JP2002038205A - Coated cemented carbide having hard composite layer and its production method - Google Patents

Coated cemented carbide having hard composite layer and its production method

Info

Publication number
JP2002038205A
JP2002038205A JP2000226253A JP2000226253A JP2002038205A JP 2002038205 A JP2002038205 A JP 2002038205A JP 2000226253 A JP2000226253 A JP 2000226253A JP 2000226253 A JP2000226253 A JP 2000226253A JP 2002038205 A JP2002038205 A JP 2002038205A
Authority
JP
Japan
Prior art keywords
hard
composite layer
cemented carbide
hard composite
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000226253A
Other languages
Japanese (ja)
Inventor
Masaki Kobayashi
正樹 小林
Satoshi Kinoshita
聡 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP2000226253A priority Critical patent/JP2002038205A/en
Publication of JP2002038205A publication Critical patent/JP2002038205A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface-coated cemented carbide which is obtained by coating a hard film on the base metal of cemented carbide by a chemical vapor deposition method, has no plastic deformation of the base metal in high speed cutting or intermittent cutting, no peeling of the hard film and thus no shortening of its service life. SOLUTION: The base metal of cemented carbide comprises a cubic crystal compound, as a hard phase particle, consisting of tungsten carbide or tungsten carbide and at least one among carbides, nitrides and carbonitrides of metals of group 4a, 5a and 6a in the periodic table, and mutual solid solutions thereof, and the iron group metals as a bond phase. On the surface of the base metal, a hard composite layer is formed by uniformly removing the bond phase from the base metal surface, and coating it, at a low temperature, with a single phase or laminated hard film component comprising the compounds such as carbides, nitrides, oxides and the like of the elements of group 4a, 5a and 6a in the periodic table, Al and Si to inject the hard film component in the continuous fine vacancies formed by removing the bond phase, that is, to replace the bond phase with the hard film component. The hard composite layer thus formed restrains the plastic deformation of the base metal, and also improves adhesiveness to the hard film and wear resistance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チップ,ドリル,
エンドミルに代表される切削工具や各種の耐摩耗工具・
部品に使用される被覆超硬合金とその製造方法に関し、
具体的には、超硬合金表面に結合相が含有されていない
硬質複合層を形成させることにより、耐摩耗性,耐塑性
変形性,膜の密着性を改善して工具寿命を向上させた硬
質複合層を有する被覆超硬合金に関し、また、超硬合金
表面から均一に結合相を除去した後に硬質膜被覆処理を
施することにより、硬質複合層を形成させながら硬質膜
を連続被覆した硬質複合層を有する被覆超硬合金の製造
方法に関するものである。
TECHNICAL FIELD The present invention relates to a tip, a drill,
Cutting tools such as end mills and various wear-resistant tools
Regarding coated cemented carbide used for parts and its manufacturing method,
Specifically, by forming a hard composite layer containing no binder phase on the surface of a cemented carbide, the wear resistance, the plastic deformation resistance, and the adhesion of the film are improved to improve the tool life. Regarding coated cemented carbide having a composite layer, and by applying a hard film coating process after uniformly removing the binder phase from the surface of the cemented carbide, a hard composite in which a hard film is continuously coated while forming a hard composite layer The present invention relates to a method for producing a coated cemented carbide having a layer.

【0002】[0002]

【従来の技術】超硬合金母材にTiC,TiCN,Ti
N,Al23などの硬質膜を被覆してなる被覆超硬合金
は、母材の強度,靱性と硬質膜の耐摩耗性を兼備してい
るため、切削工具や耐摩耗工具,部品として多用されて
いる。しかし、母材の耐塑性変形性や膜との密着性が劣
ると、使用時の刃先変形や膜剥離によって急激に摩耗し
て寿命が低下する。塑性変形に関しては、一般に母材の
結合相Coの低減、WCの粗粒化などの方法による改善
が採られているが、強度や靱性が低下して欠損やチッピ
ングを起こし易くなると言う問題がある。一方、密着性
に関しては、母材表面の調整処理,下地層の膜質選定,
下地層のコーティング条件最適化などの方法が試みられ
ているが、母材成分と硬質膜成分が異なるために母材/
硬質膜界面での脆化層の生成、母材と膜との熱膨張差に
よる応力発生などの問題があるために根本的な改善に至
ってない。そこで、母材表面近傍を改質して耐塑性変形
性の改善を試みた先行技術には、特開平2−22453
号公報,特開昭63−22903号公報などが、表面処
理による密着性改善には、特開昭63−60280号公
報,特表平11−510858号公報などがある。
2. Description of the Related Art TiC, TiCN, Ti
Coated cemented carbide made by coating a hard film such as N, Al 2 O 3 has both the strength and toughness of the base material and the wear resistance of the hard film. It is heavily used. However, when the plastic deformation resistance of the base material and the adhesion to the film are poor, the edge is deformed during use or the film is peeled off, and the life is shortened due to rapid wear. With respect to plastic deformation, improvements are generally made by methods such as reduction of the binder phase Co of the base material and coarsening of WC, but there is a problem that the strength and toughness are reduced, so that chipping and chipping are likely to occur. . On the other hand, regarding adhesion, adjustment processing of base material surface, selection of film quality of underlayer,
Attempts have been made to optimize the coating conditions of the underlayer, but the base material component and the hard film component are different,
Fundamental improvements have not been achieved due to problems such as formation of an embrittled layer at the interface of the hard film and generation of stress due to a difference in thermal expansion between the base material and the film. Therefore, prior arts that have attempted to improve the plastic deformation resistance by modifying the vicinity of the base material surface include Japanese Patent Application Laid-Open No. H2-222453.
Japanese Patent Application Laid-Open No. 63-22093 and Japanese Patent Application Laid-Open No. Sho 63-22903, and Japanese Patent Application Laid-Open No. Sho 63-510858 and Japanese Patent Application Laid-Open No. H11-510858 disclose improvements in adhesion by surface treatment.

【0003】[0003]

【発明が解決しようとする課題】先行技術である母材表
面近傍の改質に関し、特開平2−22453号公報に
は、表面部に、内部から表面に向かってCo量が連続的
に減少、硬さが連続的に増加する表面硬質層を形成した
WC基超硬合金基体の表面に、Ti,Zr,Hfの炭化
物,窒化物などや酸化アルミニウムを0.5〜20μm
の平均層厚で被覆した切削工具用表面被覆炭化タングス
テン基超硬合金が開示されている。この公報に開示され
ている被覆超硬合金母材は、表面近傍が硬化されている
ために切削時の耐塑性変形性は向上するものの、母材と
被覆膜との密着性は変わらず、熱応力の発生はむしろ大
きくなると言う問題がある。
With respect to the prior art modification of the vicinity of the base material surface, Japanese Patent Application Laid-Open No. 22453/1990 discloses that the amount of Co continuously decreases from the inside toward the surface. On a surface of a WC-based cemented carbide substrate on which a surface hard layer having a continuously increasing hardness is formed, a carbide, a nitride, or the like of Ti, Zr, Hf, or aluminum oxide is applied in an amount of 0.5 to 20 μm.
Surface-coated tungsten carbide-based cemented carbide for cutting tools coated with an average layer thickness of The coated cemented carbide base material disclosed in this publication improves the plastic deformation resistance during cutting because the surface vicinity is hardened, but the adhesion between the base material and the coating film does not change, There is a problem that the generation of thermal stress is rather large.

【0004】また、特開昭63−22903号公報に
は、内部組成がWCとCoとTiおよびWを主成分とす
る複合金属炭窒化物とからなり、表面部には該複合金属
炭窒化物を含有しない5〜20μmのCo富化層を介し
て、平均層厚が0.01〜5μmの該複合金属炭窒化物
のみからなる硬質表面層を存在させた超硬合金表面に、
炭化チタン,窒化チタン,炭窒化チタン,酸化アルミニ
ウムなどを順次被覆した表面被覆超硬合金製切削工具が
開示されている。この公報に開示されている被覆超硬合
金母材は、表面近傍が複合金属炭窒化物により硬化され
て耐塑性変形性を向上させ、また複合金属炭窒化物の介
在により母材と被覆膜との密着性も改善される。しか
し、複合金属炭窒化物は硬脆く、また熱膨張係数が大き
くて母材との間に高い残留応力を生じるために、切削時
の熱および機械的衝撃によって逆に膜剥離を起こし易く
なると言う問題がある。
Japanese Patent Application Laid-Open No. 63-22903 discloses that a composite metal carbonitride having an internal composition of WC, Co, Ti and W as main components is provided on the surface thereof. Through a Co-enriched layer of 5-20 μm containing no, on the surface of a cemented carbide having a hard surface layer consisting of only the composite metal carbonitride having an average layer thickness of 0.01-5 μm,
A cutting tool made of a surface-coated cemented carbide, which is sequentially coated with titanium carbide, titanium nitride, titanium carbonitride, aluminum oxide, etc., is disclosed. In the coated cemented carbide base material disclosed in this publication, the vicinity of the surface is hardened by the composite metal carbonitride to improve the plastic deformation resistance, and the base metal and the coating film are interposed by the composite metal carbonitride. Is also improved. However, it is said that composite metal carbonitrides are hard and brittle, and have a large thermal expansion coefficient and a high residual stress between them and the base material. There's a problem.

【0005】一方、先行技術の内、表面処理による密着
性改善に関し、特開昭63−60280号公報には、予
め超硬合金基体の表面を酸にてエッチングして表面部の
結合相を除去した後、硬質被覆層を化学蒸着法にて形成
する表面被覆炭化タングステン基超硬合金の製造方法が
開示されている。この公報に開示された方法は、約10
00℃の高温で行われる化学蒸着中での反応ガスによる
表面清浄化が不十分なために、前処理として酸洗浄を行
って超硬合金表面の結合相をエッチング除去することに
より、硬質被覆層との付着強度を高めたものである。し
かし、結合相の除去過多による巣孔発生や最表面のWC
層(結合相無し)と硬質被覆層との熱膨張差による熱応
力発生の問題がある。
On the other hand, of the prior art, concerning the improvement of adhesion by surface treatment, Japanese Patent Application Laid-Open No. 63-60280 discloses that the surface of a cemented carbide substrate is etched in advance with an acid to remove a binder phase on the surface. After that, a method for producing a surface-coated tungsten carbide-based cemented carbide in which a hard coating layer is formed by a chemical vapor deposition method is disclosed. The method disclosed in this publication is about 10
Due to insufficient cleaning of the surface by the reaction gas during the chemical vapor deposition performed at a high temperature of 00 ° C., the hard coating layer was formed by performing acid cleaning as a pretreatment to remove the binder phase on the cemented carbide surface by etching. The adhesive strength of the adhesive is increased. However, the formation of pits due to excessive removal of the binder phase and the WC on the outermost surface
There is a problem of thermal stress generation due to a difference in thermal expansion between the layer (without a binding phase) and the hard coating layer.

【0006】また、特表平11−510858号公報に
は、表面を電解処理により最大10μmまでの深さに亘
ってバインダー相が除去されたカーバイド支持体にダイ
ヤモンド膜を被覆する超硬合金支持体の処理方法が開示
されている。この公報に開示された方法は、支持体表面
でのバインダー相(Co,Ni)の存在による非ダイヤ
モンド構造の炭素生成を抑制してダイヤモンド膜との密
着性を向上させるもので、上記公報と同様の問題があ
る。
Further, Japanese Patent Application Laid-Open No. 11-510858 discloses a cemented carbide support in which a diamond film is coated on a carbide support from which the binder phase has been removed over a depth of up to 10 μm by electrolytic treatment. Is disclosed. The method disclosed in this publication suppresses the generation of carbon having a non-diamond structure due to the presence of a binder phase (Co, Ni) on the surface of a support to improve the adhesion to a diamond film. There is a problem.

【0007】[0007]

【課題を解決するための手段】本発明者らは、表面被覆
超硬合金について長年に亘り、母材表面近傍の塑性変形
性を向上させると共に、膜との密着性を大幅に改善させ
る方法について検討していた所、超硬合金母材表面に結
合相が無くて硬質相粒子と硬質膜粒子とからなる複合硬
質複合層を設けた後に硬質膜を被覆すると、硬質複合層
が母材の塑性変形を抑制すると同時に、硬質膜との密着
性や耐摩耗性をも向上させること、また、母材表面から
均一に結合相を除去した後に硬質膜を被覆すれば、結合
相と硬質膜成分が置換された硬質複合層が形成され、結
合相が除去されてできた微細な連続巣孔に硬質膜成分を
注入するには、比較的低温でのCVD法が最適であると
言う知見を得て、本発明を完成するに至ったものであ
る。
SUMMARY OF THE INVENTION The present inventors have, for many years, studied a method of improving the plastic deformation near the surface of a base material and significantly improving the adhesion to a film of a surface-coated cemented carbide. When the hard film was coated after providing a composite hard composite layer consisting of hard phase particles and hard film particles without a binder phase on the surface of the cemented carbide base material, the hard composite layer showed plasticity of the base material. At the same time as suppressing deformation, it is also necessary to improve the adhesion and wear resistance with the hard film, and if the hard film is coated after uniformly removing the binder phase from the base material surface, the binder phase and the hard film components will be In order to inject the hard film component into the fine continuous cavities formed by forming the substituted hard composite layer and removing the binder phase, it was found that the CVD method at a relatively low temperature was optimal. Thus, the present invention has been completed.

【0008】本発明の硬質複合層を有する被覆超硬合金
は、炭化タングステン、あるいは炭化タングステンと周
期律表の4a,5a,6a族金属の炭化物,窒化物,炭
窒化物およびこれらの相互固溶体の中の1種以上からな
る立方晶化合物とを硬質相粒子、鉄族金属を結合相とす
る超硬合金を母材とし、該母材表面に周期律表の4a,
5a,6a族元素,アルミニウム,シリコンの炭化物,
窒化物,酸化物、およびこれらの相互固溶体の中から選
ばれた1種以上の化合物でなる単層または2層以上の積
層でなる0.5〜20μmの硬質膜を被覆してなる被覆
超硬合金において、該母材表面から内部に向かって3〜
20μmの深さに亘って、該結合相量が0.5重量%以
下で、かつ母材の該硬質相粒子と該硬質膜成分粒子とか
ら構成された均一な硬質複合層が存在することを特徴と
するものである。
The coated cemented carbide having a hard composite layer according to the present invention is made of tungsten carbide or carbides, nitrides, carbonitrides of tungsten carbide and metals of groups 4a, 5a and 6a of the periodic table, and a mutual solid solution thereof. And a cubic compound composed of at least one of the above as a hard phase particle, and a cemented carbide having iron group metal as a binder phase.
5a, 6a group element, aluminum, silicon carbide,
Coated carbide formed by coating a single layer of at least one compound selected from nitrides, oxides, and mutual solid solutions thereof, or a hard film having a thickness of 0.5 to 20 μm and a laminate of two or more layers. In the alloy, 3 to 3
It is required that, over a depth of 20 μm, the amount of the binder phase is 0.5% by weight or less and a uniform hard composite layer composed of the hard phase particles of the base material and the hard film component particles is present. It is a feature.

【0009】本発明の硬質複合層を有する被覆超硬合金
における母材は、具体的には、硬質相粒子が炭化タング
ステンのみからなるWC−Co系,WC−(NiCr)
系合金や、炭化タングステンと立方晶系化合物とからな
るWC−TaC−Co系,WC−(WTiTa)C−C
o系,WC−(WTiTaNb)(CN)−Co系合金
で、鉄族金属の結合相量として3〜30体積%程度のも
のを挙げることができる。ここで、窒素あるいは酸素が
添加されているWC−(WTiTa)(CN)−Co
系,WC−(WTiTa)(CO)−Co系合金などで
は、表面に立方晶系化合物がなくてCo量が増加した5
〜30μmの強靱表面層が形成されている。
The base material of the coated cemented carbide having a hard composite layer according to the present invention is, specifically, a WC-Co-based or WC- (NiCr) alloy in which the hard phase particles are composed only of tungsten carbide.
-Based alloy, WC-TaC-Co based on tungsten carbide and cubic compound, WC- (WTiTa) CC
An o-based, WC- (WTiTaNb) (CN) -Co-based alloy having a bonding phase amount of about 3 to 30% by volume of the iron group metal can be used. Here, WC- (WTiTa) (CN) -Co to which nitrogen or oxygen is added
, A WC- (WTiTa) (CO) -Co-based alloy, etc., has no cubic compound on its surface and the amount of Co increases.
A tough surface layer of 3030 μm is formed.

【0010】また硬質膜は、具体的には、化学蒸着法あ
るいは物理蒸着法で作製される0.5〜20μmの厚み
でなるTiC,TiCN,TiN,(TiZr)N,
(TiAl)N,CrNなどの単層膜や、母材側からT
iC/TiN/TiCN/TiN,TiN/TiC/A
23,TiN/TiCN/TiC/Al23/Ti
N,TiN/(TiAl)N/TiN,TiN/Si3
4,CrN/VNなどの積層膜を挙げることができ
る。ここで、硬質膜の厚みは、0.5μm未満では硬質
複合膜の効果のみで、耐摩耗性が不十分であり、20μ
mを超えて厚くなると強度低下が著しくて耐欠損性,耐
チッピング性に劣る。
[0010] The hard film is specifically made of TiC, TiCN, TiN, (TiZr) N, having a thickness of 0.5 to 20 µm, which is produced by a chemical vapor deposition method or a physical vapor deposition method.
(TiAl) N, CrN or other single-layer film, or T
iC / TiN / TiCN / TiN, TiN / TiC / A
l 2 O 3 , TiN / TiCN / TiC / Al 2 O 3 / Ti
N, TiN / (TiAl) N / TiN, TiN / Si 3
A laminated film of N 4 , CrN / VN, or the like can be given. Here, if the thickness of the hard film is less than 0.5 μm, only the effect of the hard composite film is obtained, and the wear resistance is insufficient.
When the thickness exceeds m, the strength is remarkably reduced and the chipping resistance and chipping resistance are poor.

【0011】本発明の硬質複合層を有する被覆超硬合金
における硬質複合層は、WCおよびTaC,(WTiT
a)C,(WTiTaNb)(CN)などの超硬合金中
の硬質相粒子とTiC,TiCN,TiN,ZrN,A
23,AlN,SiC,Si34など化学蒸着法によ
って得られる硬質膜成分粒子との混合物で、具体的に
は、WCとTiN,WCとAl23,WCと(WTiT
a)CとTiCNなどの混合物であり、硬質相粒子は超
硬合金中と同一組成、同一粒径で存在し、硬質膜成分粒
子は超硬合金中では結合相であった部分に存在するもの
である。ここで、硬質複合膜の厚みは、3μm未満では
耐塑性変形と耐摩耗性の改善効果が低く、また20μm
を超えて厚くなると、製作が困難で、かつ耐欠損性,耐
チッピング性が低下する。また、硬質複合層中での結合
相量は、2.0重量%を超えて多くなると、耐塑性変形
と耐摩耗性が低下する。
The hard composite layer of the coated cemented carbide having the hard composite layer of the present invention is made of WC and TaC, (WTit
a) Hard phase particles in a cemented carbide such as C, (WTiTaNb) (CN) and TiC, TiCN, TiN, ZrN, A
A mixture of hard film component particles obtained by a chemical vapor deposition method such as l 2 O 3 , AlN, SiC, Si 3 N 4 , specifically, WC and TiN, WC and Al 2 O 3 , WC and (WTit
a) A mixture of C and TiCN, etc., in which the hard phase particles are of the same composition and the same particle size as in the cemented carbide, and the hard film component particles are present in the portion which was the binder phase in the cemented carbide. It is. Here, when the thickness of the hard composite film is less than 3 μm, the effect of improving plastic deformation and wear resistance is low, and 20 μm
If the thickness exceeds the limit, it is difficult to manufacture, and the chipping resistance and chipping resistance decrease. If the amount of the binder phase in the hard composite layer exceeds 2.0% by weight, the plastic deformation resistance and the wear resistance decrease.

【0012】本発明の硬質複合層を有する被覆超硬合金
における硬質複合層は、硬質膜成分粒子が異なる複数層
からなると、硬質複合層に耐摩耗性、耐溶着性、耐塑性
変形性、強度など異なる性質を付加して性能が向上する
ので好ましい。具体的には、第1層(母材内部側から)
が2μmの硬質膜成分粒子:TiN、第2層が2μmの
硬質膜成分粒子:Al23、第3層が1μmの硬質膜成
分粒子:TiCを挙げることができる。また、硬質複合
層の硬質膜成分粒子がチタンの炭化物,窒化物,炭窒化
物および酸化アルミニウムの中の1種以上であると、硬
質複合層の製作が容易なこと、硬質膜との密着性が良好
なこと、切削性能のバランスが良いことなどのために好
ましい。
When the hard composite layer of the coated cemented carbide having the hard composite layer according to the present invention is composed of a plurality of layers having different hard film component particles, the hard composite layer has abrasion resistance, welding resistance, plastic deformation resistance, and strength. It is preferable because different properties are added to improve the performance. Specifically, the first layer (from inside the base material)
Are 2 μm hard film component particles: TiN, the second layer is 2 μm hard film component particles: Al 2 O 3 , and the third layer is 1 μm hard film component particles: TiC. When the hard film component particles of the hard composite layer are one or more of titanium carbide, nitride, carbonitride, and aluminum oxide, the hard composite layer can be easily manufactured, and the adhesion to the hard film can be improved. Is preferable because of good balance of cutting performance.

【0013】本発明の硬質複合層を有する被覆超硬合金
における母材は、硬質複合層から内部に向かって3〜2
0μmの深さに亘って、結合相量が母材のさらに内部
(約100μm)より多くなっている結合相富化層およ
び/又は立方晶化合物量が少ない立方晶化合物貧化層が
存在すると、耐塑性変形性を損なうことなく耐欠損性,
耐チッピング性が向上するので好ましい。すなわち、硬
質複合層中が厚くなった場合の欠点をカバーすることが
できる。
The base material of the coated cemented carbide having the hard composite layer of the present invention is 3 to 2 inward from the hard composite layer.
When a binder phase-enriched layer and / or a cubic compound-poor layer with a small amount of cubic compound are present over a depth of 0 μm, the amount of the binder phase is greater than the inside of the base material (about 100 μm). Fracture resistance without impairing plastic deformation resistance,
It is preferable because chipping resistance is improved. That is, it is possible to cover the disadvantages when the thickness of the hard composite layer is increased.

【0014】本発明の硬質複合層を有する被覆超硬合金
の製造方法は、炭化タングステン、あるいは炭化タング
ステンと周期律表の4a,5a,6a族金属の炭化物,
窒化物,炭窒化物およびこれらの相互固溶体の中の1種
以上からなる立方晶化合物とを硬質相粒子、鉄族金属を
結合相とする超硬合金において、該超硬合金の表面から
2〜25μmの深さに亘って該結合相を均一に除去して
連続空孔とした後、周期律表の4a,5a,6a族元
素,アルミニウム,シリコンの炭化物,窒化物,酸化
物、およびこれらの相互固溶体の中から選ばれた1種以
上の化合物で該連続空孔を封止することにより3〜20
μmの硬質複合層を形成させ、続けて該化合物の単層ま
たは2層以上の積層でなる0.5〜20μmの硬質膜を
被覆することを特徴とする製造方法である。
The method for producing a coated cemented carbide having a hard composite layer according to the present invention comprises the steps of: providing tungsten carbide or a carbide of tungsten carbide and a group 4a, 5a or 6a metal of the periodic table;
In a cemented carbide having hard phase particles and a cubic compound comprising at least one of nitrides, carbonitrides and mutual solid solutions thereof, and a binder phase composed of an iron group metal, two to three After uniformly removing the binder phase over a depth of 25 μm to form continuous pores, elements 4a, 5a and 6a of the periodic table, aluminum, silicon carbides, nitrides, oxides, and the like By sealing the continuous pores with one or more compounds selected from mutual solid solutions, 3 to 20
A production method characterized by forming a hard composite layer having a thickness of μm, and subsequently coating a hard film having a thickness of 0.5 to 20 μm, which is a single layer or a laminate of two or more layers of the compound.

【0015】本発明の硬質複合層を有する被覆超硬合金
の製造方法における超硬合金母材表面からの結合相の除
去方法は、具体的には、塩酸,硝酸,硫酸,りん酸など
無機酸による通常の浸漬処理を挙げることができるが、
ギ酸,酢酸,シュウ酸などの有機酸を用いた弱酸性水溶
液中での電解処理であると、超硬合金中の硬質粒子成分
の変質,溶解なしに、結合相だけを完全かつ表面から均
一に除去できるので好ましい。ここで、結合相が除去さ
れた超硬合金母材表面は、硬質粒子のみのスケルトンか
ら構成され、除去された結合相部が表面から連続した空
孔(通気孔)を形成しているものである。結合相の除去
深さは、硬質複合層の形成厚みに関係するが、形成時の
結合相移動を考慮すると、2〜25μmの範囲となる。
The method for removing a binder phase from the surface of a cemented carbide base material in the method for producing a coated cemented carbide having a hard composite layer according to the present invention is carried out by specifically using an inorganic acid such as hydrochloric acid, nitric acid, sulfuric acid or phosphoric acid. Can be mentioned, but
Electrolytic treatment in a weakly acidic aqueous solution using an organic acid such as formic acid, acetic acid, or oxalic acid allows the binder phase to be completely and uniformly removed from the surface without altering or dissolving the hard particle components in the cemented carbide. It is preferable because it can be removed. Here, the surface of the cemented carbide base material from which the binder phase has been removed is composed of a skeleton of only hard particles, and the removed binder phase forms pores (vents) continuous from the surface. is there. The removal depth of the binder phase is related to the formation thickness of the hard composite layer, but is in the range of 2 to 25 μm in consideration of the binder phase movement during the formation.

【0016】本発明の硬質複合層を有する被覆超硬合金
の製造方法における硬質複合層の形成方法は、具体的に
は、表面に連続空孔を有する超硬合金母材をCVD法で
もって該連続空孔を封止するものである。CVD法は微
細孔中にも反応ガスが浸入して硬質物質を析出させるこ
とができるので、結合相が除去された超硬合金母材表面
に硬質粒子のスケルトンとCVDにより析出した硬質物
質とからなる硬質複合層を形成させることができる。こ
こで、CVD方法が有機金属化合物を使用したMOCV
D,低温あるいは中温CVD,プラズマCVDなどであ
ると、硬質複合層中への結合相移動が無いこと、超硬合
金中の硬質粒子とCVD析出した硬質物質との反応が少
ないこと、緻密で微細粒子の硬質物質となるなどのため
に、硬さと靱性に優れた硬質複合膜が得られるので好ま
しい。
The method for forming a hard composite layer in the method for producing a coated cemented carbide having a hard composite layer according to the present invention is, specifically, a method in which a cemented carbide base material having continuous pores on its surface is formed by CVD. This seals the continuous holes. In the CVD method, the reaction gas can penetrate into the fine pores to precipitate a hard substance. Therefore, the skeleton of the hard particles and the hard substance deposited by the CVD on the surface of the cemented carbide base material from which the binder phase has been removed. A hard composite layer can be formed. Here, the MOCV using the organometallic compound is used for the CVD method.
D, low-temperature or medium-temperature CVD, plasma CVD, etc., no binding phase transfer into the hard composite layer, little reaction between hard particles in the cemented carbide and the hard substance deposited by CVD, dense and fine It is preferable because a hard composite film having excellent hardness and toughness can be obtained because it becomes a hard substance of particles.

【0017】[0017]

【作用】本発明の硬質複合層を有する被覆超硬合金は、
母材表面近傍に結合相が無くて硬質相粒子と硬質膜粒子
とからなる硬質複合層を有し、形成させた硬質複合層が
母材の耐塑性変形性,被覆膜との密着性,耐摩耗性など
を向上させて工具寿命を延長させる作用をし、その製造
方法は、母材表面から均一に結合相を除去した後に被覆
処理する硬質膜成分が生成した連続空孔に浸入して超硬
合金母材中の硬質層粒子を再結合して硬質複合層を形成
するする作用をしているものである。
The coated cemented carbide having the hard composite layer of the present invention is
There is no binder phase in the vicinity of the base material surface and there is a hard composite layer composed of hard phase particles and hard film particles, and the formed hard composite layer has plastic deformation resistance of the base material, adhesion to the coating film, It works to extend tool life by improving wear resistance and the like, and its manufacturing method is to remove the binder phase uniformly from the base material surface and then penetrate into the continuous pores where the hard film components to be coated are generated. It functions to combine the hard layer particles in the cemented carbide base material to form a hard composite layer.

【0018】[0018]

【実施例1】市販されている平均粒子径が3.0μmの
WC(WC(L)と記す)と1.5μmのWC(WC
(S)と記す),1.5μmの(WTiTa)C(重量
比でWC/TiC/TaC=50/20/30の複合炭
化物),1.3μmのTiCN(重量比でTiC/Ti
N=50/50),1.0μmのTaC,1.2μmの
Coの各粉末を用いて、表1に示す配合組成に秤量し、
ステンレス製ポットにアセトン溶媒と超硬合金製ボール
と共に挿入し、48時間混合粉砕後、加熱・乾燥しなが
ら2重量%のパラフィンワックスを添加してW〜Zの混
合粉末を得た。W,X,Yの粉末をISO規格でSNM
N120408(ブレーカ付き)の形状用金型に、Zの
粉末はSNGN120408の形状用金型に充填し、2
ton/cm2の圧力でもってプレス成形した後、アル
ミナとカーボン繊維からなるシート上に設置し、雰囲気
圧力10Paの真空中で、1673Kに1時間加熱保持
して、それぞれの切削用チップ素材を得た。得られたチ
ップの各1個のコーナ部付近を切断した後、1000#
のダイヤモンドホィールでの研削と1μmダイヤモンド
ペーストでのラップ仕上により断面観察試料を作製し、
光学顕微鏡により表面付近の組織を観察して、(WTi
Ta)C粒子の存在しない層の表面からの厚さ(脱β層
厚み)を測定した。その結果を表1に併記した。
Example 1 A commercially available WC having an average particle diameter of 3.0 μm (hereinafter referred to as WC (L)) and a WC having an average particle diameter of 1.5 μm (WC
(S)), 1.5 μm of (WTiTa) C (composite carbide of WC / TiC / TaC = 50/20/30 by weight ratio), 1.3 μm of TiCN (TiC / Ti by weight ratio)
N = 50/50), 1.0 μm of TaC and 1.2 μm of Co powder were weighed to the composition shown in Table 1,
Acetone solvent and a cemented carbide ball were inserted into a stainless steel pot, mixed and pulverized for 48 hours, and 2% by weight of paraffin wax was added while heating and drying to obtain a mixed powder of W to Z. Powder of W, X, Y is SNM according to ISO standard
N120408 (with a breaker) in a shape mold, Z powder is filled in a SNGN120408 shape mold, and
After press-molding at a pressure of ton / cm 2 , it was placed on a sheet made of alumina and carbon fiber, and heated and maintained at 1673K for 1 hour in a vacuum at an atmospheric pressure of 10 Pa to obtain each cutting chip material. Was. After cutting the vicinity of each one corner of each obtained chip, 1000 #
A cross-sectional observation sample was prepared by grinding with a diamond wheel and lapping with 1 μm diamond paste.
Observing the structure near the surface with an optical microscope, (WTi
Ta) The thickness from the surface of the layer where no C particles existed (thickness of the β-removed layer) was measured. The results are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】そして、W,X,Yのチップ素材を用い、
ボス面を270#のダイヤモンド砥石で研削加工した
後、刃先部を320#の炭化けい素砥粒を含有したナイ
ロン製ブラシで半径0.04mmのホーニング加工し、
また、Zのチップ素材を用い、上下面と外周面を270
#のダイヤモンド砥石で研削加工した後、刃先部に40
0#ダイヤモンド砥石で−25°×0.10mmのホー
ニング加工して、被覆超硬合金用の母材チップを得た。
次いで、表2に示した方法と条件で表面処理を行いアセ
トン中で超音波洗浄した後、CVDコーティング装置を
用いて表3に記載したガス成分,温度,時間でCVD被
覆処理を順次行って、本発明品1〜11と比較品1〜7
の被覆超硬工具チップを得た。尚、表面処理によって形
成される結合相除去層の厚みを確認するため、処理後
(CVD被覆処理前)のチップの断面組織を観察し、そ
の結果を表2に併記した。ここで、各チップへの被覆処
理には統一性があり、硬質膜の構成を同一にしてある。
本発明品1〜8と比較品1〜5での最内層を除く硬質膜
は、最外層から内層側に向かって、0.3μmのTi
N,2.0μmのAl23,0.2μmのTiCO,
8.0μmのTiCNの順に計8.5μm、本発明品9
〜11と比較品6,7では、最外層から内層側に向かっ
て0.2μmのTiN,1.0μmのAl23,0.2
μmのTiN,3.0μmのTiCNの順に計4.4μ
mとなるように調整されている。
Then, using W, X, and Y chip materials,
After grinding the boss surface with a 270 # diamond grindstone, the cutting edge is honed with a radius of 0.04 mm with a nylon brush containing 320 # silicon carbide abrasive grains,
Also, using a Z chip material, the upper and lower surfaces and the outer peripheral surface are 270
# After grinding with a diamond grindstone, 40
Honing was performed at -25 ° × 0.10 mm with a 0 # diamond grindstone to obtain a base metal chip for a coated cemented carbide.
Next, after performing a surface treatment under the method and conditions shown in Table 2 and performing ultrasonic cleaning in acetone, a CVD coating treatment was sequentially performed using a CVD coating apparatus at the gas components, temperature, and time described in Table 3, Inventive products 1 to 11 and comparative products 1 to 7
A coated carbide tool tip was obtained. In order to confirm the thickness of the binder phase removal layer formed by the surface treatment, the cross-sectional structure of the chip after the treatment (before the CVD coating treatment) was observed, and the results are shown in Table 2. Here, the coating process on each chip has uniformity, and the configuration of the hard film is the same.
The hard films of the present invention products 1 to 8 and the comparative products 1 to 5 except for the innermost layer have a thickness of 0.3 μm from the outermost layer toward the inner layer side.
N, 2.0 μm Al 2 O 3 , 0.2 μm TiCO,
A total of 8.5 μm in the order of 8.0 μm TiCN;
11 and the comparative products 6 and 7, 0.2 μm TiN, 1.0 μm Al 2 O 3 , 0.2 μm from the outermost layer toward the inner layer side.
μm TiN, 3.0 μm TiCN in order of 4.4 μm.
m.

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 *ガス組成 A:H2+TiCl4+N2 B:H2+TiCl4+NH3 C:H2+TiCl4+CH4 D:H2+TiCl4+CH4+CO E:H2+TiCl4+N2+CH4 F:H2+TiCl4+CH3CN G:H2+ACl3+CO2 H:Ar+MeCl2TiAl−OEt2(メチルアルミニウムクロライド-ジ エチルエチレート) [Table 3] * Gas composition A: H 2 + TiCl 4 + N 2 B: H 2 + TiCl 4 + NH 3 C: H 2 + TiCl 4 + CH 4 D: H 2 + TiCl 4 + CH 4 + CO E: H 2 + TiCl 4 + N 2 + CH 4 F: H 2 + TiCl 4 + CH 3 CN G: H 2 + ACl 3 + CO 2 H: Ar + MeCl 2 TiAl-OEt 2 (methyl aluminum chloride-diethyl ethylate)

【0023】表3の続き Continuation of Table 3

【0024】こうして得た被覆処理チップのそれぞれ1
個について、コーナ部付近の切断面をラップ研磨した試
料ついて、走査電子顕微鏡を用いて超硬合金母材と硬質
膜との界面付近を観察し、組成分析も行った。刃先ホー
ニング部から0.1mmの位置のすくい面において、形
成された硬質複合層の厚みと成分組成、硬質膜の最内層
での厚みと成分組成、硬質複合層下の脱β層での厚みと
成分組成、などの測定結果を表4に示す。
Each of the coated chips thus obtained was
With respect to the sample, the cut surface near the corner was lapped and polished, and the vicinity of the interface between the cemented carbide base material and the hard film was observed using a scanning electron microscope, and the composition was analyzed. On the rake face at a position of 0.1 mm from the cutting edge honing part, the thickness and component composition of the formed hard composite layer, the thickness and component composition of the innermost layer of the hard film, and the thickness of the β-removed layer under the hard composite layer Table 4 shows the measurement results such as the composition of the components.

【0025】[0025]

【表4】 * 本発明品4,8,11の硬質複合層は2層となって
おり、母材側から順に記載。 ** βは(WTiTa)(CN)を意味する。 *** 巣孔は0.1〜1μmで比較的均一に分布。
[Table 4] * The hard composite layers of the products 4, 8, and 11 of the present invention are two layers, and are described in order from the base material side. ** β means (WTiTa) (CN). *** Burrows are relatively evenly distributed at 0.1-1 μm.

【0026】[0026]

【実施例2】実施例1で得られた本発明品1〜8と比較
品1〜5の工具チップを用いた切削試験(1)として、
被削材:S45Cの2本溝入り,切削速度:300m/
min,切込み:2.0mm,送り:0.20mm/r
ev,乾式の条件で外周断続旋削試験を行った。刃先が
摩滅あるいは欠損するまでの切削寿命時間と損傷理由を
表5に示す。また、切削試験(2)として、被削材:F
C350,切削速度:500m/min,切込み:3.
0mm,送り:0.50mm/rev,乾式の条件で外
周旋削試験を行った。刃先の逃げ面摩耗が0.4mmに
達するまでの切削時間を表5に併記した。
Example 2 As a cutting test (1) using the tool tips of the products 1 to 8 of the present invention obtained in Example 1 and the comparative products 1 to 5,
Work material: S45C with two grooves, cutting speed: 300m /
min, depth of cut: 2.0 mm, feed: 0.20 mm / r
ev, an outer peripheral intermittent turning test was performed under dry conditions. Table 5 shows the cutting life time until the cutting edge is worn or chipped and the reason for the damage. As a cutting test (2), the work material: F
C350, cutting speed: 500 m / min, cutting depth: 3.
The outer periphery turning test was performed under the conditions of 0 mm, feed: 0.50 mm / rev, and dry type. Table 5 also shows the cutting time until the flank wear of the cutting edge reaches 0.4 mm.

【0027】[0027]

【表5】 [Table 5]

【0028】[0028]

【実施例3】次に、実施例1で得られた本発明品9〜1
1と比較品6,7の工具チップを用いて、被削材:SC
M440(加工面形状:50W×200L),切削速
度:135m/min,切込み:2.0mm,送り:
0.36mm/刃,乾式の条件でフライス削り試験を行
った。40pass加工した時点で工具刃先部を観察
し、すくい面に発生した熱クラックの本数,クレータ部
での膜剥離面積,逃げ面の平均摩耗量,刃先部の微小チ
ッピングなどを評価した。これらの結果を表6に示す。
EXAMPLE 3 Next, the products 9-1 of the present invention obtained in Example 1
Work material: SC using tool tips of 1 and comparative products 6 and 7
M440 (machined surface shape: 50W x 200L), cutting speed: 135m / min, depth of cut: 2.0mm, feed:
A milling test was performed under conditions of 0.36 mm / blade and dry type. At the time of 40-pass machining, the tool edge was observed, and the number of thermal cracks generated on the rake face, the area of film peeling at the crater, the average wear amount of the flank, and the micro chipping of the edge were evaluated. Table 6 shows the results.

【0029】[0029]

【表6】 [Table 6]

【0030】[0030]

【実施例4】市販されている超硬合金製ソリッドドリル
(φ6mm)を表7に示した表面処理を施した後、CV
Dコーティング装置を用いて、表7に併記した条件で被
覆処理して本発明品12と比較品8の表面被覆超ドリル
を得た。各ドリルの外周切れ刃部分を実施例1と同様の
方法で調査した結果、本発明品12では厚み:5μm,
成分組成:85WC−15TiN(vol%)の硬質複
合層と厚み:2μmのTiC膜が、比較品8には厚み:
2μmのTiC膜のみが確認された。これらのドリルを
用いて、被削材:プリハードン鋼(HRC=40),切
削速度:30m/min,切込み:10mm,テーブル
送り:64mm,刃当り送り:0.02mm/刃,湿式
の条件で溝加工試験を行い、切削長さが50mの時点で
切れ刃の逃げ面摩耗幅を測定した。その結果、本発明品
12が0.05mmであるのに対し、比較品8は0.1
0mmであった。
Example 4 A commercially available cemented carbide solid drill (φ6 mm) was subjected to the surface treatment shown in Table 7 and then CV
Using a D coating apparatus, coating treatment was carried out under the conditions described in Table 7 to obtain surface-coated super drills of product 12 of the present invention and comparative product 8. As a result of investigating the outer peripheral cutting edge portion of each drill in the same manner as in Example 1, the product 12 of the present invention had a thickness of 5 μm,
Component composition: 85WC-15TiN (vol%) hard composite layer and 2 μm thick TiC film;
Only a 2 μm TiC film was confirmed. Using these drills, work material: pre-hardened steel (HRC = 40), cutting speed: 30 m / min, depth of cut: 10 mm, table feed: 64 mm, feed per blade: 0.02 mm / tooth, groove under wet conditions A processing test was performed, and the flank wear width of the cutting edge was measured when the cutting length was 50 m. As a result, the product 12 of the present invention was 0.05 mm, while the product 8 of the comparative example 8 was 0.1 mm.
It was 0 mm.

【0031】[0031]

【表7】 [Table 7]

【0032】[0032]

【実施例4】市販されている約10φmm×60mmの
耐摩耗工具用超硬合金素材(JISでV30相当)を用
い、全面を140#と800#のダイヤモンド砥石で粗
研削と仕上げ研削加工して打抜き加工用のパンチを作製
した後、表8に示した表面処理した後、CVDコーティ
ング装置を用いて、表8に併記した条件で被覆処理して
本発明品13と比較品9の表面被覆超硬パンチを得た。
各パンチの外周切れ刃部分を実施例1と同様の方法で調
査した結果、本発明品13では厚み:9μm,成分組
成:82WC−18TiN(vol%)の硬質複合層と
厚み:2μmのTiCN膜が、比較品9には厚み:3μ
mのTiCN膜のみが確認された。これらを用いて、厚
み:0.6mmの亜鉛鋼板を打ち抜き加工し、バリによ
り不良品が発生するまでのショット数を測定した。その
結果、本発明品13が約130万ショットであるのに対
し、比較品10は約43万ショットであった。
Embodiment 4 Using a commercially available cemented carbide material for wear-resistant tools (approximately V30 according to JIS) of about 10 mm × 60 mm, the entire surface is rough- and finish-ground with 140 # and 800 # diamond grindstones. After producing a punch for punching, the surface treatment shown in Table 8 was carried out, and then the coating treatment was carried out using a CVD coating apparatus under the conditions shown in Table 8, and the surface coating of the product 13 of the present invention and the comparative product 9 was superimposed. I got a hard punch.
The outer peripheral cutting edge of each punch was examined in the same manner as in Example 1. As a result, in the case of the product 13 of the present invention, a hard composite layer having a thickness of 9 μm and a component composition of 82WC-18TiN (vol%) and a TiCN film having a thickness of 2 μm were obtained. However, the thickness of the comparative product 9 is 3 μm.
Only m TiCN film was confirmed. Using these, a zinc steel plate having a thickness of 0.6 mm was punched out, and the number of shots until a defective product was generated due to burrs was measured. As a result, the product 13 of the present invention had about 1.3 million shots, while the comparative product 10 had about 430,000 shots.

【0033】[0033]

【表8】 [Table 8]

【発明の効果】【The invention's effect】

【効果】 化学蒸着法による表面被覆超硬合金におい
て、超硬合金母材と硬質被覆膜との間に母材の硬質粒子
と被覆膜粒子とからなる硬質複合層を設けることによ
り、刃先の塑性変形と硬質膜との密着性や耐摩耗性が大
幅に改善されるために、切削工具用チップ,ドリルや耐
摩耗工具に使用すると、従来の表面被覆超硬合金に比べ
て安定した長寿命が得られる。
[Effect] In a surface-coated cemented carbide by a chemical vapor deposition method, a cutting edge is provided by providing a hard composite layer composed of hard particles of a base material and coating film particles between a hard metal base material and a hard coating film. When used for cutting tool inserts, drills and wear-resistant tools, the plastic deformation of the steel and the adhesion and wear resistance of the hard film are greatly improved. Life is obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 1/05 C22C 1/05 G 29/02 29/02 E 29/08 29/08 C23C 16/30 C23C 16/30 16/32 16/32 16/34 16/34 16/40 16/40 Fターム(参考) 3C037 CC01 CC02 CC04 CC09 3C046 FF03 FF10 FF11 FF13 FF18 FF22 FF25 4K018 AD03 AD06 FA24 4K030 AA03 AA09 AA10 AA11 AA13 AA14 AA17 AA18 BA35 BA36 BA37 BA38 BA40 BA42 BA43 BA44 BA53 BA56 BA57 BB12 BB13 CA03 DA02 FA01 FA10 JA01 LA22 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) C22C 1/05 C22C 1/05 G 29/02 29/02 E 29/08 29/08 C23C 16/30 C23C 16/30 16/32 16/32 16/34 16/34 16/40 16/40 F term (reference) 3C037 CC01 CC02 CC04 CC09 3C046 FF03 FF10 FF11 FF13 FF18 FF22 FF25 4K018 AD03 AD06 FA24 4K030 AA03 AA09 AA10 AA11 AA13 AA14 AA17 AA18 BA35 BA36 BA37 BA38 BA40 BA42 BA43 BA44 BA53 BA56 BA57 BB12 BB13 CA03 DA02 FA01 FA10 JA01 LA22

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 炭化タングステン、あるいは炭化タング
ステンと周期律表の4a,5a,6a族金属の炭化物,
窒化物,炭窒化物およびこれらの相互固溶体の中の1種
以上からなる立方晶化合物とを硬質相粒子、鉄族金属を
結合相とする超硬合金を母材とし、該母材表面に周期律
表の4a,5a,6a族元素,アルミニウム,シリコン
の炭化物,窒化物,酸化物、およびこれらの相互固溶体
の中から選ばれた1種以上の化合物でなる単層または2
層以上の積層でなる0.5〜20μmの硬質膜を被覆し
てなる被覆超硬合金において、 該母材表面から内部に向かって3〜20μmの深さに亘
って、該結合相量が2.0重量%以下で、かつ母材の該
硬質相粒子と該硬質膜成分粒子とから構成された均一な
硬質複合層が存在することを特徴とする硬質複合層を有
する被覆超硬合金。
1. Tungsten carbide, or a carbide of tungsten carbide and a metal of a group 4a, 5a, or 6a of the periodic table;
A cubic compound comprising at least one of nitrides, carbonitrides and mutual solid solutions thereof is used as a hard phase particle, and a cemented carbide having a binder phase of an iron group metal is used as a base material. A single layer or a single layer of at least one compound selected from the group consisting of elements of groups 4a, 5a and 6a of the table, aluminum, silicon carbides, nitrides, oxides, and mutual solid solutions thereof;
In a coated cemented carbide coated with a hard film having a thickness of 0.5 to 20 μm, the amount of the binder phase is 2 from the surface of the base material to a depth of 3 to 20 μm inward. A coated cemented carbide having a hard composite layer of not more than 0.0% by weight and having a uniform hard composite layer composed of the hard phase particles of the base material and the hard film component particles.
【請求項2】 上記硬質複合層は、上記硬質膜成分粒子
が異なる複数層からなることを特徴とする請求項1記載
の硬質複合層を有する被覆超硬合金。
2. The coated hard metal having a hard composite layer according to claim 1, wherein the hard composite layer comprises a plurality of layers in which the hard film component particles are different.
【請求項3】 上記硬質複合層の硬質膜成分粒子は、チ
タンの炭化物,窒化物,炭窒化物および酸化アルミニウ
ムの中の1種以上であることを特徴とする請求項1又は
2記載の硬質複合層を有する被覆超硬合金。
3. The hard film according to claim 1, wherein the hard film component particles of the hard composite layer are at least one of titanium carbide, nitride, carbonitride and aluminum oxide. Coated cemented carbide with composite layer.
【請求項4】 上記硬質複合層からさらに母材の内部に
向かって3〜20μmの深さに亘って、上記結合相量が
母材のさらに内部より多い結合相富化層および/又は上
記立方晶化合物量が少ない立方晶化合物貧化層が存在す
ることを特徴とする請求項1,2又は3記載の硬質複合
層を有する被覆超硬合金。
4. The binder phase-enriched layer having a larger amount of the binder phase than the inside of the base material and / or the cubic shape from a depth of 3 to 20 μm further from the hard composite layer toward the inside of the base material. 4. The coated cemented carbide having a hard composite layer according to claim 1, wherein a cubic compound-poor layer having a small amount of a crystalline compound is present.
【請求項5】 炭化タングステン、あるいは炭化タング
ステンと周期律表の4a,5a,6a族金属の炭化物,
窒化物,炭窒化物およびこれらの相互固溶体の中の1種
以上からなる立方晶化合物とを硬質相粒子、鉄族金属を
結合相とする超硬合金において、該超硬合金の表面から
2〜25μmの深さに亘って該結合相を均一に除去して
連続空孔とした後、周期律表の4a,5a,6a族元
素,アルミニウム,シリコンの炭化物,窒化物,酸化
物、およびこれらの相互固溶体の中から選ばれた1種以
上の化合物で該連続空孔を封止することにより3〜20
μmの硬質複合層を形成させ、続けて該化合物の単層ま
たは2層以上の積層でなる0.5〜20μmの硬質膜を
被覆することを特徴とする硬質複合層を有する被覆超硬
合金の製造方法。
5. Tungsten carbide or a carbide of tungsten carbide and a metal of Groups 4a, 5a and 6a of the periodic table;
In a cemented carbide having hard phase particles and a cubic compound comprising at least one of nitrides, carbonitrides and mutual solid solutions thereof, and a binder phase composed of an iron group metal, two to three After uniformly removing the binder phase over a depth of 25 μm to form continuous pores, elements 4a, 5a and 6a of the periodic table, aluminum, silicon carbides, nitrides, oxides, and the like By sealing the continuous pores with one or more compounds selected from mutual solid solutions, 3 to 20
μm of a hard composite layer having a hard composite layer, characterized in that a hard composite layer having a thickness of 0.5 to 20 μm is formed by continuously forming a hard composite layer having a thickness of 0.5 μm to 20 μm. Production method.
【請求項6】 上記超硬合金母材表面からの結合相除去
方法が、有機酸の弱酸性水溶液を使用した電解処理であ
ることを特徴とする請求項5記載の硬質複合層を有する
被覆超硬合金の製造方法。
6. The coated super-compound having a hard composite layer according to claim 5, wherein the method of removing the binder phase from the surface of the cemented carbide base material is an electrolytic treatment using a weakly acidic aqueous solution of an organic acid. Manufacturing method of hard alloy.
【請求項7】 上記硬質複合層の形成方法は、有機金属
化合物を使用したMOCVD,低温あるいは中温CV
D,プラズマCVDであることを特徴とする請求項5記
載の硬質複合層を有する被覆超硬合金の製造方法。
7. The method for forming the hard composite layer includes MOCVD using an organometallic compound, low-temperature or medium-temperature CV.
D. The method for producing a coated cemented carbide having a hard composite layer according to claim 5, wherein the method is plasma CVD.
JP2000226253A 2000-07-27 2000-07-27 Coated cemented carbide having hard composite layer and its production method Withdrawn JP2002038205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000226253A JP2002038205A (en) 2000-07-27 2000-07-27 Coated cemented carbide having hard composite layer and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000226253A JP2002038205A (en) 2000-07-27 2000-07-27 Coated cemented carbide having hard composite layer and its production method

Publications (1)

Publication Number Publication Date
JP2002038205A true JP2002038205A (en) 2002-02-06

Family

ID=18719899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000226253A Withdrawn JP2002038205A (en) 2000-07-27 2000-07-27 Coated cemented carbide having hard composite layer and its production method

Country Status (1)

Country Link
JP (1) JP2002038205A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328529A (en) * 2005-04-20 2006-12-07 Sandvik Intellectual Property Ab Coated cemented carbide with binder phase enriched surface zone
WO2008059896A1 (en) * 2006-11-17 2008-05-22 Mitsubishi Heavy Industries, Ltd. Abrasion-resistant film and tool provided with the same
JP2010024519A (en) * 2008-07-23 2010-02-04 Ibiden Engineering Kk Method for manufacturing wear-resistant metal body
US8211358B2 (en) 2003-10-23 2012-07-03 Sandvik Intellectual Property Ab Cemented carbide and method of making the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8211358B2 (en) 2003-10-23 2012-07-03 Sandvik Intellectual Property Ab Cemented carbide and method of making the same
JP2006328529A (en) * 2005-04-20 2006-12-07 Sandvik Intellectual Property Ab Coated cemented carbide with binder phase enriched surface zone
US7939013B2 (en) 2005-04-20 2011-05-10 Sandvik Intellectual Property Ab Coated cemented carbide with binder phase enriched surface zone
WO2008059896A1 (en) * 2006-11-17 2008-05-22 Mitsubishi Heavy Industries, Ltd. Abrasion-resistant film and tool provided with the same
JP2008126334A (en) * 2006-11-17 2008-06-05 Mitsubishi Heavy Ind Ltd Wear resistant film and tool having the same
JP2010024519A (en) * 2008-07-23 2010-02-04 Ibiden Engineering Kk Method for manufacturing wear-resistant metal body

Similar Documents

Publication Publication Date Title
KR102033188B1 (en) Surface-coated cutting tool with hard coating that exhibits excellent chipping resistance and abrasion resistance
KR101168464B1 (en) Surface-covered cutting tool
JP4593852B2 (en) Coated hard alloy
JP5111379B2 (en) Cutting tool, manufacturing method thereof and cutting method
JP5124793B2 (en) Surface coated cutting tool
JP5890594B2 (en) Coated tool
JP2007001007A (en) Composite coating film for finishing hardened steel
KR20120051045A (en) Coated cutting tools having a platinum group metal concentration gradient and related processes
JP2002543993A (en) Cutting tools coated with PVD-
JP2007237391A (en) Coated cermet cutting tool
KR101503128B1 (en) Surface-coated cutting tool
JPH11124672A (en) Coated cemented carbide
JP4142955B2 (en) Surface coated cutting tool
JP6556246B2 (en) Coated tool
JP2008238392A (en) Cutting tool
JP2002038205A (en) Coated cemented carbide having hard composite layer and its production method
JP2000212743A (en) Surface coated sintered alloy excellent in peeling resistance and its production
JP3360565B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer exhibiting excellent wear resistance
JP3643639B2 (en) Cemented carbide structure, manufacturing method thereof and cutting tool using the same
JP2002275571A (en) cBN-BASE SINTERED COMPACT, AND COATED TOOL CONSISTING THEREOF
JPH04280974A (en) Boron nitride coated hard material
JP5898394B1 (en) Coated tool
JP2001152209A (en) High adhesion surface coated sintered member and its producing method
JP3468221B2 (en) Surface coated cemented carbide cutting tool
JP5111133B2 (en) Cutting tools

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002