JPS58114338A - Optical pickup - Google Patents

Optical pickup

Info

Publication number
JPS58114338A
JPS58114338A JP21218381A JP21218381A JPS58114338A JP S58114338 A JPS58114338 A JP S58114338A JP 21218381 A JP21218381 A JP 21218381A JP 21218381 A JP21218381 A JP 21218381A JP S58114338 A JPS58114338 A JP S58114338A
Authority
JP
Japan
Prior art keywords
pickup
case
semiconductor laser
generating component
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21218381A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nakamura
裕行 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21218381A priority Critical patent/JPS58114338A/en
Publication of JPS58114338A publication Critical patent/JPS58114338A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/10Interchangeable mountings, e.g. for replacement of head without readjustment including interchangeable electrical adjuster boards

Landscapes

  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To simplify the exchange of semiconductor lasers, by unifying a semiconductor laser and a collimator lens with the interchangeability secured between them. CONSTITUTION:For a parallel beam generating parts 11, a semiconductor laser 1 and a collimator lens 3 are incorporated into a cylindrical case 12. The parts 11 is previously adjusted so that the light passed through the lens 3 is turned into parallel beams which are parallel to the optical axis of the lens 3. Then the parts 11 is put into a hole 15 of a case 10 of the pickup main body, and a positioning pin 14 is fitted at a recess part 16 and then attached removably into a screw hole 18 of the case 10 by means of a screw 17. In such a way, the laser 1 can be simply exchanged.

Description

【発明の詳細な説明】 この発明は光学式ピックアップに関するものである。[Detailed description of the invention] This invention relates to an optical pickup.

半導体レーザを使った光学式情報e録装置および再生装
置(以後光学式記録再生装置と称す)は、従来よシある
iII!llCヘッドによる録再方式、あるいは針によ
る再生方式と比べ、装置および配録媒体とも寿命時間が
長いことを特徴の一つとしている。
Optical information e-recording and reproducing devices (hereinafter referred to as optical recording and reproducing devices) using semiconductor lasers are the same as conventional iii! One of the features of this method is that both the device and the recording medium have a longer lifespan than the recording/reproducing method using the 11C head or the reproducing method using a needle.

このうち記録媒体の方はその寿命は半永久的であるが、
装置の方には寿命があシ、その寿命は主として半導体レ
ーザの寿命によって決ま□る。しかもこの半導体レーザ
の寿命は個々のものについて大きなばらつきがあるため
、光学式記録再生装置において半導体レーザの交換が必
要不町決なものとなっている。
Of these, recording media have a semi-permanent lifespan, but
The device has a limited lifespan, and that lifespan is mainly determined by the lifespan of the semiconductor laser. Furthermore, since the lifespan of these semiconductor lasers varies greatly from one device to another, it has become inevitable to replace semiconductor lasers in optical recording and reproducing devices.

第1図は光学式ピックアップの一例であに、半導体レー
ザ1のチップ2より出た光はコリメートレンズ3によっ
て平行光11にな夛、偏光ビームスプリッタ4によって
上方に反射し丸後、四分の一波長板5を通過し、フォー
カスレンズ6によってディスク7の信号面に集光する。
Figure 1 shows an example of an optical pickup, in which the light emitted from the chip 2 of the semiconductor laser 1 is converted into parallel light 11 by the collimating lens 3, reflected upward by the polarizing beam splitter 4, and then divided into circles and quarters. The light passes through the single-wavelength plate 5 and is focused onto the signal surface of the disk 7 by the focus lens 6.

この光はさらに信号面で反射し先後、四分の一波長板5
、偏光ビームスプリッタ4を通過し、レンズ系8によっ
てフォトディテクタ9上に結像する。
This light is further reflected on the signal surface and sent to the quarter-wave plate 5.
, passes through the polarizing beam splitter 4, and is imaged onto a photodetector 9 by a lens system 8.

従来よj1提案されている光学式ピックアップは、第1
図のものに限らず、特に半導体レーザのみを交換するよ
うな手段は取られておらず、光学式ピックアップ全体を
交換する方法が取られることが予想される。しかしこの
方法は半導体レーザlを交換する方法と比べてコスト的
に不利であり、将来半導体レーザ1の大量生産によるコ
ストダウンを考慮すると、半導体レーず1のみを交換す
る手段の方がますます望ましい4のとなってくる。
The optical pickup that has been proposed conventionally is
In addition to what is shown in the figure, it is expected that a method of replacing only the semiconductor laser will not be taken, but a method of replacing the entire optical pickup will be taken. However, this method is disadvantageous in terms of cost compared to the method of replacing the semiconductor laser 1, and considering cost reduction due to mass production of the semiconductor laser 1 in the future, it is increasingly desirable to replace only the semiconductor laser 1. It comes to number 4.

また、光学式ピックアップ全体を交換する場合、フォー
カスレンズ6の位置、傾きのばらつき等に応じて様々な
調整を必要とするため、ユーザ自身が交換するのは非常
〈困難で、一旦メーカに引渡して交換すること′が予想
される。これはm記の部品コストと合わせて、輸送手段
の点でも不経済である。
In addition, when replacing the entire optical pickup, various adjustments are required depending on the position of the focus lens 6, variations in tilt, etc., so it is extremely difficult for the user to replace it himself, and it is difficult to replace it by himself. Expected to be replaced. This is uneconomical in terms of the means of transportation as well as the cost of the parts mentioned in m.

以上の理由から光学式ピックアップ全体を交換するよプ
も、半導体レーザlのみを交換する方がはるかに有利で
ある。しかしながら、半導体レーザlのチップ2の位置
は、レーザlの外枠のある基準面に対していくらかの寸
法公差を持っているうえ、コリメートレンズ3の焦点距
離もある!1度のばらつきがあるため、半4体レーザ1
oみを交換しても、コリメートレンズ3の通過wkK光
軸対称の平行光線を得ることはできな込。
For the above reasons, it is much more advantageous to replace only the semiconductor laser l than to replace the entire optical pickup. However, the position of the chip 2 of the semiconductor laser l has some dimensional tolerance with respect to the reference plane with the outer frame of the laser l, and there is also a focal length of the collimating lens 3! Since there is a variation of 1 degree, the half-quadruple laser 1
Even if the angle is changed, it is not possible to obtain parallel rays that are symmetrical about the optical axis passing through the collimating lens 3.

すなわち、第2図に示したように半導体レーザlのチッ
プ2がコリメートレンズ3の光軸かうfれ九場合は、レ
ンズ30通過後平行光mF!得られるが光軸に対して傾
いた光束となる。また第3図に示したようにチップ2が
コリメートレンズ3の焦点よシも外側にあると、レンズ
3の通過後の光は集束光となる。これとは逆に焦点の内
側にチップ2があると、レンズ30通過後に@散光にな
ってしまう、また第4図のようにチップ2が正しい位置
にあってもコリメートレンズ3の焦点距離が長いとレン
ズ30通過後に発散光になるし、逆にレンズ3の焦点距
離が短いと集束光になってしまう・ し是がって、この今明の目的は、煩雑な調整を行なうこ
となしに、藺単に半導体V−ずな交換することができ、
しかも半導体レーダの交換に伴う交換部品が少なくて済
む光学式ピックアップを提供することである。
That is, as shown in FIG. 2, if the chip 2 of the semiconductor laser 1 is at an angle of 9 to the optical axis of the collimating lens 3, the parallel light mF! after passing through the lens 30! However, the resulting light beam is tilted with respect to the optical axis. Further, as shown in FIG. 3, when the chip 2 is located outside the focal point of the collimating lens 3, the light after passing through the lens 3 becomes convergent light. On the other hand, if the chip 2 is located inside the focal point, the light will become scattered after passing through the lens 30.Also, even if the chip 2 is in the correct position as shown in Figure 4, the focal length of the collimating lens 3 will be long. If the focal length of lens 3 is short, the light will become a divergent light after passing through the lens 30. Therefore, the purpose of this present invention is to make it possible to achieve a diverging light without making complicated adjustments. You can simply replace the semiconductor V-Zuna,
Moreover, it is an object of the present invention to provide an optical pickup that requires fewer parts to be replaced when replacing a semiconductor radar.

この発明の一実施例を第5図および第6図に示す。図に
おいて、10はピックアップ本体ケース、11は光軸対
称平行光線発生部品である。この平行光線発生部品11
tj半導体レーず1とコリメートレンズ3とを円筒形ケ
ース12内に組込み、コリメートレンズ30通過後の光
がコリメートレンズ3の光軸に対して軸対称な平行光線
となるように予じめ調整したものである。円筒形ケース
12の一端には端板12Mが取付けられ、端板121の
背面に半導体レーザ1の端子ビン13が突出している。
An embodiment of this invention is shown in FIGS. 5 and 6. In the figure, 10 is a pickup main body case, and 11 is an optical axis-symmetrical parallel beam generating component. This parallel ray generating component 11
The semiconductor laser 1 and the collimating lens 3 are assembled in a cylindrical case 12, and adjusted in advance so that the light after passing through the collimating lens 30 becomes a parallel beam that is axially symmetrical with respect to the optical axis of the collimating lens 3. It is something. An end plate 12M is attached to one end of the cylindrical case 12, and a terminal pin 13 of the semiconductor laser 1 protrudes from the back surface of the end plate 121.

円筒形ケース12は外周面に位置決めビン14を有して
いる。ピックアップ本体ケース10は第1図の偏光ビー
ムスプリッタ4と、四分の一波長板5と、フォーカスレ
ンズ6と、レンズ系8と、フォトディテクタ9とを内蔵
しており、かつ平行光線発生部品11を嵌挿する円孔状
の嵌挿孔18を有している。嵌挿孔15の膚1i1iK
は平行光線発生部品11の位置決めビン14が嵌合する
凹部16が設けられている。平行光線発生部品11はピ
ックアップ本体ケース10の嵌挿孔l。5に、凹部1・
と位置決めビン14とを合せて挿入され、ビス17によ
シビックアップ本体ケース10のねじ孔18に着脱可能
に取付けられる。
The cylindrical case 12 has a positioning pin 14 on its outer peripheral surface. The pickup body case 10 incorporates a polarizing beam splitter 4, a quarter-wave plate 5, a focus lens 6, a lens system 8, and a photodetector 9 as shown in FIG. It has a circular insertion hole 18 into which it is inserted. Insertion hole 15 skin 1i1iK
A recess 16 is provided in which the positioning pin 14 of the parallel light generating component 11 is fitted. The parallel light generating component 11 is inserted into the insertion hole l of the pickup body case 10. 5, recess 1.
and the positioning pin 14 are inserted together and removably attached to a screw hole 18 of the civic up main body case 10 with a screw 17.

このように、半導体レーザ1とコリメートレンズ3とを
一体化して平行光線発生部品11とし、予じめ調整する
ようにし九ので、半導体レーf1の交換に際して平行光
線発生部品11ごと交換すれば、常に光軸対称の平行光
線が得られ、レーず交換後も・フォトディテクタ9上に
正しい像を結ばせることが可能となる。平行光線発生部
品11とピツクアップ本体ケースlOとの周方向の位置
決めは平行光線発生部品11の位置決め突部14とピッ
クアップ本体ケース10の凹部16との嵌合により行な
われる。これにより、決められ九個光方向を持った軸対
称の平行光線をピックアップ本体ケース10の光学系に
入射させることができる。
In this way, the semiconductor laser 1 and the collimating lens 3 are integrated to form the parallel beam generating component 11, and are adjusted in advance. Therefore, if the entire parallel beam generating component 11 is replaced when replacing the semiconductor laser f1, it will always be possible to Parallel light beams that are symmetrical about the optical axis can be obtained, and even after the laser beam is replaced, it is possible to form a correct image on the photodetector 9. The circumferential positioning of the parallel beam generating component 11 and the pickup main body case 10 is performed by fitting the positioning protrusion 14 of the parallel beam generating component 11 into the recess 16 of the pickup main body case 10. Thereby, axially symmetrical parallel light beams having nine predetermined optical directions can be made to enter the optical system of the pickup main body case 10.

まえ、半導体ル−ザlの交換に伴なって交換され、61
1品はコリメートレンズ3だけであるから、ビックアフ
デの全体を交換する場合と比べて交換部品が少なく、安
価にレーザ交換をすることができる。
Previously, it was replaced with the replacement of the semiconductor laser l, and the 61
Since one item is only the collimating lens 3, there are fewer parts to be replaced than in the case of replacing the entire big afde, and the laser can be replaced at a low cost.

第7Fg#i第5図の位置決め突部14と凹部16C代
わりに半導体レーず1とレーザ電源とを結ぶ丸めの端子
ビン19とソケット2・0とを設けえもので、これを差
し込むことにより位置決めと同時に結線4行なうことが
できるようにし九ものである。その他は第1の実施例と
同様である。
7Fg#i In place of the positioning protrusion 14 and recess 16C shown in FIG. This allows four wire connections to be made at the same time. The rest is the same as the first embodiment.

なお、前記各実施例は平行光線発生部品11の外殻に円
筒形ケース12を用いて位置決め手段を設けたが、平行
光線発生部品11の外殻を角筒形とすれば位置決め手段
は不安である。
In each of the above embodiments, the positioning means was provided using the cylindrical case 12 on the outer shell of the parallel ray generating component 11, but if the outer shell of the parallel ray generating component 11 was made into a rectangular cylinder, the positioning means would be unstable. be.

以上のように、この発明の光学式ビックアラ1ハ、半導
体レーザとコリメートレンズとを一体に組合せて平行光
線発生部品とし、この組合せ部品ごと交換を行なうよう
にしたため、次のような効果が得られる。■交換する部
品が少ないため、安価にレーザ交換をすることができる
。■ユーザ側で簡単に交換することができる。■光学系
の光軸に対して、常に軸対称の平行光線を入射させるこ
とができる。
As described above, in the optical big ARA 1 of the present invention, the semiconductor laser and the collimating lens are combined into a parallel beam generating component, and this combined component is replaced as a whole, so that the following effects can be obtained. . ■Since there are few parts to be replaced, lasers can be replaced at low cost. ■Can be easily replaced by the user. (2) Parallel rays that are axially symmetrical can always be incident on the optical axis of the optical system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光学式ピアツクアップの一例を示す説明
図、第2図ないし第4図はその半導体レーザのチップの
位置の変化およびコリメートレンズの焦点距離の変化に
応じた光線の伏線を示した説明図、第5図はこの発明の
一実施例の分解斜視図、第6図はその先軸対称平行光線
発生部品の断面を示す説明図、第7図は他の実施例の分
解斜視図である。 1・・・半導体レーザ、2・・・チップ、3・・・コリ
メートレンズ、9・・・ディテクタ、10−・・ピック
アップ本体ケース、−11−・・光軸対称平行光線発生
部品、12・・・円筒形ケース、15・・・嵌挿孔、1
9°・・端子ビン、20・・・ソケット 第1図 第4図
Fig. 1 is an explanatory diagram showing an example of a conventional optical pickup, and Figs. 2 to 4 show foreshadowing of light rays according to changes in the position of the semiconductor laser chip and changes in the focal length of the collimating lens. 5 is an exploded perspective view of one embodiment of the present invention, FIG. 6 is an explanatory diagram showing a cross section of the axisymmetric parallel ray generating component, and FIG. 7 is an exploded perspective view of another embodiment. be. DESCRIPTION OF SYMBOLS 1... Semiconductor laser, 2... Chip, 3... Collimating lens, 9... Detector, 10-... Pickup body case, -11-... Optical axis symmetrical parallel beam generating component, 12...・Cylindrical case, 15...insertion hole, 1
9°...Terminal pin, 20...Socket Figure 1 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)  ピックアップ本体ケースと、半導体レーザと
コリメートレンズとを一体に組合せてなシ前記ピックア
ップ本停ケースに着脱可能に取付けられ走光軸対称平行
光線発生部品と、前部ピックアップ本体ケースに取付け
られ九フォトディテクタと、前記ビッグアップ本体ケー
ス内に設けられて前記光軸対称平行光線発生部品で発生
した先様を記録媒体に集光しかつその反射光を前記フォ
トディテクタに結侭させる光学系とを備え九光学式ピッ
クアップ・
(1) A pickup main body case, a semiconductor laser, and a collimating lens are integrally combined, a parallel light generating part that is removably attached to the pickup main stop case and is symmetrical about the optical axis, and a part that is attached to the front pickup main body case. A nine optical system comprising a photodetector and an optical system provided in the big-up main body case to condense the light generated by the optical axis symmetrical parallel light beam generating component onto a recording medium and to direct the reflected light to the photodetector. Type pickup・
(2)前記光軸対称平行光線発生部品が、円筒形ケース
K11l記半導体レーザと前記コリメートレンズとを収
めかつ前記円筒形ケースの外側にこの円筒形ケースと軸
心方向が平行になる端子ピンを設は九ものからなり、前
記ピックアップ本体ケースが前記元軸対称平行光線発生
部品の前記円筒形ケースを嵌入する嵌挿部と前記端子ビ
ンが差込まれるソケットとを有する特許請求のmts第
(1)項記載の光学式ピックアップ。
(2) The optical axis-symmetrical parallel light generating component houses the semiconductor laser described in K11l in a cylindrical case and the collimating lens, and has a terminal pin on the outside of the cylindrical case whose axial direction is parallel to this cylindrical case. MTS No. (1) of the patent claim, wherein the pickup body case has a fitting portion into which the cylindrical case of the original axially symmetrical parallel light beam generating component is fitted, and a socket into which the terminal pin is inserted. ) Optical pickup described in section.
JP21218381A 1981-12-26 1981-12-26 Optical pickup Pending JPS58114338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21218381A JPS58114338A (en) 1981-12-26 1981-12-26 Optical pickup

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21218381A JPS58114338A (en) 1981-12-26 1981-12-26 Optical pickup

Publications (1)

Publication Number Publication Date
JPS58114338A true JPS58114338A (en) 1983-07-07

Family

ID=16618287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21218381A Pending JPS58114338A (en) 1981-12-26 1981-12-26 Optical pickup

Country Status (1)

Country Link
JP (1) JPS58114338A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329330A (en) * 1986-07-23 1988-02-08 Canon Inc Optical information recording and reproducing device
WO1993005553A1 (en) * 1991-09-10 1993-03-18 Massachusetts Institute Of Technology Pre-aligned diode laser for external cavity operation
US5289485A (en) * 1991-09-10 1994-02-22 Micracor, Inc. Multi-element optically pumped external cavity laser system
US5327447A (en) * 1989-04-20 1994-07-05 Massachusetts Institute Of Technology Waveguide optical resonant cavity laser
US5327444A (en) * 1989-04-20 1994-07-05 Massachusetts Institute Of Technology Solid state waveguide lasers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503097U (en) * 1973-05-09 1975-01-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503097U (en) * 1973-05-09 1975-01-13

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329330A (en) * 1986-07-23 1988-02-08 Canon Inc Optical information recording and reproducing device
US5327447A (en) * 1989-04-20 1994-07-05 Massachusetts Institute Of Technology Waveguide optical resonant cavity laser
US5327444A (en) * 1989-04-20 1994-07-05 Massachusetts Institute Of Technology Solid state waveguide lasers
WO1993005553A1 (en) * 1991-09-10 1993-03-18 Massachusetts Institute Of Technology Pre-aligned diode laser for external cavity operation
US5289485A (en) * 1991-09-10 1994-02-22 Micracor, Inc. Multi-element optically pumped external cavity laser system

Similar Documents

Publication Publication Date Title
JPH06294940A (en) Beam-shaping element as well as radiation source and optical scanning unit provided with said element
JPH09501789A (en) Optical scanning device and beam shaper and source unit for use in the device
JPH1064103A (en) Optical pickup device
JPS58114338A (en) Optical pickup
EP0776002A2 (en) Integrated optical pickup system capable of reading optical disks of different thicknesses
JPH08307006A (en) Semiconductor laser
JPH0340478A (en) Laser diode module
US5805363A (en) Collimating lens unit
JP2849176B2 (en) Optical information recording / reproducing head
JPS6043229A (en) Pickup of optical reproducing device for recording information
JPH02218028A (en) Optical pickup
JPH0652582B2 (en) Optical head
JPS62186219A (en) Semiconductor laser device
JPH09219033A (en) Laser holder device
US6538977B1 (en) Mechanism for adjusting radiating direction of light emitted from laser light source in optical pickup device
JPH0827968B2 (en) Beam shaping device and optical head device
KR100554071B1 (en) An optical focusing system generating near field
JPH04263131A (en) Beam shaping apparatus
JPS62279529A (en) Lens holder for optical head
JP2662054B2 (en) Optical head device
KR100455477B1 (en) Optical pickup
JP2006013037A (en) Semiconductor laser device and housing loading it and optical pickup device
JPH01251439A (en) Light source unit
JPH0533466B2 (en)
JPH0531218B2 (en)