JP2001307773A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JP2001307773A
JP2001307773A JP2000118186A JP2000118186A JP2001307773A JP 2001307773 A JP2001307773 A JP 2001307773A JP 2000118186 A JP2000118186 A JP 2000118186A JP 2000118186 A JP2000118186 A JP 2000118186A JP 2001307773 A JP2001307773 A JP 2001307773A
Authority
JP
Japan
Prior art keywords
weight
battery
positive electrode
aqueous electrolyte
lithium carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000118186A
Other languages
Japanese (ja)
Other versions
JP3448544B2 (en
Inventor
Tomohito Okamoto
朋仁 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo GS Soft Energy Co Ltd
Original Assignee
GS Melcotec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Melcotec Co Ltd filed Critical GS Melcotec Co Ltd
Priority to JP2000118186A priority Critical patent/JP3448544B2/en
Publication of JP2001307773A publication Critical patent/JP2001307773A/en
Application granted granted Critical
Publication of JP3448544B2 publication Critical patent/JP3448544B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery having an improved safety during overcharge without being swollen when allowed to stand under a high temperature. SOLUTION: This nonaqueous electrolyte battery comprises a positive electrode having an active material adapted to store or release lithium, a negative electrode and a nonaqueous electrolyte, the positive electrode containing lithium carbonate and the nonaqueous electrolyte containing propanesultone.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水電解質電池に関す
るものであり、特に高温放置時に電池膨れを生じるるこ
となく、過充電時の安全性にも優れる非水電解質電池に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery, and more particularly to a non-aqueous electrolyte battery which does not swell when left at high temperatures and which is excellent in safety during overcharge.

【0002】[0002]

【従来の技術】近年の電子技術のめざましい進歩は、電
子機器の小形・軽量化を次々と実現させている。それに
伴い、電源である電池に対しても、一層の小型化、軽量
化、高エネルギー密度化が求められるようになってい
る。
2. Description of the Related Art In recent years, remarkable progress in electronic technology has realized a reduction in size and weight of electronic devices one after another. Along with this, there is an increasing demand for batteries that are power sources to be further reduced in size, weight, and energy density.

【0003】従来、一般用途の電池としては、鉛電池、
ニッケルカドミウム電池等の水溶液系電池が主流であっ
た。しかし、これらの水溶液系電池は、サイクル特性に
は優れるものの、電池重量やエネルギー密度の点では十
分に満足できるものとは言えなかった。
Conventionally, batteries for general use include lead batteries,
Aqueous batteries such as nickel cadmium batteries were the mainstream. However, although these aqueous batteries are excellent in cycle characteristics, they cannot be said to be sufficiently satisfactory in terms of battery weight and energy density.

【0004】そこで、最近、電池電圧が高く、高いエネ
ルギー密度を有し、サイクル特性にも優れた非水電解質
電池が使用され始めている。非水電解質電池の代表的な
ものとしては、リチウムイオンの可逆的インターカレー
ションが可能な物質を電極材料に用いたリチウムイオン
電池がある。
Therefore, recently, nonaqueous electrolyte batteries having a high battery voltage, a high energy density, and excellent cycle characteristics have begun to be used. A typical nonaqueous electrolyte battery is a lithium ion battery using a material capable of reversible lithium ion intercalation as an electrode material.

【0005】[0005]

【発明が解決しようとする課題】リチウムイオン電池
は、エネルギー密度、充放電サイクル特性に優れること
から、比較的消費電力の大きい携帯用通信端末機器の電
源として使用され、広範に普及してきている。
Lithium-ion batteries have been used widely as power sources for portable communication terminals with relatively high power consumption because of their excellent energy density and charge / discharge cycle characteristics, and have been widely used.

【0006】ところが、リチウムイオン電池において
は、過充電時に電解質や活物質の分解等の異常反応が起
こり、電池の発熱や破損に至る場合がある。このため、
過充電時における熱暴走を防止するために、正極合剤中
に炭酸リチウムを添加して電気化学的な分解反応による
CO2ガスの発生を利用して、電池に装着される電流遮
断素子を作動させる方法が提案されている(特開平4−
328278号、特開平4−329268号等参照)。
なお、正極に炭酸リチウムを添加した電池は、電流遮断
素子ではなく、電池の内圧上昇によって開弁する安全弁
であっても、上記と同様にCO2ガスの発生により容易
に安全弁を作動することにより、過充電時における熱暴
走を防止することができる。
However, in a lithium ion battery, an abnormal reaction such as decomposition of an electrolyte or an active material occurs at the time of overcharging, and the battery may generate heat or be damaged. For this reason,
To prevent thermal runaway during overcharging, add lithium carbonate to the positive electrode mixture and use the generation of CO 2 gas due to the electrochemical decomposition reaction to activate the current cutoff element attached to the battery A method has been proposed (Japanese Unexamined Patent Publication No.
328278 and JP-A-4-329268).
The battery obtained by adding lithium carbonate to the positive electrode is not a current cut-off device, even safety valve which opens by internal pressure increase of the battery by easily operating the safety valve by the generation of the same manner as described above CO 2 gas In addition, thermal runaway during overcharge can be prevented.

【0007】しかしながら、上記のように炭酸リチウム
を添加した正極を備えた電池においては、高温環境下で
充放電された場合や充電状態で放置されただけで、CO
2ガスが多量に発生するために電池が膨れたり、さらに
は電池の電流遮断素子や安全弁が作動するといった悪影
響の出ることがあった。
However, in the battery provided with the positive electrode to which lithium carbonate is added as described above, when the battery is charged / discharged in a high-temperature environment or left in a charged state, the CO
Since a large amount of the two gases was generated, the battery might swell, and furthermore, adverse effects such as the operation of the battery's current cutoff element and the operation of the safety valve might occur.

【0008】本発明は、上記のような従来の課題を解決
するためになされたものであり、過充電時の安全性を確
保するため、正極合剤に炭酸リチウムを添加するととも
に、非水電解液中にプロパンスルトンを添加して、高温
放置時等における電池の膨れを抑制することにより、安
全性と信頼性を兼ね備えた非水電解質電池を提供するこ
とを目的としている。
The present invention has been made to solve the above-mentioned conventional problems. In order to ensure safety during overcharge, lithium carbonate is added to a positive electrode mixture and non-aqueous electrolyte is added. It is an object of the present invention to provide a non-aqueous electrolyte battery having both safety and reliability by adding propane sultone to a liquid and suppressing swelling of the battery when left at a high temperature or the like.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明にかか
る第一の発明は、非水電解質電池において、正極に炭酸
リチウムを含有するとともに、非水電解液にプロパンス
ルトンを含有することを特徴とする。
That is, a first invention according to the present invention is characterized in that, in a non-aqueous electrolyte battery, the positive electrode contains lithium carbonate and the non-aqueous electrolyte contains propane sultone. I do.

【0010】また、本発明にかかる第二の発明は、上
記、電解液にプロパンスルトンを含有した非水電解質電
池において、正極合剤中の炭酸リチウム含有量が、正極
活物質100重量部に対して1重量部以上、5重量部以
下であることを特徴とする。
In a second aspect of the present invention, in the above nonaqueous electrolyte battery containing propane sultone in the electrolytic solution, the content of lithium carbonate in the positive electrode mixture is based on 100 parts by weight of the positive electrode active material. And not more than 1 part by weight and not more than 5 parts by weight.

【0011】さらに、本発明にかかる第三の発明は、上
記、炭酸リチウムを含有した正極合剤を備えた非水電解
質電池において、プロパンスルトンの添加量が、電解液
量に対して0.2重量%以上、5重量%以下であること
を特徴とする。
Further, the third invention according to the present invention provides a non-aqueous electrolyte battery provided with the above-described positive electrode mixture containing lithium carbonate, wherein the amount of propane sultone added is 0.2 to the amount of the electrolyte. It is not less than 5% by weight and not more than 5% by weight.

【0012】[0012]

【発明の実施の形態】上述のごとく、本発明の特徴は、
非水電解質電池において、正極に炭酸リチウムを含有す
るとともに、非水電解液にプロパンスルトンを含有する
ことにある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the features of the present invention are as follows.
In a non-aqueous electrolyte battery, a positive electrode contains lithium carbonate and a non-aqueous electrolyte contains propane sultone.

【0013】本発明の非水電解質電池において使用され
る正極活物質としては、リチウムイオンを吸蔵・放出で
きる物質であればよく、金属酸化物(LiCoO2、L
iNiO2、LiMn24、MnO2、MoO2、Cu
O、Cr23、CrO3、V25、NiOOHなど)、
金属硫化物(FeS、TiS2、又はMoS2など)、金
属セレン化物(TiSe2など)等が例示される。
The positive electrode active material used in the non-aqueous electrolyte battery of the present invention may be any material capable of inserting and extracting lithium ions, and may be a metal oxide (LiCoO 2 , LCo).
iNiO 2 , LiMn 2 O 4 , MnO 2 , MoO 2 , Cu
O, Cr 2 O 3 , CrO 3 , V 2 O 5 , NiOOH, etc.),
Examples thereof include metal sulfides (such as FeS, TiS 2 , or MoS 2 ) and metal selenides (such as TiSe 2 ).

【0014】また、正極導電剤としては、アセチレンブ
ラック、ケッチェンブラック、ファーネスブラック、グ
ラファイト等を単体、もしくはこれらを組み合わせての
使用が例示される。
As the positive electrode conductive agent, use of acetylene black, Ketjen black, furnace black, graphite, or the like alone or in combination thereof is exemplified.

【0015】さらに、結着剤としては、ポリフッ化ビニ
リデン、ポリテトラフルオロエチレン、ゴム系高分子も
しくはこれらとセルロース系高分子との混合物またはポ
リフッ化ビニリデンを主体とするコポリマー等が例示さ
れる。
Further, examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, a rubber-based polymer, a mixture of these with a cellulose-based polymer, and a copolymer mainly containing polyvinylidene fluoride.

【0016】一方、負極活物質としては、リチウム金
属、またはリチウムアルミニウム合金や熱分解炭素、コ
ークス類、天然黒鉛や人造黒鉛等のグラファイト類、有
機高分子化合物焼成体、炭素繊維、活性炭などリチウム
を吸蔵・放出する炭素材料、またはポリピロールやポリ
アセチレンのようなポリマー材料を用いることも可能で
ある。
On the other hand, as the negative electrode active material, lithium such as lithium metal, lithium aluminum alloy, pyrolytic carbon, coke, graphite such as natural graphite or artificial graphite, organic polymer compound fired body, carbon fiber, activated carbon and the like are used. It is also possible to use carbon materials that occlude and release, or polymeric materials such as polypyrrole and polyacetylene.

【0017】非水電解質に用いる溶媒としては、エチレ
ンカーボネート、プロピレンカーボネート、ジエチルカ
ーボネート、ジメチルカーボネート、メチルエチルカー
ボネートなどの炭酸エステルやγ-ブチルラクトン、
1,2ジメトキシエタン、テトラヒドロフラン、2−メ
チルテトラヒドロフラン、プロピオン酸メチル等の有機
溶媒を単独または2種以上混合して使用しても良い。
Examples of the solvent used for the non-aqueous electrolyte include carbonates such as ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate and methyl ethyl carbonate, and γ-butyl lactone.
Organic solvents such as 1,2 dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, and methyl propionate may be used alone or in combination of two or more.

【0018】非水電解質の溶質としてのリチウム塩に
は、LiClO4、LiAsF6、LiPF6、LiB
4、LiCF3SO3、LiN(CF3SO22等を単独
または2種以上混合して使用することができる。
The lithium salt as a solute of the non-aqueous electrolyte includes LiClO 4 , LiAsF 6 , LiPF 6 , LiB
F 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2, etc. can be used alone or in combination of two or more.

【0019】[0019]

【実施例】以下、本発明を実施例に基づいて詳細に説明
するが、下記実施例により何ら限定されるものではな
く、その要旨を変更しない範囲において適宜変更して実
施することが可能であることは言うまでもない。 [実施例] (正極): 活物質であるLiCoO2100重量部に
対して、炭酸リチウムをそれぞれ0.5重量部、1.0
重量部、3.0重量部、5.0重量部及び6.5重量部
と変化させて混合し、さらに炭素系導電剤としてアセチ
レンブラックを3重量部、結着剤としてポリフッ化ビニ
リデン(PVdF)を4重量部を加え、そして、これら
の混合物に分散溶媒としてのNMP(N−メチルピロリ
ドン)を加えて混練し、正極ペーストを得た。次に、こ
の正極ペーストをアルミニウム箔よりなる電極基体に塗
布し、乾燥させ、炭酸リチウム添加量の異なる5種類の
リチウム電池用正極を得た。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to embodiments, but the present invention is not limited to the following embodiments, and can be carried out with appropriate changes within the scope of the invention. Needless to say. [Example] (Positive electrode): Lithium carbonate was added in an amount of 0.5 part by weight and 1.0 part by weight with respect to 100 parts by weight of LiCoO 2 as an active material.
Parts by weight, 3.0 parts by weight, 5.0 parts by weight, and 6.5 parts by weight, and further mixed with 3 parts by weight of acetylene black as a carbon-based conductive agent, and polyvinylidene fluoride (PVdF) as a binder. Was added to the mixture, and NMP (N-methylpyrrolidone) as a dispersion solvent was added to the mixture and kneaded to obtain a positive electrode paste. Next, this positive electrode paste was applied to an electrode substrate made of an aluminum foil and dried to obtain five types of positive electrodes for lithium batteries having different amounts of lithium carbonate added.

【0020】(負極): ピッチの炭素化過程で生ずる
メソフェーズ小球体を原料としたメソカーボンマイクロ
ビーズをリチウムイオンのインターカレーション材と
し、ポリフッ化ビニリデン(PVdF)を結着剤として
混練し、適宜NMPを添加してペーストとしたものを、
銅箔からなる電極基体に塗布し、乾燥させ、負極を作製
した。なお、このときのメソカーボンマイクロビーズと
して、粒子径が5〜50μm、比表面積が1〜10m2
/gのものを用いた。
(Negative electrode): Mesocarbon microbeads made of mesophase spheres generated in the carbonization process of pitch are used as lithium ion intercalation material, and kneaded with polyvinylidene fluoride (PVdF) as a binder. The paste made by adding NMP,
The composition was applied to an electrode substrate made of copper foil and dried to produce a negative electrode. The mesocarbon microbeads at this time had a particle diameter of 5 to 50 μm and a specific surface area of 1 to 10 m 2.
/ G.

【0021】(非水電解液): エチレンカーボネート
とジエチルカーボネートとの体積比1:1の混合溶媒
に、LiPF6を1モル/リットル溶解したもの(以
下、A液という)99.9重量%に対して、プロパンス
ルトン(以下、B液という)0.1重量%混合した非水
電解液を調整した。同様に、A液とB液の混合比をそれ
ぞれ99.8対0.2、99.5対0.5、98.5対
1.5、96.5対3.5、95.0対5.0及び9
4.0対6.0とした非水電解液を調整した。
(Non-aqueous electrolyte): A solution in which 1 mol / l of LiPF 6 is dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 (hereinafter referred to as solution A) to 99.9% by weight. On the other hand, a non-aqueous electrolyte mixed with 0.1% by weight of propane sultone (hereinafter referred to as solution B) was prepared. Similarly, the mixing ratios of solution A and solution B were 99.8: 0.2, 99.5: 0.5, 98.5: 1.5, 96.5: 3.5, 95.0: 5, respectively. 0.0 and 9
A non-aqueous electrolyte having a ratio of 4.0 to 6.0 was prepared.

【0022】(セパレータ): 厚さ25μm、空孔率
40%であるポリエチレン微多孔膜をセパレータとして
使用した。セパレータについても、特に制限されず、従
来から使用されている種々のセパレータを用いることが
できる。
(Separator): A microporous polyethylene membrane having a thickness of 25 μm and a porosity of 40% was used as a separator. The separator is not particularly limited, and various types of conventionally used separators can be used.

【0023】(電池): 上記正負両極、セパレータ、
電解液を巻回して電極群を構成し、幅30mm×高さ4
8mm×厚さ5mmの角型電池容器に収納し、さらに非
水電解液を注入した上でその注液口を封口して、非水電
解質電池を作製した。この電池の概略図を図1に示す。
この電池の主な構成要素は、正極3と負極4とセパレー
タ5を巻回した電極群2、電池ケース6、安全弁8、電
解液(図示せず)等である。また、本実施例において作
製した電池の種類は、炭酸リチウム量の異なる正極5種
類とプロパンスルトンの添加量が異なる電解液の7種類
の組み合わせとなり、計35種類である。 [比較例1]正極に炭酸リチウムを添加しないことを除
いては、実施例と同様の手順により電池を作製した。す
なわち、電解液中の上記A液とB液の重量比だけが異な
る7種類の電池を作製した。 [比較例2]電解液中の上記A液とB液の重量比が10
0対0、すなわち、プロパンスルトンが添加されていな
い非水電解液を用いたことを除いては、実施例と同様の
手順により電池を作製した。すなわち、正極への炭酸リ
チウム添加量だけが異なる5種類の電池を作製した。 [比較例3]正極に炭酸リチウムを添加せず、さらに非
水電解液にプロパンスルトンを添加していないことを除
いては、実施例と同様の手順により電池を作製した。
(Battery): Both positive and negative electrodes, separator,
Electrode solution is wound to form an electrode group, width 30 mm × height 4
The battery was housed in a square battery container of 8 mm x 5 mm in thickness, further filled with a non-aqueous electrolyte, and the inlet was closed to prepare a non-aqueous electrolyte battery. A schematic diagram of this battery is shown in FIG.
The main components of this battery are an electrode group 2 in which a positive electrode 3, a negative electrode 4, and a separator 5 are wound, a battery case 6, a safety valve 8, an electrolyte (not shown), and the like. In addition, the types of batteries manufactured in this example are a combination of five types of positive electrodes having different amounts of lithium carbonate and seven types of electrolytes having different amounts of propane sultone added, that is, a total of 35 types. Comparative Example 1 A battery was manufactured in the same procedure as in the example except that lithium carbonate was not added to the positive electrode. That is, seven types of batteries having different weight ratios of the solution A and the solution B in the electrolytic solution were produced. [Comparative Example 2] The weight ratio of the above solution A and solution B in the electrolytic solution was 10
A battery was fabricated in the same procedure as in the example except that 0 to 0, that is, a non-aqueous electrolyte solution to which propane sultone was not added was used. That is, five types of batteries differing only in the amount of lithium carbonate added to the positive electrode were manufactured. [Comparative Example 3] A battery was fabricated in the same manner as in Example except that lithium carbonate was not added to the positive electrode and propane sultone was not added to the nonaqueous electrolyte.

【0024】(初期容量試験): 上記実施例と比較例
の電池(各10個)を、下記条件において充放電を行
い、電池の初期容量を測定した。なお、充放電時の周囲
温度は25℃とした。 充電条件: 570mA定電流充電−終止電圧4.2V その後、4.2V定電圧充電 × 5.0h 放電条件: 570mA定電流放電−終止電圧3.0V (高温放置前後の電池厚み変化測定): 上記実施例と
比較例の電池(各5個)を、下記充電条件において充電
した後、60℃の恒温槽内に30日間放置した。放置前
の充電直後と、30日間放置後における電池厚さを測定
し、その差をもって電池厚み変化量を算出した。 充電条件: 570mA定電流充電−終止電圧4.2V その後、4.2V定電圧充電 × 5.0h なお、充電時の周囲温度は25℃とした。 (過充電試験): 上記実施例と従来例の電池(各5
個)を、下記条件での過充電試験に供した。なお、過充
電時の周囲温度は25℃とした。 過充電条件: 3.0A定電流充電 × 3.0h(連
続) そして、この過充電試験において、電池に漏液、発煙等
の異常の発生が見られるかどうかを観察した。
(Initial Capacity Test): The batteries (10 batteries each) of the above Examples and Comparative Examples were charged and discharged under the following conditions, and the initial capacities of the batteries were measured. The ambient temperature during charging and discharging was 25 ° C. Charging conditions: 570 mA constant current charge-end voltage 4.2 V, then 4.2 V constant voltage charge × 5.0 h Discharge conditions: 570 mA constant current discharge-end voltage 3.0 V (measurement of battery thickness change before and after high temperature storage): The batteries of the example and the comparative example (each 5 batteries) were charged under the following charging conditions, and then left in a 60 ° C constant temperature bath for 30 days. The battery thickness was measured immediately after charging before standing and after standing for 30 days, and the difference in battery thickness was calculated from the difference. Charging conditions: 570 mA constant current charge-final voltage 4.2 V, then 4.2 V constant voltage charge × 5.0 h The ambient temperature during charging was 25 ° C. (Overcharge test): The batteries of the above example and the conventional example (5 for each)
Were subjected to an overcharge test under the following conditions. The ambient temperature during overcharging was 25 ° C. Overcharge condition: 3.0 A constant current charge × 3.0 h (continuous) Then, in this overcharge test, it was observed whether or not abnormalities such as liquid leakage and smoke were observed in the battery.

【0025】実施例ならびに各比較例における、電池の
初期容量試験の結果を表1、表2および表3に示す。正
極への炭酸リチウムの添加量を増やすほど、正極板の容
量は減少するが、電極多孔度の調整等により、本試験電
池はいずれも570mAhになるように設計されたもの
である。表1、表2からプロパンスルトンの添加量が電
解液の重量に対して5重量%までなら容量劣化はない
が、6重量%になると容量劣化が大きくなる。これよ
り、プロパンスルトンの配合比は電解液量の5重量%以
下であることが好ましい。
Tables 1, 2 and 3 show the results of the initial capacity test of the batteries in the examples and comparative examples. As the amount of lithium carbonate added to the positive electrode increases, the capacity of the positive electrode plate decreases. However, by adjusting the electrode porosity and the like, each of the test batteries was designed to have a capacity of 570 mAh. From Tables 1 and 2, there is no capacity deterioration when the amount of propane sultone added is up to 5% by weight with respect to the weight of the electrolytic solution, but when the amount becomes 6% by weight, the capacity deterioration becomes large. Accordingly, the mixing ratio of propane sultone is preferably 5% by weight or less based on the amount of the electrolytic solution.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】次に、実施例ならびに各比較例における、
高温放置試験の結果を表4、表5および表6に示す。表
4、表6から、炭酸リチウムの添加量が多くなるほど、
電池厚みが大きくなる傾向にある。これは、CO2ガス
の発生量が多くなることにより、電池の膨れが大きくな
ったものと考えられる。そして、表4、表6から、プロ
パンスルトンの配合比を0.2重量%以上にすると、C
2ガスの発生による電池の膨れが小さくなることがわ
かった。これは、プロパンスルトンの添加により電解液
の分解が抑制され、 CO2ガスの発生が抑えられたため
と考えられる。しかし、炭酸リチウムの添加量が6.5
重量部になると、プロパンスルトン添加の有無に関わら
ず、電池の膨れが大きくなる。以上のことから、炭酸リ
チウムの添加量は5重量部以下、プロパンスルトンの配
合比は全電解液量の0.2重量%以上であることが好ま
しい。
Next, in Examples and Comparative Examples,
The results of the high-temperature storage test are shown in Tables 4, 5 and 6. From Tables 4 and 6, as the amount of lithium carbonate added increases,
Battery thickness tends to increase. This is considered to be due to the fact that the amount of generated CO 2 gas increased, and the swelling of the battery increased. From Tables 4 and 6, when the mixing ratio of propane sultone is set to 0.2% by weight or more, C
It was found that swelling of the battery due to generation of O 2 gas was reduced. This is probably because the addition of propane sultone suppressed the decomposition of the electrolytic solution and suppressed the generation of CO 2 gas. However, the amount of lithium carbonate added was 6.5.
When the amount is in parts by weight, the swelling of the battery increases irrespective of whether propane sultone is added or not. From the above, it is preferable that the addition amount of lithium carbonate is 5 parts by weight or less, and the mixing ratio of propane sultone is 0.2% by weight or more of the total electrolyte solution amount.

【0030】[0030]

【表4】 [Table 4]

【0031】[0031]

【表5】 [Table 5]

【0032】[0032]

【表6】 [Table 6]

【0033】さらに、実施例ならびに各比較例における
過充電試験の結果を表7、表8および表9に示す。過充
電試験において,表中の○は異常がなかったもの,×は
漏液または発煙したものを表す。
Tables 7, 8 and 9 show the results of the overcharge test in the examples and comparative examples. In the overcharge test, ○ in the table indicates that there was no abnormality, and X indicates that the liquid leaked or smoked.

【0034】[0034]

【表7】 [Table 7]

【0035】[0035]

【表8】 [Table 8]

【0036】[0036]

【表9】 [Table 9]

【0037】表7、表8および表9から、炭酸リチウム
が無添加、あるいは添加量が0.5重量部では、プロパ
ンスルトン添加の有無にかかわらず、電池はすべて漏液
または発煙に至った。また、炭酸リチウム添加量が1重
量部以上においては、過充電時において電池が熱暴走を
起こす前に、電気化学的な分解反応によるCO2ガスの
発生により、安全弁が正常に作動し、いずれも漏液また
は発煙までは至らなかった。この結果から、炭酸リチウ
ムの添加量は1重量部以上であることが好ましいと考え
られる。
As can be seen from Tables 7, 8 and 9, when lithium carbonate was not added or the addition amount was 0.5 part by weight, all of the batteries leaked or smoked regardless of whether propane sultone was added or not. When the amount of lithium carbonate added is 1 part by weight or more, the safety valve operates normally due to the generation of CO 2 gas due to the electrochemical decomposition reaction before the battery undergoes thermal runaway during overcharging. No leakage or fuming occurred. From this result, it is considered that the addition amount of lithium carbonate is preferably 1 part by weight or more.

【0038】以上の結果から明らかなように、炭酸リチ
ウム添加量が正極活物質100重量部に対して1重量部
以上、5重量部以下であり、且つ、プロパンスルトン添
加量が電解液量の0.2重量%以上、5重量%以下の時
に、高温放置時に電池の膨れ小さく、しかも安全性にも
優れた電池を提供することが可能となる。
As is clear from the above results, the addition amount of lithium carbonate is 1 part by weight or more and 5 parts by weight or less with respect to 100 parts by weight of the positive electrode active material, and the addition amount of propane sultone is 0% of the electrolyte amount. When the content is 0.2% by weight or more and 5% by weight or less, it becomes possible to provide a battery which is less swelled when left at high temperatures and which is excellent in safety.

【0039】本実施例においては、リチウムイオン電池
における例を示したが、電解液を含浸するポリマー電解
質を用いた非水電解質電池においても同等の効果が得ら
れる。
In this embodiment, an example of a lithium ion battery is shown, but the same effect can be obtained in a non-aqueous electrolyte battery using a polymer electrolyte impregnated with an electrolyte.

【0040】[0040]

【発明の効果】本発明にかかる第一の発明は、非水電解
質電池において、正極に炭酸リチウムを含有するととも
に、電解液にプロパンスルトンを含有することを特徴と
する。
According to a first aspect of the present invention, a nonaqueous electrolyte battery is characterized in that the positive electrode contains lithium carbonate and the electrolyte contains propane sultone.

【0041】また、本発明にかかる第二の発明は、上
記、電解液にプロパンスルトンを含有した非水電解質電
池において、正極合剤中の炭酸リチウム含有量が、正極
活物質100重量部に対して1重量部以上、5重量部以
下であることを特徴とする。
The second invention according to the present invention is directed to a non-aqueous electrolyte battery containing the above-mentioned electrolyte solution containing propane sultone, wherein the lithium carbonate content in the positive electrode mixture is based on 100 parts by weight of the positive electrode active material. And not more than 1 part by weight and not more than 5 parts by weight.

【0042】さらに、本発明にかかる第三の発明は、上
記、炭酸リチウムを含有した正極合剤を備えた非水電解
質電池において、プロパンスルトンの添加量が、電解液
量に対して0.2重量%以上、5重量%以下であること
を特徴とする。
Further, according to a third aspect of the present invention, in the above-mentioned nonaqueous electrolyte battery provided with the positive electrode mixture containing lithium carbonate, the amount of propane sultone added is 0.2 to the amount of the electrolyte. It is not less than 5% by weight and not more than 5% by weight.

【0043】以上、詳述したように、本発明は、従来の
非水電解質電池と比較して、正極に炭酸リチウムを添加
し、さらに電解液中にプロパンスルトンを添加すること
により、高温放置時において電池が膨れることなく、過
充電時の安全性にも優れた電池を提供することを可能に
した。
As described in detail above, the present invention is different from the conventional nonaqueous electrolyte battery in that lithium carbonate is added to the positive electrode and propane sultone is further added to the electrolyte to allow the battery to be left at high temperatures. Thus, it has become possible to provide a battery which does not swell and which is excellent in safety during overcharge.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一つの実施例である電池の概略構造
を示す図である。
FIG. 1 is a diagram showing a schematic structure of a battery according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 非水電解質電池 2 電極群 3 正極 4 負極 5 セパレータ 6 電池ケース 7 蓋 8 安全弁 9 正極端子 10 正極集電リード 11 金属箔 DESCRIPTION OF SYMBOLS 1 Non-aqueous electrolyte battery 2 Electrode group 3 Positive electrode 4 Negative electrode 5 Separator 6 Battery case 7 Lid 8 Safety valve 9 Positive electrode terminal 10 Positive electrode current collecting lead 11 Metal foil

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】リチウムを吸蔵・放出可能な活物質を有す
る正極と、負極と、非水電解液を備える非水電解質電池
において、正極に炭酸リチウムを含有するとともに、非
水電解液にプロパンスルトンを含有することを特徴とす
る非水電解質電池。
1. A non-aqueous electrolyte battery comprising a positive electrode having an active material capable of inserting and extracting lithium, a negative electrode, and a non-aqueous electrolyte, wherein the positive electrode contains lithium carbonate and the non-aqueous electrolyte contains propane sultone. A non-aqueous electrolyte battery comprising:
【請求項2】前記炭酸リチウムが正極活物質量100重
量部に対して1重量部以上、5重量部以下含有されるこ
とを特徴とする請求項1記載の非水電解質電池。
2. The nonaqueous electrolyte battery according to claim 1, wherein the lithium carbonate is contained in an amount of 1 part by weight or more and 5 parts by weight or less based on 100 parts by weight of the positive electrode active material.
【請求項3】前記プロパンスルトンが非水電解液中に
0.2重量%以上、5重量%以下含有されることを特徴
とする請求項1または請求項2記載の非水電解質電池。
3. The non-aqueous electrolyte battery according to claim 1, wherein the propane sultone is contained in the non-aqueous electrolyte in an amount of 0.2% by weight or more and 5% by weight or less.
JP2000118186A 2000-04-19 2000-04-19 Non-aqueous electrolyte battery Expired - Lifetime JP3448544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000118186A JP3448544B2 (en) 2000-04-19 2000-04-19 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000118186A JP3448544B2 (en) 2000-04-19 2000-04-19 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2001307773A true JP2001307773A (en) 2001-11-02
JP3448544B2 JP3448544B2 (en) 2003-09-22

Family

ID=18629376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000118186A Expired - Lifetime JP3448544B2 (en) 2000-04-19 2000-04-19 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3448544B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186792A (en) * 2007-01-31 2008-08-14 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008277106A (en) * 2007-04-27 2008-11-13 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery and battery system
US9023537B2 (en) 2010-04-09 2015-05-05 Sony Corporation Battery
US9350049B2 (en) 2013-11-28 2016-05-24 Gs Yuasa International Ltd. Electric storage device and electric storage apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456064A (en) * 1990-06-20 1992-02-24 Sony Corp Positive electrode active material licoo2 for lithium secondary battery
JPH05182667A (en) * 1991-12-28 1993-07-23 Sony Corp Manufacture of positive electrode material
JPH10267909A (en) * 1997-03-21 1998-10-09 Sumitomo Metal Mining Co Ltd Method for quantitative analysis for carbonate in positive-pole active material for non-aqueous electrolyte secondary battery
JPH11339850A (en) * 1998-05-29 1999-12-10 Nec Mori Energy Kk Lithium-ion secondary battery
JP2000003724A (en) * 1997-08-22 2000-01-07 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery using the same
JP2000123868A (en) * 1998-10-20 2000-04-28 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2000268857A (en) * 1999-03-18 2000-09-29 Toyota Central Res & Dev Lab Inc Lithium ion secondary battery
JP2001043895A (en) * 1999-05-24 2001-02-16 Ube Ind Ltd Nonaqueous electrolytic solution and lithium secondary battery using same
JP2001160417A (en) * 1999-12-06 2001-06-12 Mitsubishi Chemicals Corp Nonaqueous electrolyte liquid rechargeable battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456064A (en) * 1990-06-20 1992-02-24 Sony Corp Positive electrode active material licoo2 for lithium secondary battery
JPH05182667A (en) * 1991-12-28 1993-07-23 Sony Corp Manufacture of positive electrode material
JPH10267909A (en) * 1997-03-21 1998-10-09 Sumitomo Metal Mining Co Ltd Method for quantitative analysis for carbonate in positive-pole active material for non-aqueous electrolyte secondary battery
JP2000003724A (en) * 1997-08-22 2000-01-07 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery using the same
JPH11339850A (en) * 1998-05-29 1999-12-10 Nec Mori Energy Kk Lithium-ion secondary battery
JP2000123868A (en) * 1998-10-20 2000-04-28 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2000268857A (en) * 1999-03-18 2000-09-29 Toyota Central Res & Dev Lab Inc Lithium ion secondary battery
JP2001043895A (en) * 1999-05-24 2001-02-16 Ube Ind Ltd Nonaqueous electrolytic solution and lithium secondary battery using same
JP2001160417A (en) * 1999-12-06 2001-06-12 Mitsubishi Chemicals Corp Nonaqueous electrolyte liquid rechargeable battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186792A (en) * 2007-01-31 2008-08-14 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008277106A (en) * 2007-04-27 2008-11-13 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery and battery system
US9023537B2 (en) 2010-04-09 2015-05-05 Sony Corporation Battery
US9350049B2 (en) 2013-11-28 2016-05-24 Gs Yuasa International Ltd. Electric storage device and electric storage apparatus

Also Published As

Publication number Publication date
JP3448544B2 (en) 2003-09-22

Similar Documents

Publication Publication Date Title
JP4608735B2 (en) Non-aqueous electrolyte secondary battery charging method
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP6198684B2 (en) Lithium secondary battery
WO2008147751A1 (en) Non-aqueous electrolytes and electrochemical devices including the same
JP2000058117A (en) Nonaqueous secondary battery
JP4396082B2 (en) Non-aqueous electrolyte secondary battery and electrical equipment
JP3820748B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JPH087926A (en) Nonaqueous electrolytic secondary cell
JP5205863B2 (en) Non-aqueous electrolyte secondary battery
JP4915025B2 (en) Nonaqueous electrolyte and lithium secondary battery
JP2004228019A (en) Nonaqueous electrolyte secondary battery
JP3448544B2 (en) Non-aqueous electrolyte battery
JP2000149996A (en) Manufacture of nonaqueous electrolyte secondary battery
JP4795509B2 (en) Non-aqueous electrolyte battery
JP2002313418A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP4016497B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4147691B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2002110251A (en) Lithium ion secondary battery
JP2001185143A (en) Secondary battery using non-aqueous electrolyte and its battery pack
JP2000149987A (en) Nonaqueous electrolyte solution and lithium secondary battery using it
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2004063145A (en) Secondary battery using non-aqueous electrolyte
JP2000323173A (en) Nonaqueous secondary battery
JP2003077478A (en) Lithium ion secondary battery
JPH1131527A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7