JPH0665071B2 - Fluid sodium-sulfur battery - Google Patents

Fluid sodium-sulfur battery

Info

Publication number
JPH0665071B2
JPH0665071B2 JP63060015A JP6001588A JPH0665071B2 JP H0665071 B2 JPH0665071 B2 JP H0665071B2 JP 63060015 A JP63060015 A JP 63060015A JP 6001588 A JP6001588 A JP 6001588A JP H0665071 B2 JPH0665071 B2 JP H0665071B2
Authority
JP
Japan
Prior art keywords
sodium
battery
sulfur
active material
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63060015A
Other languages
Japanese (ja)
Other versions
JPH01235168A (en
Inventor
尚志 相馬
博見 床井
直久 綿引
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63060015A priority Critical patent/JPH0665071B2/en
Publication of JPH01235168A publication Critical patent/JPH01235168A/en
Publication of JPH0665071B2 publication Critical patent/JPH0665071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は流動型ナトリウム−硫黄電池とその製造方法に
係り、特に簡単な構造で電池の大容量化と放電特性の安
定化を図るに好適な流動型ナトリウム−硫黄電池とその
製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a fluidized sodium-sulfur battery and a method for manufacturing the same, and is particularly suitable for achieving a large-capacity battery and stabilizing discharge characteristics with a simple structure. Fluid sodium-sulfur battery and its manufacturing method.

〔従来の技術〕[Conventional technology]

従来のナトリウム−硫黄電池は第6図に示すように構成
されていた。図において、陽極を形成する電池容器1の
蓋体2には、有底円筒状の固体電解質3の上端が絶縁部
材4を介して取り付けられており、この固体電解質3は
前記電池容器1内に同心状に挿入されている。この固体
電解質3はナトリウムイオンに対して伝導性のある材
料、例えばガラスまたはセラミックで形成されている。
また最近ではこの固体電解質3とさらにナトリウムイオ
ンの伝導性に優れたβ″−アルミナあるいはβ−アルミ
ナで形成して、このβ″−アルミナが電子伝導性がない
特性を利用して、陰極と陽極を分離するセパレータの機
能をもたせたものもある。また前記蓋体2の中心には陰
極を形成する電極5が取り付けられ、前記固体電解質3
内に挿入されている。また前記電池容器1と固体電解質
3との間には、溶融硫黄と多硫化ナトリウムとからなる
陽極活物質6が充填されており、固体電解質3の内側に
は溶融ナトリウムからなる陰極活物質7が充填されてい
る。さらに陽極活物質6として用いる硫黄は電子伝導性
が小さいため、補助導電材8を陽極活物質6に含浸し
て、電気化学反応に伴う電子の授受を促進するようにし
ている。この補助導電材8としては、繊維状グラファイ
トやカーボンなどが用いられている。上記のように構成
されているナトリウム−硫黄電池は封止型ナトリウム−
硫黄電池と呼ばれている。
The conventional sodium-sulfur battery is constructed as shown in FIG. In the figure, the upper end of a cylindrical solid electrolyte 3 having a bottom is attached to a lid 2 of a battery container 1 forming an anode via an insulating member 4, and the solid electrolyte 3 is placed inside the battery container 1. It is inserted concentrically. The solid electrolyte 3 is made of a material having conductivity with sodium ions, such as glass or ceramic.
Further, recently, the solid electrolyte 3 and β ″ -alumina or β-alumina, which is more excellent in conductivity of sodium ions, are used to form a cathode and an anode by utilizing the characteristic that the β ″ -alumina has no electronic conductivity. Some have the function of a separator that separates. Further, an electrode 5 forming a cathode is attached to the center of the lid 2, and the solid electrolyte 3
Has been inserted inside. An anode active material 6 made of molten sulfur and sodium polysulfide is filled between the battery container 1 and the solid electrolyte 3, and a cathode active material 7 made of molten sodium is provided inside the solid electrolyte 3. It is filled. Further, since sulfur used as the anode active material 6 has a low electron conductivity, the auxiliary conductive material 8 is impregnated in the anode active material 6 so as to promote the transfer of electrons accompanying the electrochemical reaction. As the auxiliary conductive material 8, fibrous graphite, carbon, or the like is used. The sodium-sulfur battery configured as described above is a sealed sodium-
It is called a sulfur battery.

次に上記のように構成された従来の封止型ナトリウム−
硫黄電池の作用について説明する。電池の作動温度は陽
極活物質である多硫化ナトリウムの融点から考えて30
0℃以上が有効である。充放電反応は下記の式(1),(2)
によって行なわれる。
Next, the conventional sealed sodium-
The operation of the sulfur battery will be described. The operating temperature of the battery is 30 considering the melting point of sodium polysulfide, which is the anode active material.
0 ° C or higher is effective. The charge / discharge reaction is expressed by the following equations (1), (2)
Done by.

そして電池全体としての充放電反応は下記の式(3)で示
すようになる。
The charging / discharging reaction of the battery as a whole is represented by the following equation (3).

上記各式におけるxは通常のナトリウム−硫黄電池で
は、5乃至3の範囲で変化する。
In the above formulas, x varies in the range of 5 to 3 in a normal sodium-sulfur battery.

上述したナトリウム−硫黄電池においては、電解質3が
β″−アルミナなどの固体であり、活物質としてナトリ
ウムと硫黄を溶融状態で使用するため、下記に示すよう
な特性を具備している。
In the sodium-sulfur battery described above, the electrolyte 3 is a solid such as β ″ -alumina, and sodium and sulfur are used as active materials in a molten state, so that the electrolyte 3 has the following characteristics.

(1)充放電の際に副反応が発生せず、自己放電がないた
め、充電された全容量を放電することができる。
(1) Since side reactions do not occur during charging and discharging and there is no self-discharge, the entire charged capacity can be discharged.

(2)理論エネルギー密度が高く、従来の鉛蓄電池の4倍
程度であり、約780wh/kgとすることが可能である。
(2) The theoretical energy density is high, which is about four times that of conventional lead-acid batteries, and can be set to about 780 wh / kg.

(3)活物質として使用するナトリウムと硫黄は電気化学
当量が極めて小さく、かつ資源的にも豊富で安価である
ため、省資源、省エネルギーの面から有効である。
(3) Since sodium and sulfur used as active materials have extremely small electrochemical equivalents, are abundant in resources, and inexpensive, they are effective in terms of resource saving and energy saving.

上記の封止型ナトリウム−硫黄電池に比較して、さらに
出力電圧を一定にし電池容量を容易に増大することので
きる電池として、同一出願人により提案され特開昭60
−17869号公報に記載された、流動型ナトリウム−
硫黄電池が公知である。この電池は第7図に示すように
構成されている。図において、第6図に示す封止型ナト
リウム−硫黄電池と同一または同等部分には同一符号を
付して示す。電池容器1は絶縁部材4を介して左右の容
器壁がそれぞれ陽極及び陰極を形成し、電極9,10に
接続されており、電池容器1の左右の電槽は固体電解質
3によって隔離されている。また電池の外部にはそれぞ
れ陽極活物質としての溶融硫黄6を貯蔵する貯蔵容器1
1と、陰極活物質としての溶融ナトリウム7を貯蔵する
貯蔵容器12とが設けられている。またこれらの貯蔵容
器11,12は、それぞれにポンプ13,14及び電磁
開閉弁15,16が設けられた配管17,18により、
それぞれ前記電池容器1の左右の電槽に接続されてい
る。さらに電池容器1の陽極側電槽には貯蔵容器19が
接続されており、電極9,10及び電磁開閉弁15,1
6はそれぞれ制御装置20に電気的に接続されている。
Compared with the above-mentioned sealed type sodium-sulfur battery, a battery capable of easily increasing the battery capacity while keeping the output voltage constant has been proposed by the same applicant.
-Fluidic sodium described in JP-A-17869-
Sulfur batteries are known. This battery is constructed as shown in FIG. In the figure, parts that are the same as or equivalent to those of the sealed sodium-sulfur battery shown in FIG. In the battery container 1, the left and right container walls form an anode and a cathode via an insulating member 4 and are connected to electrodes 9 and 10. The left and right battery cells of the battery container 1 are isolated by a solid electrolyte 3. . A storage container 1 for storing molten sulfur 6 as an anode active material is provided outside the battery.
1 and a storage container 12 for storing molten sodium 7 as a cathode active material. In addition, these storage containers 11 and 12 are provided with pipes 17 and 18 provided with pumps 13 and 14 and electromagnetic opening / closing valves 15 and 16, respectively.
Each is connected to the left and right battery cases of the battery container 1. Further, a storage container 19 is connected to the anode-side battery case of the battery container 1, and the electrodes 9 and 10 and the electromagnetic opening / closing valves 15 and 1 are connected.
Each of 6 is electrically connected to the control device 20.

次に上記のように構成された従来の流動型ナトリウム−
硫黄電池の作用について説明する。貯蔵容器11,12
にそれぞれ貯蔵された陽極活物質6及び陰極活物質7
は、ポンプ13,14によって電池容器1の左右の電槽
内に導入され、電池が形成される。そして電極9,10
間の電圧値及び電流値を制御装置20により検出して、
放電終了点に到達した段階で電池容器1の陽極側電槽内
にある陽極活物質6を貯蔵容器19内に排出し、同時に
新しい陽極活物質6及び陰極活物質7をそれぞれ貯蔵容
器11,12から電池容器1の左右の電槽に補充する。
この流動型ナトリウム−硫黄電池によると、活物質6,
7を外部から供給し、前記式(3)におけるxを5に保っ
て充放電するために、下記に示すような利点が生じる。
Next, the conventional fluidized sodium having the above-mentioned structure is used.
The operation of the sulfur battery will be described. Storage containers 11, 12
Anode active material 6 and cathode active material 7 respectively stored in
Are introduced into the left and right battery cases of the battery container 1 by the pumps 13 and 14 to form a battery. And the electrodes 9, 10
By detecting the voltage value and the current value between them by the control device 20,
When the discharge end point is reached, the anode active material 6 in the anode side battery case of the battery container 1 is discharged into the storage container 19, and at the same time, new anode active material 6 and cathode active material 7 are respectively stored in the storage containers 11 and 12. To the left and right battery cases of the battery container 1.
According to this fluidized sodium-sulfur battery, the active material 6,
Since 7 is supplied from the outside and x in the above formula (3) is maintained at 5 for charging and discharging, the following advantages occur.

(1)電池容器1の外部から供給する活物質6,7の総量
を増すことにより、電池容量を容易に増大することがで
きる。
(1) The battery capacity can be easily increased by increasing the total amount of the active materials 6 and 7 supplied from the outside of the battery container 1.

(2)電池容器1の陽極側の電槽の厚さを薄くすることが
できるため、電池の内部抵抗を小さくし、高いエネルギ
ー効率を得ることができる。
(2) Since the thickness of the battery case on the anode side of the battery container 1 can be reduced, the internal resistance of the battery can be reduced and high energy efficiency can be obtained.

(3)放電量(Ah)に関係なく一定の出力電圧を得るこ
とができる。
(3) A constant output voltage can be obtained regardless of the discharge amount (Ah).

(4)腐食性の強い低硫化物の生成が防止できる。(4) The formation of highly corrosive low sulfide can be prevented.

上記のような特性のため、この流動型ナトリウム−硫黄
電池は、将来の電力貯蔵用二次電池として有望視されて
いる。
Due to the above characteristics, the fluidized sodium-sulfur battery is regarded as a promising future secondary battery for power storage.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

第6図に示す従来の封止型ナトリウム−硫黄電池の電圧
特性の一例を第8図に示す。この特性は容量が約50Wh
の電池で電流密度が約100mA/cm2の場合のものであ
り、端子電圧は放電時にはNa→Na→N
と低硫化物の生成とともに低下する。また電流
密度が約25mA/cm2の充電時には逆にNa→Na
→Na→Sと変化して、充電末期には電気
絶縁物であるSが固体電解質の表面に生成し、電池の内
部抵抗が増大する。このため端子電圧が急増して充電不
可能となる。また電流密度を上げた場合にはさらに急激
に端子電圧が上昇するため、電池容量を有効に利用する
ことができない。また電池容量を増大するためには、活
物質の充填量を増加させる必要があり、電池容器の陽極
側電槽を厚くしなければならない。この結果電池の内部
抵抗が増大し、エネルギー効率を低下させるなどの問題
があった。
FIG. 8 shows an example of voltage characteristics of the conventional sealed sodium-sulfur battery shown in FIG. This characteristic has a capacity of about 50Wh
Battery with a current density of about 100 mA / cm 2 , and the terminal voltage during discharge is Na 2 S 5 → Na 2 S 4 → N
It decreases with the formation of a 2 S 3 and low sulfide. When charging at a current density of about 25 mA / cm 2 , conversely, Na 2 S 3 → Na
2 S 4 → Na 2 S 5 → S, and S, which is an electrical insulator, is generated on the surface of the solid electrolyte at the end of charging, and the internal resistance of the battery increases. Therefore, the terminal voltage increases rapidly and charging becomes impossible. Further, when the current density is increased, the terminal voltage rises more rapidly, so that the battery capacity cannot be effectively used. Further, in order to increase the battery capacity, it is necessary to increase the filling amount of the active material, and it is necessary to thicken the anode side battery case of the battery container. As a result, there has been a problem that the internal resistance of the battery is increased and the energy efficiency is lowered.

一方、第7図に示す従来の流動型ナトリウム−硫黄電池
においては、充電時に陽極活物質の流動により、固体電
解質表面に生成する硫黄の絶縁層を外部へ流し出すこと
ができ、充電時の電圧上昇を防止することができる。ま
た活物質を外部から供給できるため陽極側電槽を厚くす
ることなく、電池容量を容易に増大することができる。
しかしながら、ナトリウム−硫黄電池を用いて電力貯蔵
に必要な100MWh級電力貯蔵システムを構成する場
合、数万本から数十万本という多数の電池が必要とな
る。これらの電池にそれぞれ活物質を供給するための配
管を設けることは、電力貯蔵システムを複雑にしコスト
を増加させるという問題があった。また前述したように
電池作動温度が300℃以上であるため、活物質を液体
で輸送するための配管を300℃以上に保温する必要が
あり、この結果配管の熱膨張対策が必要となるという問
題もあった。
On the other hand, in the conventional fluidized sodium-sulfur battery shown in FIG. 7, the flow of the anode active material during charging allows the insulating layer of sulfur generated on the surface of the solid electrolyte to flow out to the outside, and the voltage during charging can be increased. The rise can be prevented. Further, since the active material can be supplied from the outside, the battery capacity can be easily increased without increasing the thickness of the battery container on the anode side.
However, when configuring a 100 MWh class power storage system required for power storage using sodium-sulfur batteries, a large number of batteries of tens of thousands to hundreds of thousands are required. Providing piping for supplying the active material to each of these batteries has a problem that the power storage system is complicated and the cost is increased. Further, as described above, since the battery operating temperature is 300 ° C. or higher, it is necessary to keep the temperature of the pipe for transporting the active material as a liquid at 300 ° C. or higher, and as a result, it is necessary to take measures against thermal expansion of the pipe. There was also.

本発明は上記事情に鑑みてなされたもので、複雑な配管
を必要としない簡単な構造で、高性能の流動型ナトリウ
ム−硫黄電池を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a high-performance fluidized sodium-sulfur battery with a simple structure that does not require complicated piping.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的を達成するために、本発明は、電池容器内をナ
トリウムイオンが通過可能な固体電解質により隔離して
2個の電槽を形成し、一方の電槽には陰極活物質である
ナトリウムが、他方の電槽には陽極活物質である硫黄ま
たは多硫化ナトリウムがそれぞれ充填され、かつ前記陽
極活物質が硫黄と多硫化ナトリウムに二層に分離する流
動型ナトリウム−硫黄電池において、前記固体電解質の
少くとも一方の面に沿って、前記硫黄に対する接触角よ
りも前記多硫化ナトリウムに対する接触角が小さい多孔
質電子伝導材を装着したものである。
In order to achieve the above object, the present invention separates the inside of a battery container by a solid electrolyte through which sodium ions can pass to form two battery cases, and one battery contains sodium as a cathode active material. In the fluidized sodium-sulfur battery in which the other battery case is filled with sulfur or sodium polysulfide as an anode active material, respectively, and the anode active material is separated into sulfur and sodium polysulfide into two layers, A porous electron conductive material having a smaller contact angle with respect to the sodium polysulfide than the contact angle with respect to the sulfur is attached along at least one surface of the above.

また、電池容器内の陽極活物質が充填された電槽内に、
陽極活物質の一部と固体電解質とを隔離する隔壁を設け
るとともに、該隔壁を貫通して固体電解質の表面に沿っ
て設けられた多孔質電子伝導材を延設すると、後記する
理由により効果的である。
Also, in the battery case filled with the anode active material in the battery container,
It is effective to provide a partition wall that separates a part of the anode active material and the solid electrolyte, and to extend a porous electron conductive material that is provided along the surface of the solid electrolyte and penetrates the partition wall. Is.

そして、前記多孔質電子伝導材は、予め多硫化ナトリウ
ムに浸漬した後に固体電解質に沿って装着するようにす
る。
Then, the porous electron conductive material is immersed in sodium polysulfide in advance and then mounted along the solid electrolyte.

〔作用〕[Action]

陽極活物質である硫黄と多硫化ナトリウムは親和性に乏
しく、密度の小さい硫黄が上部に、密度の大きい多硫化
ナトリウムが下部に二相分離する。また多孔質体が流体
に作用する毛細管力は、流体の表面張力と多孔質体との
接触角、すなわちぬれ性の大小に依存する。そしてナト
リウム−硫黄電池の運転温度である300℃乃至350
℃においては、多硫化ナトリウムの表面張力は硫黄より
大きい。従って前記のように構成した本発明によると、
固体電解質の表面近傍に装着した、多硫化ナトリウムに
対してぬれ性のよい多孔質電子伝導材の毛細管力は、硫
黄よりも多硫化ナトリウムに対して大きくなる。このた
め、充電時には、陽極下部に沈降していた多硫化ナトリ
ウムが多孔質電子伝導材によって選択的に吸い上げら
れ、固体電解質の表面に供給される。同時に、固体電解
質の表面に生成した硫黄は排除されるため、充電時にお
ける端子電圧の上昇を防止することができる。また毛細
管力によって多硫化ナトリウムを供給するため、従来の
ような多数の配管を必要とすることなく、電池容量を容
易に増大することができる。また多孔質電子伝導材は予
め多硫化ナトリウムでぬらされているため、初充電時の
電池の内部抵抗を低下させることができる。
Sulfur and sodium polysulfide, which are anode active materials, have a poor affinity, and low-density sulfur is separated into the upper part and high-density sodium polysulfide is separated into the lower part. The capillary force acting on the fluid by the porous body depends on the surface tension of the fluid and the contact angle with the porous body, that is, the wettability. And the operating temperature of the sodium-sulfur battery is 300 ° C to 350 ° C.
At ° C, the surface tension of sodium polysulfide is greater than that of sulfur. Therefore, according to the present invention configured as described above,
The capillary force of the porous electron conductive material mounted near the surface of the solid electrolyte and having good wettability with sodium polysulfide is larger with sodium polysulfide than with sulfur. Therefore, at the time of charging, the sodium polysulfide precipitated in the lower part of the anode is selectively sucked up by the porous electron conductive material and supplied to the surface of the solid electrolyte. At the same time, sulfur generated on the surface of the solid electrolyte is removed, so that it is possible to prevent the terminal voltage from rising during charging. Further, since sodium polysulfide is supplied by the capillary force, the battery capacity can be easily increased without requiring a large number of pipes as in the conventional case. Further, since the porous electron conductive material is wet with sodium polysulfide in advance, the internal resistance of the battery at the time of initial charging can be reduced.

〔実施例〕〔Example〕

以下、本発明に係る流動型ナトリウム−硫黄電池の実施
例を、図面を参照して説明する。
Hereinafter, examples of the fluidized sodium-sulfur battery according to the present invention will be described with reference to the drawings.

第1図に本発明の第1の実施例を示す。図において、第
6図に示す従来例と同一または同等部分には同一符号を
付して示し、説明を省略する。本施例の特徴は、補助導
電材として多孔質電子伝導材21を固体電解質3に沿っ
て装着した点にある。この多孔質電子伝導材21は硫黄
に比べ多硫化ナトリウムとのぬれ性がよい、すなわち硫
黄との接触角が小さい多孔質の部材で形成されている。
この部材の一例としては、ステンレス鋼製の350番
(線径28μm、開目44μm、1インチ当り350本
の鋼線で形成されたもの)のメッシュを3枚重ねて構成
されており、前記固体電解質3の陽極側の表面に沿っ
て、僅かな間隙を介して上端から下端まで装着されてお
り、さらに下端は電池容器1の下端近傍まで延設されて
いる。ここでステレス鋼と多流化ナトリウムの一つであ
る四硫化ナトリウム及び硫黄との接触角は、The Sulfur
Electrode(RagnerP.Tischer著)P.71に記載されて
いるように、それぞれ0度乃至5度及び20度乃至30
度であり、ステンレス鋼に対する四硫化ナトリウムの接
触角は硫黄に比べて遥かに小さい。また固体電解質3の
陰極側の表面にも同様のステンレス鋼製メッシュ22が
装着されている。そして前記電子伝導材21及びこのメ
ッシュ22は、電池製造時に陽極活物質6として例えば
70grの五硫化ナトリウムを充填して放電状態の電池を
作製し、約350℃に昇温して約24時間保持し、五硫
化ナトリウムにぬらす前処理が施されている。また絶縁
部材4としてはα−アルミナが用いられている。また前
記固体電解質3の陽極側表面に装着された多孔質電子伝
導材21の外側には、電池容器1の内面との間に陽極活
物質6の流路を形成する集電電極23が設けられてお
り、この集電電極23の下端は電池容器1の底面近傍ま
で延設されている。そして電子伝導材21と集電電極2
3とはリード線24により電気的に接続されており、電
子伝導材21と集電電極23との間に流路を形成する空
間と、集電電極23と電池容器1との間に形成される陽
極活物質6の貯蔵空間とは、上下端がそれぞれ出入口2
5で接続されている。
FIG. 1 shows a first embodiment of the present invention. In the figure, parts that are the same as or equivalent to those in the conventional example shown in FIG. The feature of this embodiment is that a porous electron conductive material 21 is attached as an auxiliary conductive material along the solid electrolyte 3. The porous electron conductive material 21 is formed of a porous member having better wettability with sodium polysulfide than sulfur, that is, a contact angle with sulfur is small.
As an example of this member, three pieces of stainless steel mesh No. 350 (wire diameter 28 μm, opening 44 μm, formed of 350 steel wires per inch) are stacked, and the solid Along the surface of the electrolyte 3 on the anode side, a small gap is provided from the upper end to the lower end, and the lower end is extended to the vicinity of the lower end of the battery container 1. Here, the contact angle between the stainless steel and sodium tetrasulfide, which is one of the multi-fluidized sodium, and sulfur is the Sulfur
Electrode (Ragner P. Tischer) P. 71, 0 degrees to 5 degrees and 20 degrees to 30 degrees, respectively.
The contact angle of sodium tetrasulfide with stainless steel is much smaller than that of sulfur. A similar stainless steel mesh 22 is also attached to the surface of the solid electrolyte 3 on the cathode side. The electron conductive material 21 and the mesh 22 are filled with, for example, 70 gr of sodium pentasulfide as the anode active material 6 to manufacture a battery in a discharged state, and the battery is heated to about 350 ° C. and kept for about 24 hours. However, it is pretreated by wetting it with sodium pentasulfide. Further, α-alumina is used as the insulating member 4. A collector electrode 23 that forms a flow path for the anode active material 6 between itself and the inner surface of the battery container 1 is provided outside the porous electron conductive material 21 attached to the surface of the solid electrolyte 3 on the anode side. The lower end of the current collecting electrode 23 extends to near the bottom surface of the battery container 1. Then, the electron conductive material 21 and the collecting electrode 2
3 is electrically connected by a lead wire 24, and is formed between a space forming a flow path between the electron conductive material 21 and the current collecting electrode 23 and between the current collecting electrode 23 and the battery container 1. The upper and lower ends of the storage space for the anode active material 6 are the entrance and exit 2 respectively.
Connected with 5.

