JP2001338430A - Method for manufacturing proximity field light generating element and method for regulating this element - Google Patents

Method for manufacturing proximity field light generating element and method for regulating this element

Info

Publication number
JP2001338430A
JP2001338430A JP2000154633A JP2000154633A JP2001338430A JP 2001338430 A JP2001338430 A JP 2001338430A JP 2000154633 A JP2000154633 A JP 2000154633A JP 2000154633 A JP2000154633 A JP 2000154633A JP 2001338430 A JP2001338430 A JP 2001338430A
Authority
JP
Japan
Prior art keywords
generating element
field light
light generating
manufacturing
minute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000154633A
Other languages
Japanese (ja)
Inventor
Manami Kuiseko
真奈美 杭迫
Tomoko Miyaura
智子 宮浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP2000154633A priority Critical patent/JP2001338430A/en
Publication of JP2001338430A publication Critical patent/JP2001338430A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a proximity field light generating element which allows the formation of a microopening in nearly an exact position at the exit surface of the element and allows the easy alignment of the microopening and an imagery point even if the eccentricity in inclination or the eccentricity in parallel arises in the element in the working, and to provide a method for regurating this element. SOLUTION: This proximity field light generating element (solid immersion mirror) 10 forms an image in the central part of a second surface 12 by reflecting the laser beam L made incident on the peripheral part of a first surface 11 of a plane shape at a second surface 12 in the form of a paraboloid of revolution and further reflecting the same in the central part of the first surface 11. The microopening 14a is formed at a reflection film 14 deposited on the second surface 12 in the highest position with respect to the first surface 11. The microopening 14a is formed by irradiating the reflection film 14 consisting of metallic material with, for example, electrons or ions to eliminate the reflection film 14 of the highest position.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、近接場光発生素子
の製造方法及び該素子を保持部材に固定する際の調整方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a near-field light generating element and an adjustment method for fixing the element to a holding member.

【0002】[0002]

【発明の背景】近年、光記録の高密度化に伴い、近接場
光を用いた高密度光記録が研究、開発されている。近接
場光を発生させて記録あるいは再生を行う光ヘッドにつ
いては、Solid Immersion Lens(固浸レンズ)やSoli
d Immersion Mirror(固浸ミラー)と称する光学素子
を用いることが検討されており、これらの光学素子をス
ライダ等の保持部材に組み込んで記録媒体から数10n
mの位置に浮上させ、集光した光ビームを微小スポット
から近接場光として浸み出させ、記録あるいは再生を行
う。
BACKGROUND OF THE INVENTION In recent years, with the increase in optical recording density, high-density optical recording using near-field light has been studied and developed. For optical heads that perform near-field light recording or reproduction, Solid Immersion Lens (solid immersion lens) and Solid
The use of optical elements called d Immersion Mirrors (solid immersion mirrors) has been studied, and these optical elements are incorporated into a holding member such as a slider and several tens of nanometers from a recording medium.
m, and the condensed light beam is leached out of the minute spot as near-field light to perform recording or reproduction.

【0003】ところで、この種の近接場光発生素子にあ
っては、出射面に微小開口を形成して伝搬光をカットす
ることで、解像力が向上することが知られている。
In this type of near-field light generating element, it is known that the resolution can be improved by forming a small aperture on the exit surface and cutting the propagation light.

【0004】[0004]

【従来の技術と課題】従来、近接場光発生素子に微小開
口を形成するには、素子単体の製造工程において、素子
の出射面上に遮光膜ないし反射膜を形成すると共に、こ
れらの膜にレーザ光を照射して微小開口を形成してい
た。その後、微小開口を有する素子を光ヘッドを構成す
る保持部材に固定していた。
2. Description of the Related Art Conventionally, in order to form a minute aperture in a near-field light generating element, a light-shielding film or a reflective film is formed on an emission surface of the element in a process of manufacturing the element alone, and these films are formed on these films. The laser beam was irradiated to form a minute aperture. After that, the element having the minute opening was fixed to the holding member constituting the optical head.

【0005】しかしながら、前記従来の製造方法では、
微小開口の形成位置がどうしても設計値からずれてしま
い、微小開口の位置決めを限りなく設計値どおりに行っ
ても、結像点に微小開口を一致させることが困難であ
り、近接場光が浸み出さないという問題点を有してい
た。一方、微小開口を設計値通りの位置に設けたとして
も、光学素子の製造誤差により、微小開口上に結像しな
いという問題点も有していた。
However, in the conventional manufacturing method,
Even if the position of the minute aperture is inevitably deviated from the design value, it is difficult to match the minute aperture to the image point even if the minute aperture is positioned infinitely according to the design value. There was a problem of not emitting. On the other hand, even if the minute aperture is provided at a position as designed, there is a problem that an image is not formed on the minute aperture due to a manufacturing error of the optical element.

【0006】加工誤差のある素子を位置決めしつつ実際
に結像している点に微小開口を形成することが考えられ
るが、組立てながら結像位置を検知するのは、現実的に
はかなり困難である。
It is conceivable to form a small aperture at the point where an image is actually formed while positioning an element having a processing error. However, it is actually quite difficult to detect the image formation position during assembly. is there.

【0007】そこで、本発明の目的は、素子の出射面に
微小開口をほぼ正確な位置に形成でき、しかも、素子に
その加工時に傾き偏芯や平行偏芯が生じていても、微小
開口と結像点とを容易に合わせることのできる近接場光
発生素子の製造方法及び該素子の調整方法を提供するこ
とにある。
Therefore, an object of the present invention is to form a minute aperture on an emission surface of an element at a substantially accurate position, and even if the element has a tilted eccentricity or a parallel eccentricity at the time of processing, a small aperture is formed. It is an object of the present invention to provide a method of manufacturing a near-field light generating element that can easily match an imaging point and a method of adjusting the element.

【0008】[0008]

【発明の構成、作用及び効果】以上の目的を達成するた
め、第1の発明は、平面状の第1面の周辺部分に入射し
た光ビームを略回転放物面状の第2面で反射させ、さら
に前記第1面の略中央部で反射させ、前記第2面の略中
央部上に結像させる近接場光発生素子の製造方法であっ
て、第2面に設けた反射膜に、第1面に対する第2面の
最も高い位置に微小開口を形成する。
According to a first aspect of the present invention, a light beam incident on a peripheral portion of a planar first surface is reflected by a substantially parabolic second surface. A near-field light generating element that reflects light at a substantially central portion of the first surface and forms an image on a substantially central portion of the second surface, wherein the reflecting film provided on the second surface has A minute opening is formed at the highest position of the second surface with respect to the first surface.

【0009】以上の第1の発明に係る製造方法にあって
は、略回転放物面状の第2面の最も高い位置に微小開口
を形成するため、最も高い位置を検出することは容易で
あり、かつ、素子自体に傾き偏芯や平行偏芯を生じてい
ても、組立て時の簡単な調整によって微小開口に入射光
を結像させることができる。
In the manufacturing method according to the first aspect of the present invention, since the minute opening is formed at the highest position of the substantially paraboloid-shaped second surface, it is easy to detect the highest position. In addition, even if the element itself has tilted eccentricity or parallel eccentricity, incident light can be imaged on the minute aperture by simple adjustment at the time of assembly.

【0010】第2面の最も高い位置に微小開口を形成す
るには、例えば、第2面の形状を測定して直接的に微小
開口を形成するか、第2面の形状を測定して第1面に対
する第2面の最も高い位置にマーキングし、該マーキン
グ位置に微小開口を形成すればよい。
In order to form a minute opening at the highest position of the second surface, for example, the minute opening is formed directly by measuring the shape of the second surface, or by measuring the shape of the second surface. Marking may be performed at the highest position of the second surface with respect to one surface, and a minute opening may be formed at the marking position.

【0011】好ましい微小開口の形成方法は、第2面に
金属材料にて反射膜を設けた後、0.001Torr以下の
真空中で電子又はイオンの照射によって最も高い位置の
反射膜を欠如させて微小開口を形成することである。反
射膜の金属材料としては、アルミニウム、銀、白金、
金、クロム、パラジウム、ニッケル、コバルト、鉄、錫
の少なくともいずれかを使用することができる。
In a preferred method of forming a minute opening, a reflective film made of a metal material is provided on the second surface, and then the reflective film at the highest position is removed by irradiation of electrons or ions in a vacuum of 0.001 Torr or less. This is to form a minute opening. Aluminum, silver, platinum,
At least one of gold, chromium, palladium, nickel, cobalt, iron, and tin can be used.

【0012】微小開口の形成は、針状電極と反射膜との
間の放電による電子照射、電子銃によって反射膜に直接
電子を照射すること、あるいは、イオン銃によって反射
膜に直接イオンを照射すること等によって行うことがで
きる。
The micro-aperture is formed by irradiating electrons between the needle electrode and the reflective film by discharging, irradiating the reflective film directly with an electron by an electron gun, or irradiating ions directly to the reflective film by an ion gun. It can be done by things and the like.

【0013】さらに、第2の発明は、平面状の第1面の
周辺部分に入射した光ビームを略回転放物面状の第2面
で反射させ、さらに前記第1面の略中央部で反射させ、
前記第2面の略中央部上に結像させる近接場光発生素子
の製造方法であって、第2面に設けた反射膜に、第2面
の非球面対称軸上に微小開口を形成する。
Further, according to a second aspect of the present invention, the light beam incident on the peripheral portion of the first planar surface is reflected by the second substantially paraboloid-shaped second surface, and furthermore, the light beam is reflected by the substantially central portion of the first surface. Reflected
A method of manufacturing a near-field light generating element that forms an image on a substantially central portion of the second surface, wherein a minute aperture is formed in a reflection film provided on the second surface on an aspherical axis of symmetry of the second surface. .

【0014】以上の第2の発明に係る製造方法にあって
は、第2面に設けた反射膜に、第2面の非球面対称軸上
に微小開口を形成するため、素子自体に傾き偏芯や平行
偏芯を生じていても、組立て時の簡単な調整によって微
小開口に入射光を結像させることができる。
In the manufacturing method according to the second aspect of the present invention, the reflective film provided on the second surface is formed with a minute opening on the aspherical axis of symmetry of the second surface, so that the element itself is tilted and biased. Even if a core or parallel eccentricity occurs, incident light can be imaged in the minute aperture by simple adjustment during assembly.

【0015】この第2の発明においては、第2面を成形
するための型に非球面対称軸位置に微小な円錐状の凹部
を形成しておき、該型を用いることで第2面の非球面対
称軸位置上に微小突起を形成し、第2面に反射膜を設け
た後に該反射膜の微小突起部分を欠如させて微小開口を
形成することが好ましい。型の中心軸は容易に特定で
き、かつ、中心軸上に凹部を形成するのは容易であり、
成形法によって素子の量産化が可能になる。
In the second aspect of the present invention, a minute conical concave portion is formed at the aspherical symmetric axis position in a mold for molding the second surface, and the mold is used to form the second surface. It is preferable that a minute projection is formed on the position of the spherical symmetry axis, a reflection film is provided on the second surface, and then a minute opening is formed by removing the minute projection portion of the reflection film. The center axis of the mold can be easily identified, and it is easy to form a recess on the center axis,
The molding method enables mass production of the device.

【0016】また、第3の発明は、前記第1又は第2の
発明に係る方法で製造された近接場光発生素子を、その
第2面にて保持部材で受けて保持しつつ、実際に光ビー
ムを入射させながら微小開口上に光ビームが結像するよ
うに偏芯調整し、その後該素子を保持部材に固定するよ
うにした近接場光発生素子の調整方法である。
According to a third aspect of the present invention, a near-field light generating element manufactured by the method according to the first or second aspect is received and held by a holding member on a second surface of the near-field light generating element. This is a method of adjusting a near-field light generating element in which the eccentricity is adjusted so that the light beam forms an image on the minute aperture while the light beam is being incident, and then the element is fixed to a holding member.

【0017】以上の第3の発明に係る調整方法によれ
ば、第2面の第1面に対する最も高い位置に形成されて
いる、あるいは、第2面の非球面対称軸上に形成されて
いる微小開口を、その第2面にて保持しつつ、実際に光
ビームを入射させながら微小開口上に光ビームが結像す
るように偏芯調整するため、素子に傾き偏芯及び/又は
平行偏芯が生じている場合でも、あるいは、傾き偏芯成
分と平行偏芯成分が分離できない計測方法を採用して
も、容易に微小開口と結像位置とを合致させ、結像性能
を確保することができる。
According to the adjustment method of the third aspect described above, the second surface is formed at the highest position with respect to the first surface, or is formed on the aspherical axis of symmetry of the second surface. In order to adjust the eccentricity so that the light beam is focused on the minute opening while actually entering the light beam while holding the minute opening on the second surface, the element is tilted and eccentric and / or parallel decentered. Even if a core is formed, or even if a measurement method that cannot separate the tilt eccentric component and the parallel eccentric component is used, the minute aperture and the imaging position can be easily matched to ensure imaging performance. Can be.

【0018】特に、第3の発明に係る調整方法にあって
は、近接場光発生素子の第2面に結像した光ビームの戻
り光をモニタしながら偏芯調整を行えば、より確実な調
整が可能になる。この場合、近接場光を発生させるため
の媒質を、近接場光発生素子の第2面に近接させて配置
させた状態で戻り光をモニタすることが好ましい。戻り
光のモニタが容易になる。
In particular, in the adjusting method according to the third aspect of the present invention, the eccentricity can be more reliably adjusted by monitoring the return light of the light beam imaged on the second surface of the near-field light generating element. Adjustment is possible. In this case, it is preferable to monitor the return light in a state where the medium for generating the near-field light is arranged close to the second surface of the near-field light generating element. Monitoring of the return light is facilitated.

【0019】[0019]

【発明の実施の形態】以下、本発明に係る近接場光発生
素子の製造方法及び該素子の調整方法の実施形態につい
て、添付図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a method for manufacturing a near-field light generating element and a method for adjusting the element according to the present invention will be described with reference to the accompanying drawings.

【0020】(近接場光発生素子、図1参照)まず、本
発明に係る製造方法及び調整方法の対象となる近接場光
発生素子の一例について説明する。
(Near-field light generating element, see FIG. 1) First, an example of a near-field light generating element to be subjected to the manufacturing method and the adjusting method according to the present invention will be described.

【0021】図1は内部反射型の近接場光発生素子(以
下、固浸ミラーと称する)10を示す。この固浸ミラー
10は、高屈折率物質(例えば、ランタンシリカ系ガラ
ス、鉛シリカ系ガラス)からなり、平面状をなす第1面
11の中央部分と回転放物面状をなす第2面12のほぼ
全面とに反射膜13,14がそれぞれ設けられている。
さらに、反射膜14にはレーザ光Lの結像位置に微小開
口14aが形成されている。
FIG. 1 shows an internal reflection type near-field light generating element (hereinafter, referred to as a solid immersion mirror) 10. The solid immersion mirror 10 is made of a high refractive index material (for example, lanthanum silica-based glass or lead silica-based glass), and has a central portion of a first surface 11 having a planar shape and a second surface 12 having a paraboloid of revolution. The reflective films 13 and 14 are respectively provided on almost the entire surface of the substrate.
Further, a minute opening 14a is formed in the reflection film 14 at an image forming position of the laser beam L.

【0022】反射膜13,14は、アルミニウム、銀、
白金、金、クロム、パラジウム、ニッケル、コバルト、
鉄、錫等の金属材料を用いて従来知られているスパッタ
法等の薄膜技術によって成膜される。微小開口14aの
形成方法については、以下に説明する。
The reflection films 13 and 14 are made of aluminum, silver,
Platinum, gold, chromium, palladium, nickel, cobalt,
It is formed by a thin film technique such as a conventionally known sputtering method using a metal material such as iron and tin. A method for forming the minute openings 14a will be described below.

【0023】以上の固浸ミラー10にあっては、第1面
11に平行光であるレーザ光Lを入射させ、第2面12
で反射させ、さらに第1面11の中央部で反射させ、第
2面12の中央部上、即ち、微小開口14aに結像させ
る。
In the solid immersion mirror 10 described above, the laser light L, which is parallel light, is incident on the first surface 11 and the second surface 12
Then, the light is reflected at the central portion of the first surface 11, and is imaged on the central portion of the second surface 12, that is, at the minute opening 14 a.

【0024】このような固浸ミラー10の数値例は以下
の表1に示すとおりである。
Numerical examples of such a solid immersion mirror 10 are as shown in Table 1 below.

【0025】[0025]

【表1】 [Table 1]

【0026】但し、非球面は光軸をX軸として該X軸に
垂直な軸をY軸として以下に示す式(1)で表される。
However, the aspheric surface is represented by the following equation (1) with the optical axis as the X axis and the axis perpendicular to the X axis as the Y axis.

【0027】 X=(C***2)/{1+(1−E*(C**2)(Y**2)**(1/2)} +ΣAi*(Y**i) ……(1) 但し、Σはiについての総和で、i=2,4,6,8,
10である。
X = (C * Y ** 2) / {1+ (1-E * (C ** 2) (Y ** 2) ** (1/2)} + {Ai * (Y ** i) ... (1) where Σ is the sum of i and i = 2, 4, 6, 8,
It is 10.

【0028】この固浸ミラー10を開口数NA=1.3
3で製造したとき、第1面11と第2面12の間の傾き
偏芯が3’、平行偏芯が0.05mm現れたとする。
The solid immersion mirror 10 is provided with a numerical aperture NA = 1.3.
3, it is assumed that the inclination eccentricity between the first surface 11 and the second surface 12 is 3 ′ and the parallel eccentricity is 0.05 mm.

【0029】傾き偏芯だけが生じている場合に、固浸ミ
ラー10の外形に対する中心位置(非球面の対称軸上と
ほぼ同じ位置)に微小開口14aを形成する。レーザ光
Lを微小開口14a上に結像させるためには、7.5
6’だけ傾き偏芯と同じ向きにミラー10全体を傾けれ
ばよい。このときの結像性能は、ストレル評価量の設計
値0.99に対して偏芯時0.90となり、使用可能で
ある。
When only the tilt eccentricity occurs, the minute opening 14a is formed at the center position with respect to the outer shape of the solid immersion mirror 10 (substantially the same position on the aspherical symmetric axis). In order to form an image of the laser beam L on the minute aperture 14a, 7.5 is required.
The entire mirror 10 may be tilted by 6 'in the same direction as the tilt eccentricity. The imaging performance at this time is 0.90 at the time of eccentricity with respect to the design value of 0.99 of the evaluation amount of the strel, and is usable.

【0030】また、傾き偏芯が生じている場合に、平面
である第1面11に対して最も高い位置に微小開口14
aを形成すると、レーザ光Lを微小開口14a上に結像
させるには、7.98’だけ偏芯と反対方向にミラー1
0全体を傾ければよい。このとき結像性能は、ストレル
の評価量で0.96となり、十分な性能である。
When the tilt eccentricity occurs, the minute aperture 14 is located at the highest position with respect to the first surface 11 which is a plane.
When the laser beam L is formed on the minute aperture 14a, the mirror 1 is moved in the direction opposite to the eccentricity by 7.98 '.
You only have to tilt the whole 0. At this time, the imaging performance is 0.96 in the evaluation amount of the strel, which is a sufficient performance.

【0031】平行偏芯だけが生じている場合には、外形
に対する中心に微小開口を形成してしまうと、レーザ光
を微小開口上に結像させるためには、ミラー10を数°
以上傾ける必要があり、性能が全く出ない。しかし、第
1面11に対して最も高い位置(非球面である第2面1
2の対称軸上とほぼ同じ位置)に微小開口を形成する
と、性能はストレルの評価量で0.98となって、ほぼ
設計値どおりの性能が得られる。
In the case where only parallel eccentricity occurs, if a small opening is formed at the center with respect to the outer shape, the mirror 10 must be several degrees in order to form an image of the laser beam on the small opening.
It is necessary to incline above, and performance does not come out at all. However, the highest position relative to the first surface 11 (the second surface 1 which is an aspheric surface)
When a small opening is formed at a position substantially the same as that on the axis of symmetry 2), the performance becomes 0.98 in the evaluation amount of the strel, and the performance almost as designed is obtained.

【0032】以上の点から、微小開口14aを第1面1
1から最も高い位置に形成すれば、ミラー10に加工誤
差を生じている場合でも、ミラー10自体の組込み状態
を微調整することで、レーザ光Lを微小開口14a上に
結像させ、充分な性能を確保することが可能である。
From the above points, the minute opening 14a is connected to the first surface 1
If the mirror 10 is formed at the highest position, even if a processing error occurs in the mirror 10, the laser beam L is focused on the minute aperture 14a by finely adjusting the installation state of the mirror 10 itself. It is possible to ensure performance.

【0033】(微小開口の形成方法、図2〜8参照)微
小開口14aを形成する第1の方法としては、図2に示
すように、従来知られている形状測定器などで第2面1
2の最も高い位置を測定し、反射膜14上にマーク1
4’を付けておき、該マーク位置の反射膜14を剥離等
で欠如させ、微小開口14aを形成する。
As shown in FIG. 2, as a first method for forming the minute opening 14a, a second surface 1 is formed by using a conventionally known shape measuring instrument or the like.
2 was measured and the mark 1 was placed on the reflective film 14.
4 'is attached, and the reflection film 14 at the mark position is absent by peeling or the like to form a minute opening 14a.

【0034】第2の方法として、図3に示すように、互
いの位置関係が正確に検出されている3点の高さを測定
し、第2面12に関する設計上のデータから最も高い位
置を計算によって求め、マーク14’を付けてもよい。
As a second method, as shown in FIG. 3, the heights of three points whose relative positions are accurately detected are measured, and the highest position is determined from design data on the second surface 12. The mark 14 'may be obtained by calculation.

【0035】第3の方法としては、第2面12の形状測
定に代えて、図4に示すように、充分な平面性を有する
保持面21上に固浸ミラー10をその第1面11が対向
するように設置し、保持面21に対して高い精度の平行
平面治具22を第2面12に近づけ、最初に接触した点
に、マーキングしたり、微小開口14aを直接形成して
もよい。
As a third method, instead of measuring the shape of the second surface 12, as shown in FIG. 4, the solid immersion mirror 10 is placed on a holding surface 21 having a sufficient flatness. It may be installed so as to oppose, a parallel plane jig 22 with high precision with respect to the holding surface 21 is brought close to the second surface 12, and a mark or a minute opening 14 a may be directly formed at a point where it first contacts. .

【0036】第4の方法としては、固浸ミラー10の成
形金型を使用する方法であり、第2面12の対称軸とな
る位置を金型にマークして該マークを転写したり、図5
に示すように、金型25に微小な円錐状の凹部26を形
成しておき、ミラー10の成形と同時に第2面12の非
球面対称軸上に微小突起12aを形成し、第2面12上
に反射膜14を成膜した後に、微小突起12aを削り取
って微小開口14aを形成する。
A fourth method is to use a molding die for the solid immersion mirror 10, and to mark the position of the second surface 12 to be the symmetry axis on the die and transfer the mark. 5
As shown in FIG. 7, a minute conical concave portion 26 is formed in a mold 25, and a minute projection 12a is formed on the aspherical axis of the second surface 12 at the same time when the mirror 10 is formed. After the reflective film 14 is formed thereon, the minute projections 12a are scraped to form minute openings 14a.

【0037】さらに、第5の方法として、図6に示すよ
うに、第2面12上に反射膜14を成膜した固浸ミラー
10を真空チャンバー30内の所定位置に設置し、パル
ス電源31を備えたタングステンからなる針状電極32
と反射膜14との間で放電させ、微小開口14aを形成
する。真空中であるために大気障害(ゴミ、ガス等)が
なく、最短距離で(最高点に)放電し、放電部分の反射
膜14が蒸発して良好な微小開口14aが得られる。
As a fifth method, as shown in FIG. 6, a solid immersion mirror 10 having a reflection film 14 formed on a second surface 12 is set at a predetermined position in a vacuum chamber 30 and a pulse power source 31 is provided. Needle electrode 32 made of tungsten provided with
A discharge is caused between the substrate and the reflective film 14 to form the minute openings 14a. Since it is in a vacuum, there is no obstruction (dust, gas, etc.) in the atmosphere, discharge is performed at the shortest distance (to the highest point), and the reflective film 14 at the discharge portion evaporates to obtain a good fine opening 14a.

【0038】厚さ0.3μmのアルミニウム反射膜14
に対して、真空度2×10-5Torr中で、電極32と反射
膜14との間隔Dを約5mmとし、10kVで10μS
放電したところ、直径0.3μmの微小開口が得られ
た。パルス電源31を用いれば、放電時間又は総電子量
が制御可能である。
An aluminum reflective film 14 having a thickness of 0.3 μm
On the other hand, at a vacuum degree of 2 × 10 −5 Torr, the distance D between the electrode 32 and the reflection film 14 was set to about 5 mm, and 10 μS at 10 kV.
Upon discharge, a fine opening having a diameter of 0.3 μm was obtained. If the pulse power source 31 is used, the discharge time or the total amount of electrons can be controlled.

【0039】第6の方法として、図7に示すように、モ
リブデンからなる針状電極32を使用し、直流電源36
と切替えスイッチ37を備えたコンデンサ35を電源と
した装置を用いてもよい。この場合、直流電源36によ
ってコンデンサ35に蓄電した後、スイッチ37を切り
替えて針状電極32から放電させる。
As a sixth method, as shown in FIG. 7, a needle electrode 32 made of molybdenum is used, and a DC power source 36 is used.
Alternatively, a device using a capacitor 35 having a changeover switch 37 as a power source may be used. In this case, after the capacitor 35 is charged by the DC power supply 36, the switch 37 is switched to discharge from the needle electrode 32.

【0040】厚さ0.1μmの銀反射膜14に対して、
真空度1×10-4Torr中で、電極32と反射膜14との
間隔Dを約2mmとし、5kV、10μF定格のコンデ
ンサ35、5kV、0.1A定格の直流電源36を使用
して放電したところ、直径0.5μmの微小開口が得ら
れた。総電子量は(蓄電電圧×蓄電容量/1.6×10
-19)で求めることができる。
For a silver reflective film 14 having a thickness of 0.1 μm,
At a degree of vacuum of 1 × 10 −4 Torr, the distance D between the electrode 32 and the reflection film 14 was set to about 2 mm, and discharge was performed using a 5 kV, 10 μF rated capacitor 35, 5 kV, 0.1 A rated DC power supply 36. However, a micro opening having a diameter of 0.5 μm was obtained. The total amount of electrons is (storage voltage × storage capacity / 1.6 × 10
-19 ).

【0041】なお、前記パルス電源31、コンデンサ3
5に代えて、高周波電源を用いてもよい。
The pulse power source 31, the capacitor 3
Instead of 5, a high-frequency power supply may be used.

【0042】また、第7の方法として、図8に示すよう
に、電子銃41を用いて接地した反射膜14に収束した
電子を照射し、微小開口を形成してもよい。厚さ0.1
μmの白金反射膜14に対して、真空度5×10-8Torr
中で、30kV、70μA定格のフィールドエミッショ
ン型電子銃を使用したところ、直径0.1μmの微小開
口が得られた。
As a seventh method, as shown in FIG. 8, the electron gun 41 may be used to irradiate the grounded reflective film 14 with converged electrons to form minute openings. Thickness 0.1
The vacuum degree is 5 × 10 −8 Torr with respect to the platinum reflective film 14 of μm.
When a field emission type electron gun rated at 30 kV and 70 μA was used therein, a fine aperture having a diameter of 0.1 μm was obtained.

【0043】電子銃41としては、ホウ化ランタン単結
晶を電子源としたフィールドエミッション型が、サブミ
クロンレベルの電子収束が容易で好ましいが、熱電子型
でも構わない。また、電子銃41に代えて、イオン銃を
用いてもよい。
As the electron gun 41, a field emission type using a lanthanum boride single crystal as an electron source is preferable because electron focusing at a submicron level is easy, but a thermionic type may be used. Further, an ion gun may be used instead of the electron gun 41.

【0044】(固浸レンズの調整、図9参照)以上のよ
うにして微小開口14aを形成した固浸ミラー10は、
図9に示すように、第2面12にてスライダとして機能
する保持部材55で受けて保持しつつ、実際上の記録又
は再生用の光源(レーザダイオード)51から出射され
てコリメータレンズ52で平行光とされたレーザ光Lを
ハーフミラー53で反射させて第1面11から入射さ
せ、レーザ光Lの結像点が微小開口上に位置するよう
に、偏芯調整手段56を作動させて調整する。このよう
な偏芯調整の後、固浸ミラー10を保持部材55に固定
する。
(Adjustment of solid immersion lens, see FIG. 9) The solid immersion mirror 10 in which the minute opening 14a is formed as described above,
As shown in FIG. 9, while being received and held by a holding member 55 functioning as a slider on the second surface 12, the light is emitted from an actual recording or reproducing light source (laser diode) 51 and is parallelized by a collimator lens 52. The laser light L converted into light is reflected by the half mirror 53 and made incident on the first surface 11, and the eccentricity adjusting means 56 is operated and adjusted so that the image forming point of the laser light L is located on the minute aperture. I do. After such eccentricity adjustment, the solid immersion mirror 10 is fixed to the holding member 55.

【0045】この場合、結像点からの戻り光がハーフミ
ラー53を透過した位置に光検出センサ54を設け、戻
り光をモニタしながら偏芯調整を行う。結像点が微小開
口と一致すると、近接場光が外部に浸み出していくた
め、戻り光の強度が小さくなり、光センサ54がこれを
検出した時点を一致点とする。
In this case, a light detection sensor 54 is provided at a position where the return light from the image forming point has passed through the half mirror 53, and eccentricity adjustment is performed while monitoring the return light. When the imaging point coincides with the minute aperture, the near-field light oozes out, so that the intensity of the return light decreases, and the point in time when the optical sensor 54 detects this becomes the coincidence point.

【0046】固浸ミラー10の第2面12の近傍に近接
場光を発生させるための媒質57、例えば、ミラー10
と同じ屈折率を有するガラス材、を配置することが好ま
しい。固浸ミラー10から近接場光がより多く浸み出し
ていき、モニタ効率が向上する。
A medium 57 for generating near-field light near the second surface 12 of the solid immersion mirror 10, for example, the mirror 10
It is preferable to arrange a glass material having the same refractive index as described above. More near-field light seeps out of the solid immersion mirror 10, and the monitoring efficiency is improved.

【0047】(他の実施形態)なお、本発明に係る近接
場光発生素子の製造方法及びその調整方法は前記実施形
態に限定するものではなく、その要旨の範囲内で種々に
変更することができる。
(Other Embodiments) The method for manufacturing the near-field light generating element according to the present invention and the method for adjusting the near-field light generating element are not limited to the above-described embodiment, but may be variously changed within the scope of the invention. it can.

【0048】特に、近接場光発生素子の形状や構成及び
材質は任意である。また、素子を保持部材に固定する構
成や入射光路の構成等も任意である。
In particular, the shape, configuration and material of the near-field light generating element are arbitrary. Further, the configuration for fixing the element to the holding member, the configuration of the incident optical path, and the like are also arbitrary.

【図面の簡単な説明】[Brief description of the drawings]

【図1】近接場光発生素子(固浸ミラー)の一例を示す
断面図。
FIG. 1 is a sectional view showing an example of a near-field light generating element (solid immersion mirror).

【図2】固浸ミラーの反射膜に微小開口を形成する第1
の方法を示す説明図。
FIG. 2 shows a first example of forming a minute opening in a reflection film of a solid immersion mirror.
FIG.

【図3】固浸ミラーの反射膜に微小開口を形成する第2
の方法を示す説明図。
FIG. 3 shows a second example of forming a minute opening in the reflection film of the solid immersion mirror.
FIG.

【図4】固浸ミラーの反射膜に微小開口を形成する第3
の方法を示す説明図。
FIG. 4 shows a third method of forming a minute opening in the reflection film of the solid immersion mirror.
FIG.

【図5】固浸ミラーの反射膜に微小開口を形成する第4
の方法を示す説明図。
FIG. 5 shows a fourth method of forming a minute opening in the reflection film of the solid immersion mirror;
FIG.

【図6】固浸ミラーの反射膜に微小開口を形成する第5
の方法を示す説明図。
FIG. 6 shows a fifth example of forming a minute opening in the reflection film of the solid immersion mirror;
FIG.

【図7】固浸ミラーの反射膜に微小開口を形成する第6
の方法を示す説明図。
FIG. 7 shows a sixth embodiment in which a minute opening is formed in the reflection film of the solid immersion mirror;
FIG.

【図8】固浸ミラーの反射膜に微小開口を形成する第7
の方法を示す説明図。
FIG. 8 shows a seventh example of forming a minute opening in the reflection film of the solid immersion mirror;
FIG.

【図9】固浸ミラーを保持部材上で位置調整する方法を
示す説明図。
FIG. 9 is an explanatory view showing a method of adjusting the position of the solid immersion mirror on the holding member.

【符号の説明】[Explanation of symbols]

10…固浸ミラー 11…第1面 12…第2面 12a…微小突起 14…反射膜 14a…微小開口 14’…マーク 25…成形金型 26…円錐状凹部 32…針状電極 41…電子銃 54…戻り光センサ 55…保持部材 56…偏芯調整手段 57…近接場光発生媒質 L…レーザ光 DESCRIPTION OF SYMBOLS 10 ... Solid immersion mirror 11 ... 1st surface 12 ... 2nd surface 12a ... Micro projection 14 ... Reflective film 14a ... Micro opening 14 '... Mark 25 ... Molding die 26 ... Conical concave part 32 ... Needle electrode 41 ... Electron gun 54 ... return light sensor 55 ... holding member 56 ... eccentricity adjusting means 57 ... near-field light generating medium L ... laser light

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 平面状の第1面の周辺部分に入射した光
ビームを略回転放物面状の第2面で反射させ、さらに前
記第1面の略中央部で反射させ、前記第2面の略中央部
上に結像させる近接場光発生素子の製造方法であって、
第2面に設けた反射膜に、第1面に対する第2面の最も
高い位置に微小開口を形成することを特徴とする近接場
光発生素子の製造方法。
1. A light beam incident on a peripheral portion of a planar first surface is reflected by a substantially paraboloid-shaped second surface, and is further reflected by a substantially central portion of the first surface. A method for manufacturing a near-field light generating element that forms an image on a substantially central portion of a surface,
A method for manufacturing a near-field light generating element, characterized in that a minute opening is formed in the reflection film provided on the second surface at the highest position of the second surface with respect to the first surface.
【請求項2】 第2面の形状を測定して第1面に対する
第2面の最も高い位置に微小開口を形成することを特徴
とする請求項1記載の近接場光発生素子の製造方法。
2. The method of manufacturing a near-field light generating element according to claim 1, wherein the shape of the second surface is measured to form a minute opening at the highest position of the second surface with respect to the first surface.
【請求項3】 第2面の形状を測定して第1面に対する
第2面の最も高い位置にマーキングし、該マーキング位
置に微小開口を形成することを特徴とする請求項1記載
の近接場光発生素子の製造方法。
3. The near-field according to claim 1, wherein the shape of the second surface is measured to mark the highest position of the second surface with respect to the first surface, and a minute opening is formed at the marking position. A method for manufacturing a light generating element.
【請求項4】 第2面に金属材料にて反射膜を設けた
後、0.001Torr以下の真空中で電子又はイオンの照
射によって最も高い位置の反射膜を欠如させて微小開口
を形成することを特徴とする請求項1記載の近接場光発
生素子の製造方法。
4. After forming a reflective film of a metal material on the second surface, forming a minute opening by irradiating electrons or ions in a vacuum of 0.001 Torr or less to eliminate the reflective film at the highest position. The method for manufacturing a near-field light generating element according to claim 1, wherein:
【請求項5】 前記金属材料は、アルミニウム、銀、白
金、金、クロム、パラジウム、ニッケル、コバルト、
鉄、錫の少なくともいずれかであることを特徴とする請
求項4記載の近接場光発生素子の製造方法。
5. The metal material includes aluminum, silver, platinum, gold, chromium, palladium, nickel, cobalt,
The method for manufacturing a near-field light generating element according to claim 4, wherein the method is at least one of iron and tin.
【請求項6】 電子照射は針状電極と反射膜との間の放
電によることを特徴とする請求項4又は請求項5記載の
近接場光発生素子の製造方法。
6. The method for manufacturing a near-field light generating element according to claim 4, wherein the electron irradiation is performed by a discharge between the needle electrode and the reflection film.
【請求項7】 電子銃によって反射膜に直接電子を照射
することを特徴とする請求項4又は請求項5記載の近接
場光発生素子の製造方法。
7. The method for manufacturing a near-field light generating element according to claim 4, wherein electrons are directly irradiated to the reflection film by an electron gun.
【請求項8】 イオン銃によって反射膜に直接イオンを
照射することを特徴とする請求項4又は請求項5記載の
近接場光発生素子の製造方法。
8. The method for manufacturing a near-field light generating element according to claim 4, wherein the reflecting film is directly irradiated with ions by an ion gun.
【請求項9】 平面状の第1面の周辺部分に入射した光
ビームを略回転放物面状の第2面で反射させ、さらに前
記第1面の略中央部で反射させ、前記第2面の略中央部
上に結像させる近接場光発生素子の製造方法であって、
第2面に設けた反射膜に、第2面の非球面対称軸上に微
小開口を形成することを特徴とする近接場光発生素子の
製造方法。
9. A light beam incident on a peripheral portion of the first planar surface is reflected by a second surface having a substantially paraboloid of revolution shape, and is further reflected by a substantially central portion of the first surface. A method for manufacturing a near-field light generating element that forms an image on a substantially central portion of a surface,
A method for manufacturing a near-field light generating element, characterized in that a minute aperture is formed in a reflection film provided on a second surface on an aspherical axis of symmetry of the second surface.
【請求項10】 第2面を成形するための型に非球面対
称軸位置に微小な円錐状の凹部を形成しておき、該型を
用いることで第2面の非球面対称軸位置上に微小突起を
形成し、第2面に反射膜を設けた後に該反射膜の微小突
起部分を欠如させて微小開口を形成することを特徴とす
る請求項9記載の近接場光発生素子の製造方法。
10. A minute conical concave portion is formed at a position of an aspherical symmetric axis in a mold for molding the second surface, and the mold is used to form a concave portion on the aspherical symmetric axis position of the second surface. 10. The method for manufacturing a near-field light generating element according to claim 9, wherein a minute projection is formed, a reflective film is provided on the second surface, and a minute opening is formed by removing the minute protrusion of the reflective film. .
【請求項11】 請求項1、請求項2、請求項3、請求
項4、請求項5、請求項6、請求項7、請求項8、請求
項9又は請求項10記載の方法で製造された近接場光発
生素子を、その第2面にて保持部材で受けて保持しつ
つ、実際に光ビームを入射させながら微小開口上に光ビ
ームが結像するように偏芯調整し、その後該素子を保持
部材に固定することを特徴とする近接場光発生素子の調
整方法。
11. A manufacturing method according to claim 1, claim 2, claim 3, claim 4, claim 5, claim 6, claim 7, claim 8, claim 9, or claim 10. While holding and holding the near-field light generating element by the holding member on the second surface, the eccentricity is adjusted so that the light beam forms an image on the minute aperture while actually causing the light beam to enter. A method for adjusting a near-field light generating element, comprising fixing the element to a holding member.
【請求項12】 前記近接場光発生素子の第2面に結像
した光ビームの戻り光をモニタしながら偏芯調整を行う
ことを特徴とする請求項11記載の近接場光発生素子の
調整方法。
12. The near-field light generating element according to claim 11, wherein the eccentricity is adjusted while monitoring the return light of the light beam imaged on the second surface of the near-field light generating element. Method.
【請求項13】 近接場光を発生させるための媒質を、
前記近接場光発生素子の第2面に近接させて配置させた
状態で前記戻り光をモニタすることを特徴とする請求項
12記載の近接場光発生素子の調整方法。
13. A medium for generating near-field light,
13. The method for adjusting a near-field light generating element according to claim 12, wherein the return light is monitored in a state where the near-field light generating element is arranged close to a second surface.
JP2000154633A 2000-05-25 2000-05-25 Method for manufacturing proximity field light generating element and method for regulating this element Pending JP2001338430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000154633A JP2001338430A (en) 2000-05-25 2000-05-25 Method for manufacturing proximity field light generating element and method for regulating this element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000154633A JP2001338430A (en) 2000-05-25 2000-05-25 Method for manufacturing proximity field light generating element and method for regulating this element

Publications (1)

Publication Number Publication Date
JP2001338430A true JP2001338430A (en) 2001-12-07

Family

ID=18659701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000154633A Pending JP2001338430A (en) 2000-05-25 2000-05-25 Method for manufacturing proximity field light generating element and method for regulating this element

Country Status (1)

Country Link
JP (1) JP2001338430A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545983A (en) * 2005-06-06 2008-12-18 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Nanometer-sized emitter / receiver guide
KR20160117776A (en) * 2015-03-31 2016-10-11 고려대학교 산학협력단 Imaging lens structure, method of forming the same and optical imaging system including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545983A (en) * 2005-06-06 2008-12-18 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Nanometer-sized emitter / receiver guide
KR20160117776A (en) * 2015-03-31 2016-10-11 고려대학교 산학협력단 Imaging lens structure, method of forming the same and optical imaging system including the same
KR101666742B1 (en) 2015-03-31 2016-10-18 고려대학교 산학협력단 Imaging lens structure, method of forming the same and optical imaging system including the same

Similar Documents

Publication Publication Date Title
US7933169B2 (en) Optical head for near-field recording and reproducing device
EP1148370A2 (en) Near-field optical probe, near-field optical microscope and optical recording/reproducing device with near-field optical probe
KR100658644B1 (en) Focus control method and focus controller
KR100317139B1 (en) Super-resolution Parabolic Lens
WO2004057625A1 (en) Method for generating high-speed particle and system for generating high-speed particle
JP3758279B2 (en) Method and apparatus for adjusting objective lens for optical pickup
JP2001338430A (en) Method for manufacturing proximity field light generating element and method for regulating this element
US7022978B2 (en) Method and apparatus including in-resonator imaging lens for improving resolution of a resonator-enhanced optical system
US6704096B1 (en) Exposure apparatus and exposure method
JP2012052870A (en) Mask blank inspection device and optical adjustment method thereof
JP4296924B2 (en) Exposure apparatus, recording and / or reproducing apparatus
JPS58114338A (en) Optical pickup
JP2019153602A (en) Auto-focus device
JP7280237B2 (en) Automatic sample tilt correction device and sample tilt automatic correction method
JP2001325744A (en) Method for manufacturing optical head
JP4185924B2 (en) Projection exposure equipment
JPH11149662A (en) Adjusting and attaching structure for optical element
JP3417133B2 (en) Electronic beam drawing device
JP4036226B2 (en) Inclination detection method, eccentricity detection method, distance detection method between two lens groups, inclination detection device, and inspection device
JPH11223515A (en) Device of and method for measuring pattern coordinates
JPH11257936A (en) Apparatus using minute angle-of-rotation sensor
JPH064893A (en) Optical pickup device
JP2006013037A (en) Semiconductor laser device and housing loading it and optical pickup device
JPH11134646A (en) Manufacture method for magnetic recording medium and laser texture device
JP2001236662A (en) Exposure device for optical master plate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050613