JP2001357771A - Electron emission element and its manufacturing method and surface light emitting device and image display device and solid vacuum device - Google Patents

Electron emission element and its manufacturing method and surface light emitting device and image display device and solid vacuum device

Info

Publication number
JP2001357771A
JP2001357771A JP2000175406A JP2000175406A JP2001357771A JP 2001357771 A JP2001357771 A JP 2001357771A JP 2000175406 A JP2000175406 A JP 2000175406A JP 2000175406 A JP2000175406 A JP 2000175406A JP 2001357771 A JP2001357771 A JP 2001357771A
Authority
JP
Japan
Prior art keywords
electron
emitting device
electrode
particles
cold cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000175406A
Other languages
Japanese (ja)
Inventor
Koji Akiyama
浩二 秋山
Hideo Kurokawa
英雄 黒川
Tetsuya Shiratori
哲也 白鳥
Toru Kawase
透 川瀬
Michihiko Takase
道彦 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000175406A priority Critical patent/JP2001357771A/en
Publication of JP2001357771A publication Critical patent/JP2001357771A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a technique wherein an electron emission element which has a low actuating voltage, a large actuating current, a long life and a superior actuating stability is realized, and which can be produced in a large area. SOLUTION: The first electrode is formed on a support, and a cold cathode is laminated which has needle particles at least as constituents wherein the atomic density of impurities is heterogeneously distributed from the surface toward inside on the first electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子放出素子およ
びそれを用いた面発光装置および画像表示装置および固
体真空デバイスに関し、より具体的には、ウィスカーの
ような針状粒子を冷陰極部材に使用した電子放出素子お
よびそれを用いた面発光装置および画像表示装置および
固体真空デバイスに関する。更に、本発明は、上記の電
子放出素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron-emitting device, a surface light-emitting device, an image display device, and a solid-state vacuum device using the same, and more specifically, needle-like particles such as whiskers for a cold cathode member. The present invention relates to an electron-emitting device used, a surface emitting device, an image display device, and a solid-state vacuum device using the same. Furthermore, the present invention relates to a method for manufacturing the above-mentioned electron-emitting device.

【0002】[0002]

【従来の技術】電界放出型陰極(冷陰極)としては、微
小な3角錘状のエミッタチップを多数配置したスピント
(Spindt)型と呼ばれるものが一般的である(米
国特許3665241号公報参照)。このスピント型エ
ミッタは、製造プロセス的に多数のエミッタチップを精
度良く構成することが難しく、大面積の面発光装置や画
像表示装置に応用する場合に大面積化が困難という問題
があった。また、スピント型エミッタは電界がチップ先
端に集中するため、電子放出により発生したイオンが先
端に衝突し損傷を与える。その結果、電子放出が不安定
になったり、エミッタの寿命が短いという本質的課題が
あった。
2. Description of the Related Art As a field emission type cathode (cold cathode), a so-called Spindt type in which a number of small triangular pyramid-shaped emitter chips are arranged is common (see US Pat. No. 3,665,241). . This Spindt-type emitter has a problem that it is difficult to form a large number of emitter chips with high precision in a manufacturing process, and it is difficult to increase the area when applying to a large-area surface-emitting device or image display device. In the Spindt-type emitter, the electric field is concentrated at the tip of the chip, so that ions generated by electron emission collide with the tip and cause damage. As a result, there are inherent problems that the electron emission becomes unstable and the lifetime of the emitter is short.

【0003】このようなスピント型エミッタの問題を解
決するためのエミッタとして、テトラポット形状のウィ
スカーを用いた電界放出型陰極が提案されている(特開
平4−87233号公報参照)。なお、この電界放出型
陰極においては、ウィスカー表面の仕事関数を小さくす
る目的で、Niなどの金属を表面にコートすることが好
ましいとされている。
As an emitter for solving such a problem of the Spindt-type emitter, a field emission cathode using a tetrapod-shaped whisker has been proposed (see JP-A-4-87233). In the field emission cathode, it is said that the surface is preferably coated with a metal such as Ni for the purpose of reducing the work function of the whisker surface.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
特開平4−87233号公報のようにウィスカー表面か
らの電子放出効率を高めるために仕事関数の小さい金属
を形成した場合、電子放出の際ウィスカーの先端が先鋭
であるためにその部分での電流密度が極度に大きくなり
温度が上昇するため、ウィスカーと金属膜との熱膨張係
数差により金属膜が剥離する問題があった。このため、
放出電子量が変動したり、素子寿命が短いなどの不具合
を生じていた。
However, when a metal having a small work function is formed in order to enhance the efficiency of emitting electrons from the whisker surface as disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 4-87233, when the whisker emits electrons, Since the tip is sharp, the current density in that portion becomes extremely large and the temperature rises, so that there is a problem that the metal film is peeled off due to a difference in thermal expansion coefficient between the whisker and the metal film. For this reason,
Problems such as a fluctuation in the amount of emitted electrons and a short device life have been caused.

【0005】本発明は、上記の課題を解決するためにな
されたものであって、その目的は、長寿命で電子が安定
に、高効率で放出できる低コストの電子放出素子および
その製造方法および面発光装置および画像表示装置およ
び固体真空デバイスを提供することである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has as its object to provide a low-cost electron-emitting device capable of emitting electrons stably, efficiently and with a long life, a method of manufacturing the same, and a method of manufacturing the same. An object of the present invention is to provide a surface light emitting device, an image display device, and a solid-state vacuum device.

【0006】[0006]

【課題を解決するための手段】上記目的を達するため、
請求項1の発明の電子放出素子は、支持部材の上に第1
の電極と、前記第1の電極に対向しかつ第1の電極に対
して正にバイアスされる第2の電極との間に冷陰極部材
が少なくとも配置され、少なくとも冷陰極部材が不純物
原子を有する針状粒子で構成され、針状粒子の表面より
内部に向かって不純物原子密度が不均一に分布している
ことを特徴とするものであり、不純物原子を針状粒子の
表面付近に存在させることにより、高効率で電子放出で
きるとともに、針状粒子の先端部で温度上昇しても金属
膜のように剥離することなく、安定で長寿命の電子放出
が可能となる。また、支持部材にはガラス基板を使用で
き、半導体基板を使用する従来のスピント型に比べて低
コストにできる。
In order to achieve the above object,
The electron-emitting device according to the first aspect of the present invention has a structure in which the first
And at least a cold cathode member is disposed between the first electrode and the second electrode facing the first electrode and positively biased with respect to the first electrode, and at least the cold cathode member has impurity atoms. Consisting of acicular particles, the impurity atom density is unevenly distributed from the surface of the acicular particles toward the inside, and the impurity atoms are present near the surface of the acicular particles. Accordingly, electrons can be emitted with high efficiency, and even if the temperature rises at the tips of the needle-like particles, stable and long-life electron emission can be achieved without peeling like a metal film. Further, a glass substrate can be used for the support member, and the cost can be reduced as compared with a conventional Spindt type using a semiconductor substrate.

【0007】請求項2の発明の電子放出素子は、針状粒
子の中央部に比べて先端部に不純物原子密度の高い領域
が含まれることを特徴とする。
According to a second aspect of the present invention, there is provided an electron-emitting device, wherein a region having a higher impurity atom density is included in a tip portion of the needle-shaped particle than in a central portion thereof.

【0008】請求項3の発明の電子放出素子は、針状粒
子が、針状結晶領域を有するウィスカーであることを特
徴とする。
The electron-emitting device according to a third aspect of the present invention is characterized in that the acicular particles are whiskers having acicular crystal regions.

【0009】請求項4の発明の電子放出素子は、針状粒
子が、酸化化合物、窒化化合物および炭化化合物の何れ
かであることを特徴とする。
According to a fourth aspect of the invention, there is provided the electron-emitting device, wherein the acicular particles are any one of an oxide compound, a nitride compound and a carbonized compound.

【0010】請求項5の発明の電子放出素子は、針状粒
子が、酸化亜鉛ウィスカーであることを特徴とする。
According to a fifth aspect of the present invention, in the electron-emitting device, the acicular particles are zinc oxide whiskers.

【0011】請求項6の発明の電子放出素子は、不純物
原子が、周期表第第IV族原子および第V族原子の何れ
かであることを特徴とする。
According to a sixth aspect of the invention, there is provided the electron-emitting device, wherein the impurity atom is any one of a group IV atom and a group V atom in the periodic table.

【0012】請求項7の発明の電子放出素子は、針状粒
子の表面に、少なくとも、ダイヤモンド粒子、黒鉛粒
子、カーボンナノチューブ、炭素繊維のうち何れかが付
着していることを特徴とする。
The electron-emitting device according to a seventh aspect of the invention is characterized in that at least one of diamond particles, graphite particles, carbon nanotubes, and carbon fibers is attached to the surface of the acicular particles.

【0013】請求項8の発明は、請求項1に記載の電子
放出素子の製造方法であって、支持部材の上に第1の電
極を形成し、前記第1の電極上に針状粒子からなる冷陰
極部材を形成し、さらに冷陰極部材表面に帯電した不純
物原子または不純物原子を含む分子を照射した後、第1
の電極に対向する第2の電極を配置することを特徴と
し、従来のスピント型エミッタのような複雑な製造プロ
セスを必要とせず、簡単な製造プロセスによって高効
率、かつ長寿命で安定な電子放出が可能となる電子放出
素子を低コストで提供できる。
According to an eighth aspect of the present invention, there is provided a method of manufacturing an electron-emitting device according to the first aspect, wherein a first electrode is formed on a supporting member, and needle-like particles are formed on the first electrode. After the cold cathode member is formed and the surface of the cold cathode member is irradiated with charged impurity atoms or molecules containing impurity atoms,
Characterized by disposing a second electrode opposite to the above-mentioned electrode, and does not require a complicated manufacturing process such as a conventional Spindt-type emitter, and has a high efficiency, a long life and stable electron emission by a simple manufacturing process. Can be provided at low cost.

【0014】請求項9の発明は、請求項1に記載の電子
放出素子の製造方法であって、支持部材の上に第1の電
極を形成し、帯電した不純物原子または不純物原子を含
む分子を予め照射した針状粒子を用いて前記第1の電極
上に冷陰極部材を形成した後、前記第1の電極に対向す
る第2の電極を配置することを特徴とし、従来のスピン
ト型エミッタのような複雑な製造プロセスを必要とせ
ず、簡単な製造プロセスによって高効率、かつ長寿命で
安定な電子放出が可能となる電子放出素子を低コストで
提供できる。
According to a ninth aspect of the present invention, there is provided the method for manufacturing an electron-emitting device according to the first aspect, wherein the first electrode is formed on the supporting member, and the charged impurity atom or the molecule containing the impurity atom is formed. After forming a cold cathode member on the first electrode using the previously irradiated needle-like particles, a second electrode facing the first electrode is arranged, and the conventional Spindt-type emitter is provided. An electron-emitting device that does not require such a complicated manufacturing process and can stably emit electrons with high efficiency, a long life, and a low cost can be provided by a simple manufacturing process.

【0015】請求項10の発明は、請求項1〜請求項7
の何れかに記載の電子放出素子を含む面発光装置であっ
て、前記電子放出素子の第2の電極上に蛍光体が配置さ
れていることを特徴とするものであり、従来の蛍光灯の
ように環境に有害な水銀を使わずに、構造が簡単で薄型
の面発光装置を実現できる。
[0015] The invention of claim 10 is the invention of claims 1 to 7.
A surface emitting device including the electron-emitting device according to any one of the above, wherein a phosphor is disposed on a second electrode of the electron-emitting device, wherein As described above, it is possible to realize a simple and thin surface emitting device without using mercury which is harmful to the environment.

【0016】請求項11の発明は、請求項1〜請求項7
の何れかに記載の電子放出素子を含む画像表示装置であ
って、前記電子放出素子をマトリックス状に構成し、前
記電子放出素子の冷陰極部材より放出される電子数を制
御する手段を備え、前記電子放出素子の第2の電極上に
蛍光体が配置されていることを特徴とするものであり、
低消費電力で薄型の画像表示装置を実現できる。
The eleventh aspect of the present invention provides the first to seventh aspects.
An image display device including the electron-emitting device according to any one of the above, wherein the electron-emitting device is configured in a matrix, comprising means for controlling the number of electrons emitted from the cold cathode member of the electron-emitting device, A phosphor is disposed on the second electrode of the electron-emitting device,
A thin image display device with low power consumption can be realized.

【0017】請求項12の発明は、請求項1〜請求項7
の何れかに記載の電子放出素子を含む固体真空デバイス
であって、前記電子放出素子が真空容器内に配設されて
いることを特徴とするものであり、従来の熱陰極を用い
た真空管のように加熱手段を設ける必要がなく、小型化
が可能になると共に長寿命の固体真空デバイスを実現で
きる。
According to a twelfth aspect of the present invention,
A solid-state vacuum device including the electron-emitting device according to any one of the above, wherein the electron-emitting device is disposed in a vacuum vessel, a conventional vacuum tube using a hot cathode Thus, there is no need to provide a heating means, so that downsizing can be achieved and a long-life solid-state vacuum device can be realized.

【0018】本発明者は、鋭意研究の結果、従来の技術
で説明した特開平4−87233号公報に記載の構造で
は、ウィスカーに何の処理もしていなければ電子放出効
率が悪く実用的には不向きであること、ウィスカー表面
にNiをコートすれば電子放出効率は改善するが、素子
動作中にNi膜の剥離を生じ、電子放出が不安定になっ
たり、素子寿命が短くなるなどの知見を得た。そこで、
本発明者は、上記知見に基づいて本発明を行った。
As a result of diligent research, the present inventor has found that the structure disclosed in Japanese Patent Application Laid-Open No. 4-87233, which was described in the prior art, has a poor electron emission efficiency if no processing is performed on the whiskers, and is practically impossible. Although the electron emission efficiency is improved if Ni is coated on the whisker surface, the Ni film is peeled off during operation of the device, and the electron emission becomes unstable or the device life is shortened. Obtained. Therefore,
The present inventors have performed the present invention based on the above findings.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施形態について
説明する。なお、以下の実施形態の説明では、面発光装
置、画像表示装置、固体真空デバイスへの適用を例にと
って本発明を説明するが、本発明の適用はそれに限られ
るものではなく、陰極線管、電子銃、電子ビーム蒸着
機、電子顕微鏡など、電子源(電子エミッタ)を必要と
する様々なアプリケーションに適用可能である。
Embodiments of the present invention will be described below. In the following description of the embodiment, the present invention will be described by taking an example of application to a surface emitting device, an image display device, and a solid-state vacuum device. However, the application of the present invention is not limited thereto, and a cathode ray tube, an electronic It can be applied to various applications requiring an electron source (electron emitter), such as a gun, an electron beam evaporator, and an electron microscope.

【0020】(実施の形態1)図1(a)は、本発明の
第1の実施形態に係わる電子放出素子100、およびそ
れを用いた電界放出型面発光装置1000の概略構成図
である。以下に、図1(a)を参照しながら、電子放出
素子100や電界放出型面発光装置1000の構成や製
造方法を説明する。
(Embodiment 1) FIG. 1A is a schematic configuration diagram of an electron-emitting device 100 according to a first embodiment of the present invention and a field emission type surface emitting device 1000 using the same. Hereinafter, a configuration and a manufacturing method of the electron-emitting device 100 and the field emission surface emitting device 1000 will be described with reference to FIG.

【0021】まず、支持部材としてガラス基板101上
に、第1の導電性電極102としてAl、Al−Li合
金、Mg,Mg−Ag合金、Au、Pt、Ag、Fe、
Ni、Cu、Cr、W、Mo、TaまたはTiなどの金
属薄膜をスパッタ法あるいは真空蒸着法により、厚さ約
0.01μm〜約100μm、典型的には約0.05μ
m〜約1μmに形成する。
First, on a glass substrate 101 as a supporting member, Al, an Al—Li alloy, Mg, Mg—Ag alloy, Au, Pt, Ag, Fe,
A metal thin film such as Ni, Cu, Cr, W, Mo, Ta or Ti is formed by sputtering or vacuum evaporation to a thickness of about 0.01 μm to about 100 μm, typically about 0.05 μm.
m to about 1 μm.

【0022】次に、エタノールやイソプロピルアルコー
ルやアセトンやトルエンや酢酸ブチルや酢酸イソアミル
などの揮発性有機溶剤中に針状粒子103としてテトラ
ポット形状の酸化亜鉛(ZnO)ウィスカー(ウィスカ
ー1本の足の長さ:1〜200μm、核部の足の太さ:
0.01〜10μm。典型的には1本の足の長さ:5〜
50μm、核部の足の太さ:0.05〜5μm。図1
(b)にウィスカーの拡大図を示す。)を分散した液を
第1の導電性電極102上に滴下し、スピンコーターに
て高速回転させて余分な液を除去し、第1の導電性電極
102上に針状粒子103をばらまく。その後、ガラス
基板101を市販のプラズマドーピング装置内に配置
し、装置内にN2ガスを導入して窒素プラズマを発生さ
せる。この時、第1の電極に負のバイアス(−5V〜−
1000V)を印加すると、プラズマ中のN+イオンが
このバイアス分加速されて針状粒子103内に注入され
る。窒素イオンはZnOウィスカーの表面近傍に注入さ
れ、その深さは0.1nm〜100nm(ナノ・メート
ル)である。このようにして窒素イオンを注入したZn
Oウィスカーによる冷陰極部材104が形成され、電子
放出素子100が構成される。ここで、2次イオン質量
分析(SIMS)によってZnOウィスカーに注入した
窒素原子量を定量したところ、ウィスカーの足において
深さ方向での窒素原子の分布の様子は、図2(a)に示
すような形であった。
Next, zinc oxide (ZnO) whiskers in the form of tetrapods (one foot of whisker) are formed as needle-like particles 103 in a volatile organic solvent such as ethanol, isopropyl alcohol, acetone, toluene, butyl acetate, or isoamyl acetate. Length: 1 to 200 μm, thickness of core foot:
0.01-10 μm. Typically one foot length: 5
50 μm, core thickness: 0.05 to 5 μm. FIG.
(B) is an enlarged view of the whisker. ) Is dropped on the first conductive electrode 102, and is rotated at a high speed by a spin coater to remove excess liquid, and the needle-like particles 103 are scattered on the first conductive electrode 102. After that, the glass substrate 101 is placed in a commercially available plasma doping apparatus, and N 2 gas is introduced into the apparatus to generate nitrogen plasma. At this time, a negative bias (−5 V to −5 V) is applied to the first electrode.
When a voltage of 1000 V is applied, N + ions in the plasma are accelerated by this bias and injected into the acicular particles 103. Nitrogen ions are implanted near the surface of the ZnO whiskers and have a depth of 0.1 nm to 100 nm (nanometers). Zn thus implanted with nitrogen ions
The cold cathode member 104 made of O whiskers is formed, and the electron-emitting device 100 is configured. Here, when the amount of nitrogen atoms injected into the ZnO whiskers was quantified by secondary ion mass spectrometry (SIMS), the distribution of nitrogen atoms in the depth direction of the feet of the whiskers was as shown in FIG. It was in shape.

【0023】この電子放出素子100を陰極とし、それ
に対向するように、ガラス基板105上に第2の導電性
電極106としてITO、SnO2、ZnOなどからな
る透明電極、および蛍光体膜107を積層した陽極基板
150を配置する。これによって電界放出型面発光装置
1000を構成する。但し、陰極100と陽極150と
の距離は0.5mm〜2mmとした。
A transparent electrode made of ITO, SnO 2 , ZnO, or the like as a second conductive electrode 106 and a phosphor film 107 are laminated on a glass substrate 105 so as to face the electron-emitting device 100 as a cathode. The anode substrate 150 is placed. Thus, the field emission type surface emitting device 1000 is configured. However, the distance between the cathode 100 and the anode 150 was 0.5 mm to 2 mm.

【0024】上記のような電子放出素子(陰極)100
と陽極基板(陽極)150との間を真空状態にし、さら
に直流電源108を使ってバイアス電圧を陰極100と
陽極150との間に印加する。その結果、直流電源10
8の電圧が約500V〜2kVのバイアス条件下で、冷
陰極部材104の表面から真空中に電子が放出され、こ
の放出された電子が、直流電源108による電界によっ
て加速されて蛍光体膜107と衝突し、蛍光体膜107
が発光するのを観測することができた。また、陰極10
0と陽極間150との間に流れる電子放出電流も20−
100μAと大きく、時間変動も5%以下と小さく安定
していることが確認できた。また、連続で発光させた時
の素子寿命は、蛍光体膜107の輝度20%減少で50
00時間以上であった。
The above-described electron-emitting device (cathode) 100
A vacuum is applied between the cathode 100 and the anode substrate (anode) 150, and a bias voltage is applied between the cathode 100 and the anode 150 using the DC power supply 108. As a result, the DC power supply 10
Under a bias condition of a voltage of about 500 V to 2 kV, electrons are emitted from the surface of the cold cathode member 104 into a vacuum, and the emitted electrons are accelerated by an electric field generated by the DC power supply 108 to cause the phosphor film 107 to Collision causes phosphor film 107
Could be observed to emit light. The cathode 10
The electron emission current flowing between 0 and 150 between the anodes is also 20-
It was confirmed that the stability was as large as 100 μA and the time variation was as small as 5% or less. The device life when emitting light continuously is 50% with the luminance of the phosphor film 107 being reduced by 20%.
It was over 00 hours.

【0025】比較のために、上記の電子放出素子100
において針状粒子103に窒素イオンを注入せず、他の
構成要素は素子100と全く同様にして比較用電子放出
素子(1)を作製した。そして、素子(1)に付いて上
記と同様に電子放出特性を調べたところ、直流電源10
8の電圧を約3kV〜7kVして初めて電子放出を確認
でき、電子放出素子100に比べて動作電圧が大きくな
ることが判明した。また、この時の動作電流は5ー10
μAで小さく、電子放出効率も低いことが判明した。さ
らに、素子寿命も100時間以下であった。
For comparison, the above-described electron-emitting device 100
In Comparative Example 1, a comparative electron-emitting device (1) was produced in the same manner as in the device 100 except that nitrogen ions were not implanted into the acicular particles 103. The electron emission characteristics of the element (1) were examined in the same manner as described above.
Electron emission was confirmed only when the voltage of No. 8 was about 3 kV to 7 kV, and it was found that the operating voltage was higher than that of the electron-emitting device 100. The operating current at this time is 5-10
It was found that the electron emission efficiency was low at μA. Further, the element life was 100 hours or less.

【0026】図2(a)において、プラズマドーピング
時にドーピング量を制御し、窒素原子密度のピーク値を
1014〜1019個/cm3変化させた電子放出素子10
0を作製したが、上記と同様な効果を得た。
[0026] In FIG. 2 (a), to control the doping amount during the plasma doping, the electron-emitting element 10 and the peak value of the nitrogen atom density of 10 14 to 10 19 / cm 3 by changing
0 was produced, but the same effect as above was obtained.

【0027】プラズマドーピング時に第1の導電性電極
102に印加する電圧を制御して、図2(b)〜(f)
に示すような窒素原子密度分布を示す電子放出素子10
0を作製したが、何れの場合も上記と同様な結果を得
た。この時、窒素原子密度分布のピーク値は1016〜1
18個/cm3の範囲であった。
By controlling the voltage applied to the first conductive electrode 102 at the time of plasma doping, FIGS.
Electron-emitting device 10 having a nitrogen atom density distribution as shown in FIG.
0 was produced, but the same result was obtained in each case. At this time, the peak value of the nitrogen atom density distribution is 10 16 to 1
It was in the range of 0 18 / cm 3.

【0028】プラズマドーピング時に窒素ガスの代わり
に、NO,NO2,N2O,N23,N24,N25,N
3,H2NNH2,HN3,NH43,NH3,NF3など
他の窒素原子を含むガスを使用しても同様な効果を得
た。また、PH3,P24,PH4I,PF3,PF5,P
Cl3,PCl5,PBr3,PBr5,PI3,AsH3
AsF3,AsCl3,AsBr3,AsF5,SbH3
SbF3,SbF5,SbCl3,SbCl5などのガスを
使って、Nイオンの代わりに燐(P)イオン、砒素(A
s)イオン、またはアンチモン(Sb)イオンを注入し
ても上記と同様な効果を得た。さらに、CH4,C
26,C38,C410,C24,C36,C 48,C2
2,C34,C46,C66,CH3F,CH3Cl,
CH3Br,CH3I,C25Cl,C25Br,C25
I,C35F,C35Cl,C35Br,CClF3
CF4,CHF3,C26,C38,C66mm(m=
1〜6)、SiH4,Si26,Si38,SiF4,S
iCl4,SiHF3,SiH22,SiH3F,SiH
Cl3,SiH2Cl2,SiH3Cl、GeH4,Ge2
6,Ge38,GeF4,GeCl4,GeF2,GeCl
2,GeHF3,GeH22,GeH3F,GeHCl3
GeH2Cl2,GeH3Cl、Sn(CH34などのガ
スを使ってNイオンの代わりに炭素(C)イオン、珪素
(Si)イオン、ゲルマニウム(Ge)イオンまたは錫
(Sn)イオンを注入しても上記と同様な効果を得た。
Instead of nitrogen gas during plasma doping
NO, NOTwo, NTwoO, NTwoOThree, NTwoOFour, NTwoOFive, N
OThree, HTwoNNHTwo, HNThree, NHFourNThree, NHThree, NFThreeSuch
Similar effects can be obtained by using other nitrogen-containing gas.
Was. Also, PHThree, PTwoHFour, PHFourI, PFThree, PFFive, P
ClThree, PClFive, PBrThree, PBrFive, PIThree, AsHThree,
AsFThree, AsClThree, AsBrThree, AsFFive, SbHThree,
SbFThree, SbFFive, SbClThree, SbClFiveSuch gas
Using phosphorous (P) ion instead of N ion, arsenic (A
s) ion or antimony (Sb) ion implantation
However, the same effect as above was obtained. Further, CHFour, C
TwoH6, CThreeH8, CFourHTen, CTwoHFour, CThreeH6, C FourH8, CTwo
HTwo, CThreeHFour, CFourH6, C6H6, CHThreeF, CHThreeCl,
CHThreeBr, CHThreeI, CTwoHFiveCl, CTwoHFiveBr, CTwoHFive
I, CThreeHFiveF, CThreeHFiveCl, CThreeHFiveBr, CCIFThree,
CFFour, CHFThree, CTwoF6, CThreeF8, C6H6mFm(M =
1-6), SiHFour, SiTwoH6, SiThreeH8, SiFFour, S
iClFour, SiHFThree, SiHTwoFTwo, SiHThreeF, SiH
ClThree, SiHTwoClTwo, SiHThreeCl, GeHFour, GeTwoH
6, GeThreeH8, GeFFour, GeClFour, GeFTwo, GeCl
Two, GeHFThree, GeHTwoFTwo, GeHThreeF, GeHClThree,
GeHTwoClTwo, GeHThreeCl, Sn (CHThree)FourMoths such as
Using carbon instead of N ion, carbon (C) ion, silicon
(Si) ion, germanium (Ge) ion or tin
Even when (Sn) ions were implanted, the same effect as above was obtained.

【0029】このように、ZnOウィスカーに上記のよ
うな不純物イオン、例えば窒素イオンを注入することに
より、冷陰極部材の104の電子放出効率が高くなった
理由としては、以下のように考えている。ZnOウィス
カー中に注入された窒素イオンは、ZnO結晶格子の格
子位置よりも格子間に存在し、ドナーとして働く。その
ため元々、自然に存在する酸素空孔によって弱いn型を
示す半導体であるZnOウィスカーの表面およびその近
傍領域が、窒素イオンの存在によってより強いn型を示
す。この様子を図3にエネルギバンド図を用いて模式的
に示す。表面が強いn型になったことにより表面近傍に
内部電界が生じ、電子がウィスカー表面に集められる。
その結果、電子がより放出され易くなったものと考えら
れる。
The reason why the electron emission efficiency of the cold cathode member 104 is increased by implanting the impurity ions such as nitrogen ions into the ZnO whiskers as described above is considered as follows. . The nitrogen ions implanted into the ZnO whiskers exist between lattices of the ZnO crystal lattice rather than the lattice positions thereof and function as donors. Therefore, the surface of the ZnO whisker, which is a semiconductor originally showing a weak n-type due to naturally existing oxygen vacancies, and its vicinity region show a stronger n-type due to the presence of nitrogen ions. This situation is schematically shown in FIG. 3 using an energy band diagram. Due to the strong n-type surface, an internal electric field is generated near the surface, and electrons are collected on the whisker surface.
As a result, it is considered that electrons were more easily emitted.

【0030】電子放出が行われ易いのはウィスカー核部
よりも先端部であるため、上記効果をより顕著にするた
めには、核部に比べて先端部分での不純物原子密度を高
くすることが好ましい。また、ウィスカーへの不純物原
子の注入は、市販のイオン注入装置を用いても、ウィス
カーを加熱して不純物の熱拡散を使用してもよい。
Since electron emission is more likely to occur at the tip than the whisker nucleus, in order to make the above effect more remarkable, it is necessary to increase the impurity atom density at the tip compared to the nucleus. preferable. The implantation of the impurity atoms into the whiskers may be performed by using a commercially available ion implantation apparatus or by heating the whiskers and using thermal diffusion of the impurities.

【0031】(実施の形態2)図4(a)は、本発明の
第2の実施形態に係わる電子放出素子400、およびそ
れを用いた電界放出型面発光装置4000の概略構成図
である。以下に、図4(a)を参照しながら、電子放出
素子400や電界放出型面発光装置4000の構成や製
造方法を説明する。
(Embodiment 2) FIG. 4A is a schematic configuration diagram of an electron-emitting device 400 according to a second embodiment of the present invention and a field emission type surface emitting device 4000 using the same. Hereinafter, a configuration and a manufacturing method of the electron-emitting device 400 and the field emission surface emitting device 4000 will be described with reference to FIG.

【0032】まず、支持部材としてガラス基板401上
に、第1の導電性電極402としてAl、Al−Li合
金、Mg,Mg−Ag合金、Au、Pt、Ag、Fe、
Ni、Cu、Cr、W、Mo、TaまたはTiなどの金
属薄膜をスパッタ法あるいは真空蒸着法により、厚さ約
0.01μm〜約100μm、典型的には約0.05μ
m〜約1μmに形成する。
First, on a glass substrate 401 as a supporting member, Al, an Al—Li alloy, Mg, Mg—Ag alloy, Au, Pt, Ag, Fe,
A metal thin film such as Ni, Cu, Cr, W, Mo, Ta or Ti is formed by sputtering or vacuum evaporation to a thickness of about 0.01 μm to about 100 μm, typically about 0.05 μm.
m to about 1 μm.

【0033】次に、エタノールやイソプロピルアルコー
ルやアセトンやトルエンや酢酸ブチルや酢酸イソアミル
などの揮発性有機溶剤中に針状粒子403としてテトラ
ポット形状の酸化亜鉛(ZnO)ウィスカー(ウィスカ
ー1本の足の長さ:1〜200μm、核部の足の太さ:
0.01〜10μm、典型的には1本の足の長さ:5〜
50μm、核部の足の太さ:0.05〜5μm)を分散
した液をガラス基板401上に滴下し、スピンコーター
にて高速回転させて余分な液を除去し、第1の導電性電
極402上に針状粒子403をばらまく。ここで使用し
たウィスカーは、予めプラズマドーピング装置内を使っ
て実施の形態1と同様にしてNイオンを注入したもので
ある。但し、注入時には、まんべんなくZnOウィスカ
ー表面にNイオンが注入されるようにウィスカー粉末を
撹拌しながら行った。
Next, zinc oxide (ZnO) whiskers in the form of tetrapods (one foot of whisker) are prepared as needle-like particles 403 in a volatile organic solvent such as ethanol, isopropyl alcohol, acetone, toluene, butyl acetate, or isoamyl acetate. Length: 1 to 200 μm, thickness of core foot:
0.01-10 μm, typically one foot length: 5-
A liquid in which 50 μm, the thickness of the core foot: 0.05 to 5 μm) is dispersed is dropped on the glass substrate 401, and the liquid is rotated at a high speed with a spin coater to remove the excess liquid, and the first conductive electrode The needle-like particles 403 are spread on the surface 402. The whiskers used here were previously implanted with N ions in the same manner as in Embodiment 1 using the inside of the plasma doping apparatus. However, the injection was performed while stirring the whisker powder so that the N ions were evenly injected into the surface of the ZnO whisker.

【0034】次に上記揮発性有機溶剤または界面活性剤
を混合した水中にカーボンナノチューブ(直径:0.5
nm〜100nm、長さ2〜10μm)粉末を分散した
液をZnOウィスカー403に滴下乾燥し、ZnOウィ
スカー403表面にカーボンナノチューブコーティング
層410(厚み:1nm〜10μm)を形成した(図4
(b)に拡大図を示す)。このようにして窒素イオンを
注入したZnOウィスカーによる冷陰極部材404が形
成され、電子放出素子400が構成される。
Next, carbon nanotubes (diameter: 0.5) are mixed in water mixed with the volatile organic solvent or the surfactant.
A liquid in which the powder (nm to 100 nm, length: 2 to 10 μm) was dispersed was dropped and dried on the ZnO whisker 403 to form a carbon nanotube coating layer 410 (thickness: 1 nm to 10 μm) on the surface of the ZnO whisker 403 (FIG. 4).
(B) shows an enlarged view). Thus, the cold cathode member 404 made of ZnO whiskers into which nitrogen ions have been implanted is formed, and the electron-emitting device 400 is formed.

【0035】この電子放出素子400を陰極とし、それ
に対向するように、ガラス基板405上に第2の導電性
電極406としてITO、SnO2、ZnOなどからな
る透明電極、および蛍光体膜407を積層した陽極基板
450を配置する。これによって電界放出型面発光装置
4000を構成する。但し、陰極400と陽極450と
の距離は0.5mm〜2mmとした。
A transparent electrode made of ITO, SnO 2 , ZnO, or the like, and a phosphor film 407 are laminated as a second conductive electrode 406 on a glass substrate 405 so as to face the electron-emitting device 400 as a cathode. The anode substrate 450 is placed. Thus, a field emission type surface emitting device 4000 is configured. However, the distance between the cathode 400 and the anode 450 was 0.5 mm to 2 mm.

【0036】上記のような電子放出素子(陰極)400
と陽極基板(陽極)450との間を真空状態にし、さら
に直流電源408を使ってバイアス電圧を陰極400と
陽極450との間に印加する。その結果、直流電源40
8の電圧が約200V〜1kVのバイアス条件下で、冷
陰極部材404の表面から真空中に電子が放出され、こ
の放出された電子が、直流電源408による電界によっ
て加速されて蛍光体膜407と衝突し、蛍光体膜407
が発光するのを観測することができた。また、陰極40
0と陽極間450との間に流れる電子放出電流も50−
250μAと大きく、時間変動も2%以下と小さく安定
していることが確認できた。また、連続で発光させた時
の素子寿命は、蛍光体膜407の輝度20%減少で50
00時間以上であった。
The electron-emitting device (cathode) 400 as described above
A vacuum is applied between the cathode 400 and the anode substrate (anode) 450, and a bias voltage is applied between the cathode 400 and the anode 450 using the DC power supply 408. As a result, the DC power supply 40
Under a bias condition of a voltage of about 200 V to 1 kV, electrons are emitted from the surface of the cold cathode member 404 into a vacuum, and the emitted electrons are accelerated by an electric field generated by the DC power supply 408 to cause the phosphor film 407 to Collision, phosphor film 407
Could be observed to emit light. In addition, the cathode 40
The electron emission current flowing between 0 and 450 between the anodes is also 50-
It was confirmed that the stability was as large as 250 μA and the time variation was as small as 2% or less. In addition, the life of the device when emitting light continuously is 50% when the luminance of the phosphor film 407 is reduced by 20%.
It was over 00 hours.

【0037】陽極450と陰極400間の真空度を1x
10ー5〜1x10ー2Paの範囲で変化させたが、電子放
出電流は安定でほとんどで変化が無かった。比較のため
に実施の形態1で作製した電界放出型面発光装置100
0についても真空度を変化させて同様に調べたところ、
1x10ー5Paの時に比べて真空度の悪い1x10ー2
aでは電子放出電流はおよそ8割減少してしまった。こ
れは、真空度が悪くなった時に雰囲気中に存在する酸素
分子や水分子がウィスカー表面に吸着反応して、表面の
仕事関数が大きくなったためと考えられる。一方、カー
ボンナノチューブ層410をコートした場合は、カーボ
ンナノチューブ層410が保護層として働くため、ガス
分子の吸着反応があってもウィスカーの仕事関数の低下
はなく、真空度が悪くとも安定した電子放出特性が得ら
れたものと思われる。
The degree of vacuum between the anode 450 and the cathode 400 is 1 ×
10 was changed in the range of over 5 ~1X10 over 2 Pa, but the electron emission current was not change in most stable. Field emission type surface emitting device 100 manufactured in Embodiment 1 for comparison
Regarding 0, when the same degree of vacuum was changed and examined,
1x10 -5 bad 1x10 over 2 P degree of vacuum than at the time of the Pa
In a, the electron emission current decreased by about 80%. This is presumably because when the degree of vacuum became worse, oxygen molecules and water molecules present in the atmosphere reacted by adsorption on the whisker surface, increasing the work function of the surface. On the other hand, when the carbon nanotube layer 410 is coated, since the carbon nanotube layer 410 functions as a protective layer, the work function of the whiskers does not decrease even if gas molecules are adsorbed, and stable electron emission is obtained even when the degree of vacuum is poor. It seems that the characteristics were obtained.

【0038】上記のカーボンナノチューブの代わりに炭
素繊維やグラファイト粒、あるいはダイヤモンド粒を使
用しても上記と同様の結果が得られた。
The same results as described above were obtained by using carbon fibers, graphite particles, or diamond particles instead of the carbon nanotubes described above.

【0039】(実施の形態3)本発明の第3の実施形態
では、第2の実施形態で作製した電子放出素子400に
おいて、カーボンナノチューブの代わりに、炭素,Si
またはホウ素の窒化物または酸化物からなるナノチュー
ブや金属硫化物からなるナノチューブで構成した電子放
出素子を構成した。その他の各構成要素は第2の実施形
態で説明したものと同様であり、それらの説明はここで
は省略する。
(Embodiment 3) In a third embodiment of the present invention, in the electron-emitting device 400 manufactured in the second embodiment, carbon, Si
Alternatively, an electron-emitting device composed of a nanotube composed of boron nitride or oxide or a nanotube composed of metal sulfide was constructed. Other components are the same as those described in the second embodiment, and a description thereof will not be repeated.

【0040】第2の実施形態と同様に、本実施形態の電
子放出特性を調べたところ、第2の実施形態における素
子400とほぼ同じ結果を得た。
As in the second embodiment, when the electron emission characteristics of this embodiment were examined, almost the same results as those of the device 400 of the second embodiment were obtained.

【0041】(実施の形態4)図5(a)は、本発明の
第4の実施形態に係わる電子放出素子500、およびそ
れを用いた電界放出型面発光装置5000の概略構成図
である。以下に、図5(a)を参照しながら、電子放出
素子500や電界放出型面発光装置5000の構成や製
造方法を説明する。
(Embodiment 4) FIG. 5A is a schematic configuration diagram of an electron-emitting device 500 according to a fourth embodiment of the present invention and a field emission type surface emitting device 5000 using the same. Hereinafter, a configuration and a manufacturing method of the electron-emitting device 500 and the field emission type surface-emitting device 5000 will be described with reference to FIG.

【0042】まず、支持部材としてガラス基板501上
に、第1の導電性電極502としてAl、Al−Li合
金、Mg,Mg−Ag合金、Au、Pt、Ag、Fe、
Ni、Cu、Cr、W、Mo、TaまたはTiなどの金
属薄膜をスパッタ法あるいは真空蒸着法により、厚さ約
0.01μm〜約100μm、典型的には約0.05μ
m〜約1μmに形成する。
First, on a glass substrate 501 as a supporting member, Al, an Al—Li alloy, Mg, Mg—Ag alloy, Au, Pt, Ag, Fe,
A metal thin film such as Ni, Cu, Cr, W, Mo, Ta or Ti is formed by sputtering or vacuum evaporation to a thickness of about 0.01 μm to about 100 μm, typically about 0.05 μm.
m to about 1 μm.

【0043】次に、スパッタ法により下地層503とし
てAl23、SiまたはZnOの単結晶膜あるいは多結
晶膜を0.1μm〜10μm厚で積層した後、基板温度
を200〜800℃としてZn蒸気あるいは有機Zn化
合物ガスと酸素あるいは水蒸気を原料ガスとする気相成
長法により、針状粒子504として下地層503上に直
径:0.1〜10μm、長さ:1〜100μmのZnO
ウィスカーを成長させる(図5(b)に拡大図を示
す)。この下地層503は、ウィスカーの成長を促進す
るための種の働きをするものである。続いて、実施の形
態1と同様にして、プラズマドーピング装置を用いてこ
のウィスカーにNイオンを注入した。このようにして窒
素イオンを注入したZnOウィスカーによる冷陰極部材
505が形成され、電子放出素子500が構成される。
Next, a single crystal film or a polycrystalline film of Al 2 O 3 , Si or ZnO is laminated as a base layer 503 to a thickness of 0.1 μm to 10 μm as a base layer 503 by a sputtering method. By a vapor phase growth method using vapor or organic Zn compound gas and oxygen or water vapor as raw material gas, ZnO having a diameter of 0.1 to 10 μm and a length of 1 to 100 μm is formed as needle-like particles 504 on the underlayer 503.
Whiskers are grown (an enlarged view is shown in FIG. 5B). The underlayer 503 functions as a seed for promoting whisker growth. Subsequently, N ions were implanted into the whiskers using a plasma doping apparatus in the same manner as in the first embodiment. Thus, the cold cathode member 505 made of ZnO whiskers into which nitrogen ions have been implanted is formed, and the electron-emitting device 500 is configured.

【0044】この電子放出素子500を陰極とし、それ
に対向するようにガラス基板506上に第2の導電性電
極507としてITO、SnO2、ZnOなどからなる
透明電極、および蛍光体膜508を積層した陽極基板5
50を配置する。これによって電界放出型面発光装置5
000を構成する。但し、陰極500と陽極550との
距離は0.5mm〜2mmとした。
The electron-emitting device 500 is used as a cathode, and a transparent electrode made of ITO, SnO 2 , ZnO or the like and a phosphor film 508 are laminated as a second conductive electrode 507 on a glass substrate 506 so as to face the cathode. Anode substrate 5
Place 50. Thereby, the field emission type surface emitting device 5
000. However, the distance between the cathode 500 and the anode 550 was 0.5 mm to 2 mm.

【0045】上記のような電子放出素子(陰極)500
と陽極基板(陽極)550との間を真空状態にし、さら
に直流電源509を使ってバイアス電圧を陰極500と
陽極550との間に印加する。その結果、直流電源50
9の電圧が約400V〜1.5kVのバイアス条件下
で、冷陰極部材505の表面から真空中に電子が放出さ
れ、この放出された電子が、直流電源509による電界
によって加速されて蛍光体膜508と衝突し、蛍光体膜
508が発光するのを観測することができた。また、陰
極500と陽極間550との間に流れる電子放出電流も
50−250μAと大きく、時間変動も3%以下と小さ
く安定していることが確認できた。また、連続で発光さ
せた時の素子寿命は、蛍光体膜508の輝度20%減少
で5000時間以上であった。
An electron-emitting device (cathode) 500 as described above
A vacuum is applied between the cathode 500 and the anode substrate (anode) 550, and a bias voltage is applied between the cathode 500 and the anode 550 using the DC power supply 509. As a result, the DC power supply 50
9 are biased to a voltage of about 400 V to 1.5 kV, electrons are emitted from the surface of the cold cathode member 505 into a vacuum, and the emitted electrons are accelerated by an electric field generated by the DC power supply 509 to emit the phosphor film. Collision with 508 caused the phosphor film 508 to emit light. In addition, it was confirmed that the electron emission current flowing between the cathode 500 and the anode 550 was as large as 50 to 250 μA, and the time variation was as small as 3% or less and stable. The device life when emitting light continuously was 5,000 hours or more due to a 20% decrease in luminance of the phosphor film 508.

【0046】上記のZnOウィスカー504の代わりに
にダイヤモンドウィスカー、SiCウィスカー、Si3
4ウィスカー、AlNウィスカー、BNウィスカー、
TiCウィスカーを使用しても上記と同様の結果が得ら
れた。
Instead of the above ZnO whiskers 504, diamond whiskers, SiC whiskers, Si 3
N 4 whiskers, AlN whiskers, BN whiskers,
The same results as above were obtained using TiC whiskers.

【0047】(実施の形態5)図6(a)は、本発明の
第4の実施形態に係わる電子放出素子600、およびそ
れを用いた固体真空デバイス6000の概略構成図であ
る。以下に、図6(a)を参照しながら、電子放出素子
600や固体真空デバイス6000の構成や製造方法を
説明する。
(Embodiment 5) FIG. 6A is a schematic configuration diagram of an electron-emitting device 600 and a solid-state vacuum device 6000 using the same according to a fourth embodiment of the present invention. Hereinafter, the configuration and manufacturing method of the electron-emitting device 600 and the solid-state vacuum device 6000 will be described with reference to FIG.

【0048】まず、支持部材としてガラス基板601上
に、第1の導電性電極602としてAl、Al−Li合
金、Mg,Mg−Ag合金、Au、Pt、Ag、Fe、
Ni、Cu、Cr、W、Mo、TaまたはTiなどの金
属薄膜をスパッタ法あるいは真空蒸着法により、厚さ約
0.01μm〜約100μm、典型的には約0.05μ
m〜約1μmに形成する。続いて、第1の導電性電極6
02上にAl23等からなるセラミックスやSiO2
Si34などの誘電体スペーサ603(厚さ:20μm
〜200μm)をスパッタ法または化学気相成長(CV
D)法により形成し、続いて第1の導電性電極602と
同様にしてグリッド電極604となる導電性電極(厚
さ:0.1μm〜200μm)を順次積層した後、フォ
トリソグラフ法またはリフトオフ法を用いてこれらの一
部を除去して開口部605を形成し、この開口部605
の誘電体スペーサ603を除去した。この時の陰極側の
基板600を陽極側650より見た様子を図6(b)に
示す。開口部の大きさはおよそ100μm×200μm
である。
First, on a glass substrate 601 as a support member, Al, Al—Li alloy, Mg, Mg—Ag alloy, Au, Pt, Ag, Fe,
A metal thin film such as Ni, Cu, Cr, W, Mo, Ta or Ti is formed by sputtering or vacuum evaporation to a thickness of about 0.01 μm to about 100 μm, typically about 0.05 μm.
m to about 1 μm. Subsequently, the first conductive electrode 6
02, ceramics such as Al 2 O 3 or SiO 2 ,
Dielectric spacer 603 such as Si 3 N 4 (thickness: 20 μm)
To 200 μm) by sputtering or chemical vapor deposition (CV).
D), followed by sequentially laminating conductive electrodes (thickness: 0.1 μm to 200 μm) to be grid electrodes 604 in the same manner as the first conductive electrode 602, followed by a photolithographic method or a lift-off method. The openings 605 are formed by removing some of them by using
The dielectric spacer 603 was removed. FIG. 6B shows a state in which the substrate 600 on the cathode side at this time is viewed from the anode side 650. The size of the opening is about 100 μm × 200 μm
It is.

【0049】次に、エタノールやイソプロピルアルコー
ルやアセトンやトルエンや酢酸ブチルや酢酸イソアミル
などの揮発性有機溶剤中に針状粒子606としてテトラ
ポット形状の酸化亜鉛(ZnO)ウィスカー(ウィスカ
ー1本の足の長さ:1〜200μm、核部の足の太さ:
0.01〜10μm。典型的には1本の足の長さ:5〜
50μm、核部の足の太さ:0.05〜5μm。)を分
散した液を開口部605に滴下、乾燥した。続いて、実
施の形態1と同様にNイオンをZnOウィスカーに注入
し、冷陰極部材606を形成し、電子放出素子600が
構成される。
Next, zinc oxide (ZnO) whiskers in the form of tetrapots (one foot of whisker) were prepared as needle-like particles 606 in a volatile organic solvent such as ethanol, isopropyl alcohol, acetone, toluene, butyl acetate or isoamyl acetate. Length: 1 to 200 μm, thickness of core foot:
0.01-10 μm. Typically one foot length: 5
50 μm, core thickness: 0.05 to 5 μm. ) Was dispersed in the opening 605 and dried. Subsequently, N ions are implanted into the ZnO whiskers to form the cold cathode member 606 as in the first embodiment, and the electron-emitting device 600 is formed.

【0050】この電子放出素子600を陰極とし、それ
に対向するようにガラス基板607上に第2の導電性電
極608としてITO、SnO2、ZnOなどからなる
透明電極を形成した陽極基板650を配置する。これに
よって固体真空デバイス6000を構成する。但し、陰
極600と陽極650との間は封止材609によって真
空封止されており、陰極600と陽極650との距離は
0.5mm〜2mmとした。本実施の形態では、ガラス
基板601、607と封止材609とで真空容器を構成
している。
An anode substrate 650 having a transparent electrode made of ITO, SnO 2 , ZnO or the like as a second conductive electrode 608 is disposed on a glass substrate 607 so as to face the electron-emitting device 600 as a cathode. . This constitutes the solid-state vacuum device 6000. However, the space between the cathode 600 and the anode 650 is vacuum-sealed by the sealing material 609, and the distance between the cathode 600 and the anode 650 is 0.5 mm to 2 mm. In this embodiment mode, a vacuum container is formed by the glass substrates 601 and 607 and the sealing material 609.

【0051】上記のような固体真空デバイス6000に
おいて、直流電源610を使ってバイアス電圧を陰極6
00と陽極650との間に7ー10kVの電圧を印加
し、第1の導電性電極602とグリッド電極604との
間に直流電源611を変化することで、陰極600と陽
極650との間で流れる電流を制御できることが確認さ
れた。
In the solid-state vacuum device 6000 as described above, a bias voltage is applied to the cathode 6 using the DC power supply 610.
By applying a voltage of 7 to 10 kV between the first conductive electrode 602 and the grid electrode 604, a voltage of 7 to 10 kV is applied between the first conductive electrode 602 and the grid electrode 604. It was confirmed that the flowing current could be controlled.

【0052】なお、本実施の形態では、三極管タイプの
固体真空デバイスについて説明したが、二極管または4
極管以上の多極管タイプの固定真空デバイスも当然のこ
とながら形成できる(二極管では、グリッド電極604
および誘電体スペーサ603が無い状態であり、多極管
の場合は極数に応じてグリッド電極604および誘電体
スペーサ603を積層した構造となる)。
In this embodiment, a triode-type solid vacuum device has been described.
Naturally, a fixed vacuum device of a multi-electrode type or higher than an electrode can also be formed.
And a state where the dielectric spacer 603 is not provided, and in the case of a multi-electrode tube, the grid electrode 604 and the dielectric spacer 603 are laminated according to the number of poles.)

【0053】(実施の形態6)図7は、本発明の第6の
実施形態に係わる電子放出素子アレイ700、およびそ
れを使用した電界放出型画像表示装置7000の概略構
成図である。
(Embodiment 6) FIG. 7 is a schematic configuration diagram of an electron-emitting device array 700 according to a sixth embodiment of the present invention and a field emission type image display device 7000 using the same.

【0054】本実施形態の電子放出素子700の製造に
あたっては、先ず支持部材としてのガラス基板701上
に第1の導電性電極702を形成する。但し、第1の導
電性電極702は真空蒸着あるいはスパッタにより形成
する際に、適切なパターンのマスクを使用するかフォト
リソグラフ技術によって2000本の互いに電気的に絶
縁された矩形の電極パターンとして形成した。次に、第
5の実施形態と同様にして第1の導電性電極702上に
開口部703を設けたAl23等からなるセラミックス
やSiO2、Si34などの誘電体スペーサ704(厚
さ:20μm〜200μm)およびグリッド電極705
を構成した。但し、グリッド電極705は、真空蒸着ま
たはスパッタにて形成する際、第1の導電性電極702
とは直交する方向に所定のパターンのマスクを使用する
かフォトリソグラフ技術によって1100本の電気的に
絶縁された矩形の電極パターンとして形成した。また、
開口部703は、第1の導電性電極702とグリッド電
極705が交差する部分に1つずつ形成し、結果的に2
次元アレイ状に1100x2000個配列した。開口部
703の1つの大きさはおよそ100μm×200μm
である。この時の陽極側750より見た陰極700の開
口部703の様子を図8(a)に示す。
In manufacturing the electron-emitting device 700 of this embodiment, first, a first conductive electrode 702 is formed on a glass substrate 701 as a support member. However, when the first conductive electrode 702 was formed by vacuum evaporation or sputtering, a mask having an appropriate pattern was used, or the first conductive electrode 702 was formed as 2,000 rectangular electrode patterns which were electrically insulated from each other by a photolithographic technique. . Next, similarly to the fifth embodiment, a ceramic made of Al 2 O 3 or the like and a dielectric spacer 704 such as SiO 2 or Si 3 N 4 provided with an opening 703 on the first conductive electrode 702 are provided. Thickness: 20 μm to 200 μm) and grid electrode 705
Was configured. However, when the grid electrode 705 is formed by vacuum evaporation or sputtering, the first conductive electrode 702
In this case, a mask having a predetermined pattern was used in a direction orthogonal to the above, or 1100 electrically insulated rectangular electrode patterns were formed by a photolithographic technique. Also,
The openings 703 are formed one by one at the portions where the first conductive electrodes 702 and the grid electrodes 705 intersect.
1100 × 2000 pieces were arranged in a dimensional array. One size of the opening 703 is approximately 100 μm × 200 μm
It is. FIG. 8A shows the state of the opening 703 of the cathode 700 viewed from the anode side 750 at this time.

【0055】次に、酢酸3メチルブチル(化学式:CH
2COOCH2CH2CH(CH32)中に重量比1%の
ニトロセルロースを混合した液にZnOウィスカーを分
散した懸濁液を調整し、インクジェット(懸濁液を加圧
して細い開口を持ったノズルより液滴を飛ばす方式)の
ノズルを使って各開口部703に混合液を吐出した。そ
の後、30−90℃に加熱して溶媒の酢酸3メチルブチ
ルを蒸発させて、第1の導電性電極702上に針状粒子
706としてZnOウィスカーを配置した。その後、実
施の形態1と同様にしてZnOウィスカーにNイオンを
注入して冷陰極部材707を開口部703全数に構成
し、電子放出素子アレイ700を形成した。
Next, 3-methylbutyl acetate (chemical formula: CH
2 COOCH 2 CH 2 CH (CH 3 ) 2 ) was mixed with 1% by weight of nitrocellulose to prepare a suspension in which ZnO whiskers were dispersed. The mixed liquid was ejected to each opening 703 using a nozzle of a type in which droplets were ejected from a held nozzle. Thereafter, the mixture was heated to 30 to 90 ° C. to evaporate the solvent, 3-methylbutyl acetate, and ZnO whiskers were arranged on the first conductive electrode 702 as needle-like particles 706. Thereafter, N ions were implanted into ZnO whiskers to form the cold cathode members 707 in all the openings 703 in the same manner as in the first embodiment, and the electron-emitting device array 700 was formed.

【0056】この電子放出素子700を陰極とし、それ
に対向するようにガラス基板708上に第2の導電性電
極709としてITO、SnO2、ZnOなどからなる
透明電極、および蛍光体層710を形成した陽極基板7
50を配置する。これによって電界放出型画像表示装置
7000を構成する。但し、陰極700と陽極750と
の距離は0.5mm〜2mmとした。
A transparent electrode made of ITO, SnO 2 , ZnO, or the like and a phosphor layer 710 were formed as a second conductive electrode 709 on a glass substrate 708 so as to face the electron-emitting device 700 as a cathode. Anode substrate 7
Place 50. Thus, a field emission image display device 7000 is configured. However, the distance between the cathode 700 and the anode 750 was 0.5 mm to 2 mm.

【0057】陰極700と陽極750間を真空状態と
し、第1の導電性電極702と第2の導電性電極709
との間に直流電源711によって、5ー10kVの電圧
を印加し、第1の導電性電極702とグリッド電極70
5間に直流電源712を接続した。直流電源712の電
圧を増減することにより、蛍光体薄膜710の発光の明
るさが変化することを確認した。これより冷陰極部材7
06から放出する電子の数をグリッド電極705によっ
て制御できることを確認した。次に、各第1の導電性電
極702と各グリッド電極705に順に電圧を印加して
行き、33msの間に全冷陰極部材707にそれぞれ所
定の電圧が一通り印加されるようにすると、蛍光体層7
10からの発光はモノクロ画像を表示した。
The space between the cathode 700 and the anode 750 is evacuated, and the first conductive electrode 702 and the second conductive electrode 709 are set.
Between the first conductive electrode 702 and the grid electrode 70 by applying a voltage of 5-10 kV by the DC power supply 711.
A DC power supply 712 was connected between the five. It was confirmed that the brightness of light emission of the phosphor thin film 710 was changed by increasing or decreasing the voltage of the DC power supply 712. From this, the cold cathode member 7
It has been confirmed that the number of electrons emitted from the pixel 06 can be controlled by the grid electrode 705. Next, a voltage is applied to each of the first conductive electrodes 702 and each of the grid electrodes 705 in order, and a predetermined voltage is applied to all the cold cathode members 707 within 33 ms. Body layer 7
Light emission from 10 displayed a monochrome image.

【0058】なお、本実施の形態ではモノクロ画像を表
示したが、蛍光体層710として1つ1つの冷陰極部材
707に対応してR(赤),G(緑),B(青)を発色
する蛍光体を配置させたものを使用すればカラー画像を
表示できる。また、蛍光体の発光輝度をより高めるため
に、蛍光体層710の発光をガラス基板708側に厚め
る反射層(例えば、0.05μm〜1μmの厚みでAl
層)を蛍光体層710の上に積層してもよい。また、こ
の反射層は蛍光体層710の帯電防止としての機能も有
する。
Although a monochrome image is displayed in the present embodiment, R (red), G (green), and B (blue) are generated corresponding to each cold cathode member 707 as the phosphor layer 710. A color image can be displayed by using a phosphor on which a fluorescent material is arranged. Further, in order to further increase the emission luminance of the phosphor, a reflection layer (for example, Al having a thickness of 0.05 μm to 1 μm, which increases the emission of the phosphor layer 710 on the glass substrate 708 side).
Layer) may be laminated on the phosphor layer 710. The reflection layer also has a function of preventing the phosphor layer 710 from being charged.

【0059】電界放出型ディスプレイ装置7000にお
いて、冷陰極部材707を第3の実施形態と同じものに
置き換えた場合、第4の実施形態と同じものに置き換え
た場合についてもの上記と同様に調べたところ、画像表
示できることを確認した。
In the field emission type display device 7000, when the cold cathode member 707 was replaced with the same one as in the third embodiment, and when the cold cathode member 707 was replaced with the same one as in the fourth embodiment, the same examination was performed. , And confirmed that images could be displayed.

【0060】以上の実施の形態1〜6に於て、陽極−陰
極間への電圧印加手段として直流電源を使用したが、交
流電源でも、直流電圧を重畳した交流電圧、あるいは交
流電源に半波整流回路や全波整流回路を設けたものでも
良い。
In the above first to sixth embodiments, a DC power supply is used as a means for applying a voltage between the anode and the cathode. However, an AC power supply may be an AC voltage in which a DC voltage is superimposed, or a half-wave AC power supply. A rectifier circuit or a full-wave rectifier circuit may be provided.

【0061】また、上記の実施の形態1〜6に於て、ガ
ラス基板101、105、401、405、501、5
06、601、607、701、708は、例えば耐熱
性ガラス(パイレックス(登録商標)ガラス、コーニン
グ#7740、#7059など)や石英基板、あるいは
各種セラミックス材料(アルミナなど)、各種ガラスセ
ラミックス(グリーンシート)からなる基板を使用する
ことができる。
In the first to sixth embodiments, the glass substrates 101, 105, 401, 405, 501, 5
06, 601, 607, 701, and 708 are, for example, heat-resistant glass (Pyrex (registered trademark) glass, Corning # 7740, # 7059, etc.) or quartz substrate, or various ceramic materials (alumina, etc.), various glass ceramics (green sheet, etc.). ) Can be used.

【0062】実施の形態5、6における誘電体スペーサ
603、704には、Al23等からなるセラミックス
やSiO2、Si34などの他にガラスやガラスセラミ
ックスなども使用できる。また、実施の形態1〜6の電
界放出素子においても陰極−陽極間の距離を保つために
上記の材料から構成されるような誘電体スペーサを使用
してもよい。
For the dielectric spacers 603 and 704 in the fifth and sixth embodiments, glass or glass ceramics can be used in addition to ceramics such as Al 2 O 3 , SiO 2 , Si 3 N 4 and the like. Also, in the field emission devices of the first to sixth embodiments, a dielectric spacer made of the above material may be used in order to keep the distance between the cathode and the anode.

【0063】以上から分かるように、本発明の電子放出
素子およびそれを用いた面発光装置、画像表示装置、固
体真空デバイスは長寿命で、電子を安定に、かつ高効率
に放出できる優れている。
As can be seen from the above description, the electron-emitting device of the present invention and the surface emitting device, the image display device, and the solid-state vacuum device using the same have a long life and are excellent in that electrons can be stably emitted with high efficiency. .

【0064】[0064]

【発明の効果】本発明によれば、不純物原子を不均一に
分布させた針状粒子の集合体からなる冷陰極部材を、大
面積に形成でき、低動作電圧で、動作電流が大きく、長
寿命かつ安定性に優れた電子放出素子を提供できる。こ
の電子放出素子は、製造容易であり低コストで製造でき
る。
According to the present invention, a cold cathode member comprising an aggregate of needle-like particles in which impurity atoms are non-uniformly distributed can be formed in a large area, at a low operating voltage, with a large operating current, and with a long operating time. An electron-emitting device having excellent life and stability can be provided. This electron-emitting device is easy to manufacture and can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のある実施形態における電子放出素子、
およびそれを用いて構成される電界放出型面発光装置の
構成を模式的に示す図
FIG. 1 shows an electron-emitting device according to an embodiment of the present invention;
FIG. 1 schematically shows a configuration of a field emission type surface emitting device configured using the same.

【図2】本発明のある実施形態において使用した針状粒
子中の不純物密度の分布の様子を示す図
FIG. 2 is a diagram showing a distribution of impurity density in acicular particles used in an embodiment of the present invention.

【図3】本発明の他の実施形態における電子放出素子の
電子放出効率向上の機構を示すバンドモデル図
FIG. 3 is a band model diagram showing a mechanism for improving electron emission efficiency of an electron-emitting device according to another embodiment of the present invention.

【図4】本発明の他の実施形態における電子放出素子、
およびそれを用いて構成される電界放出型面発光装置の
構成を模式的に示す図
FIG. 4 shows an electron-emitting device according to another embodiment of the present invention;
FIG. 1 schematically shows a configuration of a field emission type surface emitting device configured using the same.

【図5】本発明の他の実施形態における電子放出素子、
およびそれを用いて構成される電界放出型面発光装置の
構成を模式的に示す図
FIG. 5 shows an electron-emitting device according to another embodiment of the present invention;
FIG. 1 schematically shows a configuration of a field emission type surface emitting device configured using the same.

【図6】本発明の他の実施形態における電子放出素子、
およびそれを用いて構成される固体真空デバイスの構成
を模式的に示す図
FIG. 6 shows an electron-emitting device according to another embodiment of the present invention;
And a diagram schematically showing a configuration of a solid-state vacuum device configured using the same.

【図7】本発明の他の実施形態における電子放出素子ア
レイ、およびそれを用いて構成される電界放出型画像表
示装置の構成を模式的に示す図
FIG. 7 is a diagram schematically showing a configuration of an electron-emitting device array according to another embodiment of the present invention, and a field-emission image display device using the same.

【符号の説明】[Explanation of symbols]

101,105 支持部材 102 第1の導電性電極 103 針状粒子 104 冷陰極部材 106 第2の導電性電極 107 蛍光体薄膜(層) 108 直流電源 100 陰極 150 陽極 1000 電界放出型面発光装置 101, 105 Supporting member 102 First conductive electrode 103 Needle-like particles 104 Cold cathode member 106 Second conductive electrode 107 Phosphor thin film (layer) 108 DC power supply 100 Cathode 150 Anode 1000 Field emission type surface emitting device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01J 31/12 H01J 63/06 63/06 1/30 F (72)発明者 白鳥 哲也 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 川瀬 透 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 高瀬 道彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5C031 DD17 DD19 5C036 EE01 EG12 EH08 EH11 5C039 MM02 MM09 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01J 31/12 H01J 63/06 63/06 1/30 F (72) Inventor Tetsuya Shiratori Kazuma, Osaka Pref. 1006 Kadoma Matsushita Electric Industrial Co., Ltd. (72) Inventor Toru Kawase 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. F term (reference) 5C031 DD17 DD19 5C036 EE01 EG12 EH08 EH11 5C039 MM02 MM09

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 支持部材の上に第1の電極と、前記第1
の電極に対向しかつ前記第1の電極に対して正にバイア
スされる第2の電極との間に冷陰極部材が少なくとも配
置され、少なくとも前記冷陰極部材が不純物原子を有す
る針状粒子で構成され、前記針状粒子の表面より内部に
向かって前記不純物原子密度が不均一に分布しているこ
とを特徴とする電子放出素子。
A first electrode on a supporting member;
A cold cathode member is disposed at least between the second electrode facing the first electrode and being positively biased with respect to the first electrode, and at least the cold cathode member is formed of acicular particles having impurity atoms. Wherein the impurity atom density is unevenly distributed from the surface of the acicular particle toward the inside.
【請求項2】 針状粒子の中央部に比べて先端部に不純
物原子密度の高い領域が含まれることを特徴とする請求
項1に記載の電子放出素子。
2. The electron-emitting device according to claim 1, wherein a region having a higher impurity atom density is included at a tip portion than at a central portion of the acicular particle.
【請求項3】 針状粒子が、針状結晶領域を有するウィ
スカーであることを特徴とする請求項1に記載の電子放
出素子。
3. The electron-emitting device according to claim 1, wherein the acicular particles are whiskers having acicular crystal regions.
【請求項4】 針状粒子が、酸化化合物、窒化化合物お
よび炭化化合物の何れかであることを特徴とする請求項
1に記載の電子放出素子。
4. The electron-emitting device according to claim 1, wherein the needle-like particles are any one of an oxide compound, a nitride compound and a carbide compound.
【請求項5】 針状粒子が、酸化亜鉛ウィスカーである
ことを特徴とする請求項4に記載の電子放出素子。
5. The electron-emitting device according to claim 4, wherein the acicular particles are zinc oxide whiskers.
【請求項6】 不純物原子が、周期表第IV族原子およ
び第V族原子の何れかであることを特徴とする請求項5
に記載の電子放出素子。
6. The semiconductor device according to claim 5, wherein the impurity atom is one of a Group IV atom and a Group V atom of the periodic table.
3. The electron-emitting device according to item 1.
【請求項7】 針状粒子の表面に、少なくとも、ダイヤ
モンド粒子、黒鉛粒子、カーボンナノチューブ、炭素繊
維のうち何れかが付着していることを特徴とする請求項
1に記載の電子放出素子。
7. The electron-emitting device according to claim 1, wherein at least one of diamond particles, graphite particles, carbon nanotubes, and carbon fibers adheres to the surface of the acicular particles.
【請求項8】 支持部材の上に第1の電極を形成し、前
記第1の電極上に針状粒子からなる冷陰極部材を形成
し、さらに前記冷陰極部材表面に帯電した不純物原子ま
たは不純物原子を含む分子を照射した後、前記第1の電
極に対向する第2の電極を配置することを特徴とする電
子放出素子の製造方法。
8. A first electrode is formed on a supporting member, a cold cathode member made of needle-like particles is formed on the first electrode, and a charged impurity atom or impurity on the surface of the cold cathode member is formed. A method for manufacturing an electron-emitting device, comprising: irradiating a molecule containing atoms, and then arranging a second electrode facing the first electrode.
【請求項9】 支持部材の上に第1の電極を形成し、帯
電した不純物原子または不純物原子を含む分子を予め照
射した針状粒子を用いて前記第1の電極上に冷陰極部材
を形成した後、前記第1の電極に対向する第2の電極を
配置することを特徴とする電子放出素子の製造方法。
9. A first electrode is formed on a supporting member, and a cold cathode member is formed on the first electrode by using needle-like particles which have been irradiated with charged impurity atoms or molecules containing impurity atoms in advance. And then arranging a second electrode opposite to the first electrode.
【請求項10】 請求項1〜請求項7の何れかに記載の
電子放出素子を含む面発光装置であって、前記電子放出
素子の第2の電極上に蛍光体が配置されていることを特
徴とする面発光装置。
10. A surface emitting device including the electron-emitting device according to claim 1, wherein a phosphor is arranged on a second electrode of the electron-emitting device. Characteristic surface emitting device.
【請求項11】 請求項1〜請求項7の何れかに記載の
電子放出素子を含む画像表示装置であって、前記電子放
出素子をマトリックス状に構成し、前記電子放出素子の
冷陰極部材より放出される電子数を制御する手段を備
え、前記電子放出素子の第2の電極上に蛍光体が配置さ
れていることを特徴とする画像表示装置。
11. An image display device comprising the electron-emitting device according to claim 1, wherein the electron-emitting devices are arranged in a matrix, and the electron-emitting devices are arranged in a matrix. An image display device comprising: means for controlling the number of emitted electrons, wherein a phosphor is disposed on a second electrode of the electron-emitting device.
【請求項12】 請求項1〜請求項7の何れかに記載の
電子放出素子を含む固体真空デバイスであって、前記電
子放出素子が真空容器内に配設されていることを特徴と
する固体真空デバイス。
12. A solid-state vacuum device including the electron-emitting device according to claim 1, wherein the electron-emitting device is provided in a vacuum vessel. Vacuum device.
JP2000175406A 2000-06-12 2000-06-12 Electron emission element and its manufacturing method and surface light emitting device and image display device and solid vacuum device Pending JP2001357771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000175406A JP2001357771A (en) 2000-06-12 2000-06-12 Electron emission element and its manufacturing method and surface light emitting device and image display device and solid vacuum device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000175406A JP2001357771A (en) 2000-06-12 2000-06-12 Electron emission element and its manufacturing method and surface light emitting device and image display device and solid vacuum device

Publications (1)

Publication Number Publication Date
JP2001357771A true JP2001357771A (en) 2001-12-26

Family

ID=18677294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000175406A Pending JP2001357771A (en) 2000-06-12 2000-06-12 Electron emission element and its manufacturing method and surface light emitting device and image display device and solid vacuum device

Country Status (1)

Country Link
JP (1) JP2001357771A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004027818A1 (en) * 2002-09-20 2004-04-01 Japan Science And Technology Agency Light-emitting device
WO2005059949A1 (en) * 2003-12-17 2005-06-30 Nihon University Field emission spot light source lamp
JP2005299040A (en) * 2004-04-14 2005-10-27 Sakai Ovex Co Ltd Expanded carbon fiber, method for producing the same and field emission device and field emission display containing the same
JP2006024461A (en) * 2004-07-08 2006-01-26 Hidetoshi Saito High brightness light emitting device
JP2006049293A (en) * 2004-06-30 2006-02-16 Hitachi High-Technologies Corp Field-emission electron gun and electron beam application apparatus using the same
JP2006196416A (en) * 2005-01-17 2006-07-27 Dialight Japan Co Ltd Method of driving field emission type cold cathode fluorescent lamp and its driving power supply
JP2006278226A (en) * 2005-03-30 2006-10-12 Nikkiso Co Ltd Cathode of field emission type light
WO2006112455A1 (en) * 2005-04-18 2006-10-26 Asahi Glass Company, Limited Electron emitter, field emission display unit, cold cathode fluorescent tube, flat type lighting device, and electron emitting material
JP2007257894A (en) * 2006-03-20 2007-10-04 Yamaha Corp Method of manufacturing needle-like electron emitter for electron-emitting element and method of manufacturing electron-emitting element
KR100842936B1 (en) * 2002-04-15 2008-07-02 나노퍼시픽(주) Manufacturing method of the backlight for liquid Crystal Displays
JP2008192396A (en) * 2007-02-02 2008-08-21 Nagaoka Univ Of Technology Electrode material, its manufacturing method and field emission device using electrode material
JP2009140815A (en) * 2007-12-07 2009-06-25 Sumitomo Electric Ind Ltd Electron emission element, electron source, and electron beam apparatus
JP2009277357A (en) * 2008-05-12 2009-11-26 Asahi Kasei Corp ZnO-BASED FIELD EMISSION ELECTRON SOURCE
JP2010135185A (en) * 2008-12-04 2010-06-17 Japan Science & Technology Agency Manufacturing method for electron emitting element, and electron emitting element
US7755271B2 (en) 2004-11-26 2010-07-13 Kochi Industrial Promotion Center Field emission electrode, manufacturing method thereof, and electronic device
KR101046976B1 (en) 2004-10-19 2011-07-07 삼성에스디아이 주식회사 Composition for forming electron emission source, method for manufacturing electron emission source using same and electron emission source
KR20200103470A (en) * 2019-02-25 2020-09-02 한국해양대학교 산학협력단 Fabrication of Field Emission Device using high UV transmittance anode structure and Method thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100842936B1 (en) * 2002-04-15 2008-07-02 나노퍼시픽(주) Manufacturing method of the backlight for liquid Crystal Displays
WO2004027818A1 (en) * 2002-09-20 2004-04-01 Japan Science And Technology Agency Light-emitting device
WO2005059949A1 (en) * 2003-12-17 2005-06-30 Nihon University Field emission spot light source lamp
JP2005299040A (en) * 2004-04-14 2005-10-27 Sakai Ovex Co Ltd Expanded carbon fiber, method for producing the same and field emission device and field emission display containing the same
JP4554260B2 (en) * 2004-04-14 2010-09-29 サカイオーベックス株式会社 Expanded carbon fiber, method for producing the same, field emission device including the same, and field emission display
JP2006049293A (en) * 2004-06-30 2006-02-16 Hitachi High-Technologies Corp Field-emission electron gun and electron beam application apparatus using the same
JP2006024461A (en) * 2004-07-08 2006-01-26 Hidetoshi Saito High brightness light emitting device
KR101046976B1 (en) 2004-10-19 2011-07-07 삼성에스디아이 주식회사 Composition for forming electron emission source, method for manufacturing electron emission source using same and electron emission source
US7755271B2 (en) 2004-11-26 2010-07-13 Kochi Industrial Promotion Center Field emission electrode, manufacturing method thereof, and electronic device
US8035291B2 (en) 2004-11-26 2011-10-11 Kochi Industrial Promotion Center Field emission electrode, manufacturing method thereof, and electronic device
JP2006196416A (en) * 2005-01-17 2006-07-27 Dialight Japan Co Ltd Method of driving field emission type cold cathode fluorescent lamp and its driving power supply
JP4591956B2 (en) * 2005-01-17 2010-12-01 株式会社ピュアロンジャパン Driving method of field emission type cold cathode fluorescent lamp and driving power source thereof
JP2006278226A (en) * 2005-03-30 2006-10-12 Nikkiso Co Ltd Cathode of field emission type light
WO2006112455A1 (en) * 2005-04-18 2006-10-26 Asahi Glass Company, Limited Electron emitter, field emission display unit, cold cathode fluorescent tube, flat type lighting device, and electron emitting material
JP5082849B2 (en) * 2005-04-18 2012-11-28 旭硝子株式会社 Electron emitter, field emission display device, cold cathode fluorescent tube, flat illumination device, and electron emission material
JP2007257894A (en) * 2006-03-20 2007-10-04 Yamaha Corp Method of manufacturing needle-like electron emitter for electron-emitting element and method of manufacturing electron-emitting element
JP2008192396A (en) * 2007-02-02 2008-08-21 Nagaoka Univ Of Technology Electrode material, its manufacturing method and field emission device using electrode material
JP2009140815A (en) * 2007-12-07 2009-06-25 Sumitomo Electric Ind Ltd Electron emission element, electron source, and electron beam apparatus
JP2009277357A (en) * 2008-05-12 2009-11-26 Asahi Kasei Corp ZnO-BASED FIELD EMISSION ELECTRON SOURCE
JP2010135185A (en) * 2008-12-04 2010-06-17 Japan Science & Technology Agency Manufacturing method for electron emitting element, and electron emitting element
KR20200103470A (en) * 2019-02-25 2020-09-02 한국해양대학교 산학협력단 Fabrication of Field Emission Device using high UV transmittance anode structure and Method thereof
KR102189353B1 (en) 2019-02-25 2020-12-09 한국해양대학교 산학협력단 Fabrication of Field Emission Device using high UV transmittance anode structure and Method thereof

Similar Documents

Publication Publication Date Title
JP2001357771A (en) Electron emission element and its manufacturing method and surface light emitting device and image display device and solid vacuum device
US5709577A (en) Method of making field emission devices employing ultra-fine diamond particle emitters
CN1206690C (en) Field electron emission materials and device
US5811916A (en) Field emission devices employing enhanced diamond field emitters
EP0725415A2 (en) Field emission devices employing activated diamond particle emitters and methods for making same
US6969536B1 (en) Method of creating a field electron emission material
JPH10261371A (en) Phosphor and display tube
US20100072879A1 (en) Field emission device with anode coating
JP2000100317A (en) Field electron emission device
JPH0935670A (en) Field emission display element and manufacture thereof
JP2008053171A (en) Method of manufacturing surface light emitting device
US6319367B1 (en) Plasma treatment for producing electron emitters
US6504311B1 (en) Cold-cathode cathodoluminescent lamp
KR20060007582A (en) A transparent conductive phosphor layer and an electron emission device comprising the same
Egorov et al. Field emission cathode-based devices and equipment
JP2005521217A (en) Field electron emission materials and equipment
KR100550486B1 (en) Coated-Wire Ion Bombarded Graphite Electron Emitters
KR100803210B1 (en) Field emission electrode using carbon nanotubes and method of fabricating the same
US6144145A (en) High performance field emitter and method of producing the same
JP4312331B2 (en) Electron emission device
JP2004319203A (en) Electron emission material
KR100907921B1 (en) Field emission device based on zinc oxide nanowire array
JPH11265654A (en) Electrode array containing diamond/hydrogen
JP2005015831A (en) Barium whisker, method of producing barium whisker, field emission type element, method of producing field emission type element, electron gun and display
KR20040056090A (en) Field emission display using GaN nanorods