JP2001345406A - Heat conducting material - Google Patents

Heat conducting material

Info

Publication number
JP2001345406A
JP2001345406A JP2000166175A JP2000166175A JP2001345406A JP 2001345406 A JP2001345406 A JP 2001345406A JP 2000166175 A JP2000166175 A JP 2000166175A JP 2000166175 A JP2000166175 A JP 2000166175A JP 2001345406 A JP2001345406 A JP 2001345406A
Authority
JP
Japan
Prior art keywords
heat conductive
heat
electronic component
conductive base
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000166175A
Other languages
Japanese (ja)
Other versions
JP3431576B2 (en
Inventor
Yoshitoki Hayashi
義時 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitagawa Industries Co Ltd
Original Assignee
Kitagawa Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitagawa Industries Co Ltd filed Critical Kitagawa Industries Co Ltd
Priority to JP2000166175A priority Critical patent/JP3431576B2/en
Publication of JP2001345406A publication Critical patent/JP2001345406A/en
Application granted granted Critical
Publication of JP3431576B2 publication Critical patent/JP3431576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve radiation efficiency by appropriately conducting the heat of electronic components to a heat sink. SOLUTION: A heat conductive material 10 is composed of a heat conductive base 11, mesh copper foil 12, and peeling paper 13. The mesh copper foil 12 is formed in a mesh shape having a number of holes (meshes), and upper and lower heat conductive bases 11 continue through the meshes. In the heat conductive material 10, the mesh copper foil 12 is inserted between the electronic component and heat sink for use while the mesh copper foil 12 is being placed along the surface of the electronic component, the heat conductive base 11 is changed into plastic for adhering onto the surface of the electronic component and heat sink if heating is made after inserting, or the heat conductive base 11 is heated by the heat of the electronic component, thus improving heat- conducting efficiency via the heat conduction base 11, and hence appropriately radiating the heat of the electronic component.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱伝導材の技術分
野に属する。
The present invention belongs to the technical field of heat conductive materials.

【0002】[0002]

【従来の技術】コンピュータのCPUには発生する熱を
効率よく放出するためにヒートシンクが取り付けられて
いる。このヒートシンクとCPUの外面との接触が良好
でないと(ギャップがあると)放熱効率が低下するの
で、熱伝導性の良好なインターフェース材をヒートシン
クとCPUの間に充填してギャップを防いでいた。
2. Description of the Related Art A heat sink is attached to a CPU of a computer in order to efficiently release generated heat. If the contact between the heat sink and the outer surface of the CPU is not good (if there is a gap), the heat radiation efficiency is reduced. Therefore, an interface material having good thermal conductivity is filled between the heat sink and the CPU to prevent the gap.

【0003】このインターフェース材としての熱伝導材
には、樹脂等の母材中にセラミックス等からなる充填材
を分散させたもの、例えば加硫EPDM樹脂とセラミッ
クス粉体を混練してなる熱伝導材あるいはパラフィンと
セラミックス粉体を混練してなる熱伝導材がある。
[0003] The heat conductive material as the interface material is a material obtained by dispersing a filler made of ceramic or the like in a base material such as resin, for example, a heat conductive material obtained by kneading a vulcanized EPDM resin and ceramic powder. Alternatively, there is a heat conductive material obtained by kneading paraffin and ceramic powder.

【0004】[0004]

【発明が解決しようとする課題】ところで、板状の熱伝
導基材による伝熱量(Q)については、下記の数式1に
示す関係が成り立つことが知られている。
By the way, it is known that the relationship shown in the following equation 1 holds for the amount of heat transfer (Q) by the plate-shaped heat conductive substrate.

【0005】[0005]

【数1】 Q:伝熱量 λ:熱伝導率[Kcal/mh℃] Q1−Q2:表裏の温度差 x:板厚 F:表面積 T:時間 したがって、熱伝導効率を上げるには(伝熱量Qを大き
くするには)、熱伝導率λのよいものを使うか板厚xを
薄くすればよい。
(Equation 1) Q: heat transfer amount λ: thermal conductivity [Kcal / mh ° C.] Q 1 -Q 2 : temperature difference between front and back x: plate thickness F: surface area T: time Therefore, to increase heat transfer efficiency, increase heat transfer amount Q To do so, a material having a good thermal conductivity λ may be used or the thickness x may be reduced.

【0006】ところで熱伝導率λの向上(すなわち熱伝
導材の改良)には多大な研究を要するのが普通であり、
人的また経済的負担が大きい。また、先人により研究し
尽くされた感もある。これに比べて板厚xを薄くする手
法はどちらかと言えば安易である。しかし、熱伝導基材
の板厚xを薄くすると、例えば剛性が小さくなって取り
扱い難くなるという問題がある。
[0006] By the way, improvement of the thermal conductivity λ (that is, improvement of the heat conductive material) usually requires a great deal of research.
High human and financial burden. There is also a feeling that they have been thoroughly studied by their predecessors. On the other hand, the method of reducing the plate thickness x is rather easy. However, when the thickness x of the heat conductive base material is reduced, for example, there is a problem that the rigidity is reduced and the handling becomes difficult.

【0007】なお、従来の熱伝導材(例えば加硫EPD
M樹脂とセラミックス粉体を混練してなる熱伝導材)
は、その使用時の温度条件では固形であったので、CP
Uあるいはヒートシンクの形状に追随して変形すること
がなく、例えばCPUの表面との間あるいはヒートシン
クの表面との間に微細な空隙が生じてしまい、十分な熱
伝導効果が得られないという問題もあった。なお、こう
した問題はCPUに限定されるものではなく使用時に発
熱する電子部品に共通の問題である。
[0007] A conventional heat conductive material (for example, vulcanized EPD)
Thermal conductive material obtained by kneading M resin and ceramic powder)
Is a solid under the temperature conditions at the time of its use.
There is also a problem that a small gap is generated between the surface of the CPU or the surface of the heat sink without being deformed following the shape of the U or the heat sink, for example, and a sufficient heat conduction effect cannot be obtained. there were. These problems are not limited to the CPU, but are common to electronic components that generate heat during use.

【0008】本発明は熱伝導基材の板厚xを薄くした際
の取り扱いの問題を解決することを目的としている。
An object of the present invention is to solve the problem of handling when the thickness x of the heat conductive base material is reduced.

【0009】[0009]

【課題を解決するための手段、発明の実施の形態及び発
明の効果】上記課題を解決するための請求項1記載の熱
伝導材は、被装着体の表面に向けて押圧されると該表面
の形状に追随して変形する性質を持つ厚さが1mm以下
の板状の熱伝導基材と、該熱伝導基材の2面または1面
に貼着された保護シートとからなることを特徴とする。
Means for Solving the Problems, Embodiments of the Invention and Effects of the Invention The heat conductive material according to the first aspect of the present invention for solving the above-mentioned problems, when pressed against the surface of the mounted body, A heat conductive base material having a thickness of 1 mm or less having a property of being deformed following the shape of the heat conductive base material, and a protective sheet attached to two or one surface of the heat conductive base material. And

【0010】熱伝導基材は、被装着体(例えばCPU)
の表面に向けて押圧されるとその表面の形状に追随して
変形する性質を持ち、しかも厚さが1mm以下の板状で
ある。要するに熱伝導基材だけでは例えば平板状に姿勢
を保つのが難しいのであるが、2面または1面に保護シ
ートが貼着されているから、その保護シートが支持体と
なって熱伝導基材の過剰な変形を阻止する。したがっ
て、熱伝導材を例えばCPUの表面に取り付ける際に取
り扱いが簡単となり、作業性が向上する。
[0010] The heat conductive base material is an object to be mounted (eg, CPU).
It has the property of deforming following the shape of the surface when pressed toward the surface, and has a thickness of 1 mm or less. In short, it is difficult to maintain the posture of a flat plate, for example, by using only the heat conductive base material. To prevent excessive deformation of Therefore, when the heat conductive material is attached to, for example, the surface of the CPU, handling is simplified, and workability is improved.

【0011】熱伝導材を電子部品(例えばCPU)とヒ
ートシンクとの間に介装する作業は、例えば次のように
行われる。まず、熱伝導材の1面を露出させた状態とす
る(2面に保護シートが貼着されているなら、1枚を剥
がす。)。この熱伝導基材の1面に保護シートが貼着さ
れた状態で、その熱伝導基材の露出面を電子部品(例え
ばCPU)の目的の面に当接させる。そして、例えば保
護シート側から押圧したり加熱する(熱転写)ことで熱
伝導基材を電子部品の表面に密着させてから保護シート
を剥がす。その保護シートを剥がした面にヒートシンク
を当ててビスなどで電子部品に固定する。
The operation of interposing a heat conductive material between an electronic component (for example, CPU) and a heat sink is performed, for example, as follows. First, one surface of the heat conductive material is exposed (if a protective sheet is stuck on two surfaces, one is peeled off). With the protective sheet adhered to one surface of the heat conductive substrate, the exposed surface of the heat conductive substrate is brought into contact with the target surface of the electronic component (eg, CPU). Then, the protective sheet is peeled off, for example, by pressing or heating (thermal transfer) from the protective sheet side to bring the heat conductive base material into close contact with the surface of the electronic component. A heat sink is applied to the surface from which the protective sheet has been peeled off, and fixed to the electronic component with screws or the like.

【0012】この際にビス等による力(例えば締め付け
力)が、ヒートシンクと電子部品とで熱伝導基材を挟み
付ける力(挟持力)として作用する。熱伝導基材は厚さ
が1mm以下の板状で、被装着体(例えばCPU)の表
面に向けて押圧されるとその表面の形状に追随して変形
する性質を持つので、電子部品とヒートシンクとで熱伝
導基材を挟持すれば、その挟持力=押圧力により電子部
品及びヒートシンクの双方の表面形状に追随して変形す
る。これにより熱源となる電子部品と放熱のためのヒー
トシンクとの双方に熱伝導基材が密着する。熱伝導基材
と電子部品及びヒートシンクの表面との間に微細な空隙
が生じることがないから、十分な熱伝導効果が得られ
る。
At this time, the force of the screw or the like (for example, a tightening force) acts as a force (a holding force) for holding the heat conductive base material between the heat sink and the electronic component. The heat conductive substrate is a plate having a thickness of 1 mm or less, and has a property of being deformed following the shape of the surface when pressed against the surface of the mounted body (for example, CPU). When the heat conductive base material is sandwiched between the electronic component and the heat sink, the heat conductive base material is deformed following the surface shape of both the electronic component and the heat sink by the holding force = the pressing force. As a result, the heat conductive base material adheres to both the electronic component serving as the heat source and the heat sink for heat dissipation. Since there is no minute gap between the heat conductive substrate and the surfaces of the electronic component and the heat sink, a sufficient heat conductive effect can be obtained.

【0013】熱伝導基材の厚さは1mm以下であれば良
好な熱伝導効率とできるが、これが薄ければ薄いほどよ
いことは言うまでもない。よって、好ましくは0.5m
m以下である。ただし、薄くしすぎると、保護シートが
あっても、また請求項3記載のサポート材があっても、
取付作業時の破断などの可能性が高まる。また、取付作
業時の屈曲などでサポート材が熱伝導基材の表面に露出
するおそれもある。したがって、熱伝導基材の板厚は
0.1mm以上とするのが好ましい。つまり、熱伝導基
材の厚さは0.5mm以下、0.1mm以上とするのが
好ましい。
If the thickness of the heat conductive base material is 1 mm or less, good heat transfer efficiency can be obtained, but it goes without saying that the thinner the heat conductive base material, the better. Therefore, preferably 0.5m
m or less. However, if the thickness is too small, even if there is a protective sheet, and even if there is a support material according to claim 3,
The possibility of breakage during mounting work increases. In addition, the support material may be exposed on the surface of the heat conductive base material due to bending or the like during the mounting operation. Therefore, it is preferable that the plate thickness of the heat conductive substrate is 0.1 mm or more. That is, the thickness of the heat conductive substrate is preferably 0.5 mm or less, and 0.1 mm or more.

【0014】なお、被装着体の表面に向けて押圧される
と該表面の形状に追随して変形する例としては、塑性変
形や弾性変形がある。つまり、そのように変形する性質
としては可塑性や弾性が例示される。また、保護シート
の剛性が高すぎると上述の作業性が悪くなるおそれがあ
るので、ある程度の柔軟性を持つ材料例えば紙やプラス
チックフィルムなどを使用するのが望ましい。
Examples of deformations following the shape of the surface when pressed against the surface of the mounted body include plastic deformation and elastic deformation. That is, plasticity and elasticity are exemplified as the property of such deformation. In addition, if the rigidity of the protective sheet is too high, the above-described workability may be deteriorated. Therefore, it is desirable to use a material having a certain degree of flexibility, such as paper or a plastic film.

【0015】請求項2記載の熱伝導材は、請求項1記載
の熱伝導材において、前記保護シートは、前記熱伝導基
材の表面を損なわずに剥離可能であることを特徴とす
る。上述の通り、熱伝導材を電子部品等に装着する際に
は保護シートを取り除く必要があるので、保護シートを
剥がすときに熱伝導基材の表面の一部が保護シート側に
はぎ取られるようなことは好ましくない。したがって、
請求項2記載のように熱伝導基材の表面を損なわずに剥
離可能であることが好ましい。
According to a second aspect of the present invention, in the heat conductive material according to the first aspect, the protective sheet can be peeled off without damaging the surface of the heat conductive substrate. As described above, it is necessary to remove the protective sheet when attaching the heat conductive material to an electronic component or the like, so that when the protective sheet is peeled off, a part of the surface of the heat conductive substrate is peeled off to the protective sheet side. It is not preferable. Therefore,
As described in claim 2, it is preferable that the heat conductive substrate can be peeled without damaging the surface.

【0016】そのためには、保護シートとしていわゆる
剥離紙を用いたり、保護シートと熱伝導基材との間に剥
離層を設けておくとよい。請求項3記載の熱伝導材は、
請求項1または2記載の熱伝導材において、全部または
一部が前記熱伝導基材の内部に配されて該熱伝導基材を
支持するサポート材を備えたことを特徴とする。
For this purpose, a so-called release paper may be used as the protective sheet, or a release layer may be provided between the protective sheet and the heat conductive substrate. The heat conductive material according to claim 3 is
The heat conductive material according to claim 1 or 2, further comprising a support member that is disposed in whole or in part in the heat conductive base material and supports the heat conductive base material.

【0017】このサポート材は、全部または一部が熱伝
導基材の内部に配されているので、熱伝導基材を内部か
ら支持することができる。このため、保護シートをより
薄くあるいはより柔軟にすることが可能となる。また、
保護シートを剥がした後もサポート材が熱伝導基材を支
持しているので、作業性がより良好になる。
Since the support material is entirely or partially disposed inside the heat conductive substrate, the heat conductive substrate can be supported from the inside. For this reason, it becomes possible to make a protective sheet thinner or more flexible. Also,
The workability is further improved because the support material supports the heat conductive substrate even after the protective sheet is peeled off.

【0018】ただし、熱伝導材の使用時にもサポート材
が熱伝導基材と一体化したままとなるので、サポート材
の熱伝導性が良好でなければならない。そのようなサポ
ート材は、例えば請求項4記載の金属箔にて実現でき
る。特に、金、銀、銅、アルミ等の熱伝導率が高い金属
の箔が好ましい。また、金属箔を使用すれば電磁シール
ド効果も期待できる。なお、サポート材は熱伝導性が良
好であればよいので、金属箔に限定されるわけではな
い。
However, since the support material remains integrated with the heat conductive substrate even when the heat conductive material is used, the heat conductivity of the support material must be good. Such a support material can be realized, for example, by the metal foil according to the fourth aspect. Particularly, a metal foil having a high thermal conductivity such as gold, silver, copper, or aluminum is preferable. If a metal foil is used, an electromagnetic shielding effect can be expected. The support material is not limited to metal foil, as long as it has good thermal conductivity.

【0019】金属箔を用いる場合、単なる箔であると、
箔を境にしてその両側の熱伝導基材が分離されるおそれ
があるので、請求項5記載のように金属箔に穴(多数の
穴)を設けておき、金属箔の両側の熱伝導材を穴を介し
て連続させるとよい。穴は物理的な加工(例えばドリル
やレーザ)で設けても化学的な加工によって設けても、
どちらでもよい。また、穴の方向も金属箔の表面に垂直
方向でも表面に対して傾斜する方向でも構わないし、途
中で曲がっていてもよい。ただし、穴の配置に偏りが無
いのが好ましい。
When using a metal foil, if it is a simple foil,
Since there is a possibility that the heat conductive base material on both sides of the foil may be separated from the foil, holes (a large number of holes) are provided in the metal foil as described in claim 5, and the heat conductive material on both sides of the metal foil is provided. Is preferably continuous through the holes. Whether the holes are made by physical processing (for example, drill or laser) or by chemical processing,
either will do. Also, the direction of the hole may be a direction perpendicular to the surface of the metal foil, a direction inclined with respect to the surface, or may be bent in the middle. However, it is preferable that the arrangement of the holes is not biased.

【0020】請求項6記載の熱伝導材は、請求項1ない
し5のいずれか記載の熱伝導材において、前記熱伝導基
材は、融点が30〜70℃かつ100℃における粘度が
70000cP以上の有機材料中に該熱伝導基材の30
〜90重量%の充填剤を分散してなることを特徴とす
る。
The heat conductive material according to claim 6 is the heat conductive material according to any one of claims 1 to 5, wherein the heat conductive base material has a melting point of 30 to 70 ° C. and a viscosity at 100 ° C. of 70,000 cP or more. 30 of the heat conductive substrate in an organic material
It is characterized in that the filler is dispersed in an amount of up to 90% by weight.

【0021】この熱伝導基材の母材となる有機材料とし
ては、オレフィン系樹脂、具体的には酢酸ビニル−エチ
レン共重合体、ポリエチレン、ポリイソブチレン、エチ
レン−エチルアルコール等のオレフィン系樹脂であっ
て、上記の条件(融点が30〜70℃、100℃におけ
る粘度が70000cP以上)を満たすもの、分子量7
000〜50000の未加硫EPDM(未加硫エチレン
−プロピレンゴム)等が例示されるが、上記の融点及び
粘度条件を満たすものなら特に限定なく使用できる。
The organic material serving as the base material of the heat conductive base material is an olefin resin, specifically, an olefin resin such as vinyl acetate-ethylene copolymer, polyethylene, polyisobutylene, ethylene-ethyl alcohol and the like. Satisfying the above conditions (melting point is 30 to 70 ° C., viscosity at 100 ° C. is 70,000 cP or more), molecular weight 7
Examples include 000 to 50,000 unvulcanized EPDM (unvulcanized ethylene-propylene rubber), but any material that satisfies the above melting point and viscosity conditions can be used without any particular limitation.

【0022】充填材としては、セラミックス、その一種
であるソフトフェライト、金属粉、金属磁性体、炭素繊
維等を使用できる。セラミックスは熱伝導率が高いた
め、熱伝導基材の熱伝導性能を高めることができる。セ
ラミックスの例としては炭化珪素、窒化硼素、アルミ
ナ、水酸化アルミニウム、酸化亜鉛、マグネシア、水酸
化マグネシウム、窒化珪素、窒化アルミニウム等をあげ
ることができる。
As the filler, ceramics, one of which is soft ferrite, metal powder, metal magnetic material, carbon fiber, etc. can be used. Since ceramics have high thermal conductivity, the thermal conductivity of the thermally conductive substrate can be enhanced. Examples of ceramics include silicon carbide, boron nitride, alumina, aluminum hydroxide, zinc oxide, magnesia, magnesium hydroxide, silicon nitride, aluminum nitride, and the like.

【0023】ソフトフェライトとしてはNi−Zn系フ
ェライト、Mn−Znフェライト等が例示される。ソフ
トフェライトは磁性シールド効果が高いため、これを充
填剤とすることによって、磁性シールド効果の高い熱伝
導基材を実現できる。金属粉の場合、金、銀、銅、アル
ミ等を使用できる。これらの金属粉は、熱伝導率が高い
と同時に電界シールド効果に優れるため、これらを充填
剤とすることによって、熱伝導効果と電界シールド効果
の双方に優れた熱伝導基材を実現できる。
Examples of the soft ferrite include Ni-Zn ferrite and Mn-Zn ferrite. Since soft ferrite has a high magnetic shielding effect, a heat conductive base material having a high magnetic shielding effect can be realized by using this as a filler. In the case of metal powder, gold, silver, copper, aluminum and the like can be used. Since these metal powders have a high thermal conductivity and an excellent electric field shielding effect, by using them as a filler, it is possible to realize a heat conductive base material having both an excellent heat conduction effect and an electric field shielding effect.

【0024】金属磁性体としては、ケイ素鋼(Fe−S
i)、パーマロイ(Fe−Ni)、センダスト(Fe−
Al−Si)、パーメンジュール(Fe−Co)、Su
S(Fe−Cr)がある。こうした金属磁性体は磁性シ
ールド効果が高いため、これらを充填剤とすることによ
って磁性シールド効果に優れる熱伝導基材を実現でき
る。
As the metal magnetic material, silicon steel (Fe--S
i), permalloy (Fe-Ni), sendust (Fe-
Al-Si), permendur (Fe-Co), Su
There is S (Fe-Cr). Since such a metal magnetic material has a high magnetic shielding effect, a heat conductive base material having an excellent magnetic shielding effect can be realized by using these as a filler.

【0025】炭素繊維は、PAN系、ピッチ系、VGC
F、グラファイト、カール状等を使用できる。炭素繊維
は熱伝導率が高いと同時に電界シールド効果が高いた
め、これらを熱伝導基材とすることによって、熱伝導効
果と電界シールド効果の双方に優れた熱伝導基材が実現
できる。
The carbon fibers are PAN type, pitch type, VGC
F, graphite, curl, and the like can be used. Since carbon fibers have a high thermal conductivity and a high electric field shielding effect at the same time, by using them as a heat conducting substrate, a heat conducting substrate excellent in both the heat conducting effect and the electric field shielding effect can be realized.

【0026】なお、充填材は上に例示したものに限定さ
れるわけではない。また、1種類の充填材を単独で使用
してもよいし、複数種類を混用してもよい。充填剤の構
成単位の形状としては、粒状のもの、フレーク状のも
の、あるいは繊維状のもの等が使用可能である。
The filler is not limited to those described above. In addition, one type of filler may be used alone, or a plurality of types may be mixed. As the shape of the constituent unit of the filler, a granular one, a flake-like one, a fibrous one or the like can be used.

【0027】熱伝導基材を構成する有機材料の融点が3
0〜70℃の温度範囲にあるので、この融点以上に加熱
されると有機材料が液化する。ただし、有機材料の10
0℃における粘度が70000cP以上であるから、融
点付近ではそれよりも高粘度である。このため融点以上
となって液化してもきわめて流動しにくい状態である。
また、有機材料中に分散している充填剤が有機材料の過
度の流動化を防止する。したがって、熱伝導基材として
は例えば粘土のような可塑性を呈する。この有機材料が
液化した状態での熱伝導基材の可塑性(流動性)は充填
剤の配合割合によって調整できる。この場合、有機材料
及び充填剤の種類(組合せ)にもよるが、充填材の配合
割合は熱伝導基材の30〜90重量%の範囲にするとよ
い。
The melting point of the organic material constituting the heat conductive substrate is 3
Since the temperature is in the range of 0 to 70 ° C., the organic material is liquefied when heated above this melting point. However, 10 of organic materials
Since the viscosity at 0 ° C. is 70,000 cP or more, the viscosity is higher near the melting point. For this reason, even if it liquefies because it has a melting point or higher, it is in a state where it is extremely difficult to flow.
In addition, the filler dispersed in the organic material prevents excessive fluidization of the organic material. Therefore, the heat conductive base material exhibits plasticity such as clay. The plasticity (fluidity) of the heat conductive substrate in a state where the organic material is liquefied can be adjusted by the mixing ratio of the filler. In this case, depending on the type (combination) of the organic material and the filler, the compounding ratio of the filler is preferably in the range of 30 to 90% by weight of the heat conductive substrate.

【0028】このように比較的低温(有機材料の融点以
上)で可塑性を持つので、これを電子部品の表面に接触
させた状態で有機材料の融点以上に加熱し、電子部品の
表面形状に追随して塑性変形させることができ、それに
より電子部品の表面に密着させることができる。その際
に、電子部品とヒートシンクとで熱伝導基材を挟んでお
けば電子部品とヒートシンクとの双方に熱伝導基材を密
着させることができる。
Since the material has plasticity at a relatively low temperature (above the melting point of the organic material), it is heated to a temperature above the melting point of the organic material while being in contact with the surface of the electronic component, and follows the surface shape of the electronic component. Plastic deformation, thereby making it possible to adhere to the surface of the electronic component. At that time, if the heat conductive base material is sandwiched between the electronic component and the heat sink, the heat conductive base material can be brought into close contact with both the electronic component and the heat sink.

【0029】有機材料の融点を高め(70℃に近い温
度)に設定しておけば、熱伝導基材が電子部品の通常の
使用状態で可塑性を持つ可能性は低い。この場合、上記
のようにして電子部品とヒートシンクの間に熱伝導基材
を挟んで可塑化させることで密着させてから電子部品を
使用すればよい。
If the melting point of the organic material is set high (a temperature close to 70 ° C.), it is unlikely that the heat conductive base material has plasticity in a normal use state of the electronic component. In this case, the electronic component may be used after the heat conductive base material is sandwiched between the electronic component and the heat sink to be plasticized so that they are in close contact with each other.

【0030】また有機材料の融点を低め(30℃に近い
温度)に設定しておけば、熱伝導基材が接触する電子部
品からの熱により昇温して可塑性を持つ。そして、電子
部品及びヒートシンクの表面形状に追随して変形し、電
子部品及びヒートシンクに良好に密着する。なお、上述
したとおり粘性が高いから、電子部品の発熱によって流
出する(液だれする)ことはない。
If the melting point of the organic material is set to a low value (a temperature close to 30 ° C.), the temperature rises due to the heat from the electronic component in contact with the heat conductive substrate, and the organic material has plasticity. And it deforms following the surface shape of an electronic component and a heat sink, and adheres well to an electronic component and a heat sink. As described above, since the viscosity is high, the component does not flow out (drip) due to heat generation of the electronic component.

【0031】電子部品の発熱の程度と有機材料の融点の
設定とにより上記のような2通りの使用ができるが、ど
ちらにしても熱伝導基材を電子部品及びヒートシンクに
良好に密着させることができる。その結果、熱伝導基材
を介しての熱伝導効率が良好となり、電子部品の熱を良
好に放熱できる。
Depending on the degree of heat generation of the electronic component and the setting of the melting point of the organic material, the above two types of applications can be used. In either case, the heat conductive base material can be brought into good contact with the electronic component and the heat sink. it can. As a result, the heat conduction efficiency through the heat conductive base material is improved, and the heat of the electronic component can be radiated well.

【0032】また、電子部品及びヒートシンクの表面形
状に忠実に追随して変形するから、ヒートシンクから電
子部品にかかる荷重が均等に分散され、電子部品の一部
に偏った荷重がかることがない。さらに、常温で可塑性
を有する有機材料を用いれば、熱伝導基材を例えば電子
部品の表面にあてがう際に電子部品の表面形状に追随さ
せて塑性変形させることができるから、その後の加熱あ
るいは昇温によって有機材料が液化したときの密着性が
より良好になる。
In addition, since the shape is deformed so as to closely follow the surface shapes of the electronic component and the heat sink, the load applied from the heat sink to the electronic component is evenly distributed, and a partial load is not applied to a part of the electronic component. Furthermore, if an organic material having plasticity at room temperature is used, for example, when a heat conductive base material is applied to the surface of an electronic component, it can be plastically deformed by following the surface shape of the electronic component. Thereby, the adhesion when the organic material is liquefied becomes better.

【0033】[0033]

【実施例】(熱伝導基材)以下に示す有機材料と充填材
を2本ロールの混練機を用いて混練した後、成形し、シ
ート状の熱伝導基材(実施例1、2、比較例1、2)を
得た。なお、比較例1は有機材料としての未加硫EPD
Mを単独で成形してシート状としたものである。実施例
1、2及び比較例2の熱伝導基材は、図1に例示するよ
うに有機材料中に充填剤が分散した構造となっている。 〈実施例1〉 未加硫EPDM(有機材料) :100重量部 SiC(充填剤) :230重量部 〈実施例2〉 未加硫EPDM(有機材料) :100重量部 BN(充填剤) :120重量部 〈比較例1〉 未加硫EPDMのみ 〈比較例2〉 パラフィン(分子量1000)(有機材料) :100重量部 Al23(充填剤) :150重量部 これら実施例1、2及び比較例1、2の熱伝導基材の特
性は表1に示す通りである。なお、粘度はB型粘度計を
用いて測定し、熱伝導率は京都電子工業が販売する熱伝
導計QTM−500を用いて測定した。
EXAMPLES (Thermal Conductive Substrate) The following organic materials and fillers were kneaded using a two-roll kneader, then molded and formed into a sheet-like thermal conductive substrate (Examples 1 and 2; Examples 1 and 2) were obtained. Comparative Example 1 is an unvulcanized EPD as an organic material.
M is formed alone to form a sheet. The heat conductive base materials of Examples 1 and 2 and Comparative Example 2 have a structure in which a filler is dispersed in an organic material as illustrated in FIG. <Example 1> Unvulcanized EPDM (organic material): 100 parts by weight SiC (filler): 230 parts by weight <Example 2> Unvulcanized EPDM (organic material): 100 parts by weight BN (filler): 120 Parts by weight <Comparative Example 1> Unvulcanized EPDM only <Comparative Example 2> Paraffin (molecular weight 1000) (organic material): 100 parts by weight Al 2 O 3 (filler): 150 parts by weight These Examples 1 and 2 and Comparative Examples The properties of the heat conductive substrates of Examples 1 and 2 are as shown in Table 1. The viscosity was measured using a B-type viscometer, and the thermal conductivity was measured using a thermal conductivity meter QTM-500 sold by Kyoto Electronics Industry.

【0034】[0034]

【表1】 ここで、液だれとは、熱伝導基材を電子部品とヒートシ
ンクの間に挟んで使用した際に熱伝導基材が流動化し流
れ出す現象をいう。
[Table 1] Here, the dripping means a phenomenon in which the heat conductive base material flows and flows out when the heat conductive base material is used between the electronic component and the heat sink.

【0035】表1から明らかなとおり、実施例1、2の
熱伝導基材は、熱伝導率が高く、有機材料の融点を大幅
に上回る100℃でも液だれを生じていない。一方、比
較例1の場合は100℃で液だれを起こしている。この
ことから充填剤の使用が液だれ防止に有効なことが判
る。また、比較例2の熱伝導基材は、熱伝導率が低く、
100℃で液だれを起こしている。 (熱伝導材)上記実施例1、2の熱伝導基材を使用し
て、図2(a)に示す構造の熱伝導材を製造した。この
熱伝導材10は、実施例1(または実施例2)の熱伝導
基材11、メッシュ銅箔12及び剥離紙13から構成さ
れている。メッシュ銅箔12は、図2(b)に示すよう
に多数の穴(網目)を有するメッシュ状であり、上下の
熱伝導基材11は網目を通して連続している。熱伝導材
10の厚さ(剥離紙13を含む)は1mm以下(本実施
例の場合、上下の熱伝導基材11の合計厚さは約0.5
mm)であり、メッシュ銅箔12の厚さは約30μmで
ある。なお、図2は熱伝導材10の断面構造を模式的に
示すものであり、実際の寸法を反映してはいない。
As is clear from Table 1, the heat conductive substrates of Examples 1 and 2 have high thermal conductivity and do not drip even at 100 ° C., which is much higher than the melting point of the organic material. On the other hand, in the case of Comparative Example 1, dripping occurred at 100 ° C. This indicates that the use of the filler is effective for preventing dripping. Further, the heat conductive base material of Comparative Example 2 has a low heat conductivity,
It is dripping at 100 ° C. (Thermal Conductive Material) A thermal conductive material having a structure shown in FIG. 2A was manufactured using the thermal conductive base materials of Examples 1 and 2 described above. The heat conductive material 10 is composed of the heat conductive substrate 11, the mesh copper foil 12, and the release paper 13 of the first embodiment (or the second embodiment). The mesh copper foil 12 has a mesh shape having a large number of holes (mesh) as shown in FIG. 2B, and the upper and lower heat conductive base materials 11 are continuous through the mesh. The thickness of the heat conductive material 10 (including the release paper 13) is 1 mm or less (in this embodiment, the total thickness of the upper and lower heat conductive base materials 11 is about 0.5
mm), and the thickness of the mesh copper foil 12 is about 30 μm. FIG. 2 schematically shows a cross-sectional structure of the heat conductive material 10 and does not reflect actual dimensions.

【0036】この熱伝導材10は、メッシュ銅箔12が
電子部品(例えばCPU)の表面に沿う姿勢で電子部品
とヒートシンクとの間に挿入されて使用される。その装
着手順は次のようなものである。まず、熱伝導材10の
図2(a)における上の面(剥離紙13で覆われていな
い面)をCPUの放熱面に当接し、剥離紙13側から押
圧しながら例えば100℃程度に加熱する。すると、熱
伝導基材11が可塑化してCPUの放熱面に密着する
(つまり熱転写する。)。
The heat conductive material 10 is used by inserting the mesh copper foil 12 between the electronic component and the heat sink in a posture along the surface of the electronic component (eg, CPU). The mounting procedure is as follows. First, the upper surface (the surface not covered with the release paper 13) of the heat conductive material 10 in FIG. 2A is brought into contact with the heat radiation surface of the CPU, and is heated to, for example, about 100 ° C. while being pressed from the release paper 13 side. I do. Then, the heat conductive base material 11 is plasticized and adheres to the heat radiation surface of the CPU (that is, heat is transferred).

【0037】その後、剥離紙13を剥がし、その剥離紙
13を剥がした面にヒートシンクを当ててビスなどで電
子部品に固定する。このビス等による力(例えば締め付
け力)が、ヒートシンクと電子部品とで熱伝導基材11
を挟み付ける力(挟持力)として作用する。
Thereafter, the release paper 13 is peeled off, and a heat sink is applied to the surface from which the release paper 13 has been peeled off, and is fixed to an electronic component with screws or the like. The force (for example, the tightening force) of the screw or the like is applied to the heat conductive base material 11 by the heat sink and the electronic component.
Acts as a pinching force (pinching force).

【0038】熱伝導基材11は厚さが1mm以下(実施
例では約0.5mm)の板状で、CPUまたはヒートシ
ンクの表面に向けて押圧されるとその表面の形状に追随
して変形する性質を持つので、CPUとヒートシンクと
で熱伝導基材11を挟持すれば、その挟持力=押圧力に
よりCPU及びヒートシンクの双方の表面形状に追随し
て変形する。これにより熱源となるCPUと放熱のため
のヒートシンクとの双方に熱伝導基材11が密着する。
熱伝導基材11とCPU及びヒートシンクの表面との間
に微細な空隙が生じることがないから、十分な熱伝導効
果が得られる。
The heat conductive substrate 11 is a plate having a thickness of 1 mm or less (approximately 0.5 mm in the embodiment). When pressed against the surface of the CPU or the heat sink, the heat conductive substrate 11 is deformed to follow the shape of the surface. When the heat conductive base material 11 is sandwiched between the CPU and the heat sink, the heat conductive base material 11 is deformed by following the surface shape of both the CPU and the heat sink by the holding force = the pressing force. As a result, the heat conductive substrate 11 comes into close contact with both the CPU serving as a heat source and the heat sink for heat radiation.
Since there is no minute gap between the heat conductive substrate 11 and the surfaces of the CPU and the heat sink, a sufficient heat conductive effect can be obtained.

【0039】また、ヒートシンクを取り付けた後に再度
加熱して熱伝導基材11を可塑化させて、今度はヒート
シンクの表面に密着させてもよい。または、CPUの使
用に伴う発熱で熱伝導基材11が加熱されれば、それに
よって可塑化してCPU及びヒートシンクの表面に密着
する。どちらにしても熱伝導基材11をCPU及びヒー
トシンクに良好に密着させることができる。その結果、
熱伝導基材11を介しての熱伝導効率が良好となり、C
PUの熱を良好に放熱できる。
Further, after the heat sink is attached, the heat conductive substrate 11 may be heated again to plasticize the heat conductive base material 11 and then adhere to the surface of the heat sink. Alternatively, if the heat conductive base material 11 is heated by the heat generated by the use of the CPU, the heat conductive base material 11 is plasticized and adheres to the surfaces of the CPU and the heat sink. In any case, the heat conductive substrate 11 can be brought into close contact with the CPU and the heat sink. as a result,
The heat conduction efficiency through the heat conduction base material 11 becomes good, and C
The heat of PU can be radiated well.

【0040】また、CPU及びヒートシンクの表面形状
に忠実に追随して変形するから、ヒートシンクからCP
Uにかかる荷重が均等に分散され、CPUの一部に偏っ
た荷重がかることがない。熱伝導材10の取付作業に当
たっては、保護シートに該当する剥離紙13及びサポー
ト材に該当するメッシュ銅箔12が支持材となって熱伝
導基材11を支持するので、取り扱いやすく、作業性も
良好になる。
Further, since the deformation follows the surface shapes of the CPU and the heat sink faithfully, the heat sink can be used to remove the CP.
The load applied to U is evenly distributed, so that an uneven load is not applied to a part of the CPU. At the time of attaching the heat conductive material 10, the release paper 13 corresponding to the protective sheet and the mesh copper foil 12 corresponding to the support material serve as a support material to support the heat conductive base material 11, so that it is easy to handle and workability is improved. Become good.

【0041】メッシュ銅箔12は熱伝導性が良いから、
CPUからヒートシンクへの伝導を阻害しない。また、
銅箔12による電磁シールド効果も期待できる。銅箔1
2が熱伝導基材11の内部に配されているので、CPU
またはヒートシンクとの密着性は熱伝導基材11によっ
て確保される。
Since the mesh copper foil 12 has good thermal conductivity,
Does not hinder conduction from the CPU to the heat sink. Also,
An electromagnetic shielding effect by the copper foil 12 can also be expected. Copper foil 1
2 is arranged inside the heat conductive base material 11, so that the CPU
Alternatively, adhesion to the heat sink is ensured by the heat conductive base material 11.

【0042】しかも、メッシュの網目にて銅箔12の両
側の熱伝導基材11を連続させているので、熱伝導基材
11が銅箔12から分離するおそれもない。なお、図3
(a)に例示するように、熱伝導基材11の両面に剥離
紙13(または他の保護シート)を張り付けた構造とし
たり、図3(b)、(c)に例示するようにサポート材
を用いない構造とすることもできる。その場合、図3
(b)のように熱伝導基材11の一方の面に剥離紙13
(保護シート)を張り付けた構造としても、図3(c)
のように熱伝導基材11の両方の面に剥離紙13(保護
シート)を張り付けた構造としても、どちらでもよい。
In addition, since the heat conductive base material 11 on both sides of the copper foil 12 is continuous with the mesh of the mesh, there is no possibility that the heat conductive base material 11 is separated from the copper foil 12. Note that FIG.
As shown in FIG. 3A, a release paper 13 (or another protective sheet) is attached to both sides of the heat conductive base material 11 or a support material as shown in FIGS. 3B and 3C. May be used. In that case, FIG.
As shown in (b), a release paper 13 is provided on one surface of the heat conductive base material 11.
Fig. 3 (c)
The structure in which the release paper 13 (protective sheet) is attached to both surfaces of the heat conductive substrate 11 as described above may be used.

【0043】以上、本発明について説明したが、本発明
は上述の各例に限定されるものではなく、本発明の要旨
を逸脱しない範囲でさまざまに実施できることは言うま
でもない。例えば熱伝導基材の厚さを約0.5mmとし
ているが、これを更に薄くする(例えば0.1mm程度
とする)ことも可能である。この厚さが小さければ小さ
いほど熱伝導効率すなわちCPUなどの電子部品からヒ
ートシンクへの放熱効率が向上する。
Although the present invention has been described above, it is needless to say that the present invention is not limited to the above-described embodiments, and can be variously implemented without departing from the gist of the present invention. For example, the thickness of the heat conductive substrate is set to about 0.5 mm, but it can be further reduced (for example, to about 0.1 mm). The smaller the thickness, the higher the heat conduction efficiency, that is, the efficiency of heat radiation from the electronic component such as the CPU to the heat sink.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例の熱伝導基材の内部構造の模式図であ
る。
FIG. 1 is a schematic diagram of the internal structure of a heat conductive substrate of an example.

【図2】 実施例の熱伝導基材を用いた熱伝導材の説明
図である。
FIG. 2 is an explanatory diagram of a heat conductive material using the heat conductive base material of the example.

【図3】 実施例の熱伝導基材を用いた他の熱伝導材の
説明図である。
FIG. 3 is an explanatory diagram of another heat conductive material using the heat conductive base material of the example.

【符号の説明】[Explanation of symbols]

10 熱伝導材 11 熱伝導基材 12 メッシュ銅箔(サポート材) 13 剥離紙(保護シート) Reference Signs List 10 heat conductive material 11 heat conductive base material 12 mesh copper foil (support material) 13 release paper (protective sheet)

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F100 AA14A AA14C AA16A AA16C AB01B AB17B AB33B AK75A AK75C AR00A AR00C AR00D BA04 BA07 BA10A BA10D CA23A CA23C DC11B DC16B DG10D GB41 JA04A JA04C JA06A JA06C JJ01 JJ01A JJ01C JL14D YY00A YY00C 5F036 AA01 BA04 BA23 BB21 BD01 BD21  ──────────────────────────────────────────────────の Continued on the front page F-term (reference) 4F100 AA14A AA14C AA16A AA16C AB01B AB17B AB33B AK75A AK75C AR00A AR00C AR00D BA04 BA07 BA10A BA10D CA23A CA23C DC11B DC16B DG10D GB41 JA04A JA04J01A01J06A01J06A01J06A01 BD01 BD21

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被装着体の表面に向けて押圧されると該
表面の形状に追随して変形する性質を持つ厚さが1mm
以下の板状の熱伝導基材と、 該熱伝導基材の2面または1面に貼着された保護シート
とからなることを特徴とする熱伝導材。
1. A thickness of 1 mm having a property of being deformed following the shape of the surface when pressed against the surface of the mounted body.
A heat conductive material comprising: the following plate-shaped heat conductive base; and a protective sheet adhered to two or one surface of the heat conductive base.
【請求項2】 請求項1記載の熱伝導材において、 前記保護シートは、前記熱伝導基材の表面を損なわずに
剥離可能であることを特徴とする熱伝導材。
2. The heat conductive material according to claim 1, wherein the protective sheet is peelable without damaging the surface of the heat conductive base material.
【請求項3】 請求項1または2記載の熱伝導材におい
て、 全部または一部が前記熱伝導基材の内部に配されて該熱
伝導基材を支持するサポート材を備えたことを特徴とす
る熱伝導材。
3. The heat conductive material according to claim 1, further comprising a support member that is disposed in whole or in part inside the heat conductive base material and supports the heat conductive base material. Heat conductive material.
【請求項4】 請求項3記載の熱伝導材において、 前記サポート材は金属箔であることを特徴とする熱伝導
材。
4. The heat conductive material according to claim 3, wherein said support material is a metal foil.
【請求項5】 請求項4記載の熱伝導材において、 前記金属箔には穴が設けられていることを特徴とする熱
伝導材。
5. The heat conductive material according to claim 4, wherein a hole is provided in the metal foil.
【請求項6】 請求項1ないし5のいずれか記載の熱伝
導材において、 前記熱伝導基材は、融点が30〜70℃かつ100℃に
おける粘度が70000cP以上の有機材料中に該熱伝
導基材の30〜90重量%の充填剤を分散してなること
を特徴とする熱伝導材。
6. The heat conductive material according to claim 1, wherein the heat conductive base material is contained in an organic material having a melting point of 30 to 70 ° C. and a viscosity at 100 ° C. of 70,000 cP or more. A heat conductive material, characterized in that 30 to 90% by weight of a filler is dispersed in the material.
JP2000166175A 2000-06-02 2000-06-02 Thermal conductive material Expired - Fee Related JP3431576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000166175A JP3431576B2 (en) 2000-06-02 2000-06-02 Thermal conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000166175A JP3431576B2 (en) 2000-06-02 2000-06-02 Thermal conductive material

Publications (2)

Publication Number Publication Date
JP2001345406A true JP2001345406A (en) 2001-12-14
JP3431576B2 JP3431576B2 (en) 2003-07-28

Family

ID=18669534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000166175A Expired - Fee Related JP3431576B2 (en) 2000-06-02 2000-06-02 Thermal conductive material

Country Status (1)

Country Link
JP (1) JP3431576B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264261A (en) * 2002-03-07 2003-09-19 Hitachi Industrial Equipment Systems Co Ltd Power device and sheet for heat connection
JP2006291123A (en) * 2005-04-14 2006-10-26 Idemitsu Kosan Co Ltd Thermal conductive resin composition
JP2008294413A (en) * 2007-04-25 2008-12-04 Hitachi Chem Co Ltd Thermally conductive film
JP2010212613A (en) * 2009-03-12 2010-09-24 Kyocera Corp Heat dissipation structure of base station apparatus
JP2011177929A (en) * 2010-02-26 2011-09-15 Nippon Steel Chem Co Ltd Metal-insulating resin substrate and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264261A (en) * 2002-03-07 2003-09-19 Hitachi Industrial Equipment Systems Co Ltd Power device and sheet for heat connection
JP2006291123A (en) * 2005-04-14 2006-10-26 Idemitsu Kosan Co Ltd Thermal conductive resin composition
JP2008294413A (en) * 2007-04-25 2008-12-04 Hitachi Chem Co Ltd Thermally conductive film
JP2010212613A (en) * 2009-03-12 2010-09-24 Kyocera Corp Heat dissipation structure of base station apparatus
JP2011177929A (en) * 2010-02-26 2011-09-15 Nippon Steel Chem Co Ltd Metal-insulating resin substrate and method of manufacturing the same

Also Published As

Publication number Publication date
JP3431576B2 (en) 2003-07-28

Similar Documents

Publication Publication Date Title
TW549011B (en) Dissipation of heat from a circuit board having bare silicon chips mounted thereon
JP5752299B2 (en) Method for manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member
JP4459470B2 (en) Electronic component heat dissipation structure and heat dissipation sheet used therefor
US6886625B1 (en) Elastomeric heat sink with a pressure sensitive adhesive backing
EP3255969A1 (en) Heat-conducting sheet and electronic device
CN107871721A (en) Heat conductive sheet and preparation method thereof and semiconductor device
JP2020116873A (en) Manufacturing method of heat-conductive sheet
JP7384560B2 (en) Thermal conductive sheets, mounting methods for thermal conductive sheets, manufacturing methods for electronic devices
KR102155811B1 (en) The manufacturing method for heat radiation adhesive and heat radiation tape with excellent in-plane thermal conductivity comprising the same
US5978221A (en) Radiating spacer, its use and silicone composition
JP3340112B2 (en) Thermal conductive material and manufacturing method thereof
JP2002164481A (en) Heat conductive sheet
JPH11317480A (en) Radiating part and manufacture thereof
JP3431576B2 (en) Thermal conductive material
JP2006121051A (en) Thermal conductive sheet and manufacturing method of same
CN209912866U (en) Composite heat conduction gasket, heat dissipation assembly and heat dissipation device
JP3178805B2 (en) Heat radiation spacer
JP4749631B2 (en) Heat dissipation member
JP3283454B2 (en) Heat radiation spacer
TWM540741U (en) Multi-layer composite heat conduction structure
JP3466135B2 (en) Thermal conductive material
JP2002167560A (en) Thermally conductive resin sheet
JP4101391B2 (en) Heat dissipation member for electronic parts
JP2001156227A (en) Anisotropic thermal-conductive sheet
JP3372487B2 (en) Silicone rubber molding

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees