JP2002008712A - Sodium-sulfur battery and module using the same - Google Patents

Sodium-sulfur battery and module using the same

Info

Publication number
JP2002008712A
JP2002008712A JP2000185202A JP2000185202A JP2002008712A JP 2002008712 A JP2002008712 A JP 2002008712A JP 2000185202 A JP2000185202 A JP 2000185202A JP 2000185202 A JP2000185202 A JP 2000185202A JP 2002008712 A JP2002008712 A JP 2002008712A
Authority
JP
Japan
Prior art keywords
active material
sulfur
solid electrolyte
sodium
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000185202A
Other languages
Japanese (ja)
Inventor
Hiromi Tokoi
博見 床井
Takeshi Hiranuma
平沼  健
Naohisa Watabiki
直久 綿引
Akihiko Noya
明彦 野家
Manabu Madokoro
間所  学
Tadahiko Mitsuyoshi
忠彦 三吉
Hisamitsu Hato
久光 波東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000185202A priority Critical patent/JP2002008712A/en
Publication of JP2002008712A publication Critical patent/JP2002008712A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sodium-sulfur battery for high-output capable of desirably increasing the battery capacity by increasing the quantity of the battery active material, and to provide a module thereof. SOLUTION: This sodium-sulfur battery is provided with the Na ion permeable cylindrical long solid electrolyte, a negative electrode electrically connected to a container for holding the negative electrode active material including the sodium as an essential component and a positive electrode electrically connected to a container for holding the positive electrode active material composed of the molten salt mainly composed of sulfur or the sodium polysulfide, and the solid electrolyte is interposed between the negative electrode and the positive electrode. In this sodium-sulfur battery and a module using it, the solid electrolyte is laterally arranged to the horizontal line, especially, it is desirable to horizontally arrange the solid electrolyte.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ナトリウム硫黄電
池の持つ特性をフルに発揮して、従来のナトリウム硫黄
電池に比べ、出力を増大でき、かつ、電池容量を増大で
きる新規なナトリウム硫黄電池及びナトリウム硫黄電池
モジュールを提供することにある。
BACKGROUND OF THE INVENTION The present invention relates to a novel sodium-sulfur battery capable of fully utilizing the characteristics of a sodium-sulfur battery, increasing output and increasing battery capacity as compared with a conventional sodium-sulfur battery. An object of the present invention is to provide a sodium-sulfur battery module.

【0002】[0002]

【従来の技術】ナトリウム硫黄電池は,負極活物質にナ
トリウム,正極活物質に硫黄,及び多硫化ナトリウム
を、正極と負極の隔壁に,ナトリウムイオンに導電性が
ある固体電解質が用いられる高温型二次電池である。ナ
トリウムイオン導電性の固体電解質としては、ベータア
ルミナが用いられる。一般に,ナトリウムイオン導電性
の固体電解質とナトリウムと硫黄を収納する1つの容器
から1つの電池が構成される。これを単電池と呼ぶ。大
電力を蓄えるには多数本の単電池を直並列に接続して用
いる。
2. Description of the Related Art A sodium-sulfur battery is a high-temperature secondary battery in which sodium is used as a negative electrode active material, sulfur and sodium polysulfide are used as a positive electrode active material, and a solid electrolyte having conductivity for sodium ions is used as a partition between a positive electrode and a negative electrode. Next battery. Beta alumina is used as the sodium ion conductive solid electrolyte. In general, one battery is configured from one container containing a sodium ion-conductive solid electrolyte, sodium, and sulfur. This is called a cell. To store a large amount of power, a large number of cells are connected in series and used.

【0003】ナトリウム硫黄電池の通常の運転温度は28
0℃〜370℃と高温であるため,複数の単電池を断熱容器
に詰めてモジュールとする。1単電池当たりの電池出力
を増大するには、電池のジュール損失を低減して大電流
で放電運転する必要がある。電池のジュール損失を低減
するには電池の内部抵抗を極力低減する必要がある。ナ
トリウム硫黄電池の放電反応は次式で示せる。
The normal operating temperature of a sodium-sulfur battery is 28
Since the temperature is as high as 0 ° C to 370 ° C, multiple cells are packed in a heat-insulating container to form a module. In order to increase the battery output per cell, it is necessary to reduce the Joule loss of the battery and perform discharge operation with a large current. To reduce the Joule loss of a battery, it is necessary to reduce the internal resistance of the battery as much as possible. The discharge reaction of a sodium-sulfur battery can be expressed by the following equation.

【0004】 2Na + xS → Na2Sx (x=3〜5) 充電反応は上式の逆反応である。上記した電池反応は硫
黄極で生じる。従って、電池の内部抵抗の大半は、S極
の抵抗であり、内部抵抗を極力低減するには、S極の抵
抗を低減することが最も有効である。
2Na + xS → Na 2 Sx (x = 3 to 5) The charging reaction is the reverse reaction of the above equation. The above-described battery reaction occurs at the sulfur electrode. Therefore, most of the internal resistance of the battery is the resistance of the S pole, and it is most effective to reduce the resistance of the S pole to reduce the internal resistance as much as possible.

【0005】従来のナトリウム硫黄電池は、図3に示し
たように硫黄極5には正極活物質である硫黄及び多硫化
ナトリウムが充填され充電や放電の電池反応を可能にす
るため、電子伝導性を持った補助導電材を装着する。硫
黄極5の全領域に補助導電材を装着する必要があるた
め、硫黄極内での電池活物質の流動性は極めて小さい。
電池出力の増大(高出力運転)には電池の放電電流を増大
する必要があり、硫黄極内での電池活物質の流動性が求
められる。
In a conventional sodium-sulfur battery, as shown in FIG. 3, a sulfur electrode 5 is filled with a positive electrode active material, sulfur and sodium polysulfide, to enable a battery reaction for charging and discharging. Attach an auxiliary conductive material with Since the auxiliary conductive material needs to be attached to the entire area of the sulfur electrode 5, the fluidity of the battery active material in the sulfur electrode is extremely small.
To increase the battery output (high-power operation), it is necessary to increase the discharge current of the battery, and the fluidity of the battery active material within the sulfur electrode is required.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術では,高
出力運転(例えば2倍出力)に伴いジュール発熱が増大
し、電池温度が許容値を越えてしまい高出力運転が不可
能になった。さらに、従来電池では電池の容量を増大す
るためには電池活物質を増大することが必須であるが、
電池活物質の量を増大すると、特に、硫黄極の抵抗が増
大するため、電池の内部抵抗が増大してしまう。
In the prior art described above, Joule heat increases with high output operation (for example, double output), and the battery temperature exceeds an allowable value, so that high output operation becomes impossible. Furthermore, in the conventional battery, it is essential to increase the battery active material in order to increase the capacity of the battery,
When the amount of the battery active material is increased, particularly, the resistance of the sulfur electrode is increased, so that the internal resistance of the battery is increased.

【0007】本発明の目的は,高出力運転可能で、か
つ、電池容量の増大を図ることの出来るナトリウム硫黄
電池を提供することにある。
An object of the present invention is to provide a sodium-sulfur battery capable of high-power operation and capable of increasing the battery capacity.

【0008】[0008]

【課題を解決するための手段】本発明のナトリウム硫黄
電池は、硫黄極の活物質の流動性を最大限に増大し、電
池反応を円滑にすると共に、電池容量を増大しても電池
の内部抵抗が増大しない電池充放電方式を提案する。
SUMMARY OF THE INVENTION The sodium-sulfur battery of the present invention maximizes the fluidity of the active material at the sulfur electrode, smoothes the battery reaction, and increases the internal capacity of the battery even when the battery capacity is increased. A battery charging / discharging method that does not increase resistance is proposed.

【0009】具体的には硫黄極の電池活物質を密度差で
循環(以下、自然循環と呼ぶ)自然循環すると共に、硫
黄を蒸気で供給する。また、電池反応領域を固体電解質
近傍の補助導電材の存在する領域に限定して、電池容量
を増大するために電池活物質量を任意に増大しても電池
の抵抗が増大しない。
Specifically, the battery active material of the sulfur electrode is naturally circulated at a density difference (hereinafter referred to as natural circulation), and sulfur is supplied by steam. Further, the battery reaction region is limited to the region where the auxiliary conductive material exists near the solid electrolyte, and the resistance of the battery does not increase even if the amount of the battery active material is arbitrarily increased in order to increase the battery capacity.

【0010】本発明は、Naイオンが通過可能な筒型長
尺な固体電解質体と、該固体電解質体を介して配置され
たナトリウムを必須成分とする負極活物質を保持する容
器に電気的に接続された負極と、硫黄または多硫化ナト
リウムを主成分とする溶融塩から成る正極活物質を保持
する容器に電気的に接続された正極とを備えたナトリウ
ム硫黄電池において、前記固体電解質体を地平線に対し
て横に設置したことを特徴とする。
[0010] The present invention provides a cylindrical and long solid electrolyte body through which Na ions can pass, and a container which holds a negative electrode active material containing sodium as an essential component and disposed through the solid electrolyte body. In a sodium-sulfur battery including a connected negative electrode and a positive electrode electrically connected to a container holding a positive electrode active material formed of a molten salt containing sulfur or sodium polysulfide as a main component, the solid electrolyte body is connected to a horizon. It is characterized by being installed beside the.

【0011】更に、前記正極は、前記正極活物質が前記
固体電解質体の外側で電池容器内に設けられ、前記正極
活物質を運転温度で自然循環させると共に、前記硫黄を
蒸気で供給する容器構造を有することを特徴とする。
Further, the positive electrode has a container structure in which the positive electrode active material is provided in a battery container outside the solid electrolyte body, and the positive electrode active material is naturally circulated at an operating temperature, and the sulfur is supplied as steam. It is characterized by having.

【0012】又、前述の電池において、前記硫黄電極と
前記固体電解質体との間に設けられ前記多硫化ナトリウ
ムを保持する多硫化ナトリウム電極及び前記硫黄を保持
する硫黄電極の外側に集電極を装着したこと、前記固体
電解質体と多硫化ナトリウム電極との間に高抵抗層を設
けたことを特徴とする。
In the above-mentioned battery, a collector electrode is provided between the sulfur electrode and the solid electrolyte body, and a collector electrode is provided outside the sodium polysulfide electrode holding sodium polysulfide and the sulfur electrode holding sulfur. A high-resistance layer is provided between the solid electrolyte body and the sodium polysulfide electrode.

【0013】本発明によれば,正極の電池反応領域とな
る補助導電材の厚みを薄くして、電池の内部抵抗を低減
し、電池反応に必要な電池活物質を自然循環方式及び硫
黄蒸気供給方式で電池反応領域へ供給する。従って、電
池の容量は、自然循環方式及び硫黄蒸気供給方式で供給
する量を増大することにより任意に増大可能である。電
池の内部抵抗低減により、高出力運転をしても電池温度
を許容温度以下に維持でき、かつ、電池容量を増大でき
る。
According to the present invention, the thickness of the auxiliary conductive material serving as the battery reaction region of the positive electrode is reduced, the internal resistance of the battery is reduced, the battery active material required for the battery reaction is naturally recycled, and sulfur vapor is supplied. Supply to the battery reaction area in a manner. Therefore, the capacity of the battery can be arbitrarily increased by increasing the amount supplied in the natural circulation system and the sulfur vapor supply system. Due to the reduction in the internal resistance of the battery, the battery temperature can be kept below the allowable temperature and the battery capacity can be increased even during high-power operation.

【0014】本発明は、正極活物質を自然循環する手段
を持つこと、正極活物質の硫黄を蒸気で電極に供給する
手段を持つこと、正極活物質を自然循環及び正極活物質
の硫黄を蒸気で電極に供給する手段を持つこと、電池容
器を直方体とすること、正極容器と電気絶縁材との接合
部に液体状の正極活物質が接触しない様に接合構造を有
することを特徴とする。
The present invention comprises means for naturally circulating the positive electrode active material, means for supplying sulfur of the positive electrode active material to the electrode with steam, natural circulation of the positive electrode active material, and steam for the sulfur of the positive electrode active material. The battery container has a rectangular parallelepiped, and has a joint structure such that a liquid cathode active material does not come into contact with the joint between the cathode container and the electrical insulating material.

【0015】更に、本発明は、Naイオンが通過可能な
筒型長尺な固体電解質体と、該固体電解質体を介して配
置されたナトリウムを必須成分とする負極活物質を保持
する容器に電気的に接続された負極と、硫黄または多硫
化ナトリウムを主成分とする溶融塩から成る正極活物質
を保持する容器に電気的に接続された正極とを備えたナ
トリウム硫黄電池が一つの容器に複数個収納され、前記
正極活物質は前記固体電解質体の外側で前記容器内に設
けられ、前記正極活物質は前記正極活物質を自然循環又
は蒸気によって供給される容器構造にしたことを特徴と
するナトリウム硫黄電池モジュールにある。
Further, the present invention provides a cylindrical solid electrolyte body through which Na ions can pass, and a container which holds a negative electrode active material containing sodium as an essential component and disposed through the solid electrolyte body. A plurality of sodium-sulfur batteries having a negative electrode connected in series and a positive electrode electrically connected to a container holding a positive electrode active material composed of a molten salt containing sulfur or sodium polysulfide as a main component are provided in one container. The positive electrode active material is provided in the container outside the solid electrolyte body, and the positive electrode active material has a container structure in which the positive electrode active material is supplied by natural circulation or steam. In the sodium-sulfur battery module.

【0016】本発明は、筒型長尺な固体電解質体を有す
るナトリウム硫黄電池を地平線に対して横にすることに
よって前述の特定の構造にし、高出力で大容量のモジュ
ールが得られる。
According to the present invention, a high-output, large-capacity module can be obtained by making a sodium-sulfur battery having a long cylindrical solid electrolyte body transverse to the horizon into the above-described specific structure.

【0017】[0017]

【発明の実施の形態】(実施例1)図1は本発明に係る
NaS電池の長手方向に対して直角に切断した横断面図
である。電池特性を改善するために円筒管型の固体電解
質管1を地平線に対して水平に設置した電池の横断面図
(輪切りの図)である。図2は本発明に係るNaS電池
の長手方向に切断した縦断面図である。硫黄電極に付い
て説明すると、ベータアルミナ焼結体製袋管からなる固
体電解質管1の外周に放電反応で生成する多硫化ナトリ
ウムに優先的に濡れ易い(多硫化ナトリウムに優先浸透
性を持つ)多硫化ナトリウム電極11を設ける。多硫化
ナトリウム電極11はその一例としては、モリブデンや
アルミナを用いて多孔体やメッシュに加工し、シート状
に整形して袋管にし、多硫化ナトリウムを保持するよう
に形成されている。多硫化ナトリウム電極の外周に硫黄
に優先的に濡れ易い(硫黄に優先浸透性を持つ)硫黄電
極12を設ける。硫黄電極12はその一例としては、グ
ラファイトやカーボンを多孔体やメッシュに加工し、シ
ート状に整形して硫黄の蒸気が保持されるように形成さ
れている。さらに、その外周には充放電反応の電流を流
すための集電極13を設置する。集電極13は硫黄電極
12と密着して電気的に接続されると共に、角型電池容器
15と電気的に接続されている。
(Embodiment 1) FIG. 1 is a cross-sectional view of a NaS battery according to the present invention, which is cut at a right angle to the longitudinal direction. FIG. 2 is a cross-sectional view of a battery in which a cylindrical solid electrolyte tube 1 is installed horizontally with respect to a horizon in order to improve battery characteristics. FIG. 2 is a longitudinal sectional view of the NaS battery according to the present invention, cut in a longitudinal direction. Explaining the sulfur electrode, the outer periphery of the solid electrolyte tube 1 composed of a bag tube made of beta-alumina sintered body is easily wetted preferentially by sodium polysulfide generated by a discharge reaction (has preferential permeability to sodium polysulfide). A sodium polysulfide electrode 11 is provided. As an example, the sodium polysulfide electrode 11 is formed into a porous body or a mesh using molybdenum or alumina, formed into a sheet shape, formed into a bag tube, and formed to hold sodium polysulfide. A sulfur electrode 12 which is preferentially wettable by sulfur (has a preferential permeability to sulfur) is provided on the outer periphery of the sodium polysulfide electrode. As an example, the sulfur electrode 12 is formed by processing graphite or carbon into a porous body or a mesh, shaping the sheet into a sheet shape, and holding sulfur vapor. Further, a collecting electrode 13 for flowing a current of the charge / discharge reaction is provided on the outer periphery thereof. Collector electrode 13 is a sulfur electrode
12 and is electrically connected to the prismatic battery container 15.

【0018】次に充放電運転を説明する。電池は350
℃で運転した。放電反応では、角型電池容器15内に貯
蔵した硫黄が液体状態で、硫黄電極12に優先的に浸透
する。さらに、硫黄は蒸気圧が高いため、多孔質の集電
極を通って蒸気状態で硫黄電極12へ供給される。上記
の二法で放電反応に必要な硫黄が硫黄電極12へ供給さ
れる。無論、どちらか一方でも、電池反応に支障をきた
さない範囲の運転であれば、一向に差し支えない。
Next, the charge / discharge operation will be described. 350 batteries
Operated at ℃. In the discharge reaction, sulfur stored in the prismatic battery container 15 preferentially permeates the sulfur electrode 12 in a liquid state. Further, since sulfur has a high vapor pressure, sulfur is supplied to the sulfur electrode 12 in a vapor state through a porous collector electrode. The sulfur necessary for the discharge reaction is supplied to the sulfur electrode 12 by the above two methods. Of course, any one of them may be operated as long as it does not hinder the battery reaction.

【0019】なお、放電が進むにつれ、電池容器内には
多硫化ナトリウムが生成し、蓄積してくるが硫黄と多硫
化ナトリウムは化学的に混合せず、二層に分離する。ち
なみに、硫黄16は多硫化ナトリウムに比べ密度が小さ
いため、多硫化ナトリウム17の上に浮かび二層に分離
する。従って、常に硫黄16が液面を覆うことになり、
硫黄16は常に蒸気となって硫黄電極12に供給される
ことが可能となる。なお、放電で生成した多硫化ナトリ
ウムは、多硫化ナトリウムに優先浸透性を持つ多硫化ナ
トリウム電極11に吸い込まれ、電池容器下部へと密度
差で流下する。または、硫黄電極12から直接外部へ放
出され密度差で流下する。
As the discharge proceeds, sodium polysulfide is produced and accumulates in the battery container, but sulfur and sodium polysulfide are not chemically mixed but separated into two layers. Incidentally, since sulfur 16 has a smaller density than sodium polysulfide, it floats on sodium polysulfide 17 and separates into two layers. Therefore, sulfur 16 always covers the liquid surface,
The sulfur 16 can be supplied to the sulfur electrode 12 as a vapor at all times. The sodium polysulfide generated by the discharge is sucked into the sodium polysulfide electrode 11 having preferential permeability to sodium polysulfide, and flows down to the lower part of the battery container with a difference in density. Alternatively, it is discharged directly from the sulfur electrode 12 to the outside and flows down due to a difference in density.

【0020】結果的には、硫黄16と多硫化ナトリウム
17との二層の界面が徐々に上昇することになる。無
論、硫黄蒸気で供給された硫黄も同一の行程を辿り、多
硫化ナトリウム17となって電池容器下部に蓄積する。
As a result, the interface between the two layers of sulfur 16 and sodium polysulfide 17 gradually rises. Of course, the sulfur supplied by the sulfur vapor follows the same process and becomes sodium polysulfide 17 and accumulates in the lower part of the battery container.

【0021】充電運転では、放電反応で蓄積した多硫化
ナトリウム17を多硫化ナトリウムに優先浸透性を持つ
多硫化ナトリウム電極11で吸い上げ、充電反応させ
る。吸い上げのため、多硫化ナトリウム電極11の先端
部18を平板状の舌状に電池容器底面に向かって突き出
した形状とした。硫黄極12もできるだけ下部に存在す
る硫黄を吸い上げられるように、先端部19を電池容器
底部に舌状に突き出させ、多硫化ナトリウム電極11の
先端部18の両側に設けているが、多硫化ナトリウム電
極11の先端部18はさらに、下方へ突き出た構造を有
し、多硫化ナトリウム17の溶融液に接するようになっ
ているのが好ましい。
In the charging operation, the sodium polysulfide 17 accumulated in the discharging reaction is sucked up by the sodium polysulfide electrode 11 having preferential permeability to sodium polysulfide, and the charging reaction is performed. For sucking up, the tip 18 of the sodium polysulfide electrode 11 was formed to protrude toward the bottom surface of the battery container in a flat tongue shape. The sulfur electrode 12 is also provided with a tip portion 19 protruding in a tongue shape at the bottom of the battery container so as to suck up the sulfur existing at the lower portion as much as possible, and is provided on both sides of the tip portion 18 of the sodium polysulfide electrode 11. It is preferable that the distal end portion 18 of the electrode 11 further has a structure protruding downward so as to come into contact with the molten liquid of the sodium polysulfide 17.

【0022】固体電解質管1内に設けた負極活物質のナ
トリム6は、ステンレス鋼製のメッシュからなる安全管
7の内部にナトリウム供給体14を設置し、安全管の外
周にはナトリウム供給体を全周に装着して、固体電解質
管1の内面の全領域へナトリムを毛細管力によって供給
する。従って、放電時は安全管7内のナトリウム6がナ
トリウム供給体14によって吸い上げられ、固体電解質
管1に供給され、充電時には逆に固体電解質管1から流
入したナトリウムが安全管1内に回収される。ナトリム
極とナトリウム供給体14はその一例を挙げると、ステン
レス鋼製のメッシュが用いられ、ナトリウムを保持でき
るように形成されている。ナトリウム供給体14はナトリ
ウム極と一体に形成されてナトリウムの溶融液に達する
ように平板状になっている。
For the sodium 6 of the negative electrode active material provided in the solid electrolyte tube 1, a sodium supply 14 is installed inside a safety tube 7 made of stainless steel mesh, and a sodium supply is provided around the outer periphery of the safety tube. Attached to the entire circumference, the solid electrolyte tube 1 is supplied with sodium to all regions on the inner surface thereof by capillary force. Accordingly, at the time of discharging, the sodium 6 in the safety tube 7 is sucked up by the sodium supplier 14 and supplied to the solid electrolyte tube 1, and at the time of charging, the sodium flowing from the solid electrolyte tube 1 is recovered in the safety tube 1. . As an example, the sodium electrode and the sodium supply member 14 are made of stainless steel mesh and formed so as to hold sodium. The sodium supplier 14 is formed integrally with the sodium electrode and has a flat plate shape so as to reach the molten sodium.

【0023】袋管から成る固体電解質体1を水平に設置
したのは、硫黄や多硫化ナトリウムを電池反応域へ確実
に毛細管力によって供給できること、さらに、電池反応
で生成した電池活物質を硫黄極12や多硫化ナトリウム
極11から吐き出すことができるためである。すなわ
ち、従来の固体電解質を垂直設置(縦置き)するのに比
べ、水平設置では電池活物質の吸い上げ高さが低くて済
み、かつ、硫黄や多硫化ナトリウムの排出流路パスが短
くなり、電池反応が円滑に進行できる。さらに、垂直設
置では電池を大型化すると電池上部の電池反応領域が必
ずしも充分に利用できない傾向があったが、水平設置は
この点を改善できる。
The solid electrolyte body 1 consisting of a bag tube is installed horizontally because sulfur and sodium polysulfide can be reliably supplied to the battery reaction zone by capillary force. 12 and sodium polysulfide electrode 11. That is, in comparison with the conventional vertical installation of the solid electrolyte (vertical installation), in the horizontal installation, the suction height of the battery active material is low, and the discharge flow path for sulfur and sodium polysulfide is short, and the battery The reaction can proceed smoothly. Furthermore, in the case of the vertical installation, when the size of the battery is increased, the battery reaction region on the upper side of the battery tends to be not always sufficiently used, but the horizontal installation can improve this point.

【0024】角型電池容器15はステンレス鋼板よりな
り、同じ材質よりなる負極容器4がリング状のアルミナ
焼結体よりなる電気絶縁材を介して接合される。安全管
7は負極として前述のステンレス鋼線のバネを介して負
極容器4に電気的に押圧接続される。容器やバネは、電
池活物質に耐食性を有すればステンレス鋼以外のものが
使用できる。
The prismatic battery case 15 is made of a stainless steel plate, and the negative electrode case 4 made of the same material is joined via an electric insulating material made of a ring-shaped alumina sintered body. The safety tube 7 is electrically connected to the negative electrode container 4 as a negative electrode via the above-described stainless steel wire spring. As the container or spring, a material other than stainless steel can be used as long as the battery active material has corrosion resistance.

【0025】(実施例2)図4は本発明に係る他の例を
示すNaS電池の長手方向に対して直角に切断した横断
面図である。図1の集電極13をなくし、硫黄電極29
を集電極と兼用にしたものである。電極の部材を削減す
ることにより、経済的な効果が期待できるばかりでな
く、集電極がない分、硫黄供給時の流動抵抗が低減さ
れ、硫黄の供給がスムーズになる。無論、角型電池容器
15は硫黄電極29と電気的に接続される。その他の構
造と材質は実施例1と同じであり、固体電解質管1を含
め、いずれの電極も地平線に対して水平にしている。
(Embodiment 2) FIG. 4 is a cross-sectional view of another example according to the present invention, cut at right angles to the longitudinal direction of a NaS battery. The collector electrode 13 shown in FIG.
Is also used as a collecting electrode. By reducing the number of electrode members, not only the economic effect can be expected, but also the flow resistance at the time of sulfur supply is reduced due to the absence of the collector electrode, and the supply of sulfur becomes smooth. Of course, the prismatic battery case 15 is electrically connected to the sulfur electrode 29. Other structures and materials are the same as those of the first embodiment, and all electrodes including the solid electrolyte tube 1 are horizontal with respect to the horizon.

【0026】(実施例3)図5は本発明に係る他の例を
示すNaS電池の長手方向に対して直角に切断した横断
面図である。図1の多硫化ナトリウム極11と固体電解
質管1との間にアルミナ繊維または、アルミナ粒子等か
ら成る高抵抗層20を追設したもので、充電受け入れ性
(充電の深度を示す)を改善することができる。その他
の構造と材質は実施例1と同じであり、固体電解質管1
を含め、いずれの電極も地平線に対して水平にしてい
る。
(Embodiment 3) FIG. 5 is a cross-sectional view of another example according to the present invention, taken at right angles to the longitudinal direction of a NaS battery. A high resistance layer 20 made of alumina fiber or alumina particles is additionally provided between the sodium polysulfide electrode 11 and the solid electrolyte tube 1 in FIG. 1 to improve charge acceptability (indicating the depth of charge). be able to. Other structures and materials are the same as those of the first embodiment.
, And all electrodes are horizontal to the horizon.

【0027】(実施例4)図6は本発明に係る他の例を
示すNaS電池の長手方向に対して直角に切断した横断
面図である。本実施例は、図5と比べ、硫黄電極12の
最上部に舌状の突起物21を設けた点、更に多硫化ナト
リウム17を硫黄極12よりも上になるように満たした
ことが異なる。この役目は、放電末に硫黄量が減少し
て、硫黄と多硫化ナトリウムとの二層界面が硫黄極12
の上端を越えてしまうと、さらに、上部に存在する硫黄
を硫黄電極へ供給することが不可能となり、上部にある
硫黄を利用できなくなってしまう。そこで、硫黄極12
に硫黄に優先浸透性のある舌状の突起物21を設けると
上部の硫黄を毛細管力で吸い込み放電が持続可能とな
り、電池活物質の有効利用が促進される。その他の構造
と材質は実施例1と同じであり、固体電解質管1を含
め、いずれの電極も地平線に対して水平にしている。
(Embodiment 4) FIG. 6 is a cross-sectional view of another example according to the present invention, taken at right angles to the longitudinal direction of a NaS battery. This embodiment is different from FIG. 5 in that a tongue-shaped projection 21 is provided on the uppermost portion of the sulfur electrode 12 and that sodium polysulfide 17 is filled so as to be higher than the sulfur electrode 12. The role of this is that the amount of sulfur decreases at the end of discharge and the two-layer interface between sulfur and sodium polysulfide forms a sulfur electrode 12.
If it exceeds the upper end of S, furthermore, it becomes impossible to supply the sulfur present in the upper part to the sulfur electrode, and the sulfur in the upper part cannot be used. Therefore, sulfur electrode 12
If a tongue-shaped projection 21 having preferential permeability to sulfur is provided on the upper surface, the upper sulfur is sucked by capillary force, discharge can be sustained, and effective utilization of the battery active material is promoted. Other structures and materials are the same as those of the first embodiment, and all electrodes including the solid electrolyte tube 1 are horizontal with respect to the horizon.

【0028】(実施例5)図7と図8は本発明に係る他
の例を示すNaS電池の断面図である。図7が横断面図
であり、図8が縦断面図を示す。構造的には円筒状の固
体電解質管を水平設置したもので、硫黄蒸気供給方式を
採用した。電池容器は楕円形の電池容器22を使い、硫
黄と多硫化ナトリウムからなる正極活物質23が電気絶
縁材2と正極容器3の接合界面24へ液体状態で接触し
ないように、正極活物質23の液面を低く保持した。電
池容器の形状については楕円形に拘る必要はなく、四角
型や円形でも当然良く、本発明の機能を損ねるものでは
ない。その他の構造と材質は実施例1と同じであり、固
体電解質管1を含め、いずれの電極も地平線に対して水
平にしている。
(Embodiment 5) FIGS. 7 and 8 are sectional views of a NaS battery showing another embodiment according to the present invention. FIG. 7 is a transverse sectional view, and FIG. 8 is a longitudinal sectional view. Structurally, a cylindrical solid electrolyte tube was installed horizontally, and a sulfur vapor supply system was adopted. As the battery case, an elliptical battery case 22 is used. The positive electrode active material 23 made of sulfur and sodium polysulfide does not come into contact with the bonding interface 24 between the electric insulating material 2 and the positive electrode case 3 in a liquid state. The liquid level was kept low. The shape of the battery container need not be limited to an elliptical shape, but may be a square shape or a circular shape, and does not impair the function of the present invention. Other structures and materials are the same as those of the first embodiment, and all electrodes including the solid electrolyte tube 1 are horizontal with respect to the horizon.

【0029】(実施例6)図9と図10は本発明に係る
他の例を示すNaS電池の断面図である。図9が横断面
図であり、図10が縦断面図を示す。構造的には円筒状
の固体電解質管1を水平設置より幾分傾けて設置したも
ので、活物質の自然循環方式を採用した。電池容器は円
筒形の電池容器25を使い、硫黄と多硫化ナトリウムか
らなる正極活物質26が固体電解質をほぼ液中に取り込
んだ構造である。その他の構造と材質は実施例1と同じ
であり、固体電解質管1を含め、いずれの電極も地平線
に対して水平にしている。
(Embodiment 6) FIGS. 9 and 10 are sectional views of a NaS battery showing another embodiment according to the present invention. FIG. 9 is a transverse sectional view, and FIG. 10 is a longitudinal sectional view. Structurally, the cylindrical solid electrolyte tube 1 is installed slightly inclined from the horizontal installation, and a natural circulation system of the active material is adopted. The battery container uses a cylindrical battery container 25 and has a structure in which a positive electrode active material 26 made of sulfur and sodium polysulfide takes in a solid electrolyte substantially in a liquid. Other structures and materials are the same as those of the first embodiment, and all electrodes including the solid electrolyte tube 1 are horizontal with respect to the horizon.

【0030】図10は、電池容器25を水平より、幾分
傾けたのは、電気絶縁材2と正極容器3の接合界面24
へ電池活物質が液体状態で接触しないようにするためで
ある。傾斜角度は20度以下が好ましい。その他は実施
例1と同様である。電池容器の形状については円形に拘
る必要はなく、四角型や楕円形でも当然良く、本発明の
機能を損ねるものではない。
FIG. 10 shows that the battery container 25 was slightly tilted from the horizontal plane because of the bonding interface 24 between the electric insulating material 2 and the positive electrode container 3.
This is to prevent the battery active material from contacting in a liquid state. The inclination angle is preferably 20 degrees or less. Others are the same as the first embodiment. The shape of the battery container does not need to be limited to a circle, but may be a square or an ellipse, which does not impair the function of the present invention.

【0031】(実施例7)図11は本発明に係る他の例
を示すNaS電池モジュールの斜視図である。図10は
先の実施例1〜7で上げたナトリウム硫黄電池を複数個
(図では3個)組み合わせ、モジュ−ル電池を構成した
ものである。従来電池と異なり、1個の電池を一つの電
池容器に密封する必要はなく、共通の正極活物質28内
に多硫化ナトリウム極11と硫黄極12と集電極13を
装着した固体電解質管1を所望の個数だけ、装着するこ
とができる。各電池構成を便宜上、単電池30と呼ぶ。
各電池間の電気的接続は、ブスバ31を用いて並列接続
とした。図10は硫黄蒸気供給型の電池を示したが、無
論、正極容器活物質の液位を上昇させて自然循環と硫黄
蒸気供給の混合型または、自然循環型のみの電池モジュ
ールとすることも可能である。本実施例の個々の電池
は、実施例1と構造及び材質が同じであり、固体電解質
管1を含め、いずれの電極も地平線に対して水平にして
いる。
Embodiment 7 FIG. 11 is a perspective view of a NaS battery module showing another example according to the present invention. FIG. 10 shows a module battery constructed by combining a plurality of (three in the figure) sodium-sulfur batteries raised in the first to seventh embodiments. Unlike the conventional battery, it is not necessary to seal one battery in one battery container, and the solid electrolyte tube 1 in which the sodium polysulfide electrode 11, the sulfur electrode 12, and the collecting electrode 13 are mounted in a common positive electrode active material 28 is used. A desired number can be attached. Each battery configuration is referred to as a unit cell 30 for convenience.
The electrical connection between the batteries was made in parallel using a bus bar 31. FIG. 10 shows the battery of the sulfur vapor supply type, but it is needless to say that the liquid level of the positive electrode container active material can be raised to make a battery module of a mixed type of natural circulation and sulfur vapor supply or only a natural circulation type. It is. Each battery of this embodiment has the same structure and material as those of the first embodiment, and all electrodes including the solid electrolyte tube 1 are horizontal to the horizon.

【0032】本例では空間エネルギー密度を高めるため
に電池容器27を直方体としたが、円形や楕円形等でも
可能である。
In this embodiment, the battery container 27 is a rectangular parallelepiped in order to increase the space energy density. However, a circular or elliptical shape may be used.

【0033】[0033]

【発明の効果】本発明によれば,高出力運転(例えば定
格の2倍出力)しても、電池の内部抵抗が小さいため、
電池温度を許容値以下に押さえられ、かつ、電池活物質
を増量することによって所望の電池容量を得ることが可
能である。また、1個の電池容器内に、複数個の電池を
構成でき、これらの電池を電気的に接続することによっ
て大容量のモジュール電池を構成できる。
According to the present invention, the internal resistance of the battery is small even during high-power operation (for example, twice the rated output).
It is possible to obtain a desired battery capacity by keeping the battery temperature below the allowable value and increasing the amount of battery active material. Further, a plurality of batteries can be configured in one battery container, and a large-capacity module battery can be configured by electrically connecting these batteries.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る実施例1のNaS電池の正面横断
面図。
FIG. 1 is a front cross-sectional view of a NaS battery according to a first embodiment of the present invention.

【図2】本発明に係る実施例1のNaS電池の縦断面
図。
FIG. 2 is a longitudinal sectional view of a NaS battery of Example 1 according to the present invention.

【図3】従来例のNaS電池の正面断面図。FIG. 3 is a front sectional view of a conventional NaS battery.

【図4】本発明に係る実施例2のNaS電池の正面断面
図。
FIG. 4 is a front sectional view of a NaS battery according to a second embodiment of the present invention.

【図5】本発明に係る実施例3のNaS電池の正面断面
図。
FIG. 5 is a front sectional view of a NaS battery according to a third embodiment of the present invention.

【図6】本発明に係る実施例4のNaS電池の正面断面
図。
FIG. 6 is a front sectional view of a NaS battery according to a fourth embodiment of the present invention.

【図7】本発明に係る実施例5のNaS電池の正面断面
図。
FIG. 7 is a front sectional view of a NaS battery according to a fifth embodiment of the present invention.

【図8】本発明に係る実施例5のNaS電池の縦断面
図。
FIG. 8 is a longitudinal sectional view of a NaS battery of Example 5 according to the present invention.

【図9】本発明に係る実施例6のNaS電池の正面断面
図。
FIG. 9 is a front sectional view of a NaS battery of Example 6 according to the present invention.

【図10】本発明に係る実施例6のNaS電池の縦断面
図。
FIG. 10 is a longitudinal sectional view of a NaS battery of Example 6 according to the present invention.

【図11】本発明に係る実施例7のNaS電池モジュール
の斜視図。
FIG. 11 is a perspective view of a NaS battery module according to Embodiment 7 of the present invention.

【符号の説明】[Explanation of symbols]

1…固体電解質、2…電気絶縁材、3…正極容器、4…
負極容器、5…正極活物質と補助導電材、6…負極活物
質、7…安全管、8…ナトリウム供給孔、9…正極端
子、10…負極端子、11…多硫化ナトリウム極、 1
2…硫黄極、13…集電極、14…ナトリウム供給体、
15…角型電池容器、16…硫黄、17…多硫化ナトリ
ウム、18…多硫化ナトリウム極先端の舌状部、19…
硫黄極先端、31…ブスバ、 32…リード線。
DESCRIPTION OF SYMBOLS 1 ... Solid electrolyte, 2 ... Electric insulating material, 3 ... Positive electrode container, 4 ...
Negative electrode container, 5: positive electrode active material and auxiliary conductive material, 6: negative electrode active material, 7: safety tube, 8: sodium supply hole, 9: positive electrode terminal, 10: negative electrode terminal, 11: sodium polysulfide electrode, 1
2 ... sulfur electrode, 13 ... collector electrode, 14 ... sodium supplier,
15: Rectangular battery container, 16: Sulfur, 17: Sodium polysulfide, 18: Tongue at the tip of sodium polysulfide electrode, 19 ...
Sulfur electrode tip, 31 ... bus bar, 32 ... lead wire.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 綿引 直久 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 野家 明彦 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 間所 学 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所原子力事業部内 (72)発明者 三吉 忠彦 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所原子力事業部内 (72)発明者 波東 久光 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所原子力事業部内 Fターム(参考) 5H029 AJ06 AK05 AL13 AM15 BJ00 BJ02 BJ16 DJ02 DJ09  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Naohisa Watahiki 7-2-1, Omika-cho, Hitachi City, Ibaraki Pref. Hitachi, Ltd. Power and Electricity Development Laboratory (72) Inventor Akihiko Noya Omika, Hitachi City, Ibaraki Prefecture 7-2-1, Machi-cho, Hitachi, Ltd.Electric Power and Electricity Research Laboratory (72) Inventor Manabu Manabu 3-1-1, Sachimachi, Hitachi, Hitachi, Ibaraki Prefecture Nuclear Power Division, Hitachi, Ltd. (72) Invention Person Tadahiko Miyoshi 3-1-1, Sachimachi, Hitachi-shi, Ibaraki Prefecture Nuclear Power Division, Hitachi, Ltd. (72) Inventor Hisamitsu Nitsumi 3-1-1, Sachimachi, Hitachi-shi, Hitachi, Japan Nuclear Power Business, Hitachi, Ltd. Department F-term (reference) 5H029 AJ06 AK05 AL13 AM15 BJ00 BJ02 BJ16 DJ02 DJ09

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】Naイオンが通過可能な筒型長尺な固体電
解質体と、該固体電解質体を介して配置されたナトリウ
ムを必須成分とする負極活物質を保持する容器に電気的
に接続された負極及び硫黄または多硫化ナトリウムを主
成分とする溶融塩から成る正極活物質を保持する容器に
電気的に接続された正極とを備えたナトリウム硫黄電池
において、前記固体電解質体を地平線に対して横に設置
したことを特徴としたナトリウム硫黄電池。
1. A tubular long solid electrolyte body through which Na ions can pass, and a container which holds a negative electrode active material containing sodium as an essential component and disposed through the solid electrolyte body. A negative electrode and a positive electrode electrically connected to a container holding a positive electrode active material composed of a molten salt containing sulfur or sodium polysulfide as a main component, wherein the solid electrolyte body is positioned with respect to the horizon. A sodium-sulfur battery characterized by being installed horizontally.
【請求項2】請求項1記載において、前記固体電解質体
は円筒構造を有し、地平線に対して水平に設置したこと
を特徴としたナトリウム硫黄電池。
2. The sodium-sulfur battery according to claim 1, wherein the solid electrolyte body has a cylindrical structure and is installed horizontally with respect to the horizon.
【請求項3】請求項1又は2において、前記正極活物質
は自然循環によって供給源より供給される前記容器構造
及び前記正極活物質の硫黄が蒸気で供給源より供給され
る前記容器構造の少なくとも一方を有することを特徴と
するナトリウム硫黄電池。
3. The container structure according to claim 1, wherein the positive electrode active material is supplied from a supply source by natural circulation, and the container structure is supplied with sulfur of the positive electrode active material from a supply source as steam. A sodium-sulfur battery having one of them.
【請求項4】Naイオンが通過可能な筒型長尺な固体電
解質体と、該固体電解質体を介して配置されナトリウム
を必須成分とする負極活物質を保持する容器に電気的に
接続された負極及び硫黄または多硫化ナトリウムを主成
分とする溶融塩から成る正極活物質を保持する容器に電
気的に接続された正極とを備えたナトリウム硫黄電池に
おいて、前記負極活物質は前記固体電解質体の内部及び
前記正極活物質は前記固体電解質体の外側で電池容器内
に設けられ、前記正極は前記正極活物質を運転温度で自
然循環させると共に、前記硫黄を蒸気で供給される電極
構造を有することを特徴とするナトリウム硫黄電池。
4. A cylindrical long solid electrolyte body through which Na ions can pass, and electrically connected to a container arranged through the solid electrolyte body and holding a negative electrode active material containing sodium as an essential component. In a sodium-sulfur battery including a negative electrode and a positive electrode electrically connected to a container holding a positive electrode active material composed of a molten salt containing sulfur or sodium polysulfide as a main component, the negative electrode active material is a solid electrolyte material. The inside and the positive electrode active material are provided in a battery container outside the solid electrolyte body, and the positive electrode has an electrode structure in which the positive electrode active material naturally circulates at an operating temperature and the sulfur is supplied by steam. A sodium sulfur battery characterized by the following.
【請求項5】Naイオンが通過可能な筒型長尺な固体電
解質体と、該固体電解質体を介して配置されたナトリウ
ムを必須成分とする負極活物質を保持する容器に電気的
に接続された負極及び硫黄または多硫化ナトリウムを主
成分とする溶融塩から成る正極活物質を保持する容器に
電気的に接続された正極とを備えたナトリウム硫黄電池
において、前記負極活物質は前記固体電解質体の内部及
び前記正極活物質は前記固体電解質体の外側に配置さ
れ、前記正極活物質の前記硫黄が自然循環又は蒸気で供
給される容器構造を有する硫黄極と、該硫黄極と前記固
体電解質体との間に設けられ前記多硫化ナトリウムを保
持する容器構造を有する多硫化ナトリウム極とを有する
ことを特徴とするナトリウム硫黄電池。
5. A cylindrical long solid electrolyte body through which Na ions can pass, and a container which holds a negative electrode active material containing sodium as an essential component and which is disposed via the solid electrolyte body. A negative electrode and a positive electrode electrically connected to a container holding a positive electrode active material composed of a molten salt containing sulfur or sodium polysulfide as a main component, wherein the negative electrode active material is the solid electrolyte Inside and the positive electrode active material are disposed outside the solid electrolyte body, a sulfur electrode having a container structure in which the sulfur of the positive electrode active material is supplied by natural circulation or steam, the sulfur electrode and the solid electrolyte body And a sodium polysulfide electrode having a container structure for holding the sodium polysulfide.
【請求項6】Naイオンが通過可能な筒型長尺な固体電
解質体と、該固体電解質体を介して配置されたナトリウ
ムを必須成分とする負極活物質を保持する容器に電気的
に接続された負極及び硫黄または多硫化ナトリウムを主
成分とする溶融塩から成る正極活物質を保持する容器に
電気的に接続された正極とを備えたナトリウム硫黄電池
において、前記負極活物質は前記固体電解質体の内部及
び前記正極活物質は前記固体電解質体の外側で電池容器
内に設けられ、前記正極は前記硫黄が自然循環又は蒸気
で供給される構造を有する硫黄電極、前記多硫化ナトリ
ウムを前記硫黄電極と前記固体電解質体との間に設けら
れ前記多硫化ナトリウムを保持した多硫化ナトリウム電
極及び前記硫黄電極の外側に設けられた集電極を備えた
ことを特徴とするナトリウム硫黄電池。
6. An elongated cylindrical solid electrolyte body through which Na ions can pass, and electrically connected to a container holding a negative electrode active material containing sodium as an essential component and disposed via the solid electrolyte body. A negative electrode and a positive electrode electrically connected to a container holding a positive electrode active material composed of a molten salt containing sulfur or sodium polysulfide as a main component, wherein the negative electrode active material is the solid electrolyte Inside and the positive electrode active material are provided in a battery container outside the solid electrolyte body, and the positive electrode is a sulfur electrode having a structure in which the sulfur is supplied by natural circulation or steam, and the sodium polysulfide is a sulfur electrode. A sodium polysulfide electrode provided between the solid electrolyte body and the solid electrolyte body, and a collector electrode provided outside the sulfur electrode. Thorium sulfur battery.
【請求項7】Naイオンが通過可能な筒型長尺な固体電
解質体と、該固体電解質体を介して配置されたナトリウ
ムを必須成分とする負極活物質を保持する容器に電気的
に接続された負極と、硫黄または多硫化ナトリウムを主
成分とする溶融塩から成る正極活物質を保持する容器に
電気的に接続された正極とを備えたナトリウム硫黄電池
において、前記負極活物質は前記固体電解質体の内部及
び前記正極活物質は前記固体電解質体の外側で電池容器
内に設けられ、前記正極活物質の前記硫黄が自然循環又
は蒸気で供給される容器構造を有する硫黄電極及び前記
硫黄極と前記固体電解質体との間に設けられ多硫化ナト
リウムを保持した容器構造を有する多硫化ナトリウム電
極を備え、前記固体電解質体と多硫化ナトリウム極との
間に高抵抗層を設けたことを特徴とするナトリウム硫黄
電池。
7. A cylindrical, long solid electrolyte body through which Na ions can pass, and an electrically connected container arranged through the solid electrolyte body to hold a negative electrode active material containing sodium as an essential component. A negative electrode, and a positive electrode electrically connected to a container holding a positive electrode active material comprising a molten salt containing sulfur or sodium polysulfide as a main component, wherein the negative electrode active material is the solid electrolyte Inside the body and the positive electrode active material is provided in a battery container outside the solid electrolyte body, and the sulfur electrode and the sulfur electrode having a container structure in which the sulfur of the positive electrode active material is supplied by natural circulation or steam. A sodium polysulfide electrode provided between the solid electrolyte body and the sodium polysulfide electrode and having a container structure holding sodium polysulfide; and a high resistance layer provided between the solid electrolyte body and the sodium polysulfide electrode. Sodium sulfur battery, characterized in that the.
【請求項8】Naイオンが通過可能な筒型長尺な固体電
解質体と、該固体電解質体を介して配置されたナトリウ
ムを必須成分とする負極活物質を保持する容器に電気的
に接続された負極と、硫黄または多硫化ナトリウムを主
成分とする溶融塩から成る正極活物質を保持する容器に
電気的に接続された正極とを備えたナトリウム硫黄電池
において、前記負極と正極とが電気絶縁材を介して接続
され、前記正極活物質を保持する容器と電気絶縁材との
接合部に液体状の前記正極活物質が接触しない構造を有
することを特徴とするナトリウム硫黄電池。
8. A cylindrical long solid electrolyte body through which Na ions can pass, and an electrically connected container which holds a negative electrode active material containing sodium as an essential component and disposed through the solid electrolyte body. A negative electrode, and a positive electrode electrically connected to a container holding a positive electrode active material composed of a molten salt containing sulfur or sodium polysulfide as a main component, wherein the negative electrode and the positive electrode are electrically insulated. A sodium-sulfur battery having a structure in which a liquid positive electrode active material is not in contact with a junction between a container holding the positive electrode active material and an electrical insulating material, which is connected via a material.
【請求項9】請求項4〜8のいづれかにおいて、前記固
体電解質体が地平線に対して横に設置されていることを
特徴とするナトリウム硫黄電池。
9. The sodium-sulfur battery according to claim 4, wherein said solid electrolyte body is provided laterally to a horizon.
【請求項10】Naイオンが通過可能な筒型長尺な固体
電解質体と、該固体電解質体を介して配置されたナトリ
ウムを必須成分とする負極活物質を保持する容器に電気
的に接続された負極と、硫黄または多硫化ナトリウムを
主成分とする溶融塩から成る正極活物質を保持する容器
に電気的に接続された正極とを備えたナトリウム硫黄電
池が一つの容器に複数個収納され、前記正極活物質は前
記固体電解質体の外側で前記容器内に設けられ、前記正
極活物質を保持する容器は前記正極活物質が自然循環又
は蒸気によって供給される構造を有することを特徴とす
るナトリウム硫黄電池モジュール。
10. A cylindrical, long solid electrolyte body through which Na ions can pass, and a container which is disposed through said solid electrolyte body and holds a negative electrode active material containing sodium as an essential component. A plurality of sodium-sulfur batteries having a negative electrode and a positive electrode electrically connected to a container holding a positive electrode active material composed of a molten salt containing sulfur or sodium polysulfide as a main component are contained in one container, The positive electrode active material is provided in the container outside the solid electrolyte body, and the container holding the positive electrode active material has a structure in which the positive electrode active material is supplied by natural circulation or steam. Sulfur battery module.
【請求項11】請求項10において、前記電池の各々を
地平線に対して水平に設置したことを特徴とするナトリ
ウム硫黄電池モジュール。
11. The sodium-sulfur battery module according to claim 10, wherein each of the batteries is installed horizontally with respect to the horizon.
JP2000185202A 2000-06-20 2000-06-20 Sodium-sulfur battery and module using the same Pending JP2002008712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000185202A JP2002008712A (en) 2000-06-20 2000-06-20 Sodium-sulfur battery and module using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000185202A JP2002008712A (en) 2000-06-20 2000-06-20 Sodium-sulfur battery and module using the same

Publications (1)

Publication Number Publication Date
JP2002008712A true JP2002008712A (en) 2002-01-11

Family

ID=18685555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000185202A Pending JP2002008712A (en) 2000-06-20 2000-06-20 Sodium-sulfur battery and module using the same

Country Status (1)

Country Link
JP (1) JP2002008712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10629959B2 (en) 2014-02-07 2020-04-21 Basf Se Electrode unit for an electrochemical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10629959B2 (en) 2014-02-07 2020-04-21 Basf Se Electrode unit for an electrochemical device

Similar Documents

Publication Publication Date Title
US3518123A (en) Metal/air battery
CN108140816B (en) Positive electrode composition for over-discharge protection
KR102339641B1 (en) Sodium-Aluminum Battery with Sodium Ion Conductive Ceramic Separator
KR20160077063A (en) Self healing liquid/solid state battery
US9537179B2 (en) Intermediate temperature sodium-metal halide battery
KR101757511B1 (en) Molten salt battery
CN209843832U (en) Liquid metal battery
CN100561791C (en) The fuel cell that has improved electrolyte management and electrically contacted is with nonactive end cell assembly
EP3050153B1 (en) Intermediate temperature sodium-metal halide battery
JPH04230963A (en) Electrochemical cell
JP2002008712A (en) Sodium-sulfur battery and module using the same
CN209434340U (en) The device of battery unit and the battery case for manufacturing battery unit
KR101255242B1 (en) Electrochemical cell
JP2001243975A (en) Sodium sulfur battery, its usage and module using the same
KR100502315B1 (en) Electrode assembly of cell
CN115224283B (en) Negative current collector and liquid metal battery
JP2002298908A (en) Sodium secondary battery
JPH0665071B2 (en) Fluid sodium-sulfur battery
JP2612894B2 (en) Sodium-sulfur battery
JPS6155871A (en) Natrium-sulphur battery
JP2003331913A (en) Sodium-sulfur battery
JPH03219567A (en) Natural circulation type sodium-sulfur battery
JP2004227860A (en) Sodium-sulfur cell and small laminated cell thereof
CN114497763A (en) Movable interface stabilizing device for liquid metal battery and liquid metal battery
JP2004103422A (en) Sodium sulfur battery and its stacked type battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050920