JP2002020390A - Production of triorganosilanol - Google Patents

Production of triorganosilanol

Info

Publication number
JP2002020390A
JP2002020390A JP2000208071A JP2000208071A JP2002020390A JP 2002020390 A JP2002020390 A JP 2002020390A JP 2000208071 A JP2000208071 A JP 2000208071A JP 2000208071 A JP2000208071 A JP 2000208071A JP 2002020390 A JP2002020390 A JP 2002020390A
Authority
JP
Japan
Prior art keywords
triorganosilanol
group
compound
reaction
triorganohydrogensilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000208071A
Other languages
Japanese (ja)
Other versions
JP3856083B2 (en
Inventor
Toru Kubota
透 久保田
Akiyuki Funatsu
顕之 船津
Mikio Endo
幹夫 遠藤
Yoichi Tonomura
洋一 殿村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2000208071A priority Critical patent/JP3856083B2/en
Publication of JP2002020390A publication Critical patent/JP2002020390A/en
Application granted granted Critical
Publication of JP3856083B2 publication Critical patent/JP3856083B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of efficiently and inexpensively producing triorganosilanol by subjecting a triorganohydrogen silane to react with water in the presence of an inexpensive and homogeneous ruthenium catalyst which has carbonyl groups as ligands and can achieve high activity. SOLUTION: A triorganohydrogensilane represented by the following general formula (1) R1R2R3SiH (1) (wherein R1, R2 and R3 are mutually identical or different and means each a 1-10C unsubstituted or substituted monovalent hydrocarbon group) is characteristically allowed to react with water in the presence of a ruthenium catalyst bearing a carbonyl group as a ligand whereby the objective triorganosilanol is obtained that is represented by the following general formula (2) R1R2R3SiOH (2) (wherein R1, R2 and R3 each same as stated above).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、トリオルガノハイ
ドロジェンシラン化合物と水との脱水素反応によるトリ
オルガノシラノール化合物の製造方法に関する。
The present invention relates to a method for producing a triorganosilanol compound by a dehydrogenation reaction between a triorganohydrogensilane compound and water.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】トリオ
ルガノシラノール化合物は、シリル化剤、各種有機ケイ
素化合物の合成中間体、相間移動触媒あるいは塗料添加
剤として非常に有用な化合物である。
2. Description of the Related Art Triorganosilanol compounds are very useful compounds as silylating agents, synthetic intermediates of various organosilicon compounds, phase transfer catalysts, or paint additives.

【0003】上記トリオルガノシラノール化合物の製造
方法としては、トリオルガノクロロシラン化合物を塩基
の存在下に加水分解する方法が知られている(L.H.
Sommer等,J.Am.Chem.Soc.,
.2282(1946))。しかしながら、該方法に
おいては、反応溶媒や副生する塩を溶解するための水を
大量に使用する必要があるばかりでなく、分液操作や水
層からの抽出操作が必要な為、生産性及び工程の煩雑さ
から工業的製造においては満足できる方法ではなかっ
た。
As a method for producing the above-mentioned triorganosilanol compound, a method of hydrolyzing a triorganochlorosilane compound in the presence of a base is known (LH.
Somer et al. Am. Chem. Soc. , 6
<8 . 2282 (1946)). However, in this method, not only is it necessary to use a large amount of water for dissolving the reaction solvent and by-produced salt, but also it is necessary to perform a separation operation and an extraction operation from an aqueous layer, so that productivity and Due to the complexity of the process, it was not a satisfactory method in industrial production.

【0004】また、別の方法として、トリオルガノハイ
ドロジェンシラン化合物を、金属パラジウム、金属白
金、金属ルテニウム、金属ロジウムを活性炭やアルミナ
に担持させた触媒の存在下に水と反応させる方法が知ら
れている(G.H.Barnes,Jr等,J.Or
g.Chem.,31,885(1966))。この方
法においては、塩の副生がなく、副生物は水素だけであ
る為、効率よく生産可能であるが、反応後に水素を大量
に吸蔵した遷移金属担持触媒を濾過により除去する必要
があり、工程が煩雑なだけでなく危険性が高いという問
題があった。
As another method, a method is known in which a triorganohydrogensilane compound is reacted with water in the presence of a catalyst in which palladium metal, platinum metal, ruthenium metal, and rhodium metal are supported on activated carbon or alumina. (GH Barnes, Jr et al., J. Or.
g. Chem. , 31, 885 (1966)). In this method, since there is no salt by-product and only hydrogen is a by-product, it can be efficiently produced.However, it is necessary to remove a transition metal-supported catalyst that has absorbed a large amount of hydrogen after the reaction by filtration, There is a problem that the process is complicated and the danger is high.

【0005】一方、同様の反応をロジウムの錯体である
クロロ(1,5−シクロオクタジエン)ロジウム(I)
ダイマーを触媒とし、均一系で行う方法が最近報告され
ている。(M.Shi等,J.Chem.Resarc
h(S),400(1997))。しかしながら、この
方法では非常に高価な金属であるロジウムの錯体を大量
に使用する必要があり、コスト面で問題がある。更に、
この触媒錯体を使用する場合、反応開始時は均一系であ
るものの、反応中に錯体中の一箇のロジウムが還元され
て金属ロジウムとなり析出してしまう為、結局上記遷移
金属担持触媒を使用した場合と同様な危険性を有するこ
ととなり、また、非常に微粒子のロジウム金属が反応器
に吸着してしまうため、反応器を汚染する等、実用化に
は問題があった。
On the other hand, a similar reaction is carried out by using chloro (1,5-cyclooctadiene) rhodium (I) which is a rhodium complex.
Recently, a method of performing the reaction in a homogeneous system using a dimer as a catalyst has been reported. (M. Shi et al., J. Chem. Resarc.
h (S), 400 (1997)). However, this method requires a large amount of a complex of a very expensive metal, rhodium, which is problematic in terms of cost. Furthermore,
When using this catalyst complex, although the reaction system is homogeneous at the start of the reaction, one of the rhodium in the complex is reduced during the reaction and becomes metal rhodium and precipitates. There is a danger similar to that in the case, and very fine particles of rhodium metal are adsorbed to the reactor, so that there is a problem in practical use such as contamination of the reactor.

【0006】本発明は、上記事情を改善するためになさ
れたもので、トリオルガノハイドロジェン化合物を原料
として効率よく、しかも安価にトリオルガノシラノール
化合物を製造する方法を提供することを目的とする。
The present invention has been made to improve the above circumstances, and has as its object to provide a method for efficiently and inexpensively producing a triorganosilanol compound using a triorganohydrogen compound as a raw material.

【0007】[0007]

【課題を解決するための手段及び発明の実施の形態】本
発明者は、上記目的を達成するため鋭意検討を重ねた結
果、安価な金属であるルテニウムの特定の錯体、すなわ
ちカルボニル基を配位子として有するルテニウム錯体を
触媒として用いることにより、わずかな触媒量で短時間
にトリオルガノハイドロジェンシラン化合物と水とを反
応させ、トリオルガノシラノール化合物を生成できるこ
とを見出し、本発明をなすに至った。
Means for Solving the Problems and Embodiments of the Invention The present inventors have made intensive studies to achieve the above object, and as a result, found that a specific complex of ruthenium which is an inexpensive metal, that is, a carbonyl group was coordinated. Using a ruthenium complex as a catalyst as a catalyst, the present inventors have found that a triorganohydrogensilane compound can be reacted with water in a short time with a small amount of a catalyst to produce a triorganosilanol compound, and the present invention has been accomplished. .

【0008】すなわち、本発明は、(1)下記一般式
(1) R123SiH (1) (式中、R1、R2、R3は互いに同一又は異種の炭素数
1〜10の非置換又は置換一価炭化水素基を示す。)で
表されるトリオルガノハイドロジェンシラン化合物と水
とを、カルボニル基を配位子として有するルテニウム触
媒の存在下に反応させることを特徴とする下記一般式
(2) R123SiOH (2) (式中、R1、R2、R3は上記と同じ。)で表されるト
リオルガノシラノール化合物の製造方法、(2)カルボ
ニル基を配位子として有するルテニウム触媒がドデカカ
ルボニル三ルテニウムである上記トリオルガノシラノー
ル化合物の製造方法、(3)トリオルガノハイドロジェ
ンシラン化合物がtert−ブチルジメチルシランであ
る上記(1)又は(2)のトリオルガノシラノール化合
物の製造方法を提供する。
That is, the present invention relates to (1) a compound represented by the following general formula (1): R 1 R 2 R 3 SiH (1) wherein R 1 , R 2 and R 3 have the same or different carbon atoms from 1 to 1; 10 unsubstituted or substituted monovalent hydrocarbon group.) And water in the presence of a ruthenium catalyst having a carbonyl group as a ligand. A method for producing a triorganosilanol compound represented by the following general formula (2): R 1 R 2 R 3 SiOH (2) (wherein R 1 , R 2 and R 3 are the same as those described above), (2) The method for producing the above triorganosilanol compound, wherein the ruthenium catalyst having a carbonyl group as a ligand is dodecacarbonyl triruthenium, (3) the triorganohydrogensilane compound is tert-butyldimethylsilane A method for producing the triorganosilanol compound of the above (1) or (2) is provided.

【0009】以下、本発明につきさらに詳細に説明す
る。
Hereinafter, the present invention will be described in more detail.

【0010】本発明のトリオルガノハイドロジェンシラ
ンは下記一般式(1)で表される。
The triorganohydrogensilane of the present invention is represented by the following general formula (1).

【0011】 R123SiH (1) ここで、R1、R2、R3は互いに同一又は異種の炭素数
1〜10の非置換又は置換一価炭化水素基であり、具体
的には、メチル基、エチル基、プロピル基、イソプロピ
ル基、ブチル基、イソブチル基、tert−ブチル基、
ペンチル基、ヘキシル基、テキシル基等の直鎖もしくは
分岐状のアルキル基、シクロペンチル基、シクロヘキシ
ル基等のシクロアルキル基、フェニル基、トリル基、ナ
フチル基等のアリール基、ベンジル基、フェニルエチル
基等のアラルキル基等や、これらの基の水素原子の一部
又は全部をフッ素原子、塩素原子、臭素原子等のハロゲ
ン原子で、あるいは、メトキシ基、エトキシ基、プロポ
キシ基、ブトキシ基、ヘキシロキシ基等の炭素数1〜8
のアルコキシ基で置換した基等が挙げられる。
R 1 R 2 R 3 SiH (1) Here, R 1 , R 2 and R 3 are the same or different and are unsubstituted or substituted monovalent hydrocarbon groups having 1 to 10 carbon atoms. Has a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group,
Linear or branched alkyl groups such as pentyl group, hexyl group and texyl group, cycloalkyl groups such as cyclopentyl group and cyclohexyl group, aryl groups such as phenyl group, tolyl group and naphthyl group, benzyl group, phenylethyl group, etc. Aralkyl groups and the like, or part or all of the hydrogen atoms of these groups is a fluorine atom, a chlorine atom, a halogen atom such as a bromine atom, or a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a hexyloxy group, etc. 1-8 carbon atoms
And the like.

【0012】具体的にトリオルガノハイドロジェンシラ
ン化合物を例示すると、トリメチルシラン、トリエチル
シラン、エチルジメチルシラン、トリプロピルシラン、
プロピルジメチルシラン、トリイソプロピルシラン、ト
リブチルシラン、sec−ブチルジメチルシラン、トリ
ヘキシルシラン、テキシルジメチルシラン、シクロペン
チルジメチルシラン、シクロヘキシルジメチルシラン、
フェニルジメチルシラン、ジフェニルメチルシラン、ト
リフェニルシラン、1−ナフチルジメチルシラン、3−
クロロプロピルジメチルシラン、3,3,3−トリフル
オロプロピルジメチルシラン、4−フルオロフェニルジ
メチルシラン、3−メトキシプロピルジメチルシラン
等、さらには、嵩高い三級のアルキル基を有する為反応
性が低く、これまで例示のないtert−ブチルジメチ
ルシラン等が挙げられる。
Specific examples of triorganohydrogensilane compounds include trimethylsilane, triethylsilane, ethyldimethylsilane, tripropylsilane,
Propyldimethylsilane, triisopropylsilane, tributylsilane, sec-butyldimethylsilane, trihexylsilane, texyldimethylsilane, cyclopentyldimethylsilane, cyclohexyldimethylsilane,
Phenyldimethylsilane, diphenylmethylsilane, triphenylsilane, 1-naphthyldimethylsilane, 3-
Chloropropyl dimethyl silane, 3,3,3-trifluoropropyl dimethyl silane, 4-fluorophenyl dimethyl silane, 3-methoxy propyl dimethyl silane, and the like, and further have a low reactivity because of having a bulky tertiary alkyl group, Examples include tert-butyldimethylsilane, which has not been exemplified so far.

【0013】本発明のトリオルガノハイドロジェンシラ
ン化合物と水とを反応させて、トリオルガノシラノール
化合物を得るための触媒は、配位子としてカルボニル基
を有するルテニウム錯体であり、具体的には、ドデカカ
ルボニル三ルテニウム、テトラクロロヘキサカルボニル
二ルテニウム、クロロジカルボニル(シクロペンタジエ
ニル)ルテニウム、ブロモトリカルボニル(アリル)ル
テニウム、トリカルボニル(シクロオクタテトラエン)
ルテニウム、ジカルボニルビス(アリル)ルテニウム、
テトラカルボニルビス(シクロペンタジエニル)二ルテ
ニウム、ジカルボニル(メチル)(シクロペンタジエニ
ル)ルテニウム等が挙げられる。尚、触媒反応の目的物
であるトリオルガノシラノール化合物、中でもトリメチ
ルシラノールのごとく置換基が小さなシラノール化合物
は、酸あるいはアルカリ条件においては脱水縮合により
対応するジシロキサンに変化しやすく、収率あるいは純
度の低下要因となるが、このことを考慮すると、上記触
媒の中でも、活性が高く反応の全過程において中性を維
持できるドデカカルボニル三ルテニウムが最も好まし
い。
The catalyst for obtaining a triorganosilanol compound by reacting the triorganohydrogensilane compound with water according to the present invention is a ruthenium complex having a carbonyl group as a ligand. Carbonyl triruthenium, tetrachlorohexacarbonyl diruthenium, chlorodicarbonyl (cyclopentadienyl) ruthenium, bromotricarbonyl (allyl) ruthenium, tricarbonyl (cyclooctatetraene)
Ruthenium, dicarbonylbis (allyl) ruthenium,
Tetracarbonylbis (cyclopentadienyl) ruthenium; dicarbonyl (methyl) (cyclopentadienyl) ruthenium; The triorganosilanol compound which is the target of the catalytic reaction, in particular, a silanol compound having a small substituent such as trimethylsilanol, is easily converted to the corresponding disiloxane by dehydration condensation under acid or alkali conditions, and the yield or purity is low. Considering this fact, among these catalysts, triruthenium dodecacarbonyl, which has high activity and can maintain neutrality during the whole reaction, is most preferable.

【0014】ルテニウム錯体の使用量は触媒量の範囲で
任意であるが、トリオルガノハイドロジェンシラン化合
物に対して、ルテニウム金属換算で0.0001〜1m
ol%、特に0.001〜0.1mol%が好ましい。
The amount of the ruthenium complex used is optional within the range of the amount of the catalyst, but is 0.0001 to 1 m in terms of ruthenium metal relative to the triorganohydrogensilane compound.
ol%, particularly preferably 0.001 to 0.1 mol%.

【0015】本発明の方法は、本質的に溶媒は不要であ
るが、必要に応じて溶媒を使用することも可能である。
溶媒としては具体的には、非プロトン性のトルエン、キ
シレン、イソオクタン、シクロヘキサン、テトラヒドロ
フラン、アセトニトリル、N−メチル−2−ピロリドン
等が挙げられる。
The method of the present invention essentially does not require a solvent, but it is possible to use a solvent if necessary.
Specific examples of the solvent include aprotic toluene, xylene, isooctane, cyclohexane, tetrahydrofuran, acetonitrile, N-methyl-2-pyrrolidone, and the like.

【0016】また、本発明の方法は、任意の温度で行う
ことができる。しかしながら、好ましくは、触媒の安定
性、反応速度等を考慮し、室温から150℃の範囲が適
当である。反応時間は通常30分から10時間程度であ
る。
The method of the present invention can be performed at any temperature. However, preferably, the range of room temperature to 150 ° C. is appropriate in consideration of the stability of the catalyst, the reaction rate, and the like. The reaction time is usually about 30 minutes to 10 hours.

【0017】本発明の方法において、反応に際し水素ガ
スが発生するため、反応は不活性ガス雰囲気下で行うこ
とが好ましい。
In the method of the present invention, since hydrogen gas is generated during the reaction, the reaction is preferably performed in an inert gas atmosphere.

【0018】本発明の方法において得られるトリオルガ
ノシラノールは下記一般式(2) R123SiOH (2) (式中、R1、R2、R3は上記と同じ。)で表されるも
ので、具体的に例示すると、トリメチルシラノール、ト
リエチルシラノール、エチルジメチルシラノール、トリ
プロピルシラノール、プロピルジメチルシラノール、ト
リイソプロピルシラノール、トリブチルシラノール、s
ec−ブチルジメチルシラノール、tert−ブチルジ
メチルシラノール、トリヘキシルシラノール、テキシル
ジメチルシラノール、シクロペンチルジメチルシラノー
ル、シクロヘキシルジメチルシラノール、フェニルジメ
チルシラノール、ジフェニルメチルシラノール、トリフ
ェニルシラノール、1−ナフチルジメチルシラノール、
3−クロロプロピルジメチルシラノール、 3,3,3
−トリフルオロプロピルジメチルシラノール、4−フル
オロフェニルジメチルシラノール、3−メトキシプロピ
ルジメチルシラノール等が挙げられる。
The triorganosilanol obtained by the method of the present invention is represented by the following general formula (2): R 1 R 2 R 3 SiOH (2) (wherein R 1 , R 2 and R 3 are the same as above). Specific examples include trimethylsilanol, triethylsilanol, ethyldimethylsilanol, tripropylsilanol, propyldimethylsilanol, triisopropylsilanol, tributylsilanol, s
ec-butyldimethylsilanol, tert-butyldimethylsilanol, trihexylsilanol, texyldimethylsilanol, cyclopentyldimethylsilanol, cyclohexyldimethylsilanol, phenyldimethylsilanol, diphenylmethylsilanol, triphenylsilanol, 1-naphthyldimethylsilanol,
3-chloropropyldimethylsilanol, 3,3,3
-Trifluoropropyldimethylsilanol, 4-fluorophenyldimethylsilanol, 3-methoxypropyldimethylsilanol and the like.

【0019】[0019]

【実施例】以下、実施例と比較例を示して本発明を具体
的に説明するが、本発明は下記の実施例に制限されるも
のではない。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

【0020】[実施例1]攪拌機、還流管、温度計、滴
下ロ−トを備えた500ml四つ口フラスコに、ドデカ
カルボニル三ルテニウム10.7mg(0.017mm
ol、基質に対し金属換算で0.01mol%)、水1
8g及びテトラヒドロフラン400mlを仕込み、還流
下トリエチルシラン58.1g(0.5mol)を1時
間かけて滴下し、そのまま5時間熟成した。熟成終了後
に於いても、反応液は透明な均一溶液であった。反応液
をガスクロマトグラフィ−にて分析したところ,反応は
完結していた。反応液を蒸留し、沸点71〜73℃/
2.7kPaの留分を分取することにより、トリエチル
シラノール62.8gを得た。
Example 1 In a 500 ml four-necked flask equipped with a stirrer, a reflux tube, a thermometer, and a dropping funnel, 10.7 mg (0.017 mm) of triruthenium dodecacarbonyl was added.
ol, 0.01 mol% in terms of metal relative to the substrate), water 1
8 g and 400 ml of tetrahydrofuran were charged, and 58.1 g (0.5 mol) of triethylsilane was added dropwise over 1 hour under reflux, followed by aging for 5 hours. Even after the completion of ripening, the reaction solution was a transparent homogeneous solution. When the reaction mixture was analyzed by gas chromatography, the reaction was completed. The reaction solution is distilled and has a boiling point of 71 to 73 ° C /
A fraction of 2.7 kPa was collected to obtain 62.8 g of triethylsilanol.

【0021】[実施例2]ドデカカルボニル三ルテニウ
ム10.7mgをテトラクロロヘキサカルボニル二ルテ
ニウム13.0mg(0.025mmol、基質に対し
金属換算で0.01mol%)に変更する以外は実施例
1と同様にして反応を行った。熟成終了後に於いても、
反応液は透明な均一溶液であった。この反応液をガスク
ロマトグラフィ−にて分析したところ、反応は完結して
いた。
Example 2 Example 1 was repeated except that 10.7 mg of triruthenium dodecacarbonyl was changed to 13.0 mg of dichlororuthenium tetrachlorohexacarbonyl (0.025 mmol, 0.01 mol% in terms of metal relative to the substrate). The reaction was performed in the same manner. Even after aging,
The reaction solution was a clear homogeneous solution. When the reaction solution was analyzed by gas chromatography, the reaction was completed.

【0022】[実施例3]攪拌機、還流管、温度計、滴
下ロ−トを備えた500ml四つ口フラスコに、ドデカ
カルボニル三ルテニウム53.5mg(0.085mm
ol、基質に対し金属換算で0.05mol%)、水1
8g及びテトラヒドロフラン400mlを仕込み、還流
下tert−ブチルジメチルシラン58.1g(0.5
mol)を1時間かけて滴下し、そのまま5時間熟成し
た。熟成終了後に於いても、反応液は透明な均一溶液で
あった。反応液をガスクロマトグラフィ−にて分析した
ところ、反応はほぼ完結していた。反応液を蒸留し、沸
点87〜88℃/13.3kPaの留分を分取すること
により、tert−ブチルジメチルシラノール61.5
gを得た。
Example 3 53.5 mg (0.085 mm) of triruthenium dodecacarbonyl was placed in a 500 ml four-necked flask equipped with a stirrer, a reflux tube, a thermometer and a dropping funnel.
ol, 0.05 mol% in terms of metal with respect to the substrate), water 1
8 g and 400 ml of tetrahydrofuran were charged, and 58.1 g (0.5 g) of tert-butyldimethylsilane was refluxed.
mol) was added dropwise over 1 hour and aged for 5 hours. Even after the completion of ripening, the reaction solution was a transparent homogeneous solution. When the reaction solution was analyzed by gas chromatography, the reaction was almost completed. The reaction solution was distilled, and a fraction having a boiling point of 87 to 88 ° C./13.3 kPa was collected to obtain tert-butyldimethylsilanol (61.5%).
g was obtained.

【0023】[比較例1]ドデカカルボニル三ルテニウ
ムをクロロ(1,5−シクロオクアジエン)ロジウム
(I)ダイマー246mg(0.5mmol、基質に対
し金属換算で0.2mol%)に変更する以外は実施例
3と同様にして反応を行ったところ、tert−ブチル
ジメチルシランの滴下中に大量の金属ロジウムが析出
し、反応液は不透明な黒色となった。
COMPARATIVE EXAMPLE 1 Except that tridecruthenium dodecacarbonyl was changed to 246 mg (0.5 mmol, 0.2 mol% in terms of metal relative to the substrate) of chloro (1,5-cyclooxadiene) rhodium (I) dimer. When the reaction was carried out in the same manner as in Example 3, a large amount of metal rhodium was precipitated during the dropwise addition of tert-butyldimethylsilane, and the reaction solution turned opaque black.

【0024】[0024]

【発明の効果】本発明によれば、安価で高活性な均一系
触媒であるカルボニル基を配位子として有するルテニウ
ム触媒の存在下にトリオルガノハイドロジェンシラン化
合物と水とを反応させたことにより、効率よく、しかも
安価にトリオルガノシラノール化合物を製造することが
できる。
According to the present invention, a triorganohydrogensilane compound is reacted with water in the presence of a ruthenium catalyst having a carbonyl group as a ligand, which is an inexpensive and highly active homogeneous catalyst. The triorganosilanol compound can be produced efficiently and at low cost.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 遠藤 幹夫 新潟県中頸城郡頸城村大字西福島28−1 信越化学工業株式会社合成技術研究所内 (72)発明者 殿村 洋一 新潟県中頸城郡頸城村大字西福島28−1 信越化学工業株式会社合成技術研究所内 Fターム(参考) 4G069 AA06 AA08 BA27A BA27B BC70A BC70B BE42A BE42B CB07 CB70 DA02 FA01 4H039 CA60 4H049 VN01 VP01 VQ02 VQ16 VR23 VR41 VS02 VT17 VT30 VU33 VU36 VV02 VV13 VV16 VV17 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mikio Endo 28-1 Nishifukushima, larger section of Kushiro-mura, Nakakushiro-gun, Niigata Prefecture Inside the Synthetic Technology Research Laboratories, Shin-Etsu Chemical Co., Ltd. 28-1 Nishifukushima Shin-Etsu Chemical Co., Ltd. Synthetic Technology Laboratory F-term (reference) 4G069 AA06 AA08 BA27A BA27B BC70A BC70B BE42A BE42B CB07 CB70 DA02 FA01 4H039 CA60 4H049 VN01 VP01 VQ02 VQ16 VR23 VR41 VS02 VVT17V13V33 VV17

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(1) R123SiH (1) (式中、R1、R2、R3は互いに同一又は異種の炭素数
1〜10の非置換又は置換一価炭化水素基を示す。)で
表されるトリオルガノハイドロジェンシラン化合物と水
とを、カルボニル基を配位子として有するルテニウム触
媒の存在下に反応させることを特徴とする下記一般式
(2) R123SiOH (2) (式中、R1、R2、R3は上記と同じ)で表されるトリ
オルガノシラノール化合物の製造方法。
1. The following general formula (1): R 1 R 2 R 3 SiH (1) (wherein R 1 , R 2 , and R 3 are the same or different, each having 1 to 10 carbon atoms, and are unsubstituted or substituted. Wherein a triorganohydrogensilane compound represented by the following formula (2) is reacted with water in the presence of a ruthenium catalyst having a carbonyl group as a ligand. A method for producing a triorganosilanol compound represented by R 1 R 2 R 3 SiOH (2) (wherein R 1 , R 2 and R 3 are the same as described above).
【請求項2】 カルボニル基を配位子として有するルテ
ニウム触媒がドデカカルボニル三ルテニウムである請求
項1記載のトリオルガノシラノール化合物の製造方法。
2. The method for producing a triorganosilanol compound according to claim 1, wherein the ruthenium catalyst having a carbonyl group as a ligand is triruthenium dodecacarbonyl.
【請求項3】 トリオルガノハイドロジェンシラン化合
物がtert−ブチルジメチルシランである請求項1又
は2記載のトリオルガノシラノール化合物の製造方法。
3. The process for producing a triorganosilanol compound according to claim 1, wherein the triorganohydrogensilane compound is tert-butyldimethylsilane.
JP2000208071A 2000-07-10 2000-07-10 Method for producing triorganosilanol compound Expired - Fee Related JP3856083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000208071A JP3856083B2 (en) 2000-07-10 2000-07-10 Method for producing triorganosilanol compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000208071A JP3856083B2 (en) 2000-07-10 2000-07-10 Method for producing triorganosilanol compound

Publications (2)

Publication Number Publication Date
JP2002020390A true JP2002020390A (en) 2002-01-23
JP3856083B2 JP3856083B2 (en) 2006-12-13

Family

ID=18704717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000208071A Expired - Fee Related JP3856083B2 (en) 2000-07-10 2000-07-10 Method for producing triorganosilanol compound

Country Status (1)

Country Link
JP (1) JP3856083B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170123A (en) * 2012-02-17 2013-09-02 National Institute Of Advanced Industrial Science & Technology Method for producing silanol under anhydrous condition
EP2644660A1 (en) 2012-03-27 2013-10-02 Konica Minolta Business Technologies, Inc. Production process for colorant, colorant composition, toner, ink for ink jet recording and color filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170123A (en) * 2012-02-17 2013-09-02 National Institute Of Advanced Industrial Science & Technology Method for producing silanol under anhydrous condition
EP2644660A1 (en) 2012-03-27 2013-10-02 Konica Minolta Business Technologies, Inc. Production process for colorant, colorant composition, toner, ink for ink jet recording and color filter
US9062225B2 (en) 2012-03-27 2015-06-23 Konica Minolta Business Technologies, Inc. Production process for colorant, colorant composition, toner, ink for ink jet recording and color filter

Also Published As

Publication number Publication date
JP3856083B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
JP2009510006A (en) Intramolecular prince reaction and suitable catalyst (production of isopulegol from citronellal)
JP3864070B2 (en) Method for producing organosilane
EP2055707B1 (en) Preparation of Si-Si bond-bearing compounds
KR101811670B1 (en) Mononuclear iron complex and organic synthesis reaction using same
EP2963046B1 (en) Mononuclear ruthenium complex and organic synthesis reaction using same
JP2014218449A (en) Method for producing siloxane
JP3856083B2 (en) Method for producing triorganosilanol compound
JPH06157554A (en) Production of triorganochlorosilane
US6156918A (en) Process for the preparation of silanes, with a tertiary hydrocarbon group in the a-position relative to the silicon atom
JPH09157276A (en) Production of 3-chlopopropylsilane
JP4120034B2 (en) Method for producing haloorganosilane compound
JP2002020392A (en) N-alkenylazasilacyclopentane and method for producing the same
JPH11209385A (en) Production of 1,3-bis(3-aminopropyl)tetramethyldisiloxane
JP4025384B2 (en) Method for purifying 3-methacryloxypropyldimethylhalosilane or 3-methacryloxypropylmethyldihalosilane
JP2007238562A (en) Method for producing vinyl or allyl group-containing compound
JP2019182793A (en) Method for producing halosilane compound having tertiary hydrocarbon group
JP2002194086A (en) Production method for organopolysiloxane having aminoalkyl group
JPH1121289A (en) Production of 3-aminopropylsiloxane
JPH1017578A (en) Production of 3-aminopropylalkoxysilane compound
JP2705967B2 (en) 1-aza-2-silacyclobutane compound and method for producing the same
JPH04124189A (en) Production of organosilicon compound
JPH1072474A (en) Production of 3-chloropropylsilanes
JP2666208B2 (en) Production method of organic silanes
JP2001114788A (en) Method for silylating hydroxyl group-having compound
JP4172342B2 (en) Cyclic organosilicon compound and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150922

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees