタングステンボード4に高分子材料
を、下位のタングステンボード5に金属材料を設置して
もよいことは言うまでもない。
It is not necessary to arrange the two tungsten boards 4 and 5 vertically, but they may be provided in parallel at the same height. Needless to say, a polymer material may be provided on the upper tungsten board 4 and a metal material may be provided on the lower tungsten board 5.

【0013】ここで使用する高分子材料としては、減圧
下にある閉鎖した容器内にエチルセルロース、ナイロン
11、ナイロン6、ナイロン66、ナイロン6.10、
ポリエチレンテレフタレート、ポリスチレン等からな
る。
As the polymer material used herein, ethylcellulose, nylon 11, nylon 6, nylon 66, nylon 6.10, and nylon 6 are placed in a closed container under reduced pressure.
It is made of polyethylene terephthalate, polystyrene and the like.

【0014】また、他の高分子材料としては、分子の末
端あるいは側鎖にシアノ基、アミノ基、そしてチオール
基から選ばれた少なくとも1種の官能基を有する高分子
あるいはオリゴマーも使用できる。具体的には、上記高
分子あるいはオリゴマーは、分子の末端あるいは側鎖に
シアノ基(−CN)、アミノ基(−NH2 )、そしてチ
オール基(−SH)から選ばれた少なくとも1種の官能
基を有するもので、その骨格にはポリエチレンオキサイ
ド、ポリエチレングリコール、ポリビニルアルコール、
ナイロン11、ナイロン6、ナイロン66、ナイロン
6.10、ポリエチレンテレフタレート、ポリスチレン
等からなり、その融点あるいは軟化点は40〜100°
Cである。オリゴマーの平均分子量も特に制限はない
が、500〜6000程度である。上記官能基は特に微
粒子の表面の金属原子と共有結合や配位結合を形成しや
すく、粒成長を抑制し、微粒子の分散性を高めることに
なる。
As another polymer material, a polymer or oligomer having at least one functional group selected from a cyano group, an amino group and a thiol group at the terminal or side chain of the molecule can also be used. Specifically, the polymer or oligomer has at least one functional group selected from a cyano group (—CN), an amino group (—NH 2 ), and a thiol group (—SH) at the terminal or side chain of the molecule. It has a group, the backbone of which is polyethylene oxide, polyethylene glycol, polyvinyl alcohol,
It is made of nylon 11, nylon 6, nylon 66, nylon 6.10, polyethylene terephthalate, polystyrene, or the like, and has a melting point or softening point of 40 to 100 °.
C. The average molecular weight of the oligomer is not particularly limited, but is about 500 to 6000. The functional group particularly easily forms a covalent bond or a coordination bond with a metal atom on the surface of the fine particles, suppresses grain growth, and enhances the dispersibility of the fine particles.

【0015】また、上記以外の高分子材料としては、分
子量を400〜7000の範囲に制限するように合成ポ
リアミドを重合したものである。この場合、分子量が4
00未満になると、減圧中での金属そして/あるいは金
属酸化物の蒸着時に蒸発しやすくなり、また7000を
越えると、微粒子の分散が起こりにくくなる。
The polymer material other than the above is obtained by polymerizing a synthetic polyamide so that the molecular weight is limited to the range of 400 to 7000. In this case, the molecular weight is 4
If it is less than 00, the metal and / or metal oxide is apt to evaporate during the deposition under reduced pressure, and if it exceeds 7000, the dispersion of the fine particles becomes difficult to occur.

【0016】具体的には、上記合成ポリアミドの作製方
法としては、H2 N−(CH2nCOOH(nは1〜
36)の分子式で示されるアミノ酸モノマーと、分子末
端あるいは側鎖に少なくとも2つ以上のアミノ基を有す
るポリアミンからなる重合抑制剤と、触媒等をN−メチ
ルピロジン、ジメチルアセトアミド等の溶剤を入れ、こ
れを攪拌しながら100〜150°Cまで上昇させて窒
素ガスを流しながら重合させ、重合終了後、室温まで冷
却する。反応生成物を酢酸エチル、トルエン、ヘキサン
等に注いで、一昼夜放置して沈殿させた後、沈殿物を濾
過して集め、これを洗浄した後、40〜70°Cで乾燥
した。
Specifically, as a method for producing the above-mentioned synthetic polyamide, H 2 N— (CH 2 ) n COOH (where n is 1 to 5)
36) The amino acid monomer represented by the molecular formula, a polymerization inhibitor comprising a polyamine having at least two or more amino groups at the molecular terminal or side chain, and a solvent such as N-methylpyrazine, dimethylacetamide as a catalyst and the like are added. Is heated to 100 to 150 ° C. with stirring, and polymerized while flowing nitrogen gas. After the polymerization, the mixture is cooled to room temperature. The reaction product was poured into ethyl acetate, toluene, hexane, and the like, and allowed to stand overnight to precipitate. The precipitate was collected by filtration, washed, and dried at 40 to 70 ° C.

【0017】上記H2 N−(CH2n COOH(nは
1〜36)の分子式で示されるアミノ酸モノマーとして
は、11−アミノウンデカン酸、9−アミノノナン酸が
ある。
The amino acid monomers represented by the molecular formula of H 2 N— (CH 2 ) n COOH (where n is 1 to 36) include 11-aminoundecanoic acid and 9-aminononanoic acid.

【0018】上記重合抑制剤としては、R−(CH2
m −NH2 (mは1〜36、RはCH3 −、シアノ基、
アミノ基、そしてチオール基から選ばれる基)で示され
る分子末端にアミン基を有するアミンあるいはポリアミ
ン、また該アミンあるいはポリアミンの側鎖にシアノ
基、アミノ基、そしてチオール基から選ばれる官能基を
少なくとも1つ以上有するアミンあるいはポリアミンか
ら選ばれたものであり、具体的にはヘキサメチレンジア
ミン、ε−アミノカプロニトリル、エチレンジアミン等
が使用される。
As the above polymerization inhibitor, R- (CH 2 )
m -NH 2 (m is 1 to 36, R is CH 3 -, cyano group,
An amine or a polyamine having an amine group at the molecular terminal represented by an amino group or a thiol group), and at least a functional group selected from a cyano group, an amino group, and a thiol group in a side chain of the amine or the polyamine. It is selected from amines or polyamines having one or more, specifically, hexamethylenediamine, ε-aminocapronitrile, ethylenediamine and the like are used.

【0019】また、触媒としては、キノリン、トリフェ
ニルホスファイト等が使用される。
As the catalyst, quinoline, triphenyl phosphite or the like is used.

【0020】しかして、本発明に係る微粒子の製造方法
では、真空装置3内に設けた上位のタングステンボード
4に金属材料6を設置し、下位のタングステンボード5
に設置した石英容器7の中に高分子材料8を入れ、最高
位にポリカーボネート、ガラス等の基板9を固定した
後、真空ポンプ2を作動させて、真空装置3内を5×1
-5torr減圧にした後、上位のタングステンボード
4を加熱して金属材料6を抵抗加熱により蒸発さる。同
時に下位のタングステンボード5も70〜200°Cで
加熱して高分子材料8を蒸発させ、金属材料6と高分子
材料8を同時に気化させ、この状態で金属そして/ある
いは金属酸化物の微粒子を高分子材料で捕捉し、これを
基板9上に付着させる。
Thus, in the method for producing fine particles according to the present invention, the metal material 6 is placed on the upper tungsten board 4 provided in the vacuum device 3 and the lower tungsten board 5 is provided.
A polymer material 8 is placed in a quartz container 7 placed in a space, and a substrate 9 such as polycarbonate or glass is fixed at the highest position. Then, the vacuum pump 2 is operated to evacuate the vacuum device 3 to 5 × 1.
After reducing the pressure to 0 -5 torr, the upper tungsten board 4 is heated to evaporate the metal material 6 by resistance heating. At the same time, the lower tungsten board 5 is also heated at 70 to 200 ° C. to evaporate the polymer material 8 and vaporize the metal material 6 and the polymer material 8 at the same time. It is captured by a polymer material and attached to the substrate 9.

【0021】[0021]

【実施例】次に、本発明を具体的な実施例により更に詳
細に説明する。 実施例1 真空装置内に粉末状のエチルセルロース50mgを入れ
た石英容器と金1gを別々のタングステンボードに設置
した。さらにガラス基板を設置後、真空ポンプを作動さ
せて真空装置内を5×10-5torrまで減圧にした
後、電圧を印加して金,エチルセルロースをそれぞれほ
ぼ同時に加熱蒸発させて、金の微粒子をエチルセルロー
スにガラス基板に捕捉させた。
Next, the present invention will be described in more detail with reference to specific examples. Example 1 A quartz container containing 50 mg of powdery ethyl cellulose in a vacuum device and 1 g of gold were placed on separate tungsten boards. Further, after the glass substrate is set, the vacuum pump is operated to reduce the pressure inside the vacuum apparatus to 5 × 10 −5 torr, and then a voltage is applied to heat and evaporate gold and ethyl cellulose almost simultaneously, respectively, to remove gold fine particles. Ethyl cellulose was captured on a glass substrate.

【0022】真空装置を大気圧にもどし、装置から取り
出したガラス基板は赤紫色を呈しており、金微粒子が分
散していることが判った。また、金微粒子の分散濃度
は、約5重量%であった。このエチルセルロースに金微
粒子が分散した複合体にエタノールを加えよく攪拌し
た。この溶液の光吸収スペクトルを紫外・可視分光光度
計UV−VIS−3100PC(島津製作所社製)で測
定すると、金の微粒子によるプラズモン共鳴吸収がおよ
そ540nmに見られた。
The vacuum apparatus was returned to the atmospheric pressure, and the glass substrate taken out of the apparatus exhibited a purple-red color, indicating that fine gold particles were dispersed. The dispersion concentration of the gold fine particles was about 5% by weight. Ethanol was added to the complex in which the fine gold particles were dispersed in ethyl cellulose, and the mixture was stirred well. When the light absorption spectrum of this solution was measured with an ultraviolet / visible spectrophotometer UV-VIS-3100PC (manufactured by Shimadzu Corporation), plasmon resonance absorption by fine gold particles was observed at about 540 nm.

【0023】実施例2 真空装置内に粉末状のナイロン11を50mg入れた石
英容器と金1gを別々のタングステンボードに設置し
た。さらにガラス基板を設置後、真空ポンプを作動させ
て真空装置内を5×10-5torrまで減圧にした後、
電圧を印加して金,ナイロン11をそれぞれほぼ同時に
加熱蒸発させて、金微粒子をナイロン11で捕捉したも
のをガラス基板上に付着させた。真空装置を大気圧にも
どし、装置から取り出したガラス基板は赤紫色を呈して
おり、金微粒子が分散していることが判った。また、金
微粒子の分散濃度は、約7重量%であった。
Example 2 A quartz container containing 50 mg of powdered nylon 11 and 1 g of gold were placed in separate vacuum boards in a vacuum apparatus. After the glass substrate was further set, the vacuum pump was operated to reduce the pressure in the vacuum apparatus to 5 × 10 −5 torr,
A voltage was applied to heat and evaporate gold and nylon 11, respectively, almost simultaneously, and the gold fine particles captured by nylon 11 were adhered to the glass substrate. The vacuum apparatus was returned to the atmospheric pressure, and the glass substrate taken out of the apparatus exhibited reddish purple, indicating that gold fine particles were dispersed. The dispersion concentration of the gold fine particles was about 7% by weight.

【0024】比較例1 真空装置内に設けたタングステンボードに金1gを、も
う一方のタングステンボードに粉末状のエチルセルロー
ス50mgを入れた石英容器を設置した。そしてタング
ステンボードの上段にガラス基板を設置した後、真空ポ
ンプを動作させて5×10-5torrまで減圧にした後
にエチルセルロースを加熱蒸発させた後、金を加熱蒸発
させた。
Comparative Example 1 A quartz container containing 1 g of gold on a tungsten board provided in a vacuum apparatus and 50 mg of powdered ethyl cellulose on another tungsten board was installed. After the glass substrate was placed on the upper stage of the tungsten board, the vacuum pump was operated to reduce the pressure to 5 × 10 −5 torr, and then the ethyl cellulose was heated and evaporated, and then the gold was heated and evaporated.

【0025】ガラス基板上にはエチルセルロースの薄膜
上に金の薄膜が形成されており、エチルセルロースに金
微粒子が分散した複合体を得ることができなかった。さ
らにエタノールに溶解させたが黒色の沈殿物が生じたた
め、エチルセルロースに金微粒子が分散した複合体を得
ることができなかった。
On the glass substrate, a gold thin film was formed on an ethyl cellulose thin film, and a composite in which gold fine particles were dispersed in ethyl cellulose could not be obtained. Further, although dissolved in ethanol, a black precipitate was formed, so that a complex in which fine gold particles were dispersed in ethyl cellulose could not be obtained.

【0026】[0026]

【発明の効果】以上のように本願請求項記載の発明で
は、真空蒸着可能な室内に金属材料と、高分子材料をそ
れぞれ別々の容器に収容し、これらを同時に加熱蒸発さ
せて該室内に設置した基板上に金属材料と高分子材料を
蒸着させることにより金属そして/あるいは金属酸化物
の微粒子を高分子材料中に分散させた微粒子分散複合物
の製造方法にあり、金属材料と高分子材料を同時に気化
させ、この状態で金属そして/あるいは金属酸化物の微
粒子を高分子材料で捕捉することができる。
As described above, according to the invention described in the present application, a metal material and a polymer material are respectively housed in separate containers in a vacuum-evaporable room, and these are heated and evaporated at the same time and installed in the room. A method for producing a fine particle-dispersed composite in which fine particles of metal and / or metal oxide are dispersed in a polymer material by vapor-depositing a metal material and a polymer material on a substrate that has been made, At the same time, the fine particles of the metal and / or metal oxide can be captured by the polymer material in this state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る微粒子の製造装置の概略図であ
る。
FIG. 1 is a schematic view of an apparatus for producing fine particles according to the present invention.

【図2】図1の平面図である。FIG. 2 is a plan view of FIG.

【符号の説明】[Explanation of symbols]

1 微粒子の製造装置 2 減圧装置 3 真空装置 4 タングステンボード 5 タングステンボード 6 金属材料 8 高分子材料 9 基板 DESCRIPTION OF SYMBOLS 1 Fine particle manufacturing apparatus 2 Decompression apparatus 3 Vacuum apparatus 4 Tungsten board 5 Tungsten board 6 Metal material 8 Polymer material 9 Substrate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 101/00 C08L 101/00 101/02 101/02 C23C 14/06 C23C 14/06 L (72)発明者 林 茂彦 神戸市長田区浜添通4丁目1番21号 三ツ 星ベルト株式会社内 Fターム(参考) 4F071 AA09 AA22 AA29 AA46 AA51 AA54 AB06 AB18 BB11 BC01 BC02 4J002 AB031 BC031 CF061 CL011 CL021 CL031 DA076 DA086 DA106 DA116 4K029 BA64 CA01 DB03 DB06 DB14──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08L 101/00 C08L 101/00 101/02 101/02 C23C 14/06 C23C 14/06 L (72) Invention Person Shigehiko Hayashi 4-1-1, Hamazoe-dori, Nagata-ku, Kobe F-term in Mitsuboshi Belting Co., Ltd. BA64 CA01 DB03 DB06 DB14

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 真空蒸着可能な室内に金属と、高分子材
料をそれぞれ別々の容器に収容し、これらを同時に加熱
蒸発させて該室内に設置した基板上に金属と高分子材料
を蒸着させることにより金属そして/あるいは金属酸化
物の微粒子を高分子材料中に分散させることを特徴とす
る微粒子分散複合物の製造方法。
1. A method in which a metal and a polymer material are housed in separate containers in a vacuum-evaporable chamber, and these are simultaneously heated and evaporated to deposit the metal and the polymer material on a substrate installed in the chamber. A method for producing a fine particle-dispersed composite, comprising dispersing fine particles of a metal and / or a metal oxide in a polymer material.
【請求項2】 高分子材料がエチルセルロース、ポリア
ミドから選ばれた少なくとも1種の高分子である請求項
1記載の微粒子分散複合物の製造方法。
2. The method according to claim 1, wherein the polymer material is at least one polymer selected from ethyl cellulose and polyamide.
【請求項3】 高分子材料が分子の末端あるいは側鎖に
シアノ基、アミノ基、そしてチオール基から選ばれた少
なくとも1種の官能基を有する高分子あるいはオリゴマ
ーである請求項1記載の微粒子分散複合物の製造方法。
3. The fine particle dispersion according to claim 1, wherein the polymer material is a polymer or an oligomer having at least one functional group selected from a cyano group, an amino group, and a thiol group at a terminal or a side chain of the molecule. A method for producing a composite.
JP2000259236A 2000-08-29 2000-08-29 Method for manufacturing particule-dispersed composite material Pending JP2002069209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000259236A JP2002069209A (en) 2000-08-29 2000-08-29 Method for manufacturing particule-dispersed composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000259236A JP2002069209A (en) 2000-08-29 2000-08-29 Method for manufacturing particule-dispersed composite material

Publications (1)

Publication Number Publication Date
JP2002069209A true JP2002069209A (en) 2002-03-08

Family

ID=18747435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000259236A Pending JP2002069209A (en) 2000-08-29 2000-08-29 Method for manufacturing particule-dispersed composite material

Country Status (1)

Country Link
JP (1) JP2002069209A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089523A (en) * 2004-09-21 2006-04-06 Denso Corp Method for manufacturing composite material
JP2010115813A (en) * 2008-11-11 2010-05-27 Tokai Kogaku Kk Method for producing plastic product
JP2010116448A (en) * 2008-11-11 2010-05-27 Tokai Kogaku Kk Method for producing fluorescent plastic article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089523A (en) * 2004-09-21 2006-04-06 Denso Corp Method for manufacturing composite material
JP4576947B2 (en) * 2004-09-21 2010-11-10 株式会社デンソー Manufacturing method of composite material
JP2010115813A (en) * 2008-11-11 2010-05-27 Tokai Kogaku Kk Method for producing plastic product
JP2010116448A (en) * 2008-11-11 2010-05-27 Tokai Kogaku Kk Method for producing fluorescent plastic article

Similar Documents

Publication Publication Date Title
US6099897A (en) Method for producing metal particulate dispersion and metal particle-carrying substance
Milic et al. Controlled hierarchical self-assembly and deposition of nanoscale photonic materials.
Fu et al. Assemblies of metal nanoparticles and Self‐Assembled peptide Fibrils—Formation of double helical and Single‐Chain arrays of metal nanoparticles
US4871790A (en) Colloidal metals in monomers or polymers
TWI427106B (en) Silicon polymers, methods of polymerizing silicon compounds, and methods of forming thin films from such silicon polymers
US20070175296A1 (en) Method of forming conductors at low temperatures using metallic nanocrystals and product
US20030203977A1 (en) Synthesis of substantially monodispersed colloids
KR101927766B1 (en) Metal nanoparticle-protecting polymer and metal colloidal solution, and method for producing the same
JP4812370B2 (en) Method for producing noble metal nanoparticles
JP2002069209A (en) Method for manufacturing particule-dispersed composite material
JP2004051997A (en) Dispersion liquid of metallic microparticles, preparation method therefor, transparent colored film and manufacturing method therefor
US20020086968A1 (en) Polybenzoxazole precursors, photoresist solution, polybenzoxazole, and process for preparing a polybenzoxazole precursor
JPH08240823A (en) Use of composition containing metal particles within range of nanometer particle size
Illingsworth et al. Synthesis and molecular structure of the eight-coordinate complex bis (4-amino-N, N'-disalicylidene-1, 2-phenylenediaminato) zirconium (IV), a new reagent for preparing coordination polymers
JP3062748B1 (en) Method for producing polymer-metal cluster-composite
JP3450687B2 (en) Method for producing fine particles and fine particle dispersion
KR20210112830A (en) Metal nanoparticle dispersion stabilizer, metal colloidal solution and preparation method thereof
JP3316177B2 (en) Method for producing fine particle carrier and method for immobilizing fine particles
JP3359283B2 (en) Method for producing fine particle carrier having excellent catalytic activity
JP3455133B2 (en) Method for producing high concentration particulate carrier
JP4528482B2 (en) Polyamide particles and method for producing the same
JPH11240722A (en) Complex semiconductor composition and its production
JPH11335569A (en) Production of fine particle
JP2001295058A (en) Method for manufacturing metallized substrate
US20050032915A1 (en) Metallic colloid and functional material produced therefrom