JP3466135B2 - Thermal conductive material - Google Patents

Thermal conductive material

Info

Publication number
JP3466135B2
JP3466135B2 JP2000175281A JP2000175281A JP3466135B2 JP 3466135 B2 JP3466135 B2 JP 3466135B2 JP 2000175281 A JP2000175281 A JP 2000175281A JP 2000175281 A JP2000175281 A JP 2000175281A JP 3466135 B2 JP3466135 B2 JP 3466135B2
Authority
JP
Japan
Prior art keywords
heat
heat conductive
electronic component
base material
conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000175281A
Other languages
Japanese (ja)
Other versions
JP2001358262A (en
Inventor
康弘 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitagawa Industries Co Ltd
Original Assignee
Kitagawa Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitagawa Industries Co Ltd filed Critical Kitagawa Industries Co Ltd
Priority to JP2000175281A priority Critical patent/JP3466135B2/en
Publication of JP2001358262A publication Critical patent/JP2001358262A/en
Application granted granted Critical
Publication of JP3466135B2 publication Critical patent/JP3466135B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱伝導材の技術分
野に属する。
TECHNICAL FIELD The present invention belongs to the technical field of heat-conducting materials.

【0002】[0002]

【従来の技術】多くの電子部品、例えばCPU、LS
I、IC、パワートランジスタ等には発生する熱を効率
よく放出するために放熱板等のヒートシンクが取り付け
られている。このヒートシンクと例えばCPUの外面と
の接触が良好でないと(ギャップがあると)放熱効率が
低下するので、熱伝導性の良好なインターフェース材を
ヒートシンクとCPUの間に充填してギャップを防いで
いた。このインターフェース材としての熱伝導材には例
えばシリコーンゲルが使用されていた。
2. Description of the Related Art Many electronic components such as CPUs and LSs
A heat sink such as a heat radiating plate is attached to the I, IC, power transistor, and the like in order to efficiently release the generated heat. If the contact between the heat sink and the outer surface of the CPU is not good (there is a gap), the heat dissipation efficiency will decrease, so an interface material having good thermal conductivity was filled between the heat sink and the CPU to prevent the gap. . Silicon gel, for example, has been used as the heat conducting material as the interface material.

【0003】またCPU等からは電磁波(ノイズ)が放
射されるので電磁波遮蔽(EMC)も必要であった。そ
うした事情から、上記のインターフェース材として良好
な熱伝導性とEMC機能を持ち合わせたシートが求めら
れていた。そのようなシートの一例として磁性材料をフ
ィラーとしたシリコーンゲルのシートや熱伝導材料を混
練したシートと磁性材料を混練したシートとを積層した
もの等がある。
Further, since electromagnetic waves (noise) are radiated from the CPU and the like, electromagnetic wave shielding (EMC) is also necessary. Under such circumstances, a sheet having good thermal conductivity and an EMC function has been demanded as the interface material. Examples of such a sheet include a sheet of silicone gel containing a magnetic material as a filler, a sheet obtained by kneading a sheet of heat conductive material and a sheet obtained by kneading a sheet of magnetic material, and the like.

【0004】[0004]

【発明が解決しようとする課題】ところで、板状の熱伝
導基材による伝熱量(Q)については、下記の数式1に
示す関係が成り立つことが知られている。
By the way, it is known that the heat transfer amount (Q) by the plate-shaped heat-conducting base material has the relationship shown in the following mathematical formula 1.

【0005】[0005]

【数1】 [Equation 1]

【0006】Q:伝熱量 λ:熱伝導率[Kcal/mh℃] Q1−Q2:表裏の温度差 x:板厚 F:表面積 T:時間 したがって、熱伝導効率を上げるには(伝熱量Qを大き
くするには)、熱伝導率λのよいものを使うか板厚xを
薄くすればよい。
Q: heat transfer amount λ: thermal conductivity [Kcal / mh ° C.] Q 1 -Q 2 : temperature difference between front and back x: plate thickness F: surface area T: time Therefore, to increase the heat transfer efficiency (heat transfer amount In order to increase Q), a material having a good thermal conductivity λ may be used or the plate thickness x may be reduced.

【0007】ところで熱伝導率λの向上(すなわち熱伝
導材の改良)には多大な研究を要するのが普通であり、
人的また経済的負担が大きい。また、先人により研究し
尽くされた感もある。これに比べて板厚xを薄くする手
法はどちらかと言えば安易である。しかし、熱伝導基材
の板厚xを薄くすると、例えば剛性が小さくなって取り
扱い難くなるという問題がある。
By the way, a great deal of research is usually required to improve the thermal conductivity λ (that is, to improve the thermal conductive material).
The human and financial burden is large. There is also a feeling that the research was done by the ancestors. Compared to this, the method of reducing the plate thickness x is relatively easy. However, when the plate thickness x of the heat-conducting base material is reduced, for example, the rigidity becomes low, which makes it difficult to handle.

【0008】例えばシリコーンゲル或いはシリコーンゲ
ルを基材としてフィラーを添加したものをシート状に加
工する場合、シリコーンゲルの物性(強度)から500
μm(0.5mm)以下の厚さにすることはきわめて困
難であり、またそうした厚さに加工できたとしても強度
が低いためにぼろぼろに崩れてしまって使いものになら
なかった。この問題はシリコーンゲルに限らず、他の熱
伝導基材でも同様であった。
[0008] For example, in the case of processing a silicone gel or a silicone gel as a base material to which a filler is added into a sheet shape, it is 500 because of the physical properties (strength) of the silicone gel.
It was extremely difficult to reduce the thickness to less than μm (0.5 mm), and even if the thickness could be processed to such a thickness, it was broken into pieces because of its low strength and was useless. This problem was not limited to silicone gel, and was the same with other heat conductive base materials.

【0009】このため、シリコーンゲル等の熱伝導基材
を使用して熱伝導性とEMC機能を持ち合わせたシート
を作る場合、その板厚を低減して(例えば0.5mm以
下にして)、数式1に示される伝熱量Qを大きくするこ
とはできなかった。また、熱伝導性とEMC機能機能を
持たせるために異なる種類のシートを積層するのは製造
コストが高くなるという欠点もあった。
Therefore, when a sheet having both thermal conductivity and an EMC function is produced by using a heat conductive base material such as silicone gel, the plate thickness thereof is reduced (for example, 0.5 mm or less), The heat transfer amount Q shown in 1 could not be increased. In addition, stacking different types of sheets in order to have thermal conductivity and an EMC function has the drawback of increasing the manufacturing cost.

【0010】さらに、シリコーンゲルは、電子部品に装
着して使用される時の温度条件では固形であったので、
CPUあるいはヒートシンクの形状に追随して変形する
ことがなく、例えばCPUの表面との間あるいはヒート
シンクの表面との間に微細な空隙が生じてしまい、十分
な熱伝導効果が得られないという問題もあった。
Furthermore, since the silicone gel is solid under the temperature conditions when it is used by mounting it on electronic parts,
There is also a problem that the shape of the CPU or the heat sink is not deformed and a minute gap is formed between the surface of the CPU or the surface of the heat sink, and a sufficient heat conduction effect cannot be obtained. there were.

【0011】なお、従来のシリコーンゲル等の熱伝導基
材を使用する場合、電子部品及びヒートシンクに接着剤
等で強固に取り付けられていたので、例えばグレードア
ップのためにCPU等を交換する際には、破壊的な方法
でヒートシンクと電子部品とを切り離さなければなら
ず、それらの一方または双方を再利用(リサイクル)す
ることができなかった。
When a conventional heat conductive base material such as a silicone gel is used, it is firmly attached to an electronic component and a heat sink with an adhesive or the like. Therefore, for example, when the CPU or the like is replaced for upgrading. Had to decouple the heat sink and the electronic components in a destructive way and could not reuse one or both of them.

【0012】本発明は、熱伝導性とEMC機能を持ち合
わせたシートにおいて、その板厚を小さくすることによ
り低熱抵抗化を図るものである。
The present invention is intended to reduce the thermal resistance of a sheet having both thermal conductivity and an EMC function by reducing the thickness of the sheet.

【0013】[0013]

【課題を解決するための手段および発明の効果】[Means for Solving the Problems and Effects of the Invention] 上記課Above section
題を解決するための請求項1記載の熱伝導材は、有機材The heat conductive material according to claim 1 for solving the problem is an organic material.
料と該有機材料より高い熱伝導性を有する充填剤とを含And a filler having a higher thermal conductivity than the organic material.
有する熱伝導基材であって、a.前記有機材料の融点がA thermally conductive substrate having a. If the melting point of the organic material is
30〜70℃の範囲にあり、b.100℃における前記In the range of 30 to 70 ° C., b. The above at 100 ℃
有機材料の粘度が70000cP以上であり、c.前記The viscosity of the organic material is 70,000 cP or more, c. The above
充填剤の熱伝導基材全体に対する割合が30〜90重量The ratio of the filler to the entire heat conductive substrate is 30 to 90 weight.
%の範囲にあって、厚さが500μm以下の板状で他の%, And a plate-like shape with a thickness of 500 μm or less
固体表面に向けて押圧されると該固体表面の形状に追随Follows the shape of the solid surface when pressed toward the solid surface
して変形する性質を持つ熱伝導基材と、該熱伝導基材のOf a heat conductive base material having a property of being deformed by
2面または1面に積層された磁性箔とからなることを特It is specially composed of magnetic foil laminated on two or one side.
徴とする。To collect.

【0014】熱伝導基材を構成する有機材料の融点が3
0〜70℃の温度範囲にあるので、この融点以上に加熱
されると有機材料が液化する。ただし、有機材料の10
0℃における粘度が70000cP以上であるから、融
点付近ではそれよりも高粘度である。このため融点以上
となって液化してもきわめて流動しにくい状態である。
また、有機材料中に分散している充填剤が有機材料の過
度の流動化を防止する。したがって、熱伝導基材として
は例えば粘土のような可塑性を呈する。この有機材料が
液化した状態での熱伝導基材の可塑性(流動性)は充填
剤の配合割合によって調整できる。この場合、有機材料
及び充填剤の種類(組合せ)にもよるが、充填材の配合
割合は熱伝導基材の30〜90重量%の範囲にするとよ
い。
The melting point of the organic material constituting the heat conductive substrate is 3
Since it is in the temperature range of 0 to 70 ° C, heat it above this melting point.
Then, the organic material is liquefied. However, 10 of organic materials
Since the viscosity at 0 ° C is 70,000 cP or more,
The viscosity is higher near that point. Therefore, above the melting point
Even if it becomes liquefied, it is extremely difficult to flow.
In addition, the filler dispersed in the organic material may cause excess of the organic material.
Prevent fluidization of degree. Therefore, as a heat conductive base material
Exhibits plasticity such as clay. This organic material
The plasticity (fluidity) of the heat conductive base material in the liquefied state is filled
It can be adjusted by the blending ratio of the agent. In this case, the organic material
Also, depending on the type (combination) of fillers, the mixture of fillers
The ratio should be in the range of 30 to 90% by weight of the heat conductive base material.
Yes.

【0015】熱伝導基材の2面または1面に磁性箔が積
層されているので、磁性箔が支持体となって熱伝導基材
の強度不足を補い、その過剰な変形や破損を阻止する。
したがって、熱伝導基材の板厚を500μm以下にする
ことが可能となる。これにより熱抵抗が格段に低下する
から電子部品(例えばCPU)からヒートシンクへの時
間当たりの伝熱量が増加し、放熱性が良好になる。ま
た、熱伝導材を例えばCPUの表面に取り付ける際に取
り扱いが簡単となり、作業性が向上する。
Since the magnetic foil is laminated on two or one surface of the heat conductive base material, the magnetic foil serves as a support to compensate for insufficient strength of the heat conductive base material and prevent excessive deformation and damage thereof. .
Therefore, the plate thickness of the heat conductive base material can be set to 500 μm or less. As a result, the thermal resistance is markedly reduced, so that the amount of heat transferred from the electronic component (for example, CPU) to the heat sink per hour is increased, and the heat dissipation is improved. In addition, when the heat conducting material is attached to the surface of the CPU, for example, the handling becomes simple and the workability is improved.

【0016】しかも、磁性箔によりEMC効果が得られ
るから、電子部品(例えばCPU)からのノイズを防止
できる。磁性箔と熱伝導基材との積層は、例えば加熱プ
レスのような簡単な操作で可能だから、その加工は難し
くなく加工コストも低減できる。
Moreover, since the EMC effect is obtained by the magnetic foil, it is possible to prevent noise from electronic parts (for example, CPU). Since the lamination of the magnetic foil and the heat conductive base material can be performed by a simple operation such as hot pressing, the processing thereof is not difficult and the processing cost can be reduced.

【0017】熱伝導基材が他の固体表面に向けて押圧さ
れるとその固体表面の形状に追随して変形する性質を持
つので、電子部品とヒートシンクとで熱伝導材を挟持す
れば、その挟持力=押圧力により熱伝導基材が電子部品
及びヒートシンクの双方の表面形状に追随して変形す
る。また、磁性箔も同様に電子部品またはヒートシンク
のの表面形状に追随して変形する。したがって、熱源と
なる電子部品と放熱のためのヒートシンクとの双方に熱
伝導材が密着し、熱伝導材と電子部品及びヒートシンク
の表面との間に微細な空隙が生じることがないから、十
分な熱伝導効果が得られる。
When the heat conductive base material is pressed against another solid surface, the heat conductive base material deforms following the shape of the solid surface. Therefore, if the heat conductive material is sandwiched between the electronic component and the heat sink, The sandwiching force = pressing force causes the heat conductive base material to deform following the surface shapes of both the electronic component and the heat sink. Similarly, the magnetic foil also deforms following the surface shape of the electronic component or heat sink. Therefore, the heat conductive material does not come into close contact with both the electronic component serving as a heat source and the heat sink for heat dissipation, and a fine gap is not generated between the heat conductive material and the surfaces of the electronic component and the heat sink. A heat conduction effect can be obtained.

【0018】なお、固体表面に向けて押圧されるとその
表面形状に追随して変形する例としては、塑性変形や弾
性変形がある。つまり、そのように変形する性質として
は可塑性や弾性が例示される。磁性箔の材質には特に限
定はなく公知の磁性材料の箔を使用できる。いくつか例
示すると、Fe−Ni合金(商品名:パーマロイ)、ケ
イ素鋼(Fe−Si)、Fe−Cr合金(例えばステン
レス)、センダスト(Fe−Al−Si)、パーメンジ
ュール(Fe−Co)等がある。
Note that, as an example of being deformed following the surface shape when pressed against a solid surface, there are plastic deformation and elastic deformation. That is, plasticity and elasticity are exemplified as the property of such deformation. The material of the magnetic foil is not particularly limited, and a known foil of magnetic material can be used. To give some examples, Fe-Ni alloy (trade name: Permalloy), silicon steel (Fe-Si), Fe-Cr alloy (for example, stainless steel), sendust (Fe-Al-Si), permendur (Fe-Co). Etc.

【0019】熱伝導基材の2面または1面に磁性箔が積
層されているので、この磁性箔と電子部品またはヒート
シンクとは面接触しているだけであり、容易に分離でき
る。このため、例えばメモリの拡張のようなグレードア
ップ、メンテナンス、修理等のために電子部品(例えば
CPU)をとヒートシンクとを分離する際には、破壊的
な方法でヒートシンクと電子部品とを切り離す必要はな
く、例えば交換された電子部品やヒートシンクを再利用
(リサイクル)することができる。
Since the magnetic foil is laminated on two or one surface of the heat conductive substrate, the magnetic foil and the electronic component or the heat sink are only in surface contact with each other and can be easily separated. Therefore, when the electronic component (for example, the CPU) and the heat sink are separated for upgrading such as expansion of memory, maintenance, repair, etc., it is necessary to separate the heat sink and the electronic component by a destructive method. Instead, for example, the replaced electronic component or heat sink can be reused (recycled).

【0020】熱伝導基材の厚さは500μm以下であれ
ば良好な熱伝導効率とできるが、これが薄ければ薄いほ
どよいことは言うまでもない。よって、好ましくは20
0μm以下である。ただし、薄くしすぎると、磁性箔が
あっても取付作業時の破断などの可能性が高まる。した
がって、熱伝導基材の板厚は100μm以上とするのが
好ましい。つまり、熱伝導基材の厚さは100〜200
μmの範囲とするのが好ましい。
If the thickness of the heat conducting substrate is 500 μm or less, good heat conducting efficiency can be obtained, but it goes without saying that the thinner it is, the better. Therefore, preferably 20
It is 0 μm or less. However, if it is too thin, even if there is a magnetic foil, the possibility of breakage during attachment work increases. Therefore, the plate thickness of the heat conductive substrate is preferably 100 μm or more. That is, the thickness of the heat conductive base material is 100 to 200.
It is preferably in the range of μm.

【0021】同様に、熱伝導の面からは磁性箔も薄い方
がよい。ただし、熱伝導基材の物性との関係であまり薄
くしすぎるのも強度不足となるおそれがあってよくな
い。また箔の加工技術の点からも薄くするには限度があ
る。したがって、熱伝導基材の物性及び磁性箔の物性
(主にこれら双方の機械的な強度)にも依存するが、請
求項3記載のように、磁性箔の厚さは50μm以下、5
μm以上とするのが好ましい。
Similarly, in terms of heat conduction, it is preferable that the magnetic foil is thin. However, it is not preferable to make the thickness too thin in relation to the physical properties of the heat-conducting substrate, as this may result in insufficient strength. There is also a limit to how thin the foil can be processed. Therefore, although depending on the physical properties of the heat conductive base material and the physical properties of the magnetic foil (mainly the mechanical strength of both of them), the thickness of the magnetic foil is 50 μm or less, 5 or less.
It is preferably at least μm.

【0022】なお、さらに好ましくは、熱伝導基材と磁
性箔を合計した厚さすなわち熱伝導材の厚さを請求項4
記載のように200μm以下とするのがよい。磁性箔は
熱伝導基材の両面に積層されてよく、そうすれば電子部
品をとヒートシンクとを分離するのがきわめて簡単であ
る。また熱伝導材の強度も高まる。
Further, more preferably, the total thickness of the heat conductive base material and the magnetic foil, that is, the thickness of the heat conductive material is defined in claim 4.
As described above, the thickness is preferably 200 μm or less. The magnetic foil may be laminated on both sides of the heat conducting substrate, which makes it very easy to separate the electronic component and the heat sink. Also, the strength of the heat conductive material is increased.

【0023】しかし、両面に積層するとその分だけ熱伝
導材の板厚が増すことになり、伝熱性能(熱抵抗)の面
でデメリットがある。また、2面に積層するので加工コ
ストも高くなる。これらのことを考慮すると、請求項2
記載のように、磁性箔を熱伝導基材の1面にのみ積層し
た構成が好ましい。
However, if the layers are laminated on both sides, the plate thickness of the heat conductive material increases correspondingly, which is disadvantageous in terms of heat transfer performance (heat resistance). In addition, since it is laminated on two surfaces, the processing cost becomes high. Considering these matters, claim 2
As described above, it is preferable that the magnetic foil is laminated only on one surface of the heat conductive base material.

【0024】1面にのみ積層する構造の場合、磁性箔の
無い面が電子部品またはヒートシンクに密着して切り離
しが難しくなるおそれがあるが、メンテナンスやリペア
に当たっては電子部品とヒートシンクが分離できればよ
いのであって、例えば再利用する場合に熱伝導材が装着
されたままなら新たに装着する必要がないから、かえっ
て好ましいともいえる。
In the case of the structure in which only one surface is laminated, the surface without the magnetic foil may be in close contact with the electronic component or the heat sink, which may make it difficult to separate the components. Therefore, it can be said that, for example, if the heat conducting material is still attached when it is reused, it is not necessary to newly attach it, which is rather preferable.

【0025】請求項5記載の熱伝導材は、請求項1ない
し4のいずれか記載の熱伝導材において、前記熱伝導基
材は、少なくとも常時使用温度帯域の30〜65℃にお
いて可塑化して、接触する相手の表面形状に追随して柔
軟に変形することを特徴とする。
The thermal interface material according to claim 5, wherein, in the heat conducting member according to any one of claims 1 to 4, the heat-conducting group
The material is characterized by being plasticized at least in the temperature range of 30 to 65 ° C., which is always used, and being flexibly deformed following the surface shape of the contacting partner.

【0026】この熱伝導材は、少なくとも常時使用温度
帯域の30〜65℃において可塑化して(軟化して)、
接触する相手の表面形状に追随して柔軟に変形するの
で、例えば常温で使用する場合には、例えば適度な堅さ
を有するゴム状の物質であり、手等にくっつくことがな
いから、熱伝導材を電子部品の近傍に配置する作業が容
易である。
This heat conducting material is plasticized (softened) at least in the temperature range of 30 to 65 ° C. which is always used,
Since it deforms flexibly following the surface shape of the contacting partner, it is a rubber-like substance with appropriate hardness when used at room temperature, for example, and does not stick to hands, etc. The work of arranging the material near the electronic component is easy.

【0027】また、例えば電子部品の温度が上昇し、熱
伝導材が30〜65℃になった場合には、熱伝導材は可
塑化し、接触する相手の電子部品の形状に追随して柔軟
に変形して、電子部品の表面に密着する。この熱伝導材
は、高い熱伝導性を有しているので、電子部品から効率
よく熱を奪って放熱し、電子部品の温度の上昇を抑制す
ることができる。
Further, for example, when the temperature of the electronic component rises and the heat conducting material reaches 30 to 65 ° C., the heat conducting material is plasticized and flexibly follows the shape of the electronic component of the contacting partner. It deforms and adheres to the surface of the electronic component. Since this heat conducting material has high heat conductivity, it can efficiently remove heat by radiating heat from the electronic component and suppress the temperature rise of the electronic component.

【0028】更に、電子部品のOFFにより、電子部品
の温度が例えば常温に低下した場合には、熱伝導材は、
軟化した状態から変化して、例えばゴム状の状態にまで
固化するので、電子部品から熱伝導材を剥がす作業が極
めて容易である。尚、ここで、可塑化するとは、熱によ
り(接触する相手の表面形状に追随できる程度に)柔軟
化することをいう。
Further, when the temperature of the electronic component is lowered to, for example, normal temperature due to the turning off of the electronic component, the heat conductive material is
Since it changes from the softened state and solidifies to a rubber-like state, the work of peeling the heat conductive material from the electronic component is extremely easy. The term "plasticizing" here means softening by heat (to the extent that it can follow the surface shape of a contacting partner).

【0029】[0029]

【0030】[0030]

【0031】[0031]

【0032】この熱伝導基材の母材となる有機材料とし
ては、オレフィン系樹脂、具体的には酢酸ビニル−エチ
レン共重合体、ポリエチレン、ポリイソブチレン、エチ
レン−エチルアルコール等のオレフィン系樹脂であっ
て、上記の条件(融点が30〜70℃、100℃におけ
る粘度が70000cP以上)を満たすもの、分子量7
000〜50000の未加硫EPDM(未加硫エチレン
−プロピレンゴム)等が例示されるが、上記の融点及び
粘度条件を満たすものなら特に限定なく使用できる。
The organic material which is the base material of the heat conductive base material is an olefin resin, specifically, an olefin resin such as vinyl acetate-ethylene copolymer, polyethylene, polyisobutylene, ethylene-ethyl alcohol. Satisfying the above conditions (melting point: 30 to 70 ° C., viscosity at 100 ° C .: 70,000 cP or more), molecular weight 7
Examples include vulcanized EPDM (unvulcanized ethylene-propylene rubber) of 000 to 50,000, but any vulcanized EPDM (unvulcanized ethylene-propylene rubber) can be used without particular limitation as long as it satisfies the above melting point and viscosity.

【0033】充填材としては、セラミックス、その一種
であるソフトフェライト、金属粉、金属磁性体、炭素繊
維等を使用できる。セラミックスは熱伝導率が高いた
め、熱伝導基材の熱伝導性能を高めることができる。セ
ラミックスの例としては炭化珪素、窒化硼素、アルミ
ナ、水酸化アルミニウム、酸化亜鉛、マグネシア、水酸
化マグネシウム、窒化珪素、窒化アルミニウム等をあげ
ることができる。
As the filler, ceramics, one type thereof, soft ferrite, metal powder, metal magnetic material, carbon fiber and the like can be used. Since ceramics have high thermal conductivity, the thermal conductivity of the thermal conductive substrate can be improved. Examples of ceramics include silicon carbide, boron nitride, alumina, aluminum hydroxide, zinc oxide, magnesia, magnesium hydroxide, silicon nitride, aluminum nitride and the like.

【0034】ソフトフェライトとしてはNi−Zn系フ
ェライト、Mn−Znフェライト等が例示される。ソフ
トフェライトは磁性シールド効果が高いため、これを充
填剤とすることによって、熱伝導基材にもEMC機能を
持たせることができる。金属粉の場合、金、銀、銅、ア
ルミ等を使用できる。これらの金属粉は、熱伝導率が高
いと同時に電界シールド効果に優れるため、これらを充
填剤とすることによって、熱伝導効果と電界シールド効
果によるEMC機能に優れた熱伝導基材を実現できる。
Examples of soft ferrite include Ni-Zn type ferrite and Mn-Zn ferrite. Since soft ferrite has a high magnetic shield effect, the heat conductive base material can also have an EMC function by using this as a filler. In the case of metal powder, gold, silver, copper, aluminum, etc. can be used. Since these metal powders have high thermal conductivity and are also excellent in the electric field shielding effect, by using them as a filler, it is possible to realize a heat conducting base material excellent in the EMC function due to the heat conducting effect and the electric field shielding effect.

【0035】金属磁性体としては、ケイ素鋼(Fe−S
i)、パーマロイ(商品名)、センダスト(Fe−Al
−Si)、パーメンジュール(Fe−Co)、ステンレ
ス等のFe−Cr合金がある。こうした金属磁性体は磁
性シールド効果が高いため、これらを充填剤とすること
によって磁性シールド効果によるEMC機能に優れる熱
伝導基材を実現できる。
As the metal magnetic material, silicon steel (Fe-S
i), Permalloy (trade name), Sendust (Fe-Al
-Si), permendur (Fe-Co), and Fe-Cr alloys such as stainless steel. Since such a metal magnetic material has a high magnetic shield effect, a heat conductive base material having an excellent EMC function due to the magnetic shield effect can be realized by using them as a filler.

【0036】炭素繊維は、PAN系、ピッチ系、VGC
F、グラファイト、カール状等を使用できる。炭素繊維
は熱伝導率が高いと同時に電界シールド効果が高いた
め、これらを熱伝導基材とすることによって、熱伝導効
果と電界シールド効果の双方に優れた熱伝導基材が実現
できる。
Carbon fibers are PAN type, pitch type, VGC type
F, graphite, curled, etc. can be used. Since carbon fibers have a high thermal conductivity and a high electric field shielding effect at the same time, by using them as a heat conducting base material, a heat conducting base material excellent in both heat conduction effect and electric field shielding effect can be realized.

【0037】なお、充填材は上に例示したものに限定さ
れるわけではない。また、1種類の充填材を単独で使用
してもよいし、複数種類を混用してもよい。充填剤の構
成単位の形状としては、粒状のもの、フレーク状のも
の、あるいは繊維状のもの等が使用可能である。
The filler is not limited to the ones exemplified above. Further, one kind of filler may be used alone, or a plurality of kinds may be mixed. As the shape of the constituent unit of the filler, a granular shape, a flake shape, a fibrous shape or the like can be used.

【0038】[0038]

【0039】上述したように、熱伝導材は比較的低温
(有機材料の融点以上)で可塑性を持つので、これを電
子部品の表面に接触させた状態で有機材料の融点以上に
加熱し、電子部品の表面形状に追随して塑性変形させる
ことができる。つまり、熱伝導材を電子部品の表面に密
着させることができる。その際に、電子部品とヒートシ
ンクとで熱伝導基材を挟んでおけば電子部品とヒートシ
ンクとの双方に熱伝導材を密着させることができる。
As described above, since the heat conductive material has plasticity at a relatively low temperature (above the melting point of the organic material), it is heated above the melting point of the organic material while being in contact with the surface of the electronic component, and the It can be plastically deformed following the surface shape of the component. That is, the heat conductive material can be brought into close contact with the surface of the electronic component. At that time, if the heat conductive base material is sandwiched between the electronic component and the heat sink, the heat conductive material can be brought into close contact with both the electronic component and the heat sink.

【0040】有機材料の融点を高め(70℃に近い温
度)に設定しておけば、熱伝導基材が電子部品の通常の
使用状態で可塑性を持つ可能性は低い。この場合、上記
のようにして電子部品とヒートシンクの間に熱伝導材を
挟んで可塑化させることで密着させてから電子部品を使
用すればよい。
If the melting point of the organic material is set high (a temperature close to 70 ° C.), it is unlikely that the heat conductive base material has plasticity in the normal use state of electronic parts. In this case, the electronic component may be used after the thermal conductive material is sandwiched between the electronic component and the heat sink as described above to be adhered by plasticizing.

【0041】また有機材料の融点を低め(30℃に近い
温度)に設定しておけば、熱伝導材が接触する電子部品
からの熱により昇温して熱伝導基材が可塑性を持つ。そ
して、電子部品及びヒートシンクの表面形状に追随して
変形し、電子部品及びヒートシンクに良好に密着する。
なお、上述したとおり粘性が高いから、電子部品の発熱
によって流出する(液だれする)ことはない。
If the melting point of the organic material is set to a low value (a temperature close to 30 ° C.), the heat is raised by the heat from the electronic component with which the heat conductive material comes into contact, and the heat conductive base material has plasticity. Then, it deforms following the surface shapes of the electronic component and the heat sink, and adheres well to the electronic component and the heat sink.
Since the viscosity is high as described above, it does not flow out (drip) due to heat generation of the electronic component.

【0042】電子部品の発熱の程度と有機材料の融点の
設定とにより上記のような2通りの使用ができるが、ど
ちらにしても熱伝導材を電子部品及びヒートシンクに良
好に密着させることができる。その結果、熱伝導材を介
しての熱伝導効率が良好となり、電子部品の熱を良好に
放熱できる。
The above-described two types of use can be performed depending on the degree of heat generation of the electronic component and the setting of the melting point of the organic material. In either case, the heat conductive material can be closely adhered to the electronic component and the heat sink. . As a result, the heat conduction efficiency via the heat conducting material is improved, and the heat of the electronic component can be radiated well.

【0043】また、電子部品及びヒートシンクの表面形
状に忠実に追随して変形するから、ヒートシンクから電
子部品にかかる荷重が均等に分散され、電子部品の一部
に偏った荷重がかることがない。さらに、常温で可塑性
を有する有機材料を用いれば、熱伝導材を例えば電子部
品の表面にあてがう際に電子部品の表面形状に追随させ
て塑性変形させることができるから、その後の加熱ある
いは昇温によって有機材料が液化したときの密着性がよ
り良好になる。
Further, since the surface shape of the electronic component and the heat sink are faithfully followed and deformed, the load applied from the heat sink to the electronic component is evenly distributed, and an uneven load is not applied to a part of the electronic component. Furthermore, if an organic material having plasticity at room temperature is used, it is possible to plastically deform by following the surface shape of the electronic component when applying the heat conducting material to the surface of the electronic component, for example, so that heating or temperature increase thereafter Adhesion becomes better when the organic material is liquefied.

【0044】特に、熱伝導材の使用条件下で熱伝導基材
が可塑化するように調製しておくと、電子部品の熱で磁
性箔が膨張(線膨張)した場合に熱伝導基材がこれに応
じて塑性変形するので、両者の熱膨張係数の違いによっ
て剥離したり、あるいは磁性箔にしわが寄る等の不具合
は生じない。
In particular, when the heat conductive base material is prepared so as to be plasticized under the use condition of the heat conductive material, the heat conductive base material can be formed when the magnetic foil expands (linearly expands) by the heat of the electronic component. Since plastic deformation occurs in response to this, problems such as peeling or wrinkling of the magnetic foil due to the difference in thermal expansion coefficient between the two do not occur.

【0045】従来の例えばシリコーンゲルのシート(熱
伝導基材)とEMC機能を持つシートとを積層した熱伝
導材にあっては、両シートの熱膨張係数の違いによる剥
離等の不具合が避けられなかった。これに比べて、本発
明の熱伝導材が、上記の性質(使用条件下で熱伝導基材
が可塑化)により発揮する効果はきわめて優れた効果と
言える。
In the conventional heat conductive material in which a sheet of silicone gel (heat conductive base material) and a sheet having an EMC function are laminated, a defect such as peeling due to a difference in thermal expansion coefficient of both sheets can be avoided. There wasn't. In comparison with this, it can be said that the effect of the heat conductive material of the present invention exerted by the above properties (the heat conductive base material is plasticized under use conditions) is extremely excellent.

【0046】[0046]

【発明の実施の形態】次に、本発明の実施例により発明
の実施の形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described with reference to Examples of the present invention.

【0047】[0047]

【実施例】(熱伝導基材)以下に示す有機材料と充填材
を2本ロールの混練機を用いて混練した後、成形し、シ
ート状の熱伝導基材(実施例1、2、比較例1、2)を
得た。なお、比較例1は有機材料としての未加硫EPD
Mを単独で成形してシート状としたものである。実施例
1、2及び比較例2の熱伝導基材は、図1に例示するよ
うに有機材料中に充填剤が分散した構造となっている。 〈実施例1〉 未加硫EPDM(有機材料) :100重量部 SiC(充填剤) :230重量部 〈実施例2〉 未加硫EPDM(有機材料) :100重量部 BN(充填剤) :120重量部 〈比較例1〉 未加硫EPDMのみ 〈比較例2〉 パラフィン(分子量1000)(有機材料) :100重量部 Al2O3(充填剤) :150重量部 これら実施例1、2及び比較例1、2の熱伝導基材の特
性は表1に示す通りである。なお、粘度はB型粘度計を
用いて測定し、熱伝導率は京都電子工業が販売する熱伝
導計QTM−500を用いて測定した。
EXAMPLES (Heat Conductive Substrate) The following organic materials and fillers were kneaded using a two-roll kneader and then molded into a sheet-shaped heat conductive substrate (Examples 1, 2 and Comparative Example). Examples 1 and 2) were obtained. Comparative Example 1 is an unvulcanized EPD as an organic material.
The sheet M is formed by independently molding M. The heat conductive substrates of Examples 1 and 2 and Comparative Example 2 have a structure in which a filler is dispersed in an organic material as illustrated in FIG. <Example 1> Unvulcanized EPDM (organic material): 100 parts by weight SiC (filler): 230 parts by weight <Example 2> Unvulcanized EPDM (organic material): 100 parts by weight BN (filler): 120 Parts by weight <Comparative Example 1> Only unvulcanized EPDM <Comparative Example 2> Paraffin (molecular weight 1000) (organic material): 100 parts by weight Al2O3 (filler): 150 parts by weight These Examples 1 and 2 and Comparative Example 1, The properties of the heat conductive base material of No. 2 are as shown in Table 1. The viscosity was measured using a B-type viscometer, and the thermal conductivity was measured using a thermal conductivity meter QTM-500 sold by Kyoto Electronics Manufacturing.

【0048】[0048]

【表1】 [Table 1]

【0049】ここで、液だれとは、熱伝導基材を電子部
品とヒートシンクの間に挟んで使用した際に熱伝導基材
が流動化し流れ出す現象をいう。表1から明らかなとお
り、実施例1、2の熱伝導基材は、熱伝導率が高く、有
機材料の融点を大幅に上回る100℃でも液だれを生じ
ていない。
Here, the term "drip" refers to a phenomenon in which the heat-conducting base material is fluidized and flows out when the heat-conducting base material is used by being sandwiched between the electronic component and the heat sink. As is clear from Table 1, the heat-conducting base materials of Examples 1 and 2 have high thermal conductivity and do not drip even at 100 ° C., which is significantly higher than the melting point of the organic material.

【0050】一方、比較例1の場合は100℃で液だれ
を起こしている。このことから充填剤の使用が液だれ防
止に有効なことが判る。また、比較例2の熱伝導基材
は、熱伝導率が低く、100℃で液だれを起こしてい
る。 (可塑化実験)実施例1、2の熱伝導基材の軟化の状態
を確認する実験を行った。
On the other hand, in the case of Comparative Example 1, dripping occurs at 100 ° C. From this, it is understood that the use of the filler is effective in preventing dripping. Further, the heat conductive base material of Comparative Example 2 has a low heat conductivity and causes dripping at 100 ° C. (Plasticization Experiment) An experiment was conducted to confirm the softened state of the heat conductive base materials of Examples 1 and 2.

【0051】この実験は、ヒータの上に熱伝導材を配置
し、その上にブロック(ブロック1又はブロック2)を
配置した状態で、ヒータをオンにし、熱伝導材の温度を
60℃となる様に設定した。 ブロック1としては、3×3×6cm2の比重1のブ
ロックを用いた。このブロック1の重量は54g、その
底面積は9cm2であるので、熱伝導材に加える圧力
は、54÷9=6g/cm2である。
In this experiment, the heater is turned on with the heat conductive material placed on the heater and the block (block 1 or block 2) placed on the heat conductive material, and the temperature of the heat conductive material becomes 60 ° C. I set it like this. As the block 1, a block having a specific gravity of 1 of 3 × 3 × 6 cm 2 was used. Since the weight of this block 1 is 54 g and its bottom area is 9 cm 2 , the pressure applied to the heat conducting material is 54 ÷ 9 = 6 g / cm 2.

【0052】ブロック2としては、3×3×6cm2
のの比重9のブロックを用いた。このブロック2の重量
は486g、その底面積は9cm2であるので、熱伝導
材に加える圧力は、486÷9=54g/cm2であ
る。この実験の結果、熱伝導材の温度が60℃の場合
に、加えた圧力が6g/cm 2及び54g/cm2のと
き、従って、加えた圧力が6g/cm2以上となると、
熱伝導基材が可塑化し、接触する相手の表面形状に追随
して柔軟に変形することが確認された。 (熱伝導材)上記実施例1、2の熱伝導基材を使用し
て、図2(a)に示す構造の熱伝導材を製造した。この
熱伝導材10は、実施例1(または実施例2)の熱伝導
基材11と磁性箔12とから構成されている。
As the block 2, 3 × 3 × 6 cm2
A block having a specific gravity of 9 was used. Weight of this block 2
486g, the bottom area is 9cm2So heat conduction
The pressure applied to the material is 486/9 = 54g / cm2And
It As a result of this experiment, when the temperature of the heat conductive material is 60 ° C
The applied pressure is 6g / cm 2And 54 g / cm2Noto
Therefore, the applied pressure is 6g / cm2When it is above,
The heat conductive base material is plasticized and follows the surface shape of the contacting person.
Then, it was confirmed that it deformed flexibly. (Heat Conductive Material) Using the heat conductive substrate of Examples 1 and 2 above
Thus, a heat conductive material having a structure shown in FIG. 2 (a) was manufactured. this
The heat conductive material 10 is the heat conductive material of Example 1 (or Example 2).
It is composed of a base material 11 and a magnetic foil 12.

【0053】本例では磁性箔12をシート状の熱伝導基
材11に載せて約100℃に加熱しながらプレスして両
者を密着させて熱伝導材10を製造した。磁性箔12に
はパーマロイ(商品名)製で厚さは20μmの箔を使用
し、完成時の熱伝導材10の厚さ(熱伝導基材11+磁
性箔12)を200μmする設定で製造した。なお、図
2は熱伝導材10の断面構造を模式的に示すものであ
り、実際の寸法を反映してはいない。
In this example, the magnetic foil 12 was placed on the sheet-shaped heat conductive substrate 11 and pressed while heating at about 100 ° C. to bring them into close contact with each other to manufacture the heat conductive material 10. As the magnetic foil 12, a foil made of Permalloy (trade name) and having a thickness of 20 μm was used, and the thickness of the heat conductive material 10 (heat conductive base material 11 + magnetic foil 12) at the time of completion was set to 200 μm. Note that FIG. 2 schematically shows the cross-sectional structure of the heat conductive material 10, and does not reflect the actual dimensions.

【0054】この熱伝導材10は、磁性箔12をヒート
シンク側にして電子部品とヒートシンクとの間に挿入さ
れて使用される。その装着手順は次のようなものであ
る。まず、熱伝導材10の磁性箔12が無く熱伝導基材
11が露出している面(図2(a)における下の面)を
電子部品(例えばCPU)の放熱面に当接し、例えば1
00℃程度に加熱する。すると、熱伝導基材11が可塑
化して電子部品の放熱面に密着する。また、一旦密着し
た熱伝導基材11は電子部品から剥がれ難い(実質的に
剥がれない)。
The heat conducting material 10 is used by inserting it between the electronic component and the heat sink with the magnetic foil 12 on the heat sink side. The mounting procedure is as follows. First, the surface of the heat conductive material 10 where the magnetic foil 12 is absent and the heat conductive base material 11 is exposed (the lower surface in FIG. 2A) is brought into contact with the heat radiation surface of the electronic component (for example, CPU), and, for example, 1
Heat to about 00 ° C. Then, the heat conductive base material 11 is plasticized and comes into close contact with the heat dissipation surface of the electronic component. In addition, the heat conductive base material 11 that has once adhered is difficult to peel off from the electronic component (substantially does not separate).

【0055】その後、磁性箔12側にヒートシンクを当
ててビスなどで電子部品に固定する。このビス等による
力(例えば締め付け力)が、ヒートシンクと電子部品と
で熱伝導材10を挟み付ける力(挟持力)として作用す
る。熱伝導材10は厚さが500μm以下(実施例では
約200μm)の板状で、熱伝導基材11は電子部品ま
たはヒートシンクの表面に向けて押圧されるとその表面
の形状に追随して変形する性質を持つので、電子部品と
ヒートシンクとで熱伝導材10を挟持すれば、その挟持
力=押圧力により熱伝導基材11が電子部品及びヒート
シンクの双方の表面形状に追随して変形する。また、磁
性箔12もヒートシンクの表面形状に追随して変形す
る。これにより熱源となる電子部品と放熱のためのヒー
トシンクとの双方に熱伝導材10が密着する。熱伝導材
10と電子部品及びヒートシンクの表面との間に微細な
空隙が生じることがないから、十分な熱伝導効果が得ら
れる。
After that, a heat sink is applied to the magnetic foil 12 side and fixed to the electronic component with screws or the like. A force (for example, a tightening force) due to the screw or the like acts as a force (sandwiching force) for sandwiching the heat conductive material 10 between the heat sink and the electronic component. The heat-conducting material 10 has a plate shape with a thickness of 500 μm or less (about 200 μm in the embodiment), and when the heat-conducting base material 11 is pressed toward the surface of an electronic component or a heat sink, it deforms following the shape of the surface. Since the heat conducting material 10 is sandwiched between the electronic component and the heat sink, the sandwiching force = pressing force causes the heat conducting base material 11 to be deformed following the surface shapes of both the electronic component and the heat sink. The magnetic foil 12 also deforms following the surface shape of the heat sink. As a result, the heat conductive material 10 is brought into close contact with both the electronic component serving as a heat source and the heat sink for heat dissipation. Since no fine gap is formed between the heat conductive material 10 and the surfaces of the electronic component and the heat sink, a sufficient heat conductive effect can be obtained.

【0056】なお熱伝導材10をヒートシンクの取付前
には加熱せずに、ヒートシンクの取り付け後に加熱して
熱伝導基材11を可塑化させてもよい。或いはヒートシ
ンクの取付前後に加熱して可塑化させてもよい。また
は、電子部品の使用に伴う発熱で熱伝導基材11が加熱
されれば、それによって可塑化して電子部品及びヒート
シンクの表面に密着する。その結果、熱伝導材10を介
しての熱伝導効率が良好となり、電子部品の熱を良好に
放熱できる。
The heat conductive material 10 may not be heated before mounting the heat sink, but may be heated after mounting the heat sink to plasticize the heat conductive base material 11. Alternatively, it may be heated and plasticized before and after attachment of the heat sink. Alternatively, if the heat-conducting base material 11 is heated by the heat generated by the use of the electronic component, the heat-conducting base material 11 is plasticized by the heat and is adhered to the surfaces of the electronic component and the heat sink. As a result, the heat conduction efficiency through the heat conducting material 10 becomes good, and the heat of the electronic component can be radiated well.

【0057】また、電子部品及びヒートシンクの表面形
状に忠実に追随して変形するから、ヒートシンクから電
子部品にかかる荷重が均等に分散され、電子部品の一部
に偏った荷重がかることがない。熱伝導材10の取付作
業に当たっては、磁性箔12が支持材となって熱伝導基
材11を支持するので、取り扱いやすく、作業性も良好
になる。磁性箔12が支持体となって熱伝導基材11の
強度不足を補い、その過剰な変形や破損を阻止するの
で、熱伝導基材11の板厚を500μm以下(実施例で
は200μm以下)にすることが可能となる。これによ
り熱抵抗が格段に低下するから電子部品(例えばCP
U)からヒートシンクへの時間当たりの伝熱量が増加
し、放熱性が良好になる。
Further, since the electronic components and the heat sink are deformed while faithfully following the surface shapes thereof, the load applied from the heat sink to the electronic components is evenly distributed, and an uneven load is not applied to a part of the electronic components. In attaching the heat conducting material 10, the magnetic foil 12 serves as a supporting material to support the heat conducting base material 11, so that it is easy to handle and has good workability. Since the magnetic foil 12 serves as a support to compensate for the insufficient strength of the heat conductive base material 11 and prevent its excessive deformation and damage, the plate thickness of the heat conductive base material 11 is 500 μm or less (200 μm or less in the embodiment). It becomes possible to do. As a result, the thermal resistance is remarkably reduced, so electronic parts (eg CP
The amount of heat transferred from U) to the heat sink per hour is increased, and the heat dissipation is improved.

【0058】磁性箔12は熱伝導性が良いから、電子部
品からヒートシンクへの伝導を阻害しない。また、磁性
箔12によるEMC効果があるので電子部品(例えばC
PU)からのノイズを良好に遮蔽できる。或いは外部か
ら電子部品へのノイズを遮蔽できる。
Since the magnetic foil 12 has good thermal conductivity, it does not hinder the conduction from the electronic component to the heat sink. Further, since the magnetic foil 12 has an EMC effect, electronic parts (for example, C
The noise from (PU) can be well shielded. Alternatively, noise from the outside to the electronic component can be shielded.

【0059】磁性箔12と熱伝導基材11との積層は、
加熱プレスのような簡単な操作で可能だから、その加工
は難しくなく加工コストも低減できる。この熱伝導材1
0は、熱伝導基材11が加熱によって可塑化されること
を利用して熱伝導基材11と電子部品とを密着させてお
り、一旦密着すると電子部品から剥がすことはきわめて
難しい。
The lamination of the magnetic foil 12 and the heat conductive substrate 11 is
Since it can be done by a simple operation like a heating press, its processing is not difficult and the processing cost can be reduced. This heat conductive material 1
No. 0 makes the heat conductive base material 11 and the electronic component adhere to each other by utilizing the fact that the heat conductive base material 11 is plasticized by heating, and it is extremely difficult to peel the heat conductive base material 11 and the electronic component from each other once the contact is made.

【0060】しかし、熱伝導基材11の他の面には磁性
箔12が積層されているので、この磁性箔12とヒート
シンクとは面接触するだけであり、容易に分離できる。
このため、例えばメモリの拡張のようなグレードアッ
プ、メンテナンス、修理等のために電子部品(例えばC
PU)をとヒートシンクとを分離する際には、破壊的な
方法でヒートシンクと電子部品とを切り離す必要はな
く、例えば交換された電子部品やヒートシンクを再利用
(リサイクル)することができる。
However, since the magnetic foil 12 is laminated on the other surface of the heat conductive base material 11, the magnetic foil 12 and the heat sink are only in surface contact with each other and can be easily separated.
For this reason, electronic parts (for example, C
When the PU) and the heat sink are separated, it is not necessary to separate the heat sink and the electronic component by a destructive method, and for example, the exchanged electronic component or the heat sink can be reused.

【0061】特に、有機材料の融点が低く(実施例は4
5℃)、その100℃における粘度が70000cPと
高粘度であり、また有機材料中に充填剤を分散させてい
るので、熱伝導基材11は有機材料の融点以上となって
液化してもきわめて流動しにくく、使用中に液だれする
ことはない。
In particular, the melting point of the organic material is low (4 in the embodiment).
5 ° C.), its viscosity at 100 ° C. is as high as 70,000 cP, and since the filler is dispersed in the organic material, the heat conductive base material 11 is extremely higher than the melting point of the organic material and is extremely liquefied. It does not flow easily and does not drip during use.

【0062】また熱伝導基材11が比較的低温(有機材
料の融点以上)で可塑性を持つので、使用時に電子部品
の熱で可塑化して表面形状に追随して塑性変形して電子
部品の表面に密着する。よって、使用中に電子部品との
密着度が高まるという効果がある。
Further, since the heat-conducting base material 11 has plasticity at a relatively low temperature (above the melting point of the organic material), it is plasticized by the heat of the electronic component during use and plastically deforms following the surface shape to cause the surface of the electronic component. Stick to. Therefore, there is an effect that the degree of adhesion with the electronic component is increased during use.

【0063】さらに、熱伝導材10の使用条件下で熱伝
導基材11が可塑化するから、電子部品の熱で磁性箔1
2が膨張(線膨張)した場合に熱伝導基材11がこれに
応じて塑性変形するので、両者の熱膨張係数の違いによ
って剥離したり、あるいは磁性箔12にしわが寄る等の
不具合は生じない。
Furthermore, since the heat conducting base material 11 is plasticized under the use condition of the heat conducting material 10, the magnetic foil 1 is heated by the heat of the electronic component.
When 2 expands (linearly expands), the heat-conducting substrate 11 is plastically deformed accordingly, so that there is no problem such as peeling or wrinkling of the magnetic foil 12 due to the difference in thermal expansion coefficient between the two. .

【0064】なお、図2(b)に例示するように、熱伝
導基材11の両面に磁性箔12を積層した構造とするこ
とも可能である。このようにすれば、電子部品及びヒー
トシンクの双方から簡単に分離できる。以上、本発明に
ついて説明したが、本発明は上述の各例に限定されるも
のではなく、本発明の要旨を逸脱しない範囲でさまざま
に実施できることは言うまでもない。
Note that, as illustrated in FIG. 2B, it is also possible to have a structure in which the magnetic foil 12 is laminated on both surfaces of the heat conductive base material 11. In this way, it can be easily separated from both the electronic component and the heat sink. Although the present invention has been described above, it is needless to say that the present invention is not limited to the above-mentioned examples and can be variously implemented without departing from the scope of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例の熱伝導基材の内部構造の模式図であ
る。
FIG. 1 is a schematic diagram of an internal structure of a heat conductive base material of an example.

【図2】 実施例の熱伝導基材を用いた熱伝導材の説明
図である。
FIG. 2 is an explanatory diagram of a heat conductive material using the heat conductive base material of the embodiment.

【符号の説明】[Explanation of symbols]

10 熱伝導材 11 熱伝導基材 12 磁性箔 10 Thermal conductive material 11 Heat conductive base material 12 Magnetic foil

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 23/36 H01L 23/373 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 23/36 H01L 23/373

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 有機材料と該有機材料より高い熱伝導性
を有する充填剤とを含有する熱伝導基材であって、a.
前記有機材料の融点が30〜70℃の範囲にあり、b.
100℃における前記有機材料の粘度が70000cP
以上であり、c.前記充填剤の熱伝導基材全体に対する
割合が30〜90重量%の範囲にあって、厚さが500
μm以下の板状で他の固体表面に向けて押圧されると該
固体表面の形状に追随して変形する性質を持つ熱伝導基
材と、 該熱伝導基材の2面または1面に積層された磁性箔とか
らなることを特徴とする熱伝導材。
1. A heat-conducting substrate containing an organic material and a filler having a higher thermal conductivity than the organic material, comprising: a.
The melting point of the organic material is in the range of 30 to 70 ° C., b.
The viscosity of the organic material at 100 ° C. is 70,000 cP
And above, c. The ratio of the filler to the entire heat conductive substrate is in the range of 30 to 90% by weight, and the thickness is 500.
A plate having a thickness of μm or less and having a property of being deformed following the shape of the solid surface when pressed against another solid surface, and laminated on two or one surface of the heat conductive substrate A heat-conducting material, characterized by comprising:
【請求項2】 請求項1記載の熱伝導材において、 前記磁性箔は前記熱伝導基材の1面にのみ積層されてい
ることを特徴とする熱伝導材。
2. The heat conductive material according to claim 1, wherein the magnetic foil is laminated only on one surface of the heat conductive base material.
【請求項3】 請求項1または2記載の熱伝導材におい
て、 前記磁性箔の厚さは50μm以下、5μm以上であるこ
とを特徴とする熱伝導材。
3. The heat conductive material according to claim 1, wherein the magnetic foil has a thickness of 50 μm or less and 5 μm or more.
【請求項4】 請求項1ないし3のいずれか記載の熱伝
導材において、 該熱伝導材の厚さが200μm以下であることを特徴と
する熱伝導材。
4. The heat conducting material according to claim 1, wherein the thickness of the heat conducting material is 200 μm or less.
【請求項5】 請求項1ないし4のいずれか記載の熱伝
導材において、 前記熱伝導基材は、少なくとも常時使用温度帯域の30
〜65℃において可塑化して、接触する相手の表面形状
に追随して柔軟に変形することを特徴とする熱伝導材。
5. The heat conductive material according to claim 1, wherein the heat conductive base material is at least 30 in a temperature band that is always used.
A heat-conducting material, which is plasticized at a temperature of up to 65 ° C. and is flexibly deformed following the surface shape of a contacting partner.
JP2000175281A 2000-06-12 2000-06-12 Thermal conductive material Expired - Fee Related JP3466135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000175281A JP3466135B2 (en) 2000-06-12 2000-06-12 Thermal conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000175281A JP3466135B2 (en) 2000-06-12 2000-06-12 Thermal conductive material

Publications (2)

Publication Number Publication Date
JP2001358262A JP2001358262A (en) 2001-12-26
JP3466135B2 true JP3466135B2 (en) 2003-11-10

Family

ID=18677180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000175281A Expired - Fee Related JP3466135B2 (en) 2000-06-12 2000-06-12 Thermal conductive material

Country Status (1)

Country Link
JP (1) JP3466135B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5323432B2 (en) * 2008-09-24 2013-10-23 古河電気工業株式会社 Molded body for heat conduction
JP2014187233A (en) * 2013-03-25 2014-10-02 Panasonic Corp Heat radiation sheet and heat radiation structure using the same
US10091868B2 (en) 2014-09-17 2018-10-02 Panasonic Intellectual Property Management Co., Ltd. Heat dissipating sheet and heat dissipating structure using same

Also Published As

Publication number Publication date
JP2001358262A (en) 2001-12-26

Similar Documents

Publication Publication Date Title
TW549011B (en) Dissipation of heat from a circuit board having bare silicon chips mounted thereon
US6886625B1 (en) Elastomeric heat sink with a pressure sensitive adhesive backing
JP3976166B2 (en) PDP panel
TWI251320B (en) Thermal conductive composition, a heat-dissipating putty sheet and heat-dissipating structure using the same
JPH0721308Y2 (en) Thermal conductive sheet
JP3498823B2 (en) Heat radiation spacer and its use
EP2259164A1 (en) Thermal solution for electronic devices
US20030075312A1 (en) Structure and method of attaching a heat transfer part having a compressible interface
US20060086493A1 (en) Sandwiched thermal solution
JP2001168246A (en) Heat conductive sheet and manufacturing method thereof
CN101458049A (en) Composite graphite heat conducting radiation fins
JP2001294676A (en) Heat-conductive sheet, method for producing heat- conductive sheet and radiating structure using heat- conductive sheet
WO2018139364A1 (en) Heat dissipation sheet
JP7384560B2 (en) Thermal conductive sheets, mounting methods for thermal conductive sheets, manufacturing methods for electronic devices
JP2020116873A (en) Manufacturing method of heat-conductive sheet
JP2020013870A (en) Thermal conductive sheet, manufacturing method thereof, and mounting method of thermal conductive sheet
JP3340112B2 (en) Thermal conductive material and manufacturing method thereof
JP6817408B1 (en) Thermal conductive sheet and its manufacturing method, mounting method of thermal conductive sheet
JP3466135B2 (en) Thermal conductive material
JP3431576B2 (en) Thermal conductive material
JPH11317480A (en) Radiating part and manufacture thereof
JP2006121051A (en) Thermal conductive sheet and manufacturing method of same
JP3178805B2 (en) Heat radiation spacer
JP2003026827A (en) Heat-conductive sheet, method for producing heat- conductive sheet and heat-radiating structure using the same
TWM540741U (en) Multi-layer composite heat conduction structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees