JP2002015760A - 燃料電池装置 - Google Patents

燃料電池装置

Info

Publication number
JP2002015760A
JP2002015760A JP37816198A JP37816198A JP2002015760A JP 2002015760 A JP2002015760 A JP 2002015760A JP 37816198 A JP37816198 A JP 37816198A JP 37816198 A JP37816198 A JP 37816198A JP 2002015760 A JP2002015760 A JP 2002015760A
Authority
JP
Japan
Prior art keywords
fuel cell
water
air electrode
fuel
cell device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP37816198A
Other languages
English (en)
Other versions
JP4552236B2 (ja
Inventor
Munehisa Horiguchi
宗久 堀口
Chikayuki Takada
慎之 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP37816198A priority Critical patent/JP4552236B2/ja
Publication of JP2002015760A publication Critical patent/JP2002015760A/ja
Application granted granted Critical
Publication of JP4552236B2 publication Critical patent/JP4552236B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

(57)【要約】 【課題】 電解質膜の湿潤状態を維持できる新規な構成
の燃料電池装置を提供する。 【解決手段】 燃料極と空気極とを有する燃料電池装置
において、空気極の表面へ霧状の水を供給する。空気極
の表面に供給された水が優先的に空気から潜熱を奪うの
で、空気極側の電解質膜から水分の蒸発することが防止
される。これにより、電解質膜はその空気極側で乾燥す
ることなく、常に均一な湿潤状態を維持できる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】この発明は燃料電池装置に関
する、特に高分子固体電解質膜を有するいわゆるPEM
型の燃料電池装置の改良に関する。
【0002】
【従来の技術】PEM型の燃料電池装置の電池本体は、
燃料極と空気極との間に高分子固体電解質膜が挟持され
た構成である。燃料極及び空気極はともに触媒物質を含
む触媒層と、前記触媒層を支持すると共に反応ガスを供
給しさらに集電体としての機能を有する電極器材からな
る。燃料極と空気極の更に外側には、反応ガスを外部よ
り電極内に均一に供給するとともに、余剰ガスを外部に
排出するためのガス流通溝を設けたセパレータ(コネク
タ板)が積層される。このセパレータはガスの透過を防
止するとともに発生した電流を外部へ取り出すための集
電を行う。
【0003】上記燃料電池本体とセパレータとで単電池
が構成される。実際の燃料電池装置では、かかる単電池
の多数個が直列に積層されてスタックが構成される。燃
料電池本体では、一般的に発生電力にほぼ相当する熱量
の熱が発生する。従って、燃料電池本体が過度にヒート
アップすることを防止するために、スタックに冷却板を
内蔵させる。この冷却板には空気や水などの冷却媒体が
流通されてスタックが冷却され、もって燃料電池本体が
所望の温度に維持される。
【0004】このような構成の燃料電池の起電力は、燃
料極側(アノード)に燃料ガスが供給され、空気極側に
酸化ガスが供給された結果、電気化学反応の進行に伴い
電子が発生し、この電子を外部回路に取り出すことによ
り、発生される。即ち、燃料極(アノード)にて得られ
る水素イオンがプロトン(H+)の形態で、水分を含んだ
電解質膜中を空気極(カソード)側に移動し、また燃料
極(アノード)にて得られた電子が外部負荷を通って空
気極(カソード)側に移動して酸化ガス(空気を含む)
中の酸素と反応して水を生成する、一連の電気化学反応
による電気エネルギーを取り出すことができるからであ
る。
【0005】上記において、プロトンが燃料極より空気
極に向かって電解質膜中を移動する際に水和の状態をと
るため、電解質膜が乾燥してしまうと、イオン伝導率が
低下し、エネルギー変換効率が低下してしまう。よっ
て、良好なイオン伝導を保つために固体電解質膜に水分
を供給する必要があり、そのために燃料ガス及び酸化ガ
スを加湿して、水を供給している。また、アノード電極
側では、電極反応を適正に継続させるために、より水素
ガスの湿潤状態を維持する必要があり、燃料ガスの加湿
方法については従来から様々な提案がある。
【0006】他方、プロセス空気を加湿する方法は従来
から提案されているが、反応熱により昇温されている
(通常80℃程度である)空気極を確実に加湿するに
は、常温のプロセス空気を加湿器において予め加温して
おく必要がある。飽和水蒸気量を空気極の周囲の環境と
一致させるためである。そのため、加湿器は水の供給機
能とプロセス空気の昇温機能とが求められる複雑な構成
であった。特開平7−14599号公報に開示の燃料電
池装置では、空気導入管に噴射ノズルを設けて加湿に必
要な水がプロセス空気中に噴霧される。この噴射ノズル
が圧縮機の上流側にある場合、噴霧された水はプロセス
空気の圧縮にともなう熱で蒸発され、水蒸気の状態で空
気極を加湿する。また、この装置でも、必要に応じて空
気の加湿装置が更に付加される。いずれにせよ従来の技
術では空気へ水蒸気を混入させることにより電解質膜へ
水分を補給していた。
【0007】更には、特開平9−266004号公報に
示される燃料電池装置では、排出される水素ガスの濃度
を下げるため、燃料極から排出されるガス(この排気ガ
スには未反応の水素ガスが含まれている)を空気極側へ
導入してその中の水素ガスを空気極において燃焼させて
いる。当該燃焼において反応水(回収水)が生成される
ため、このような燃料電池装置では加湿器を特に付加し
なくても、電解質膜へ充分な水分を補給できることとな
る。
【0008】
【発明が解決しようとする課題】本発明者らの更なる研
究結果において、以下の事項が解った。所定値以下の厚
さの電解質膜により、燃料電池を構成した場合に、プロ
トンが空気極において空気中の酸素と反応して生成され
た水が、電解質膜中を空気極から水素極へ逆浸透する。
この逆浸透された水により、電解質膜を好適な湿潤状態
に維持することができるため、水素極(アノード電極)
側で水素(燃料ガス)を加湿する必要がない。しかし、
空気極(カソード電極)側において、導入される空気
(酸化ガス)流により、電解質膜の空気極側の水分が蒸
発するため、電解質膜の空気極側の水分が不足すること
が解った。かかる課題は本願発明者らにより今回新たに
見いだされたものである。従って、この発明はかかる課
題を解決することを一の目的とする
【0009】また、既述のように補水と加温が要求され
る複雑な構成の加湿器を何ら備えることなく、電解質膜
の湿潤状態を維持できる簡単な構成の燃料電池装置を提
供することをこの発明の他の目的とする。
【0010】この発明の他の目的は電解質膜の湿潤状態
を維持する新規な構成の燃料電池装置を提供することに
ある。
【0011】この発明の更に別の局面によれば、燃料
極、電解質膜及び空気極を備えてなる燃料電池本体を冷
却するにあたり、冷却媒体を空気極の表面に供給する。
この媒体として例えば水が挙げられる。水を液体の状態
で空気極に供給すると、既述の通り空気極の周囲の空気
から潜熱を奪い電解質膜の乾燥が防止されるが、これと
ともに空気極からも熱が奪われる。なお、燃料電池では
電解質膜の空気極側で反応が進行するので、空気極に最
も熱が蓄積される。
【0012】本発明者らの検討によれば、このように空
気極に水を供給しこれから熱を奪うことにより、燃料電
池本体の温度を制御できることがわかった。換言すれ
ば、空気極に水を液体の状態で供給することにより燃料
電池本体を十分に冷却できることがわかった。
【0013】図9に示すように、従来の燃料電池のスタ
ック100では、所定のピッチで単電池101の間に冷
却板103が挿入されていた。この冷却板103には冷
却媒体が通過するための通過路が設けられる。この冷却
板103によりスタック100が所望の温度に調節され
ていた。一方、上記本願発明の更に別の局面によれば、
空気極へ水を液体の状態で供給することによりスタック
が充分に冷却されてその温度が制御可能となる。従っ
て、図10に示すように、燃料電池のスタック110か
ら冷却板を省略できる。これによりスタックの構成が簡
素化され、それに伴い燃料電池装置の構成も簡素化され
る。よって、燃料電池装置の高効率化並びに軽量化を図
ることができる。
【0014】
【課題を解決するための手段】この発明は上記目的の少
なくとも一つを達成するためになされたものであり、そ
の構成は次の通りである。燃料極と空気極とを有する燃
料電池装置において、前記空気極の表面に水が液体の状
態で供給される、ことを特徴とする燃料電池装置。
【0015】このように構成された燃料電池装置によれ
ば、空気極の表面に供給された水が優先的に空気から潜
熱を奪うので、空気極側の電解質膜から水分の蒸発する
ことが防止される。従って、電解質膜はその空気極側で
乾燥することなく、常に均一な湿潤状態を維持する。よ
って、燃料電池装置の性能及び/又は耐久性が向上す
る。また、空気極の表面に供給された水が発熱している
空気極に付着した時に蒸発する場合の潜熱により、空気
極から熱を奪うので、空気極ならびに燃料電池スタック
を冷却することになる。よって、従来設けられていた冷
却板103を省略することができる。
【0016】プロセス空気より潜熱を効率的に奪う見地
から、水は噴霧して空気極へ供給されることが好まし
い。水を噴霧する点のみに着目すれば、一見特開平7−
14599号公報における水の噴霧と同等に見える。し
かし、この発明によれば、空気極へ供給される水はあく
までも液体であり、一方、特開平7−14599号公報
に開示の技術では水蒸気の状態で電解質膜へ直接供給さ
れる。従って、本発明によれば従来の加湿器のようにプ
ロセス空気を加熱する必要がない。
【0017】本発明によれば、空気極への水の供給は間
欠的でも連続的でも良い。水の供給を間欠的とすれば、
水を供給するための装置(ポンプ等)を稼働するために
消費する電力が小さくなり、燃料電池装置の効率が向上
する。水蒸気によりプロセス空気を加湿するタイプの装
置では、水蒸気を常に発生させると共にプロセス空気を
所定の温度まで昇温させる必要があった。そのため、加
湿のために大きな電力を消費していた。
【0018】この発明は電池反応により生成した水分
(生成水)が電解質膜へ供給される構成の燃料電池装
置、即ち加湿のための補機を特に備えていない燃料電池
装置、更に換言すれば燃料ガスと空気との燃焼により生
成した反応水により電解質膜の湿潤が専ら維持される燃
料電池装置に適用すると特に好適である。かかる装置で
は生成された水分が電解質膜に供給されるので、空気極
への水の供給は常時行う必要がない。一方、加湿器を用
いる場合は加湿器を常時作動させる必要がある。即ち、
本発明によれば電解質膜における空気極側の表面が乾燥
して電池としての性能が低下したときのみ、ノズルから
水を噴霧させて空気極の水蒸発量を少なくすればよいの
で、加湿器を用いるものに比して、燃料電池装置にかか
る負荷がより小さくなる。加湿器を備えないかかるタイ
プの燃料電池装置の一つの利点は加湿器を作動させるた
めの電力が不要となり、もって装置にかかる負荷を小さ
くできることにある。よって、上記のように水を供給す
る装置が付加されてもこの装置を常に作動させる必要が
なければ既述の利点をできる限り損なわずに済むことと
なる。
【0019】この発明の別の局面によれば、燃料電池装
置の起動時、燃料極へ燃料ガスを供給する前に空気極へ
水を噴霧する。そして、燃料ガスを供給した後、燃料電
池本体の出力が所定の値に達したら燃料電池装置を外部
の負荷(車両用のモータなど)に接続する。燃料電池装
置の前回の使用から今回の使用までに長い時間があく
と、空気極から燃料極へ酸素、窒素が透過してくる場合
がある。この状態で燃料極へ燃料ガスを供給すると、供
給された燃料ガスと酸素とが異常反応を起こし、電解質
膜が破損してしまうなど、燃料電池本体にダメージを与
えるおそれがある。そこで、このように空気極へ水を噴
霧して、燃料電池本体を冷却することにより当該異常反
応によるダメージを未然に防止する。また、電解質膜が
乾燥してしまう場合もあり、空気極を介して電解質膜へ
素早く水分を補給する。空気極へ水を直接噴射すると乾
燥状態にある電解質膜は高い浸透圧で水分を吸収するの
で、空気極が介在していても、噴霧された水を急速に吸
い込む。このときの水の噴射量は電解質膜の湿潤状態を
維持するときの水の噴射量よりも多くすることが好まし
い。
【0020】
【実施例】次ぎに、この発明の実施例について説明をす
る。図1は実施例の燃料電池装置1の概略構成を示す。
図2は燃料電池本体10の基本ユニットを示す。図1に
示すように、この装置1は燃料電池本体10、燃料ガス
としての水素ガス供給系20、空気供給系30、水供給
系40から概略構成される。
【0021】燃料電池本体10の単位ユニットは空気極
11と燃料極13とで固体高分子電解質膜12を挟持し
た構成である。実際の装置ではこの単位ユニットが複数
枚積層されている(燃料電池スタック)。空気極11の
上方及び下方にはそれぞれ空気を吸入、排気するための
空気マニホールド14、15が形成されている。上方の
マニホールド14にはノズル41を取り付けるための取
付孔が形成されている。ノズル41から噴出される水の
噴出角度には制限があり、かつ水を霧状にしてこれを空
気極11の全面に行き渡らせるには、ノズルと空気極1
1との間に所定の間隔が必要になる。従って、このマニ
ホールド14は比較的背の高いものとなる。一方、下側
の空気マニホールド15は滴下した水を効率よく排出で
きるものとする。なお、ノズルはマニホールド14の側
面に設けることもできる。かかるノズルより噴出される
水はマニホールド14内の全域に行き渡り、よって空気
極11の全面に行き渡ることとなる。ノズルをマニホー
ルド14の側面に設けることにより、低いマニホールド
が採用できる。よって燃料電池本体の小型化を図ること
ができる。
【0022】図2に示すように、上記空気極11−固体
高分子電解質膜12−燃料極13の単位ユニットは薄い
膜状であり、一対のカーボン製コネクタ板16、17に
より挟持されている。空気極11に対向するコネクタ板
16の面には空気を流通させるための溝18が複数条形
成されている。各溝18は上下方向に形成されてマニホ
ールド14、15を連通している。その結果、ノズル4
1より供給される霧状の水は当該溝18に沿って空気極
11の下側部分まで達する。同様に、燃料極13に対向
するコネクタ板17の面には水素ガスを流通させるため
の溝19が形成されている。実施例ではこの溝19を水
平方向に複数条形成した。
【0023】空気極11には水が供給されるのでこれは
耐水性のある材料で形成される。また、そこに水の膜が
できると空気極11の実効面積が減少するので空気極1
1の材料には高い撥水性も要求される。かかる材料とし
て、カーボンクロスを基材として(C+PTFE)をぬ
りこんだガス拡散層を使用した。固体高分子電解質膜1
2には汎用的なナフィオン(商品名:デュポン社)の薄
膜を使用した。尚、膜の厚さは空気極側からの生成水の
逆浸透が可能であれば、その数値は特に問わない。燃料
極13は空気極11と同じ材料で形成されている。部品
の共通化の為である。
【0024】空気極11、及び燃料極13において電解
質膜12と接触する方の面には、ある程度の厚さでもっ
て酸素と水素の反応を促進するために用いられる周知の
白金系触媒がそれぞれ均一に分散されていて、空気極1
1及び燃料極13における触媒層として形成される。
【0025】水素ガス供給系20の水素源21として、
この実施例では水素吸蔵合金からなる水素ボンベを利用
した。その他、水/メタノール混合液等の改質原料を改
質器にて改質反応させて水素リッチな改質ガスを生成さ
せ、この改質ガスをタンクに貯留しておいてこれを水素
源とすることもできる。勿論、燃料電池装置1を室内で
固定して使用する場合には、水素配管を水素源とするこ
とができる。水素源21と燃料極13とは水素供給調圧
弁23を介して水素ガス供給路22により接続されてい
る。調圧弁23は燃料極13に供給する水素ガスの圧力
を調整するものであり、汎用的な構成のものを利用でき
る。
【0026】燃料極13からの排気ガスは排気ガス路2
4を通じて空気マニホールド14へ供給され、ここで空
気と混合される。排気ガス路24にはこれを開閉するた
めの水素排気弁25が配設されている。
【0027】空気極11には図示しないブロアによって
大気中より空気が供給される。図の符号31は空気の供
給路であり空気極11のマニホールド14に連結されて
いる。下側のマニホールド15には空気極11を通過し
た空気を循環若しくは排気するための空気路32が連結
され、水を分離する凝縮器33を介して排気ガスは排気
路36へ送られる。空気排気調圧弁34の開度により排
気路36から排気される量が調節される。また、排気調
圧弁34を省略し、排気ガスをそのまま大気へ排出する
構成とすることもできる。
【0028】凝縮器33で分離された水はタンク42へ
送られる。タンク42には水位センサ43が付設され
る。この水位センサ43により、タンク42の水位が所
定の値以下となると、アラーム44が点滅してオペレー
タに水不足を知らせる。
【0029】実施例の水供給系40では、タンク42か
ら水供給路45がポンプ46、水圧センサ47及び調圧
弁48を介して、ノズル41まで連結されている。調圧
弁48により所望の水圧に調節された水はノズル41か
ら吹き出して空気マニホールド14内では霧状になる。
そして、吹き出し時の運動量(初速)、霧の自重および
空気流等によって空気極11の実質的な全面に霧状の水
が供給される。
【0030】このようにして空気極11の表面に供給さ
れた水はそこで周囲の空気及び電極表面から潜熱を奪っ
て蒸発する。これにより、電解質膜12の水分の蒸発が
防止される。また、空気極11へ供給された水は空気極
11からも潜熱を奪うので、これを冷却する作用もあ
る。特に、始動時に水を供給したとき、水素と空気の燃
焼により膜、触媒がダメージを受けることを予防でき
る。
【0031】図中の符号50は電圧計であり、空気極1
1と燃料極13との間の電圧を計測する。
【0032】次ぎに、図3及び以降の図面を参照にし
て、実施例の燃料電池装置1の動作を説明する。制御装
置70及びメモリ73は燃料電池装置1のコントロール
ボックス(図1に示されていない)に収納されている。
メモリ73にはコンピュータからなる制御装置70の動
作を規定するコントロールプログラム及び各種制御を実
行するときのパラメータやルックアップテーブルが収納
されている。
【0033】まず、水素ガス供給系20の動作について
説明する。起動時には、水素排気弁25を閉に保持して
おいて、爆発限界以下の所定の濃度で水素ガスが燃料極
13に供給されるように水素供給調圧弁23を調整す
る。排気弁25を閉じた状態で燃料電池装置1を運転す
ると、空気極より透過するN2、O2あるいは生成水の影
響で燃料極13で消費される水素の分圧が徐々に低下す
るためこれに伴って出力電圧も低下し、安定した電圧が
得られなくなる。
【0034】そこで、予め定めれた規則に基づいて弁2
5を解放して水素分圧の低下したガスを排気し、燃料極
13の雰囲気ガスをリフレッシュする。予め定めれた規
則はメモリ73に保存されており、弁25の開閉及び調
圧弁23の調整は制御装置70が当該規則をメモり73
から読み出して実行する。
【0035】この実施例では、電圧計50で出力電圧を
モニタし、出力電圧が所定の閾値を超えて低下したら所
定の時間(例えば1秒間)弁25を解放する。あるい
は、弁25を閉とした状態で燃料電池装置1を運転した
ときに出力電圧が低下し始める時間間隔を予め計測して
おき、その時間間隔と実質的に同一又は若干短い周期で
弁25を解放するように、弁25を間欠的に開閉制御す
る。
【0036】次ぎに、空気供給系30の動作について説
明する。外気が空気供給路31より一定の圧力で空気マ
ニホールド14へ供給される。一方、排気ガスの一部は
空気排気調圧弁34の開度に応じて系外へ排出される。
【0037】空気排気調圧弁34の開度の調節も予め定
められた規則に基づき制御装置70により制御される。
予め定められた規則はメモリ73に保存されている。こ
の実施例では、燃料電池本体10の水分バランスは主と
して後述する水供給系40により調整されるので、調圧
弁34の開度は固定しておいても良い。
【0038】次ぎに、水供給系40の動作について説明
する。タンク42の水がポンプ46で圧送される。そし
て、噴射圧力調整弁48でその圧力が調整されてノズル
41から噴霧される。これにより、水が液体の状態(霧
の状態)で空気極11に供給されることとなる。
【0039】水の供給量は予め定められた規則に基づき
制御装置70により制御される。予め定められた規則は
メモリ73に保存されている。この実施例では、図4に
示すとおり、まず空気極11−燃料極13間の出力電圧
がモニタされる(ステップ1)。そして、出力電圧に基
づき最適水噴射量が演算される(ステップ3)。この演
算は所定の方程式を用いるか、若しくは所定のルックア
ップテーブルを準備しておいて(メモリ73に保存して
おく)、これより求めることができる。この最適噴射量
は、電解質膜の湿潤状態の維持、及び水の潜熱による冷
却を考慮して決定されるのが望ましい。後述するよう
に、特に水の蒸発潜熱を有効に使うことにより、少ない
水の噴射量で効果的な冷却が行える。通常は、出力電圧
が所定の閾値電圧を超えて小さくなったとき、若しくは
出力電圧の変動幅が所定の閾値を超えたときに、水供給
系40はその作動を開始する。
【0040】次ぎに、ステップ5において最適水噴射量
に対応する最適水圧力を演算する。例えば、水噴射量と
水圧力とは図5に示す関係があるので、この関係が方程
式若しくはルックアップテーブルのかたちでメモり73
に予め保存されている。この実施例では、ポンプ46を
一定のパワーで運転しておいて循環路49の調圧弁48
の開度によりノズル41の水圧力を調節している。即
ち、調圧弁48の開度が大きく(小さく)なればノズル
41の水圧力は小さく(大きく)なる。
【0041】従って、ステップ7では水圧センサ47に
よりノズル41にかかる水圧力を検出し、フィードバッ
ク制御によりその水圧力が所望の値(最適水圧力)とな
るように調圧弁48を調節する(ステップ9)。
【0042】その他、所定の時間経過(例えば5〜10
秒)ごとに、一定の水圧で水供給系40を稼働させても
良い。
【0043】次ぎに、実施例の燃料電池装置1の起動時
の動作について説明する。図6に示すとおり、スイッチ
(図示せず)がオンとなると(ステップ11)、ポンプ
46をオンとする(ステップ13)。そして、所定の水
噴射量となるように調圧弁48が調節されてノズル41
より水が噴射される(ステップ15)。異常反応から燃
料電池本体10を守るために空気極11へ噴射される水
量は図4で説明した最適水噴射量に比べて大きくなる。
所定の水噴射量を得るための制御は図4のステップ5〜
9と同様である。
【0044】その後、空気供給系30をオンにし(ステ
ップ17)、引き続いて水素供給系20をオンにする
(ステップ19)。空気極11と燃料極15との間に所
望の出力電圧が確認されたら、電力を外部に出力する。
【0045】上記において、空気供給系30の稼動は水
供給系40の稼動前であっても良い。また、水素供給系
20の稼動の後に空気供給系30を稼動させても良い。
ただし、水素供給系20を稼動させる前に水供給系40
を稼動させる必要がある。空気供給系30の稼動の有無
にかかわらず燃料電池本体1には空気が存在しているの
で、電解質膜12が乾燥した状態で水素を供給すると、
異常燃焼の発生する可能性がある。かかる異常燃焼によ
り大量の熱が発生すると燃料電池本体1に付設される冷
却手段(図示せず)ではその熱を充分に冷却できない場
合がある。そうすると、触媒や電解質膜12が熱劣化す
るおそれがある。つまり、この異常熱が発生したとき、
燃料電池本体1がダメージを被らないように、水素を供
給する前に水を噴射して予め空気極11を濡らしてお
く。こうすることで、異常熱を水の蒸発熱に換え、更に
は電解質膜12の湿潤を促進して、燃料電池本体1のダ
メージを未然に防止する。
【0046】図7は水分の供給方法と出力電圧との関係
を示している。出力電圧は燃料電池を起動した15分後
の値である。横軸は負荷の大きさを表している。図にお
いて、無加湿とは水分を何も供給しない状態であり、燃
料極に供給された水素ガスは、空気極へ送られることな
く、排気される。バブラー加湿とは従来例のように空気
中に水蒸気を供給すると共に当該空気を加熱(65℃)
する場合である。直噴2g、5g、10g、20gは本
発明の実施例であり、それぞれ2g/min・セル、5
g/min・セル、10g/min・セル、20g/m
in・セルの量の水を供給した。なお、バブラー加湿以
外の吸水は常温で行われている。燃料電池装置には20
0W級スタックを使用した。
【0047】図7からわかるとおり、本願発明によれ
ば、供給する水の量が充分(今回使用したスタック及び
セルの仕様においては、5g/min・セル以上であ
る。また、燃料電池装置の仕様の変更に伴い供給する水
の量は変えることができ、特に数値は限定されない。)
であれば、従来例(加湿器を備えるもの)より若干電圧
が下がるものの、この程度の電圧低下は燃料電池の性能
上無視できる。このことにより、従来のバブラー加湿す
る場合とほぼ同等の発電能力を有することがわかる。ま
た、特に図示しないが計算上では、図7の結果から、供
給する水の量は、空気極を流れる空気が蒸発させること
ができる水の30%程度の量でよいことがわかった。
【0048】図8は噴射する水の温度を変化させたとき
の評価を示す。図8からわかるとおり、噴射する水の温
度を上げると燃料電池の出力電圧が向上し、従来例のバ
ブラー加湿とほぼ同程度の性能となる。これより、噴射
する水は加熱しておくことが望ましい。水の温度は40
〜60℃とすることが好ましいと考えられる。更に好ま
しくは、45〜55℃であると考えられる。更に更に好
ましくは、ほぼ50℃である。
【0049】空気極に水を噴射することによる燃料電池
本体に対する冷却効果の確認を行ったので、以下に説明
する。この確認は図9の装置(単電池のスタック数:9
個)を用いた。この確認の実験では冷却板103へ40
℃、60℃又は80℃に温度調節した水(以下、「温調
水」という。)を流し、燃料電池本体100を昇温して
これの発熱状態(発電状態)を擬似的に作成した。そし
て、空気極の表面へ水を噴射したときの燃料電池本体の
温度特性を調べた。
【0050】表1(図11参照)に試験の条件及び結果
を示す。試験1〜4では温調水を40℃に設定し、即ち
作動温度が40℃の燃料電池本体を擬似的に作成し、水
直噴量を変えてそれぞれの試験を行った。試験5〜8で
は温調水を60℃に設定し、即ち作動温度が60℃の燃
料電池本体を擬似的に作成し、水直噴量を変えてそれぞ
れの試験を行った。試験9〜12では温調水を80℃に
設定し、即ち作動温度が80℃の燃料電池本体を擬似的
に作成し、水直噴量を変えてそれぞれの試験を行った。
【0051】図12は表1の結果を処理して得られたデ
ータであり、燃料電池本体の温度と外気の温度との差と
自然放熱量との関係を示す。具体的には、試験1、試験
5及び試験9のF/C入口温調水温度とF/C出口温調
水温度との差から図12のデータを求めた。図12の結
果は冷却手段がないときに燃料電池本体が自然に冷却さ
れる量を表している。図12からわかるように、この試
験で用いた燃料電池本体では、自然に放熱する熱量は1
セル(単電池)当たり5w程度が上限となることがわか
る。また、外気温度と燃料電池本体の動作温度との差が
小さくなるにつれ自然放熱量も小さくなると考えられ
る。
【0052】図13は表1の結果を処理して得られたデ
ータであり、直噴水量の変化と冷却能力の変化の関係を
示す。図13より、直噴水量が増えても大きな冷却能力
の変化は見られないが、空気排気温度が高い方が直噴水
による冷却能力が高くなっているのが確認できる。
【0053】図14は表1の結果を処理して得られたデ
ータであり、直噴水量の変化と顕熱による冷却能力の変
化を示す。ここで顕熱とは直噴された水(26℃)が液
体のままで各空気排気温度(図中33℃、46℃)まで
上昇したときの熱量の温度上昇分をいう。換言すれば、
直噴された水が、何ら蒸発することなく、燃料電池本体
から奪う熱量が顕熱である。図14より、直噴水量が増
えても、顕熱による大きな冷却能力の変化は見られない
が、空気排気温度が高くなるにつれ直噴水の顕熱による
冷却能力が大きくなることが確認できる。
【0054】図15は表1の結果を処理して得られたデ
ータであり、直噴水量の変化と潜熱による冷却能力の変
化を示す。ここで潜熱とは直噴された水が蒸発するとき
に燃料電池本体から奪う熱量である。図15より、直噴
水量が増えても、潜熱による大きな冷却能力の変化は見
られないが、空気排気温度が高くなるにつれ直噴水の潜
熱による冷却能力が大きくなることが確認できる。図1
4、15により、図13に示す直噴される水の冷却能力
には、水の顕熱による冷却能力と潜熱冷却能力とがある
ことがわかった。また、さらなる実験により、今回の直
噴水量よりも、もっと少ない量を噴霧して水を蒸発させ
やすい状態とすることで潜熱による冷却能力を向上させ
ることができる。この場合、顕熱による冷却能力が低下
するが、潜熱、顕熱両方の冷却能力は今回実験に用いた
燃料電池を冷却するのに十分な冷却能力が確認された。
このように、直噴水の量は、水の潜熱による冷却能力が
効果的に行える量にすることが望ましい。また、この水
の量は、燃料電池の出力、大きさ、作動温度等の仕様の
変化に応じて潜熱による冷却が十分に行えるよう決定さ
れるものであり、特には数値的に限定されない。
【0055】図16は表1の結果を処理して得られたデ
ータであり、空気排気温度の変化と直噴水の潜熱による
冷却能力の変化を示す。図中の鎖線は燃料電池本体の単
位面積(cm2)当たりの最大発熱量を示す。空気排気
温度が33〜46℃における冷却能力の範囲(図中、実
線で示す)は、最大発熱量より低いレベルにある。図1
6より、空気排気温度が高くなれば、潜熱による冷却能
力も高くなることがわかる。従って、空気排気温度(=
燃料電池本体の作動温度)が50℃以上となるように燃
料電池本体を作動させれば、直噴水の潜熱により充分な
冷却が行えることとなる。即ち、直噴水の潜熱による冷
却能力が燃料電池本体の最大発熱量を上回る。従って、
従来必要とされていた冷却板(図9参照)を省略でき
る。よって、燃料電池本体ひいては燃料電池装置の高効
率化及び軽量化を図ることができる。
【0056】
【発明の効果】以上説明したように、この発明の燃料電
池装置よれば、空気極の表面に供給された水が優先的に
空気から潜熱を奪うので、空気極側の電解質膜から水分
の蒸発することが防止される。従って、電解質膜はその
空気極側で乾燥することなく、常に均一な湿潤状態を維
持する。また、空気極の表面に供給された水は空気極自
体からも熱を奪いこれを冷却するので、これにより燃料
電池本体の温度を制御できる。即ち、燃料電池本体へ冷
却板を付加しなくても当該燃料電池本体を充分に冷却す
ることができる。つまり、この発明の燃料電池装置によ
れば、部品点数を少なくできるのでその構成がシンプル
となる。もって、燃料電池装置を低い製造コストで提供
できるばかりでなく、その性能及び/又は耐久性が向上
する。
【0057】この発明は、上記発明の実施の形態及び実
施例の説明に何ら限定されるものではない。特許請求の
範囲の記載を逸脱せず、当業者が容易に想到できる範囲
で種々の変形態様もこの発明に含まれる。
【図面の簡単な説明】
【図1】この発明の実施例の燃料電池装置の構成を示す
模式図である。
【図2】同じく燃料電池本体の基本構成を示す断面図で
ある。
【図3】同じく燃料電池装置の制御系を示す模式図であ
る。
【図4】同じく水供給系の動作を示すフローチャートで
ある。
【図5】同じく水噴射量と水圧力の関係を示すグラフ図
である。
【図6】同じく起動時の制御を示すフローチャートであ
る。
【図7】水の供給の態様と出力電圧との関係を示すグラ
フ図である。
【図8】温度を変化させたときの水の供給の態様と出力
電圧との関係を示すグラフ図である。
【図9】従来の燃料電池スタックを示す模式図である。
【図10】本発明の燃料電池スタックを示す模式図であ
る。
【図11】本発明の試験例の条件と結果を示す表図であ
る。
【図12】本発明の試験例の燃料電池本体の温度と外気
の温度との差と自然放熱量との関係を示すグラフ図であ
る。
【図13】同じく直噴水量の変化と冷却能力の変化の関
係を示すグラフ図である。
【図14】同じく直噴水量の変化と顕熱による冷却能力
の変化を示すグラフ図である。
【図15】同じく直噴水量の変化と潜熱による冷却能力
の変化を示すグラフ図である。
【図16】同じく空気排気温度の変化と直噴水の潜熱に
よる冷却能力の変化を示すグラフ図である。
【符号の説明】
1 燃料電池装置 10 燃料電池本体 11 空気極 12 電解質膜 13 燃料極 20 水素供給系 30 空気供給系 40 水供給系 41 ノズル 50 電圧計

Claims (16)

    【特許請求の範囲】
  1. 【請求項1】燃料極と空気極とを有する燃料電池装置に
    おいて、前記空気極の表面に水が液体の状態で供給され
    る、ことを特徴とする燃料電池装置。
  2. 【請求項2】燃料極、電解質膜及び空気極とを有し、燃
    料ガスと空気との燃焼により生成した反応水により前記
    電解質膜の湿潤が専ら維持される燃料電池装置におい
    て、 前記空気極の表面に水が液体の状態で供給される、こと
    を特徴とする燃料電池装置。
  3. 【請求項3】前記空気極に供給される水は霧状である、
    ことを特徴とする請求項1又は2に記載の燃料電池装
    置。
  4. 【請求項4】前記水は間欠的に供給される、ことを特徴
    とする請求項1、2又は3に記載の燃料電池装置。
  5. 【請求項5】アノード、電解質膜及びカソードを備えて
    なる燃料電池本体と、 前記アノードへ燃料ガスを含んだガスを供給する第1の
    ガス路と、 前記カソードへ酸素を含んだガスを供給する第2のガス
    路と、 前記カソードへ霧状の水を供給するノズルと、 を備えてなる燃料電池装置。
  6. 【請求項6】前記ノズルから間欠的に水を噴出させる手
    段が更に備えられている、ことを特徴とする請求項5に
    記載の燃料電池装置。
  7. 【請求項7】前記アノードと前記カソードとの間の出力
    を検出する手段と、 該検出手段の検出結果に基づき、前記ノズルから噴出さ
    せる水の量を制御する水量制御手段と、が更に備えられ
    ることを特徴とする請求項5に記載の燃料電池装置。
  8. 【請求項8】燃料極、電解質膜及び空気極を有する燃料
    電池装置であって、 前記燃料電池装置が起動されるとき、前記燃料極へ燃料
    ガスが供給される前に前記空気極へ水が液体の状態で供
    給される、ことを特徴とする燃料電池装置。
  9. 【請求項9】電池反応により生成した生成水と、排ガス
    中の燃料ガス成分を空気極に導入して当該燃料ガス成分
    と空気との燃焼により生成した回収水とが電解質膜へ供
    給される構成の燃料電池装置において、前記電解質膜の
    湿潤状態を維持する方法であって、 前記空気極の表面に水を液体の状態で供給する、ことを
    特徴とする燃料電池装置の電解質膜の湿潤状態維持方
    法。
  10. 【請求項10】燃料極、電解質膜及び空気極を有する燃
    料電池装置において、前記電解質膜において前記空気極
    側の表面の水よりも優先的に当該空気極周辺の空気から
    潜熱を奪うことができる熱キャリヤが前記空気極の上流
    側で空気路に供給される、ことを特徴とする燃料電池装
    置。
  11. 【請求項11】前記熱キャリアは霧状の水である、こと
    を特徴とする請求項10に記載の燃料電池装置。
  12. 【請求項12】燃料極、電解質膜及び空気極を有する燃
    料電池装置であって、 前記燃料電池装置が起動されたとき、前記燃料極へ燃料
    ガスが供給される前に、前記電解質膜を湿潤状態にして
    おく手段が備えられている、ことを特徴とする燃料電池
    装置。
  13. 【請求項13】燃料極、電解質膜及び空気極を備えてな
    る燃料電池本体と、 該本体を実質的に冷却する冷却媒体を前記空気極の表面
    に供給する冷却手段と、を備えてなる燃料電池装置。
  14. 【請求項14】前記冷却媒体が水である、ことを特徴と
    する請求項13に記載の燃料電池装置。
  15. 【請求項15】燃料極、電解質膜及び空気極を備えてな
    る燃料電池本体を冷却する方法であって、冷却媒体を前
    記空気極の表面に供給する、ことを特徴とする燃料電池
    装置本体の冷却方法。
  16. 【請求項16】空気極の表面へ該空気極を冷却するため
    の水が供給される、ことを特徴とする燃料電池装置。
JP37816198A 1997-12-22 1998-12-15 燃料電池装置 Expired - Lifetime JP4552236B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37816198A JP4552236B2 (ja) 1997-12-22 1998-12-15 燃料電池装置

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP36585097 1997-12-22
JP10-67885 1998-03-02
JP10067885 1998-03-02
JP9-365850 1998-03-02
JP37816198A JP4552236B2 (ja) 1997-12-22 1998-12-15 燃料電池装置

Publications (2)

Publication Number Publication Date
JP2002015760A true JP2002015760A (ja) 2002-01-18
JP4552236B2 JP4552236B2 (ja) 2010-09-29

Family

ID=27299572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37816198A Expired - Lifetime JP4552236B2 (ja) 1997-12-22 1998-12-15 燃料電池装置

Country Status (1)

Country Link
JP (1) JP4552236B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303717A (ja) * 2003-03-18 2004-10-28 Honda Motor Co Ltd 燃料電池システム
JP2005529469A (ja) * 2002-06-10 2005-09-29 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. 燃料電池における反応物質供給方法
JP2006507639A (ja) * 2002-11-22 2006-03-02 インテリジェント エナジー リミテッド 電気化学燃料電池における熱エネルギー制御
JP2006331968A (ja) * 2005-05-30 2006-12-07 Equos Research Co Ltd 燃料電池装置
JP2006351340A (ja) * 2005-06-15 2006-12-28 Equos Research Co Ltd 燃料電池装置
JP2007005236A (ja) * 2005-06-27 2007-01-11 Equos Research Co Ltd 燃料電池装置
EP2207230A1 (en) 1999-11-17 2010-07-14 Kabushikikaisha Equos Research Fuel cell device with water spraying means
JP2010541150A (ja) * 2007-09-26 2010-12-24 インテリジェント エナジー リミテッド 燃料電池装置
JP2012178366A (ja) * 2012-06-18 2012-09-13 Mitsubishi Heavy Ind Ltd 固体高分子型燃料電池
US9705141B2 (en) 2007-09-26 2017-07-11 Intelligent Energy Limited Fuel cell system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668896A (ja) * 1992-08-20 1994-03-11 Fuji Electric Co Ltd 固体高分子電解質型燃料電池のセル構造
JPH0689731A (ja) * 1992-09-10 1994-03-29 Fuji Electric Co Ltd 固体高分子電解質型燃料電池発電システム
JPH06338338A (ja) * 1993-05-28 1994-12-06 Mitsubishi Heavy Ind Ltd 燃料電池の高分子イオン交換膜の加湿方法
JPH0714597A (ja) * 1993-06-07 1995-01-17 Daimler Benz Ag 燃料電池装置の運転用プロセスガスに加湿する方法及び装置
JPH07176313A (ja) * 1993-12-21 1995-07-14 Mitsubishi Heavy Ind Ltd 燃料電池システム
JPH07220746A (ja) * 1994-02-07 1995-08-18 Mitsubishi Heavy Ind Ltd 固体高分子電解質燃料電池
JPH07226222A (ja) * 1994-02-15 1995-08-22 Mitsubishi Heavy Ind Ltd 固体高分子電解質燃料電池の加湿システム
JPH07320753A (ja) * 1994-05-27 1995-12-08 Mitsubishi Heavy Ind Ltd 固体高分子電解質膜型燃料電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668896A (ja) * 1992-08-20 1994-03-11 Fuji Electric Co Ltd 固体高分子電解質型燃料電池のセル構造
JPH0689731A (ja) * 1992-09-10 1994-03-29 Fuji Electric Co Ltd 固体高分子電解質型燃料電池発電システム
JPH06338338A (ja) * 1993-05-28 1994-12-06 Mitsubishi Heavy Ind Ltd 燃料電池の高分子イオン交換膜の加湿方法
JPH0714597A (ja) * 1993-06-07 1995-01-17 Daimler Benz Ag 燃料電池装置の運転用プロセスガスに加湿する方法及び装置
JPH07176313A (ja) * 1993-12-21 1995-07-14 Mitsubishi Heavy Ind Ltd 燃料電池システム
JPH07220746A (ja) * 1994-02-07 1995-08-18 Mitsubishi Heavy Ind Ltd 固体高分子電解質燃料電池
JPH07226222A (ja) * 1994-02-15 1995-08-22 Mitsubishi Heavy Ind Ltd 固体高分子電解質燃料電池の加湿システム
JPH07320753A (ja) * 1994-05-27 1995-12-08 Mitsubishi Heavy Ind Ltd 固体高分子電解質膜型燃料電池

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2207230A1 (en) 1999-11-17 2010-07-14 Kabushikikaisha Equos Research Fuel cell device with water spraying means
JP2005529469A (ja) * 2002-06-10 2005-09-29 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. 燃料電池における反応物質供給方法
JP2006507639A (ja) * 2002-11-22 2006-03-02 インテリジェント エナジー リミテッド 電気化学燃料電池における熱エネルギー制御
JP2004303717A (ja) * 2003-03-18 2004-10-28 Honda Motor Co Ltd 燃料電池システム
JP2006331968A (ja) * 2005-05-30 2006-12-07 Equos Research Co Ltd 燃料電池装置
JP2006351340A (ja) * 2005-06-15 2006-12-28 Equos Research Co Ltd 燃料電池装置
JP2007005236A (ja) * 2005-06-27 2007-01-11 Equos Research Co Ltd 燃料電池装置
JP2010541150A (ja) * 2007-09-26 2010-12-24 インテリジェント エナジー リミテッド 燃料電池装置
US9705141B2 (en) 2007-09-26 2017-07-11 Intelligent Energy Limited Fuel cell system
US9748588B2 (en) 2007-09-26 2017-08-29 Intelligent Energy Limited Reverse flow relief valve for a fuel cell system
JP2012178366A (ja) * 2012-06-18 2012-09-13 Mitsubishi Heavy Ind Ltd 固体高分子型燃料電池

Also Published As

Publication number Publication date
JP4552236B2 (ja) 2010-09-29

Similar Documents

Publication Publication Date Title
US6432566B1 (en) Direct antifreeze cooled fuel cell power plant
JP4533533B2 (ja) 燃料電池の作動における水の制御装置および制御方法
JP5184083B2 (ja) 燃料電池の高分子膜の加湿制御
JP5083234B2 (ja) 燃料電池システム
JP4686814B2 (ja) 燃料電池装置
JPH11317236A (ja) 燃料電池システム
JPH11242962A (ja) 燃料電池装置
JP2017152113A (ja) 燃料電池システムの低温起動方法
JPH06325780A (ja) 燃料電池システム
JP4552236B2 (ja) 燃料電池装置
JP2003059498A (ja) 燃料電池
JP4887619B2 (ja) 燃料電池システム
KR20210004152A (ko) 연료전지용 가습기
JP5293783B2 (ja) 燃料電池システム
JP2001313055A (ja) 燃料電池装置
JPH0689731A (ja) 固体高分子電解質型燃料電池発電システム
US7638217B2 (en) Non-circulating coolant PEM fuel cell power plant assembly with low thermal mass
KR20120009631A (ko) 공급가스 조절이 가능한 연료전지 시스템
JPH11214022A (ja) 燃料電池発電装置
JP2007258020A (ja) 固体高分子形燃料電池コージェネレーションシステムの停止方法
KR101134378B1 (ko) 가습성능 및 운전온도 향상을 위한 연료전지 시스템
JP3985317B2 (ja) 燃料電池装置
JPH11317238A (ja) 車輌用燃料電池システム
JP4000971B2 (ja) 燃料電池システム
JP3399850B2 (ja) 燃料電池用加湿循環装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term