次に本実施例による電池の充放電時における動作を第2
図を参照して説明する。放電初期には(1)に示すように
陽極部は硫黄26で満たされている。放電が進むに従っ
て多孔質電子伝導材21中に五硫化ナトリウムが生成
し、この電子伝導材21で保持できない密度の大きな五
硫化ナトリウム27は、(2)で示すように硫黄26と二
相に分離する。そして矢印Aの方向に沈澱して電池容器
1の下部へ貯蔵される。また硫黄26は矢印Bの方向に
流動する。さらに放電が進み、(3)で示すように陽極活
物質がほとんどで多硫化ナトリウム27で満たされた時
点で、放電を終了する。このとき放電により陰極活物質
7であるナトリウムが陽極側に移動して液面が低下し、
固体電解質3の上部が露出するが、固体電解質3の陰極
側に設けられたメッシュ22により固体電解質3の表面
全体にナトリウムが供給される。
Next, the second operation of charging and discharging the battery according to this embodiment will be described.
It will be described with reference to the drawings. At the initial stage of discharge, the anode part is filled with sulfur 26 as shown in (1). As the discharge progresses, sodium pentasulfide is generated in the porous electron conductive material 21, and sodium pentasulfide 27 having a high density which cannot be retained by the electron conductive material 21 is separated into sulfur 26 and two phases as shown in (2). To do. Then, it precipitates in the direction of arrow A and is stored in the lower portion of the battery container 1. Further, the sulfur 26 flows in the direction of arrow B. When the discharge further progresses and the anode active material is almost filled with sodium polysulfide 27 as shown in (3), the discharge is completed. At this time, the discharge causes sodium, which is the cathode active material 7, to move to the anode side to lower the liquid level,
Although the upper portion of the solid electrolyte 3 is exposed, sodium is supplied to the entire surface of the solid electrolyte 3 by the mesh 22 provided on the cathode side of the solid electrolyte 3.

充電初期には(4)に示すように陽極はほぼ五硫化ナトリ
ウム27で満たされている。充電の進行に伴ない多孔質
電子伝導材21中に硫黄26が生成する。このときこの
電子伝導材21は硫黄26に比べ五硫化ナトリウム27
にぬれやすいため、硫黄26は電子伝導材21中からこ
の電子伝導材21と集電電極23との間の空間へ排出さ
れる。この排出された硫黄26は五硫化ナトリウム27
により密度が小さいため、(5)に示すように矢印Dの方
向に陽極上部に浮上し、さらに矢印Cの方向に流動す
る。充電作用によって消費された量の五硫化ナトリウム
27は、毛細管力により電子伝導材21中を陽極下部か
ら吸い上げられ、矢印Dの方向に流動する。さらに充電
が進み、(6)に示すように陽極がほとんど硫黄26に変
換された時点で充電を終了する。
At the beginning of charging, the anode is almost filled with sodium pentasulfide 27 as shown in (4). With the progress of charging, sulfur 26 is generated in the porous electron conductive material 21. At this time, the electron conductive material 21 is sodium pentasulfide 27 as compared with sulfur 26.
Since it is easy to get wet with sulfur, the sulfur 26 is discharged from the electron conductive material 21 to the space between the electron conductive material 21 and the collector electrode 23. The discharged sulfur 26 is sodium pentasulfide 27.
As a result, since the density is low, as shown in (5), it floats above the anode in the direction of arrow D and further flows in the direction of arrow C. The amount of sodium pentasulfide 27 consumed by the charging action is sucked up in the electron conductive material 21 from the lower part of the anode by the capillary force and flows in the direction of arrow D. The charging is further advanced, and the charging is terminated when the anode is almost converted to the sulfur 26 as shown in (6).

定電流充放電時の固体電解質3の単位面積当りの電流密
度を80mA/cm2とすると、端子間における電圧特性は第
3図に示すようになる。図において、白丸及び黒丸は実
験により測定されたそれぞれ充電電圧及び放電電圧を示
す。図に示されたように、本実施例の電池によれば充電
電圧26及び放電電圧27は、ともに従来の流動型ナト
リウム−硫黄電池と同様に、ほぼ一定の端子電圧が得ら
れた。本実験では陽極活物質6が五硫化ナトリウムにな
った時点で放電を終了させたが、さらに陽極活物質が四
硫化ナトリウム、三硫化ナトリウムになるまで放電を継
続することもできる。また本実験では電池の運転温度を
350℃としたが、このときにおける五硫化ナトリウム
の表面張力は約130dyn/cm2であり、五硫化ナトリウ
ム27の電子伝導材21内を上昇する到達可能高さは3
5cmとなる。一方、絶縁部材4から電池容器1の底部に
至る陽極高さは10cmであるので、充電末期で五硫化ナ
トリウム27の液面が低下したときでも、この五硫化ナ
トリウム27を電子伝導材21の全体へ供給することが
可能となり、電池の内部抵抗の増大を防止できたこと
が、前記実験結果によって確認できる。
When the current density per unit area of the solid electrolyte 3 during constant current charging / discharging is 80 mA / cm 2 , the voltage characteristics between the terminals are as shown in FIG. In the figure, white circles and black circles indicate the charge voltage and the discharge voltage measured by the experiment, respectively. As shown in the figure, according to the battery of this example, the charging voltage 26 and the discharging voltage 27 were both substantially constant terminal voltages, as in the conventional fluidized sodium-sulfur battery. In this experiment, the discharge was terminated when the anode active material 6 became sodium pentasulfide, but the discharge can be continued until the anode active material becomes sodium tetrasulfide or sodium trisulfide. In this experiment, the operating temperature of the battery was set to 350 ° C., but the surface tension of sodium pentasulfide at this time was about 130 dyn / cm 2 , and the reachable height of sodium pentasulfide 27 rising in the electron conductive material 21 was reached. Is 3
It will be 5 cm. On the other hand, since the anode height from the insulating member 4 to the bottom of the battery container 1 is 10 cm, even when the liquid level of the sodium pentasulfide 27 is lowered at the end of charging, the sodium pentasulfide 27 is entirely transferred to the electron conductive material 21. It can be confirmed from the above experimental results that the internal resistance of the battery can be prevented from increasing by supplying the electric power to the battery.

上述したように、本実施例によれば、固体電解質3の表
面に沿ってステンレス鋼メッシュよりなる多孔質電子伝
導材21を設け、さらに陽極活物質6内に集電電極23
を設けることにより、陽極活物質6を固体電解質3の従
来の流動型ナトリウム−硫黄電池と同様に供給すること
ができる。従って従来必要とした多数の配管が不要とな
り、電池の構成を簡単にしてシステムのコスト低減と信
頼性の向上とを図ることができる。
As described above, according to the present embodiment, the porous electron conductive material 21 made of stainless steel mesh is provided along the surface of the solid electrolyte 3, and the collector electrode 23 is provided in the anode active material 6.
By providing, the anode active material 6 can be supplied similarly to the conventional fluidized sodium-sulfur battery of the solid electrolyte 3. Therefore, a large number of pipes conventionally required are not required, and the battery configuration can be simplified to reduce the system cost and improve the reliability.

第4図に本発明の第2の実施例を示す。図において、第
1図に示す第1の実施例と同一または同等部分には同一
符号を付して示し、説明を省略する。本実施例の特徴は
第1の実施例における集電電極23を取り除き、多孔質
電子伝導材21と電池容器1とをリード線24により直
接電気的に接続した点にある。本実施例によれば、電池
構造の簡略化が図れる。なおリード線24を用いずに陽
極部下部において、電池容器1の底部と電子伝導材21
の下端とを溶接などの方法により直接接続してもよい。
FIG. 4 shows a second embodiment of the present invention. In the figure, the same or equivalent parts as those of the first embodiment shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. The feature of this embodiment is that the current collecting electrode 23 in the first embodiment is removed and the porous electron conductive material 21 and the battery container 1 are directly electrically connected by the lead wire 24. According to this embodiment, the battery structure can be simplified. It should be noted that, without using the lead wire 24, the bottom of the battery container 1 and the electron conductive material 21 are provided in the lower portion of the anode.
The lower end of the may be directly connected by a method such as welding.

第5図に本発明の第3の実施例を示す。図においても第
1図に示す第1の実施例と同一または同等部分には同一
符号を付して示し、説明を省略する。本実施例の特徴は
多孔質電子伝導材21と電池容器1との間隔を小さく
し、電池容器1内の固体電解質3の下部に隔離板28を
設け、大部分の陽極活物質6をこの隔離板28で隔てら
れた下部の陽極活物質貯蔵室29に貯蔵する構造とした
点にある。前記電子伝導材21は隔離板28のほぼ中心
を貫通して延設されており、電池容器1の外部に電気的
に接続されている。また隔離板28には複数個の貫通孔
30が形成されており、陽極隔離板28の上下部に陽極
活物質6が流通可能となっている。
FIG. 5 shows a third embodiment of the present invention. Also in the figure, the same or equivalent parts as those of the first embodiment shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. The feature of this embodiment is that the distance between the porous electron conductive material 21 and the battery case 1 is reduced, a separator 28 is provided below the solid electrolyte 3 in the battery case 1, and most of the anode active material 6 is isolated. The point is that the structure is such that it is stored in a lower anode active material storage chamber 29 separated by a plate 28. The electron conductive material 21 extends through almost the center of the separator 28 and is electrically connected to the outside of the battery container 1. Further, a plurality of through holes 30 are formed in the separator plate 28, and the anode active material 6 can flow in the upper and lower parts of the anode separator plate 28.

次に本実施例の動作を説明する。電池充電時には陽極活
物質6である五硫化ナトリウムが多孔室電子伝導材21
を通って固体電解質3の表面まで供給される。充電によ
って生成した硫黄は五硫化ナトリウムの上部に浮上し、
充電の進行に伴なう五硫化ナトリウムの液位の低下によ
り、隔離板28に形成された貫通孔30を通って陽極活
物質貯蔵室29に貯えられる。放電時には五硫化ナトリ
ウムが生成し、電子伝導材21を通って下降して陽極活
物質貯蔵室29の底部から堆積する。そしてこの五硫化
ナトリウム6の堆積に伴なって硫黄は貫通孔30を通っ
て隔離板28の上部に押し上げられ、電池反応に付与す
る。
Next, the operation of this embodiment will be described. When the battery is charged, sodium pentasulfide, which is the anode active material 6, is used as the electron conductive material 21 in the porous chamber.
Is supplied to the surface of the solid electrolyte 3. Sulfur generated by charging floats above sodium pentasulfide,
As the liquid level of sodium pentasulfide lowers with the progress of charging, it is stored in the anode active material storage chamber 29 through the through hole 30 formed in the separator 28. At the time of discharge, sodium pentasulfide is generated, descends through the electron conductive material 21, and is deposited from the bottom of the anode active material storage chamber 29. Then, as the sodium pentasulfide 6 is deposited, sulfur is pushed up to the upper part of the separator 28 through the through holes 30 and imparted to the battery reaction.

本実施例によれば、大部分の陽極活物質6を陽極活物質
貯蔵室29内に貯蔵できるため、固体電解質3が破損し
たときに発生する陰極活物質7と陽極活物質6との、固
体電解質3を介さない直接反応量を大幅に低減すること
ができ、ナトリウム−硫黄電池の安全性は飛躍的に向上
する。
According to the present embodiment, most of the positive electrode active material 6 can be stored in the positive electrode active material storage chamber 29, so that the solid state of the negative electrode active material 7 and the positive electrode active material 6 generated when the solid electrolyte 3 is damaged. The amount of direct reaction not involving the electrolyte 3 can be significantly reduced, and the safety of the sodium-sulfur battery is dramatically improved.

上記各実施例においては、多孔質電子伝導材21として
350番のスレンレス鋼メッシュを用いた場合について
説明したが、このメッシュをさらに細かくすることによ
り五硫化ナトリウムの到達高さを高くすることができ、
陽極部の高さを高くして電池の容量を増大することがで
きる。またメッシュの材質としてステンレス鋼を用いた
が、硫黄との接触各に比べ多硫化ナトリウムとの接触角
が小さいものであれば、他の材質のメッシュであっても
よい。
In each of the above-described examples, the case where the No. 350 stainless steel mesh is used as the porous electron conductive material 21 has been described, but by making the mesh finer, the arrival height of sodium pentasulfide can be increased. ,
The height of the anode part can be increased to increase the capacity of the battery. Although stainless steel was used as the material of the mesh, other materials may be used as long as the contact angle with sodium polysulfide is smaller than the contact angle with sulfur.

〔発明の効果〕〔The invention's effect〕

上述したように、本発明によれば、硫黄に比べて多硫化
ナトリウムに対する接触角が小さい多孔質電子伝導材を
固体電解質の表面に沿って装着したので、充放電時に陽
極活物質を容易に循環させることが可能となり、複雑な
配管を必要とすることなく、簡単な構成で高性能な流動
型ナトリウム−硫黄電池を得ることができる。その結
果、電力貯蔵システムのコスト低減と信頼性向上を達成
することができる。
As described above, according to the present invention, since the porous electron conductive material having a smaller contact angle with sodium polysulfide than sulfur is mounted along the surface of the solid electrolyte, the anode active material is easily circulated during charging and discharging. Therefore, a high-performance fluidized sodium-sulfur battery with a simple structure can be obtained without requiring complicated piping. As a result, cost reduction and reliability improvement of the power storage system can be achieved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る流動型ナトリウム−硫黄電池の第
1の実施例を示す縦断面図、第2図は第1の実施例の動
作を説明する縦断面図、第3図は第1の実施例による電
圧特性を示すグラフ、第4図は本発明の第2の実施例を
示す縦断面図、第5図は本発明の第3の実施例を示す縦
断面図、第6図は従来の封止型ナトリウム−硫黄電池を
示す縦断面図、第7図は従来の流動型ナトリウム−硫黄
電池を示す縦断面図、第8図は第7図に示す流動型ナト
リウム−硫黄電池の電圧特性を示すグラフである。 1……電池容器、3……固体電解質、 6……陽極活物質、7……陰極活物質、 21……多孔質電子伝導材、22……メッシュ、 26……硫黄、27……五硫化ナトリウム、 28……隔離板(隔壁)。
FIG. 1 is a vertical sectional view showing a first embodiment of a fluidized sodium-sulfur battery according to the present invention, FIG. 2 is a vertical sectional view for explaining the operation of the first embodiment, and FIG. 4 is a graph showing the voltage characteristics according to the embodiment of the present invention, FIG. 4 is a vertical sectional view showing the second embodiment of the present invention, FIG. 5 is a vertical sectional view showing the third embodiment of the present invention, and FIG. FIG. 7 is a vertical sectional view showing a conventional sealed sodium-sulfur battery, FIG. 7 is a vertical sectional view showing a conventional fluidized sodium-sulfur battery, and FIG. 8 is a voltage of the fluidized sodium-sulfur battery shown in FIG. It is a graph which shows a characteristic. 1 ... Battery container, 3 ... Solid electrolyte, 6 ... Anode active material, 7 ... Cathode active material, 21 ... Porous electron conductive material, 22 ... Mesh, 26 ... Sulfur, 27 ... Pentasulfide Sodium, 28 ... Separator (partition wall).

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電池容器内をナトリウムイオンが通過可能
な固体電解質により隔離して2個の電槽を形成し、一方
の電槽には陰極活物質であるナトリウムが、他方の電槽
には陽極活物質である硫黄または多硫化ナトリウムがそ
れぞれ充填され、かつ前記陽極活物質が硫黄と多硫化ナ
トリウムに二層に分離する流動型ナトリウム−硫黄電池
において、 前記固体電解質の少くとも一方の面に沿って、前記硫黄
に対する接触角よりも前記多硫化ナトリウムに対する接
触角が小さい多孔質電子伝導材を装着したことを特徴と
する流動型ナトリウム−硫黄電池。
1. A battery container is isolated by a solid electrolyte through which sodium ions can pass to form two batteries, one of which contains sodium as a cathode active material, and the other battery which contains sodium. In a fluidized sodium-sulfur battery in which sulfur or sodium polysulfide as an anode active material is respectively filled, and the anode active material is separated into two layers of sulfur and sodium polysulfide, in at least one surface of the solid electrolyte. A fluidized sodium-sulfur battery, characterized in that a porous electron conductive material having a contact angle with sodium polysulfide smaller than that with sulfur is attached.
【請求項2】電池容器の陽極活物質が充填された電槽内
に、陽極活物質の一部と固体電解質とを隔離する隔壁を
設けるとともに、該隔壁を貫通して固体電解質の表面に
沿って設けられた多孔質電子伝導材を延設した請求項1
記載の流動型ナトリウム−硫黄電池。
2. A partition for separating a part of the anode active material and the solid electrolyte is provided in a battery case filled with the anode active material of the battery container, and penetrates the partition to extend along the surface of the solid electrolyte. The porous electron conductive material provided as an extension is provided.
The fluidized sodium-sulfur battery described.
【請求項3】電池容器内をナトリウムイオンが通過可能
な固体電解質により隔離して2個の電槽を形成し、一方
の電槽には陰極活物質であるナトリウムが、他方の電槽
には陽極活物質である硫黄または多硫化ナトリウムがそ
れぞれ充填され、かつ前記陽極活物質が硫黄と多硫化ナ
トリウムに二層に分離する流動型ナトリウム−硫黄電池
の製造方法において、硫黄よりも多硫化ナトリウムに対
する接触角の小さい多孔質電子伝導材を、予め多硫化ナ
トリウムに浸漬した後に固体電解質に沿って装着したこ
とを特徴とする流動型ナトリウム−硫黄電池の製造方
法。
3. A battery container is isolated by a solid electrolyte through which sodium ions can pass to form two batteries, one of which contains sodium as a cathode active material, and the other battery which contains sodium. In a method for producing a fluidized sodium-sulfur battery in which sulfur or sodium polysulfide as an anode active material is respectively filled, and the anode active material is separated into sulfur and sodium polysulfide into two layers, sodium polysulfide is more preferable than sulfur. A method for producing a fluidized sodium-sulfur battery, characterized in that a porous electron conductive material having a small contact angle is immersed in sodium polysulfide in advance and then mounted along the solid electrolyte.
JP63060015A 1988-03-14 1988-03-14 Fluid sodium-sulfur battery Expired - Fee Related JPH0665071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63060015A JPH0665071B2 (en) 1988-03-14 1988-03-14 Fluid sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63060015A JPH0665071B2 (en) 1988-03-14 1988-03-14 Fluid sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPH01235168A JPH01235168A (en) 1989-09-20
JPH0665071B2 true JPH0665071B2 (en) 1994-08-22

Family

ID=13129816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63060015A Expired - Fee Related JPH0665071B2 (en) 1988-03-14 1988-03-14 Fluid sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPH0665071B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140135592A (en) * 2012-04-16 2014-11-26 가부시키가이샤 다니구로구미 Soldering device, soldering method, and substrate and electronic component produced by the soldering device or the soldering method
KR20150005419A (en) * 2012-04-14 2015-01-14 가부시키가이샤 다니구로구미 Soldering device, soldering method, and substrate and electronic component produced by the soldering device or the soldering method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19926724A1 (en) * 1999-06-11 2000-12-14 Basf Ag Electrolytic cell for the production of an alkali metal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235369A (en) * 1984-05-08 1985-11-22 Yuasa Battery Co Ltd Sodium-sulphur battery
JPS62110270A (en) * 1985-11-08 1987-05-21 Hitachi Ltd Sodium-sulphur cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150005419A (en) * 2012-04-14 2015-01-14 가부시키가이샤 다니구로구미 Soldering device, soldering method, and substrate and electronic component produced by the soldering device or the soldering method
KR20140135592A (en) * 2012-04-16 2014-11-26 가부시키가이샤 다니구로구미 Soldering device, soldering method, and substrate and electronic component produced by the soldering device or the soldering method

Also Published As

Publication number Publication date
JPH01235168A (en) 1989-09-20

Similar Documents

Publication Publication Date Title
CN103280604B (en) Liquid energy storage battery monomer structure with floating body electrolytes
KR101112688B1 (en) lithium battery
CN209843832U (en) Liquid metal battery
JP2022519942A (en) High temperature lithium air battery
JPH0345868B2 (en)
JPH0665071B2 (en) Fluid sodium-sulfur battery
US4492742A (en) Electrochemical storage cell
KR101978954B1 (en) Planar type sodium-metal chloride battery
US4091151A (en) Secondary battery or cell with improved rechargeability
US11527759B2 (en) Dual porosity cathode for lithium-air battery
US20200006813A1 (en) High temperature batteries
HU196533B (en) Lead accumulator, preferably for long-lasting uniform employment
JPH0562435B2 (en)
KR101159811B1 (en) a sulfur electrode of Sodium-sulfur battery
JPS60148071A (en) Sodium-sulfur battery
JPH0145945B2 (en)
JPS61161672A (en) Sodium-sulfur battery
JP2667551B2 (en) Method for forming high resistance layer used in sodium-sulfur battery
JP2023516828A (en) Porous polymer lithium anode
KR20230143748A (en) Lithium metal anode for lithium secondary battery incorporating three-dimensional porous copper anode current collector
KR20240010355A (en) Secondary battery and manufacturing method thereof
JPH0624140B2 (en) Sealed lead acid battery
JP2612894B2 (en) Sodium-sulfur battery
JPS6160549B2 (en)
JPH0679494B2 (en) Sodium-sulfur battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees