KR100842936B1 - Manufacturing method of the backlight for liquid Crystal Displays - Google Patents

Manufacturing method of the backlight for liquid Crystal Displays Download PDF

Info

Publication number
KR100842936B1
KR100842936B1 KR1020020020301A KR20020020301A KR100842936B1 KR 100842936 B1 KR100842936 B1 KR 100842936B1 KR 1020020020301 A KR1020020020301 A KR 1020020020301A KR 20020020301 A KR20020020301 A KR 20020020301A KR 100842936 B1 KR100842936 B1 KR 100842936B1
Authority
KR
South Korea
Prior art keywords
layer
thin film
carbon nanotube
backlight
manufacturing
Prior art date
Application number
KR1020020020301A
Other languages
Korean (ko)
Other versions
KR20030081866A (en
Inventor
백문수
태경섭
박재영
이병철
박영돈
Original Assignee
나노퍼시픽(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 나노퍼시픽(주) filed Critical 나노퍼시픽(주)
Priority to KR1020020020301A priority Critical patent/KR100842936B1/en
Publication of KR20030081866A publication Critical patent/KR20030081866A/en
Application granted granted Critical
Publication of KR100842936B1 publication Critical patent/KR100842936B1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133604Direct backlight with lamps
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Abstract

본 특허는 형상적으로는 저전압에서 전계방출을 행하기에 충분한 구조를 갖고 있고, 화학적으로 안정하고, 기계적으로 강인한 특징을 갖기 때문에 전계방출원으로 이상적인 재료인 탄소나노튜브를 이용한 새로운 개념의 액정표시장치(LCD)용 백라이트(Back Light)의 제조방법에 관한 것으로 전극기판과의 접착성이 우수하고 고밀도로 배열된 탄소나노튜브막을 형성하여 균일한 휘도를 발휘하고, 장시간 사용 가능한 백라이트를 제조하는데 있다. 또한 기존의 백라이트보다 단순한 구성으로 인하여 생산비와 소비전력을 감소시키는 제조방법을 제공하는데 있다.

Figure 112002011095013-pat00001

전계방출원, 액정표시장치(LCD), 카본나노튜브, 백라이트

This patent is a liquid crystal display of a new concept using carbon nanotubes, which are ideal materials for electric field emission because they have a structure that is sufficient to perform electric field emission at low voltage in shape, and are chemically stable and mechanically strong. TECHNICAL FIELD The present invention relates to a method of manufacturing a backlight for a device (LCD). The present invention provides a method of manufacturing a backlight having excellent adhesiveness with an electrode substrate and having a uniform density and forming a carbon nanotube film having a high density. . In addition, it provides a manufacturing method that reduces the production cost and power consumption due to the simpler configuration than the conventional backlight.

Figure 112002011095013-pat00001

Field emission sources, LCDs, carbon nanotubes, backlights

Description

액정 표시장치용 백라이트의 제조 방법{Manufacturing method of the backlight for liquid Crystal Displays}Manufacturing method of the backlight for liquid crystal displays

제 1도는 본 발명의 실시 양태를 도시한 단면도이다.   1 is a cross-sectional view showing an embodiment of the present invention.

제 2도는 제1도의 전자방출원인 음극의 단면도를 확대한 것이다.   2 is an enlarged cross-sectional view of the cathode serving as the electron emission source of FIG.

제 3도는 종래의 액정표시장치에 사용된 백라이트 단면도이다.
3 is a cross-sectional view of a backlight used in a conventional liquid crystal display.

** 도면의 주요 부분에 대한 부호의 설명 **   ** Description of symbols for the main parts of the drawing **

1 : 상부 기판 2 : ITO (Indium tin oxide)층   1: upper substrate 2: indium tin oxide (ITO) layer

3 : 형광체층 4 : 미세금속입자   3: phosphor layer 4: fine metal particles

5 : 스페이서 6 : 박막도전층   5 spacer 6 thin film conductive layer

7 : 하부 기판 8 : 진공배기 유리관   7: lower substrate 8: vacuum exhaust glass tube

9 : 금속박막층 10 : 탄소나노튜브    9 metal thin film layer 10 carbon nanotube

A : 액정 표시 장치 B : 프리즘판   A: liquid crystal display B: prism plate

C : 확산판 D : 도광판    C: diffuser plate D: light guide plate

E : 반사판 F : 냉음극 형광관
E: reflector F: cold cathode fluorescent tube

본 발명은 퍼스널 컴퓨터 및 모니터의 액정 디스플레이 또는 액정 텔레비젼 장치 등에 사용되는 백라이트 제조에 관한 것이다.
TECHNICAL FIELD The present invention relates to backlight production for use in liquid crystal displays or liquid crystal television devices of personal computers and monitors.

일반적으로 액정표시소자는 무게가 가볍고 소비전력도 적다는 장점을 가지고 있어서, 컴퓨터 또는 텔레비젼 분야의 디스플레이장치에 널리 보급되고 있다. 그러나 액정표시소자는 그 자체가 발광하여 화상을 형성하지 못하고 후방에서 균일한 빛을 받아야만 화상을 형성하므로 이러한 문제점을 극복하기 위해 사용되는 백라이트는 액정 디스플레이 장치의 중요한 디바이스이다.   In general, liquid crystal display devices have the advantages of low weight and low power consumption, and thus are widely used in display devices in the computer or television fields. However, since the liquid crystal display itself does not form an image by emitting light, but forms an image only after receiving uniform light from the rear, the backlight used to overcome this problem is an important device of the liquid crystal display device.

제 3도는 일본공개특허 평성8-313710호, 일본공개특허 평성9-251807 호에 도시된 종래의 에지 라이트 방식의 백라이트 구조를 보여주는 단면도이며, 도면에서 발광체(F)는 냉음극 형광관으로 액정표시장치(A) 끝면 하단에 배치되고, 여기서 나온 빛은 반사판(E)에 의하여 액정판 하단으로 전달된다. 투과성 재료로 이루어지는 도광판(D)의 상면에 조명면의 빛을 액정판 전체에 골고루 분산하여 보내는 확산판(C)이 있으며, 확산판(C) 상부에 위치한 프리즘판(B)에 의하여 빛을 어느 정도 집합하고 액정판의 정면 휘도를 향상시킨다.    3 is a cross-sectional view showing a conventional edge light backlight structure shown in Japanese Patent Application Laid-Open No. Hei 8-313710 and Japanese Patent Application Laid-Open No. Hei 9-251807. In the drawing, the light emitting body F is a cold cathode fluorescent tube. It is disposed at the bottom of the end surface of the device A, and the light emitted therefrom is transmitted to the bottom of the liquid crystal panel by the reflector E. On the upper surface of the light guide plate (D) made of a transmissive material, there is a diffusion plate (C) which distributes the light of the illumination surface evenly over the entire liquid crystal plate, and the light is emitted by the prism plate (B) located above the diffusion plate (C). Aggregate and the front brightness of a liquid crystal panel is improved.

이상과 같이 구성된 종래의 백라이트 장치는(일본공개특허 평성 8-313710호, 평성 9-251807호) 일반적으로 구성이 복잡하여 생산비가 높아질 뿐만 아니라 광원이 측면에 있어서 빛의 반사와 투과에 의하여 소비 전력에 대한 효율이 현저하게 낮아지고 휘도의 균일성을 보장하기 어렵다는 문제점이 있었다. 뿐만아니라 각종 디스 플레이의 대면적화 및 고화질화에 따라 종래의 백라이트 장치로는 충분한 휘도특성을 발휘할 수 없다.    Conventional backlight devices configured as described above (Japanese Patent Application Laid-Open No. Hei 8-313710 and Hei 9-251807) are generally complicated in construction, which leads to high production costs and power consumption due to reflection and transmission of light at the side of the light source. There is a problem in that the efficiency for is significantly lowered and it is difficult to ensure uniformity of luminance. In addition, due to the large area and high image quality of various displays, the conventional backlight device may not exhibit sufficient luminance characteristics.

이러한 액정 디스플레이의 문제를 해결하기 위해서 평판형 냉음극형광관 방식, 플라즈마 방식, 전계방출 방식 등과 같은 다양한 방법으로 기술개발이 이루어지고 있다.   In order to solve the problem of the liquid crystal display, technology development has been made by various methods such as a flat panel cold cathode fluorescent tube method, a plasma method, and a field emission method.

평판형 냉음극형광관 방식의 백라이트는 한국공개특허 특2000-26971에서와 같이 전면유리판과 이에 대응하는 후면유리판 사이에 일정 간격으로 격벽을 설치하여 방전통로를 형성시키고 그 양측에 전극을 설치한다. 이들 두전극의 상부에 유전체층을 설치하며 전기 방전통로를 형성하는 격벽과 전면 유리판 내부면에 형광체층을 도포하고 밀봉시킨후 방전용가스를 충진하여 백라이트를 제조하였다. 그러나 이러한 방식은 제조시 원가상승 및 소비전력이 상승하는 문제와 수은을 사용하기 때문에 환경친화적이지 못하다.   In the case of a flat cold cathode fluorescent lamp type backlight, a barrier rib is formed at regular intervals between a front glass plate and a corresponding rear glass plate to form discharge passages, and electrodes are installed at both sides thereof, as in Korean Patent Application Laid-Open No. 2000-26971. A backlight was manufactured by disposing a dielectric layer on top of the two electrodes, applying a phosphor layer on an inner surface of a partition wall and a front glass plate to form an electric discharge passage, and sealing the gas. However, this method is not environmentally friendly due to the use of mercury and the problem of cost increase and power consumption during manufacturing.

한편 플라즈마방식은 상판의 전면에 투명전극을 도포하고 하판 전체에 면전극을 도포, 각각 형광층을 형성한다. 그리고 상하판 사이의 방전에 의한 플라즈마로부터 형광체를 발광시키는 방식이다. 그러나 이러한 상하판 전극구조는 방전효율이 매우 낮기 때문에 고열이 발생해 백라이트로써 실용가능성이 낮다.(한국공개특허 특2002-12096)   On the other hand, in the plasma method, a transparent electrode is coated on the entire upper plate and a surface electrode is applied to the entire lower plate to form a fluorescent layer, respectively. The phosphor emits light from the plasma by the discharge between the upper and lower plates. However, since the upper and lower electrode structures have a very low discharge efficiency, high heat is generated and thus practicality is low as a backlight (Korean Patent Laid-Open No. 2002-12096).

전계방출형 백라이트의 경우 대면적화, 고휘도화 및 저소비전력화등 그 특성은 우수하나, 마이크로팁 제조시 반도체 물질의 증착 및 에칭등과 같은 복잡한 공정을 반복하기 때문에 발생하는 높은 제조원가로 인해 아직 실용화 되지 못하고 있다. 뿐만아니라 대부분의 전계방출형은 전계방출디스플레이(FED) 분야로 개발되어지고 있지 실질적인 백라이트로는 개발이 이루어지고 있지 않다. 한편 전계방출 디스플레이의 전자방출원으로 마이크로팁을 사용하지 않고 탄소나노튜브를 이용한 전계방출형 디스플레이에 대한 특허가 다수 출원되어지고 있다.(한국공개특허 특2000-71281, 특1998-24794, 특2000-23347, 특2001-2786, 일본공개특허 특개2000-86216, 특개2000-203821)
Field emission backlights have excellent characteristics such as large area, high brightness, and low power consumption, but they have not been put to practical use due to the high manufacturing costs generated by repeating complex processes such as deposition and etching of semiconductor materials during microtip manufacturing. have. In addition, most of the field emission types are being developed in the field emission display (FED) field, but the actual backlight is not developed. On the other hand, a number of patents have been applied for the field emission display using carbon nanotubes without using a micro tip as the electron emission source of the field emission display. (Korean Patent Laid-Open No. 2000-71281, Special 1998-24794, Special 2000 -23347, Japanese Patent Laid-Open No. 2001-2786, Japanese Patent Laid-Open No. 2000-86216, Japanese Patent Laid-Open No. 2000-203821)

본 발명은 전계방출 디스플레이 기술을 이용하여 전자방출원으로 탄소나노튜브를 사용하여 전계방출형 백라이트를 제공하는데 있다.    The present invention provides a field emission type backlight using carbon nanotubes as an electron emission source using a field emission display technology.

그러나 상기의 탄소나노튜브를 이용한 전계방출 디스플레이 특허에 있어서 탄소나노튜브 에미터 제조방법으로는 금속, 유기고분자 및 나노튜브로 이루어진 페이스트를 프린트 한 후 에칭공정을 통해 나노튜브가 돌출되게 하는 방법, 나노튜브를 유기용제에 분산시켜 도전판위에서 유기용제를 증발시켜 나노튜브 막을 형성시키는 방법, 나노튜브를 대전제와 함께 용매에 분산시켜 전기영동법에 의해 에미터를 형성시키는 방법 등이 있다. 그러나 이와 같은 방법으로 제조된 나노튜브 에미터는 전자방출에 유효한 나노튜브의 갯수 분포가 불량하고, 특히 전극기판과 나노튜브와의 접착력이 불량하기 때문에 균일한 휘도의 발광을 일으킬 수 없고 장시간 사용할수 없게 된다.   However, in the field emission display patent using carbon nanotubes, a method of manufacturing carbon nanotube emitters is a method of protruding nanotubes through an etching process after printing a paste made of metal, organic polymer, and nanotubes, nano A method of dispersing a tube in an organic solvent to evaporate an organic solvent on a conductive plate to form a nanotube film, and a method of forming an emitter by electrophoresis by dispersing a nanotube in a solvent together with a charging agent. However, the nanotube emitter manufactured in this way has a poor distribution of the number of nanotubes effective for electron emission, and in particular, the adhesion between the electrode substrate and the nanotubes is poor, so that light emission of uniform luminance cannot be generated and it cannot be used for a long time. do.

본 발명에서는 이러한 문제점을 해결하기 위해서 전극기판과의 접착성이 우수하고 고밀도로 배열된 탄소나노튜브막을 형성하여 균일한 휘도를 발휘할 수 있고, 장시간 사용 가능한 백라이트를 제조하는데 있다. 본 발명의 또 다른 목적은 탄소나노튜브를 이용함으로써, 기존의 백라이트보다 단순한 구성으로 인하여 생산비와 소비 전력을 감소시키는 제조 방법을 제공하는데 있다.
In order to solve this problem, the present invention is to provide a backlight having excellent adhesiveness with an electrode substrate and a uniformly high density carbon nanotube film, which can be used for a long time. Still another object of the present invention is to provide a manufacturing method that reduces the production cost and power consumption by using a carbon nanotube, due to a simpler configuration than a conventional backlight.

상기의 기술적 과제를 해결하기 위해 본 발명은 음극으로 사용되는 하부기판(7)은 상측면에는 박막도전층(6)과, 상기 박막도전층에 전기도금법, 열증착법 또는 스퍼터링법에 의해 형성된 금속박막층(9)과, 상기 금속박막층(9)위에 대전제로 처리된 탄소나노튜브를 전기영동법으로 형성한 탄소나노튜브층(10)과, 상기 탄소나노튜브층(10)에 패턴을 형성한 후 상기 탄소나노튜브층(10) 상에 하부기판(7)과 탄소나노튜브층(10)과의 접착성을 향상시키기 위해 전기도금법으로 만들어진 미세금속입자(4)를 포함한다. 양극으로 사용되는 상부기판(1)은 ITO(Indium tin oxide)층(2)이 도포되어 있고, ITO층 위에 형광체층(3)이 도포되어 있으며, 상부기판(1)과 하부기판(7) 사이에는 스페이서(5)가 설치된다. 상부기판(1)과 하부기판(7) 사이에는 방전용가스로 채워지거나 진공상태로 제공될 수 있다.    In order to solve the above technical problem, the lower substrate 7 used as a cathode of the present invention has a thin film conductive layer 6 formed on an upper side thereof, and a metal thin film layer formed by electroplating, thermal deposition, or sputtering on the thin film conductive layer. (9) and the carbon nanotube layer 10 formed by electrophoresis of carbon nanotubes treated with a charging agent on the metal thin film layer 9, and the carbon after forming a pattern on the carbon nanotube layer 10 It includes a fine metal particles (4) made by electroplating to improve the adhesion between the lower substrate 7 and the carbon nanotube layer 10 on the nanotube layer (10). The upper substrate 1 to be used as an anode is coated with an indium tin oxide (ITO) layer 2, a phosphor layer 3 is coated on the ITO layer, and is disposed between the upper substrate 1 and the lower substrate 7. The spacer 5 is provided. The upper substrate 1 and the lower substrate 7 may be filled with a discharge gas or provided in a vacuum state.

박막도전층(6)은 Au, Pt, Al, Cu, Co, 그리고 Ag로 구성된 그룹 중에서 선택된 금속으로 형성될 수 있다. 또는, 상기 박막도전층(6)은 ITO(Indium Tin Oxide)와 같은 금속산화물을 도포시킴으로써 형성될 수 있다. 박막도전층(6)의 두께는 0.1㎚ 내지 1㎛일 수 있다. 박막도전층(6) 위에 있는 금속박막층(9)은 Ag, Cu, Ni, Zn, Au, Co, Cr, Ti, W, 그리고 Al으로 구성된 그룹 중에서 선택된 금속을 전기도금법에 의해 0.5 ~ 10볼트(V)로 10초 ~ 10분간 도금하여 입자크기가 0.001 ~ 1㎛이고 층두께가 0.01 ~ 10㎛인 금속막을 형성할 수 있다.   The thin film conductive layer 6 may be formed of a metal selected from the group consisting of Au, Pt, Al, Cu, Co, and Ag. Alternatively, the thin film conductive layer 6 may be formed by applying a metal oxide such as indium tin oxide (ITO). The thickness of the thin film conductive layer 6 may be 0.1 nm to 1 μm. The metal thin film layer 9 on the thin film conductive layer 6 has a metal selected from the group consisting of Ag, Cu, Ni, Zn, Au, Co, Cr, Ti, W, and Al by electroplating method with 0.5 to 10 volts ( V) may be plated for 10 seconds to 10 minutes to form a metal film having a particle size of 0.001 to 1 μm and a layer thickness of 0.01 to 10 μm.

상기 금속박막층(9)의 상부에 탄소나노튜브층(10)이 형성된다. 탄소나노튜브층(10)은 직경(d)이 1 ~ 100㎚이고, 길이(L)가 0.01 ~ 20 ㎛이고, 길이(L)와 직경(d)의 비인 L/d가 5 ~ 20000인 단층(single-wall) 탄소나노튜브 또는 다층(multi-wall) 탄소나노튜브가 전기 영동에 의해 형성될 수 있다. 탄소나노튜브층(10)의 두께는 0.01 ~ 10㎛이고, 탄소나노튜브층(10)의 탄소나노튜브 밀도는 103 ~ 1010개/㎟로 제공될 수 있다. 탄소나노튜브는 형상적으로는 저전압으로 전계방출을 행하기에 충분한 구조 형태를 가질 수 있다. 카본은 화학적으로 안정, 기계적으로도 강인하기 때문에 전계방출원으로는 이상적인 재료일 수 있다.The carbon nanotube layer 10 is formed on the metal thin film layer 9. The carbon nanotube layer 10 has a diameter d of 1 to 100 nm, a length L of 0.01 to 20 µm, and a monolayer having a L / d of 5 to 20000, which is a ratio of the length L to the diameter d. Single-walled carbon nanotubes or multi-walled carbon nanotubes may be formed by electrophoresis. The carbon nanotube layer 10 has a thickness of 0.01 to 10 μm, and the carbon nanotube density of the carbon nanotube layer 10 may be provided as 10 3 to 10 10 pieces / mm 2. The carbon nanotubes may have a structural form sufficient to perform field emission at low voltage in shape. Since carbon is chemically stable and mechanically strong, it may be an ideal material for field emission sources.

상기 전기영동에 의해 형성된 탄소나노튜브층(10)이 평탄하지 못해 전류가 한쪽으로 집중되는 것을 방지하고 균일한 휘도를 발휘할 수 있도록 통상적인 패턴화방법인 포토레지스트를 이용한 방법 또는 마스크를 이용한 방법 등으로 패턴화할 수 있다. 이러한 패턴화 방법으로는 박막도전층(6)이 입혀진 기판위에 마스크를 이용하여 패턴화된 금속박막층(9)을 처음부터 형성하여 탄소나노튜브(10)와 미세금속입자(4)를 형성하는 법, 박막도전층(6)과 금속박막층(9) 형성 후 탄소나노튜브층(10)을 전기영동법으로 형성한 후 일부분을 제거하여 패턴화한 후 미세금속입자(4)를 형성하는 법, 그리고 탄소나노튜브(10)와 미세금속입자(4)의 형성 후 마지막에 패턴화하는 법 등이 사용될 수 있다. 본 실시예는 제조가 용이하고 전자방출이 우수한 특성을 보인 방법으로써, 탄소나노튜브층(10)을 패턴화한 후 미세금속입자(4)를 형성하는 법을 예로 들어 설명하였다. 여기서, 패턴모양은 반지름(r)이 10mm이하인 원형으로 각각의 패턴사이의 거리(W)는 10mm를 초과하지 않게 하였다. 예컨대, 패턴의 반지름이 5mm이하이고, 패턴들 사이의 거리가 5mm 이하일 경우 더욱 균일한 발광 특성을 나타내었다. 반면에 패턴의 반지름이 10mm를 초과하거나, 패턴사이의 거리가 10mm를 초과할 경우 균일한 발광을 할 수 없었다.    As the carbon nanotube layer 10 formed by the electrophoresis is not flat, the current is prevented from being concentrated on one side, and a method using a photoresist or a mask, which is a conventional patterning method, can exhibit uniform luminance. Can be patterned. In this patterning method, the carbon nanotubes 10 and the fine metal particles 4 are formed by forming a patterned metal thin film layer 9 from the beginning using a mask on a substrate on which the thin film conductive layer 6 is coated. After forming the thin film conductive layer (6) and the metal thin film layer (9), the carbon nanotube layer (10) is formed by electrophoresis and then removed by patterning to form a fine metal particle (4), and carbon After the formation of the nanotubes 10 and the fine metal particles 4, the method of patterning at the end may be used. In the present embodiment, a method of easily manufacturing and exhibiting excellent electron emission has been described using a method of forming the fine metal particles 4 after patterning the carbon nanotube layer 10 as an example. Here, the pattern shape is a circular radius (r) is 10mm or less, the distance (W) between each pattern does not exceed 10mm. For example, when the radius of the pattern is 5 mm or less and the distance between the patterns is 5 mm or less, more uniform light emission characteristics are exhibited. On the other hand, when the radius of the pattern exceeds 10mm or the distance between the patterns exceeds 10mm, uniform light emission was not possible.

상기 탄소나노튜브층(10)의 상에는 하부기판(7)과 탄소나노튜브층(10)과의 접착성을 향상시키기 위한 미세금속입자(4)를 형성할 수 있다. 미세금속입자(4)는 Ag, Cu, Ni, Zn, Au, Co, Cr, Ti, W, 그리고 Al으로 구성된 그릅 중에서 선택된 금속을 전기도금법으로 2 ~ 8볼트에서 1 ~ 10 초간 도금을 한 후 추가로 0.5 ~ 3볼트로 1 ~ 5분간 전기도금을 하여 상기 금속의 입자크기가 0.001 ~ 0.5㎛의 크기를 갖도록 형성할 수 있다. 생성된 미세금속입자(4)는 탄소나노튜브층(10)의 탄소나노튜브들 사이의 빈공간에 채워진다.   On the carbon nanotube layer 10, fine metal particles 4 may be formed to improve adhesion between the lower substrate 7 and the carbon nanotube layer 10. The fine metal particles 4 are plated with a metal selected from Ag, Cu, Ni, Zn, Au, Co, Cr, Ti, W, and Al for 1 to 10 seconds at 2 to 8 volts by electroplating. In addition, the electroplating may be performed for 0.5 to 3 volts for 1 to 5 minutes to form a particle size of the metal having a size of 0.001 to 0.5㎛. The generated fine metal particles 4 are filled in the empty spaces between the carbon nanotubes of the carbon nanotube layer 10.

본 발명의 실시예를 도면1과 함께 자세히 설명하면, 양극 및 음극용 절연성 기판(1,7)은 유리, 알루미나, 석영, 플라스틱 필름 및 시트, 실리콘 웨이퍼(Wafer)로 만들어질 수 있다. 또는, 모양 변경이 가능한 유연성 평면 조명장치에 적합한 플라스틱 기판으로서는 폴리에스테르, 폴리카보네이트, 폴리이미드, 폴리메틸메타아크릴레이트, 폴리아미드등을 사용할 수 있다.    Referring to the embodiment of the present invention in detail with reference to Figure 1, the insulating substrate (1,7) for the positive electrode and the negative electrode may be made of glass, alumina, quartz, plastic film and sheet, silicon wafer (Wafer). Alternatively, polyester, polycarbonate, polyimide, polymethyl methacrylate, polyamide, or the like may be used as a plastic substrate suitable for a flexible flat lighting device which can be changed in shape.

음극으로 사용되는 하부기판(7)의 상면에는 박막도전층(6)이 도포된다. 박막도전층(6)의 상부에는 전기영동법으로 탄소나노튜브가 쉽게 붙을 수 있고, 탄소나노튜브가 수직으로 배열될 수 있도록 전기도금법, 열 증착법 및 스퍼터링법에 의해 입자크기가 0.001 ~ 1㎛ 이고, 층두께가 0.01 ~ 10㎛ 인 금속박막층(9)을 형성하였다. 금속박막층(9)의 입자크기는 0.01 ~ 0.5㎛ 이고, 금속박막층(9)의 두께는 0.05 ~ 1㎛ 일 수 있다.   The thin film conductive layer 6 is coated on the upper surface of the lower substrate 7 used as the cathode. Carbon nanotubes can be easily attached to the upper portion of the thin film conductive layer 6 by electrophoresis, and have a particle size of 0.001 to 1 μm by electroplating, thermal evaporation, and sputtering so that the carbon nanotubes can be vertically arranged. The metal thin film layer 9 whose layer thickness is 0.01-10 micrometers was formed. The particle size of the metal thin film layer 9 may be 0.01 to 0.5 μm, and the thickness of the metal thin film layer 9 may be 0.05 to 1 μm.

금속박막층(9)의 상부에는 전자방출원으로 사용되는 탄소나노튜브층(10)이 제공된다. 탄소나노튜브층(10)은 아크방전을 이용하여 제조될 수 있다. 탄소나노튜브층(10)은 질산과 황산이 혼합된 산화제에서 8시간 이상 산화시켜 직경(d)이 1 ~ 100㎚ 이고, 길이(L)가 0.01 ~ 20 ㎛ 이고, 길이(L)와 직경(d)의 비인 L/d가 5 ~ 20000 이 되게한 후, 일반적인 대전제로 처리하여 전기영동법으로 층두께가 0.01 ~ 10㎛ 가 되도록 형성될 수 있다. 좀 더 바람직하게는 탄소나노튜브층(10)의 탄소나노튜브는 직경(d)이 10 ~ 50㎚ 이고, 길이(L)가 0.1 ~ 5㎛ 이고, 길이(L)와 직경(d)의 비인 L/d가 2 ~ 500 일 때 더욱 전자방출 능력이 우수하였다.   On top of the metal thin film layer 9, a carbon nanotube layer 10 used as an electron emission source is provided. The carbon nanotube layer 10 may be manufactured using arc discharge. The carbon nanotube layer 10 is oxidized in an oxidizing agent mixed with nitric acid and sulfuric acid for at least 8 hours to have a diameter (d) of 1 to 100 nm, a length (L) of 0.01 to 20 μm, a length (L) and a diameter ( After the ratio L / d of d) is set to 5 to 20000, it may be formed to have a layer thickness of 0.01 to 10 μm by electrophoresis by treating with a general charging agent. More preferably, the carbon nanotubes of the carbon nanotube layer 10 have a diameter (d) of 10 to 50 nm, a length (L) of 0.1 to 5 μm, and a ratio of the length (L) to the diameter (d). When the L / d is 2 to 500, the electron emission ability was more excellent.

일정한 모양으로 패턴화된 탄소나노튜브층(10)위에 하부기판(7)과 탄소나노튜브층(10)과의 접착성을 향상시키기 위해 Ag, Cu, Ni, Zn, Au, Co, Cr, Ti, W, 그리고 Al으로 구성된 그룹 중에서 선택된 금속을 이용한 전기도금법으로 2 ~ 8볼트에서 1 ~ 10 초간 도금을 한 후 추가로 0.5 ~ 3볼트로 1 ~ 5분간 전기도금을 하여 입자 크기가 0.001 ~ 0.5㎛ 의 미세금속입자(4)를 탄소나노튜브층(10)의 탄소나노튜브들 사이의 빈공간에 채워지도록 할 수 있다. 하부기판(7)과 탄소나노튜브층(10)과의 접착성이 불량할 경우 전자방출시 과부하에 의해 전자방출원으로써 충분한 수명을 발휘할 수 없다.   Ag, Cu, Ni, Zn, Au, Co, Cr, Ti to improve the adhesion between the lower substrate 7 and the carbon nanotube layer 10 on the patterned patterned carbon nanotube layer 10 Electroplating method using a metal selected from the group consisting of W, and Al, followed by plating for 2 to 8 volts for 1 to 10 seconds, and then electroplating for 0.5 to 3 volts for 1 to 5 minutes to achieve a particle size of 0.001 to 0.5 The micro metal particles 4 of μm may be filled in empty spaces between the carbon nanotubes of the carbon nanotube layer 10. If the adhesion between the lower substrate 7 and the carbon nanotube layer 10 is poor, it is impossible to achieve a sufficient lifetime as an electron emission source due to overload during electron emission.

하부기판(7)의 상부에 설치된 전자방출에 유효한 탄소나노튜브의 밀도는 103 내지 1010 개/㎟일 경우 발광시 조도편차가 없이 충분한 발광효과를 발휘할 수 있었으며, 좋게는 103 내지 107 개/㎟일때 더욱 양호한 발광특성을 나타내었다. 탄소나노튜브의 밀도는 103 개/㎟ 미만일 경우는 충분한 발광을 나타내지 못해 조명으로써 사용할 수 없었으며, 1010 개/㎟를 초과해서는 실질적으로 제조할 수 없었다.When the density of the carbon nanotubes effective for electron emission provided on the upper portion of the lower substrate 7 was 10 3 to 10 10 / mm2, sufficient light emitting effect could be obtained without light intensity deviation during light emission, preferably 10 3 to 10 7 When the ratio was 2 mm 2, the light emission characteristics were better. The density of the carbon nanotubes 10. When the three / ㎟ below showed no be used as one trillion people can not show sufficient light emission could not be practically made of not more than 10 10 / ㎟.

[ 발명의 실시의 형태 ] [Embodiment of the Invention]

본 발명의 실시의 형태의 예를 도면 1을 참조하여 설명한다.  An example of embodiment of this invention is demonstrated with reference to FIG.

이 전자방출원으로 탄소나노튜브를 이용하는 백라이트는 전자를 방출시킬수 있는 양극(1,2,3)과 음극(4,6,7,9,10)으로 구성되어 스페이서(Spacer)(5)를 사이에 두고 일정한 간격으로 대면하고 있으며, 상부기판(1) 및 하부기판(7) 사이에는 전자가 방출될수 있게 진공 또는 불활성가스로 채워져 있다. 음극으로는 절연성 소재인 유리 하부기판(7) 위에 ITO로 이루어진 박막도전층(6)이 있으며, 그 위에 1.6V 에서 80초간 전기도금하여 형성된 평균 입자 크기가 0.05 ~ 0.3㎛ 이고, 층두께가 0.3㎛ 인 Ag(Silver)로 된 금속박막층(9)이 있고, 그 위에 실질적으로 전자를 방출시키는 탄소나노튜브층(10)이 60V에서 30초간 전기영동을 하여 2㎛ 두께로 설치되어 있다. 이때, 탄소나노튜브층(10)의 탄소나노튜브들 각각은 반지름(r)이 1.5mm이고 패턴사이의 거리(W)가 2mm가 되게 패턴화하였다. 그리고 탄소나노튜브층(10)과 금속박막층(9)의 접착력을 향상시키기 위하여 Ag를 이용하여 전기도금법으로 4V에서 2초간 도금후 1.2V에서 2분간 전기도금을 하여 입자크기가 0.01 ~ 0.1㎛인 미세금속입자(4)로 탄소나노튜브층(10)의 탄소나노튜브들 사이의 빈공간이 채워지도록 하였다. 이때 전자방출원으로 사용된 탄소나노튜브는 직경이 15 내지 50㎚이고, 길이 분포가 0.35 내지 1.5㎛ 인 다층 탄소나노튜브로 탄소나노튜브의 길이(L)와 직경(d)의 비인 L/d가 7 내지 100일 수 있다. 그리고 하부기판(7) 위에 설치된 전자방출에 유효한 탄소나노튜브 밀도는 105 내지 107 개/㎟가 되게 제어하였다.The backlight using carbon nanotubes as the electron emission source is composed of anodes (1,2,3) and cathodes (4,6,7,9,10) capable of emitting electrons, and interposed between spacers (5). They face each other at regular intervals, and are filled with vacuum or inert gas so that electrons can be emitted between the upper substrate 1 and the lower substrate 7. As a cathode, there is a thin film conductive layer 6 made of ITO on the glass lower substrate 7, which is an insulating material, and the average particle size formed by electroplating at 1.6 V for 80 seconds is 0.05 to 0.3 μm, and the layer thickness is 0.3. There is a metal thin film layer 9 made of Ag (Silver) having a thickness of 2 m, and a carbon nanotube layer 10 which substantially emits electrons is electrophoresed at 60 V for 30 seconds to be 2 m thick. At this time, each of the carbon nanotubes of the carbon nanotube layer 10 was patterned such that the radius r was 1.5 mm and the distance W between the patterns was 2 mm. In addition, in order to improve the adhesion between the carbon nanotube layer 10 and the metal thin film layer 9, Ag was used for 2 seconds at 4V by electroplating, followed by electroplating at 1.2V for 2 minutes to achieve a particle size of 0.01 to 0.1 μm. The micro metal particles 4 are filled with empty spaces between the carbon nanotubes of the carbon nanotube layer 10. In this case, the carbon nanotubes used as the electron emission source are multi-layered carbon nanotubes having a diameter of 15 to 50 nm and a length distribution of 0.35 to 1.5 μm, and L / d having a ratio of the length (L) to the diameter (d) of the carbon nanotubes. May be 7 to 100. In addition, the carbon nanotube density effective for electron emission provided on the lower substrate 7 was controlled to be 10 5 to 10 7 pieces / mm 2.

한편 실질적인 빛을 발휘하는 양극으로는 ITO(Indium Tin Oxide)와 같은 투명도전층(2)이 도포되어 있는 유리 및 플라스틱 기판(1)위에 통상 사용되는 형광층(3)을 설치하여 사용하였다.
On the other hand, as the anode which exhibits substantial light, a fluorescent layer 3 commonly used on glass and plastic substrate 1 to which a transparent conductive layer 2 such as indium tin oxide (ITO) is applied was used.

이상과 같이 본 발명에 의하면, 패턴화 된 탄소나노튜브층을 평면상에 배치하여 전류가 고르게 분산되고 균일한 빛을 직접 발산하므로 기존의 백라이트에서 사용되는 다수의 부품, 즉 광원, 도광판, 광확산판, 프리즘판, 반사판 등을 사용하지 않아 제조 공정의 단순화를 가져오고 이로 인한 생산비의 감소는 커다란 공업적 효과를 가져온다. 또한 복잡하지 않은 구성으로 인해 빛의 광투과율이 크게 향상되고 상대적으로 고휘도를 얻을 수 있다.    As described above, according to the present invention, since the patterned carbon nanotube layer is disposed on a plane, current is distributed evenly and directly emits uniform light, so that a large number of components used in a conventional backlight, that is, a light source, a light guide plate, and light diffusion The use of plates, prism plates, reflectors, etc. is not necessary, which simplifies the manufacturing process, and the reduction in production costs has a large industrial effect. In addition, due to the uncomplicated configuration, the light transmittance of the light can be greatly improved and a relatively high luminance can be obtained.

Claims (8)

표시장치용 백라이트의 제조 방법에 있어서,In the manufacturing method of the backlight for a display device, 하부기판의 상부에 박막도전층을 형성하는 단계와;Forming a thin film conductive layer on the lower substrate; 상기 박막도전층의 상부에 금속박막층을 형성하는 단계와;Forming a metal thin film layer on the thin film conductive layer; 상기 금속박막층의 상부에 탄소나노튜브층을 형성하는 단계; 및Forming a carbon nanotube layer on the metal thin film layer; And 상기 탄소나노튜브층의 탄소나노튜브들 사이에 미세금속입자를 형성하는 단계를 포함하는 것을 특징으로 하는 표시장치용 백라이트의 제조 방법.And forming micrometallic particles between the carbon nanotubes of the carbon nanotube layer. 제 1 항에 있어서,The method of claim 1, 상기 표시장치용 백라이트의 제조 방법은,The manufacturing method of the backlight for the display device, 상기 금속박막층을 패턴화하는 단계를 더 포함하는 것을 특징으로 하는 표시장치용 백라이트의 제조 방법.The method of manufacturing a backlight for a display device further comprising the step of patterning the metal thin film layer. 제 2 항에 있어서,The method of claim 2, 상기 표시장치용 백라이트의 제조 방법은,The manufacturing method of the backlight for the display device, 전기영동법으로 상기 탄소나노튜브층을 형성한 후 상기 탄소나노튜브층을 패턴화하는 단계를 더 포함하는 것을 특징으로 하는 표시장치용 백라이트의 제조 방법.And forming the carbon nanotube layer by an electrophoresis method and then patterning the carbon nanotube layer. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 상기 패턴화하는 단계를 수행하여 형성되는 패턴들의 형상은 원형이고,The pattern of the patterns formed by performing the patterning step is circular, 상기 패턴들 사이의 거리는 10mm이하인 것을 특징으로 하는 표시장치용 백라이트의 제조 방법.The distance between the patterns is less than 10mm manufacturing method of the backlight for a display device. 표시장치용 백라이트의 제조 방법에 있어서,In the manufacturing method of the backlight for a display device, 음극으로 사용되는 하부기판 상에 형성되는 탄소나노튜브층의 탄소나노튜브들 사이에 미세금속입자를 형성시켜, 상기 하부기판과 상기 탄소나노튜브층 간의 접착성을 향상시키는 것을 특징으로 하는 표시장치용 백라이트의 제조 방법.For the display device characterized in that to form a fine metal particles between the carbon nanotubes of the carbon nanotube layer formed on the lower substrate to be used as the cathode, the adhesion between the lower substrate and the carbon nanotube layer Method of manufacturing a backlight. 제 5 항에 있어서,The method of claim 5, wherein 상기 표시장치용 백라이트의 제조 방법은,The manufacturing method of the backlight for the display device, (a)상기 하부기판 상에 박막도전층을 형성하는 단계와;(a) forming a thin film conductive layer on the lower substrate; (b)상기 박막도전층 상에 패턴화된 금속박막층을 형성하는 단계와;(b) forming a patterned metal thin film layer on the thin film conductive layer; (c)상기 패턴화된 금속박막층 상에 상기 탄소나노튜브층을 형성하는 단계; 및(c) forming the carbon nanotube layer on the patterned metal thin film layer; And (d)상기 탄소나노튜브층의 탄소나노튜브들 사이에 상기 미세금속입자를 형성하는 단계를 포함하는 것을 특징으로 하는 표시장치용 백라이트의 제조 방법.(d) forming the micrometal particles between the carbon nanotubes of the carbon nanotube layer. 제 5 항에 있어서,The method of claim 5, wherein 상기 표시장치용 백라이트의 제조 방법은,The manufacturing method of the backlight for the display device, (a)상기 하부기판 상에 박막도전층을 형성하는 단계와;(a) forming a thin film conductive layer on the lower substrate; (b)상기 박막도전층 상에 금속박막층을 형성하는 단계와;(b) forming a metal thin film layer on the thin film conductive layer; (c)상기 금속박막층 상에 탄소나노튜브층을 형성하는 단계와;(c) forming a carbon nanotube layer on the metal thin film layer; (d)상기 탄소나노튜브층을 패턴화하는 단계; 및(d) patterning the carbon nanotube layer; And (e)상기 패턴화된 탄소나노튜브층의 탄소나노튜브들 사이에 상기 미세금속입자를 형성하는 단계를 포함하는 것을 특징으로 하는 표시장치용 백라이트의 제조 방법.(e) forming the micrometal particles between the carbon nanotubes of the patterned carbon nanotube layer. 제 5 항에 있어서,The method of claim 5, wherein 상기 표시장치용 백라이트의 제조 방법은,The manufacturing method of the backlight for the display device, (a)상기 하부기판 상에 박막도전층을 형성하는 단계와;(a) forming a thin film conductive layer on the lower substrate; (b)상기 박막도전층 상에 금속박막층을 형성하는 단계와;(b) forming a metal thin film layer on the thin film conductive layer; (c)상기 금속박막층 상에 상기 탄소나노튜브층을 형성하는 단계; 및(c) forming the carbon nanotube layer on the metal thin film layer; And (d)상기 탄소나노튜브층의 탄소나노튜브들 사이에 상기 미세금속입자를 형성하는 단계; 그리고 (d) forming the fine metal particles between the carbon nanotubes of the carbon nanotube layer; And (e)상기 탄소나노튜브들 사이에 상기 미세금속입자가 형성된 상기 탄소나노튜층을 패턴화하는 단계를 포함하는 것을 특징으로 하는 표시장치용 백라이트의 제조 방법.(e) patterning the carbon nanotube layer in which the micrometal particles are formed between the carbon nanotubes.
KR1020020020301A 2002-04-15 2002-04-15 Manufacturing method of the backlight for liquid Crystal Displays KR100842936B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020020301A KR100842936B1 (en) 2002-04-15 2002-04-15 Manufacturing method of the backlight for liquid Crystal Displays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020020301A KR100842936B1 (en) 2002-04-15 2002-04-15 Manufacturing method of the backlight for liquid Crystal Displays

Publications (2)

Publication Number Publication Date
KR20030081866A KR20030081866A (en) 2003-10-22
KR100842936B1 true KR100842936B1 (en) 2008-07-02

Family

ID=32378943

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020020301A KR100842936B1 (en) 2002-04-15 2002-04-15 Manufacturing method of the backlight for liquid Crystal Displays

Country Status (1)

Country Link
KR (1) KR100842936B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050072987A (en) * 2004-01-08 2005-07-13 삼성전자주식회사 Surface light source device and liquid crystal display apparatus having the same
KR100656781B1 (en) * 2005-03-11 2006-12-13 재단법인서울대학교산학협력재단 Method for forming electron emitter tip by copper-carbon nanotube composite electroplating
KR20070013873A (en) 2005-07-27 2007-01-31 삼성에스디아이 주식회사 Electron emission type backlight unit and flat panel display apparatus
KR100911183B1 (en) * 2008-02-12 2009-08-06 한양대학교 산학협력단 Fabrication of flexible substrate employed a thin film of patterned carbon nano tube
KR101217507B1 (en) * 2009-11-12 2013-01-02 한국기계연구원 Manufacturing Method Composites having a Pattern
KR101231598B1 (en) * 2011-02-10 2013-02-08 고려대학교 산학협력단 Cnt field electron emitter and manufacturing method thereof
KR102203771B1 (en) * 2013-12-16 2021-01-15 엘지디스플레이 주식회사 Method of fabricating conductible pattern

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010039635A (en) * 1999-06-18 2001-05-15 이철진 Apparatus of white light source using carbon nanotubes and fabrication Method thereof
KR20010039636A (en) * 1999-06-15 2001-05-15 이철진 Apparatus of white light source using carbon nanotubes and fabrication Method thereof
KR20010097947A (en) * 2000-04-27 2001-11-08 김순택 Liquid crystal display device
JP2001357771A (en) * 2000-06-12 2001-12-26 Matsushita Electric Ind Co Ltd Electron emission element and its manufacturing method and surface light emitting device and image display device and solid vacuum device
KR20020027956A (en) * 2000-10-06 2002-04-15 구자홍 Field Emission Display using carbon nanotube developed horizontally
KR20020033948A (en) * 2000-10-31 2002-05-08 한형수 Backlight for liquid crystal display

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010039636A (en) * 1999-06-15 2001-05-15 이철진 Apparatus of white light source using carbon nanotubes and fabrication Method thereof
KR20010039635A (en) * 1999-06-18 2001-05-15 이철진 Apparatus of white light source using carbon nanotubes and fabrication Method thereof
KR20010097947A (en) * 2000-04-27 2001-11-08 김순택 Liquid crystal display device
JP2001357771A (en) * 2000-06-12 2001-12-26 Matsushita Electric Ind Co Ltd Electron emission element and its manufacturing method and surface light emitting device and image display device and solid vacuum device
KR20020027956A (en) * 2000-10-06 2002-04-15 구자홍 Field Emission Display using carbon nanotube developed horizontally
KR20020033948A (en) * 2000-10-31 2002-05-08 한형수 Backlight for liquid crystal display

Also Published As

Publication number Publication date
KR20030081866A (en) 2003-10-22

Similar Documents

Publication Publication Date Title
US7905756B2 (en) Method of manufacturing field emission backlight unit
US6426590B1 (en) Planar color lamp with nanotube emitters and method for fabricating
TWI470320B (en) Planar light source device and liquid crystal display device having the same and methods of manufacturing the same
US7365482B2 (en) Field emission display including electron emission source formed in multi-layer structure
JP2005222944A (en) Electric field emission element, and backlight device provided with it
KR100554023B1 (en) Field emission device and manufacturing thereof
US6646282B1 (en) Field emission display device
US6815877B2 (en) Field emission display device with gradient distribution of electrical resistivity
US6825607B2 (en) Field emission display device
KR100842936B1 (en) Manufacturing method of the backlight for liquid Crystal Displays
KR100701093B1 (en) Apparatus for orientating carbon nanotube, method of orientating carbon nanotube and method of fabricating field emission display
KR100656781B1 (en) Method for forming electron emitter tip by copper-carbon nanotube composite electroplating
US6750617B2 (en) Field emission display device
KR101002278B1 (en) Field emission type backlight device
KR100842934B1 (en) Backlight for Liquid Crystal Displays
US6750616B2 (en) Field emission display device
US20070228930A1 (en) Field emission backlight, display apparatus using the same and a method of manufacturing the same
US7750550B2 (en) Surface light source device having an electron emitter and liquid crystal display having the same
US7701127B2 (en) Field emission backlight unit
KR100623097B1 (en) Field emission device having triode structure with dual emitters
KR100917466B1 (en) Field emission surface light source apparatus and method for fabricating the same
US20070096630A1 (en) Field emission backlight unit and its method of operation
JP2008305792A (en) Field emission device, its manufacturing method, and device using it
KR100450025B1 (en) Triode-flat type field emission lamp and its fabrication method by using carbon nano tube

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110621

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee