JP2001300314A - Manufacture of catalyst for ammonia regeneration type hydrogen production and modification condition - Google Patents

Manufacture of catalyst for ammonia regeneration type hydrogen production and modification condition

Info

Publication number
JP2001300314A
JP2001300314A JP2000125596A JP2000125596A JP2001300314A JP 2001300314 A JP2001300314 A JP 2001300314A JP 2000125596 A JP2000125596 A JP 2000125596A JP 2000125596 A JP2000125596 A JP 2000125596A JP 2001300314 A JP2001300314 A JP 2001300314A
Authority
JP
Japan
Prior art keywords
ammonia
metal
nitrogen
iron
occluding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000125596A
Other languages
Japanese (ja)
Inventor
Kinya Adachi
足立吟也
Kenichi Machida
町田憲一
Masahiro Ito
伊東正浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000125596A priority Critical patent/JP2001300314A/en
Publication of JP2001300314A publication Critical patent/JP2001300314A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Abstract

PROBLEM TO BE SOLVED: To produce hydrogen from ammonia at low temperatures with high conversion rates by using a multiple body of a nitrogen occluding metal such as iron and an oxide of a rare metal or the like as an ammonia reforming catalyst and to inexpensively regenerate ammonia by occluding nitrogen generated at the time of ammonia reforming in the nitrogen occluding metal in a form of a metal nitride and reacting the occluded nitrogen with hydrogen. SOLUTION: The multiple body of the nitrogen occluding metal such as iron and RxOy (R represents an rare earth metal, a transition metal or an alkaline earth metal) is used as the ammonia reforming catalyst. The nitrogen occluding metal such as iron is used as the storage medium of nitrogen generated in the ammonia decomposition and the stored nitrogen is used as a nitrogen source in the regeneration of ammonia. The activation of iron metal or the like by the oxide and the aggregation of metallic powder in the reaction process are suppressed by combining the nitrogen occluding metal with the oxide of the rare earth metal or the like. The subsequent ammonia regeneration is facilitated by occluding nitrogen generated in the ammonia decomposition in the form of the metal nitride and utilizing the high reactivity of the occluded nitrogen.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、前記の窒素吸蔵性金属
と酸化物との複合体からなるアンモニア改質触媒を用い
て、アンモニアから燃料電池等の燃料ガスである水素を
製造する技術、また改質反応過程において発生する窒素
を窒素吸蔵性のある金属により窒化物の形で貯蔵し、ア
ンモニア改質反応後、吸蔵された窒素の高い反応性を利
用し、水素との反応によりアンモニアとして再生する技
術に関する。
BACKGROUND OF THE INVENTION The present invention relates to a technique for producing hydrogen as a fuel gas for a fuel cell or the like from ammonia using an ammonia reforming catalyst comprising a composite of the above-mentioned nitrogen storage metal and an oxide. In addition, the nitrogen generated in the reforming reaction process is stored in the form of a nitride with a metal that has nitrogen storage properties, and after the ammonia reforming reaction, the high reactivity of the stored nitrogen is used to react with hydrogen to produce ammonia. Reproduction technology.

【0002】[0002]

【従来の技術】従来、燃料電池へ燃料ガスである水素ガ
スを供給する手法として、数気圧、常温付近で液体であ
り、高密度に水素原子を含有するアンモニアを改質する
ことで水素を供給する技術がある。しかし、原料ガスで
あるアンモニアの製造は、ハーバー・ボッシュ法等によ
り、500℃、200気圧程度といった高温、高圧の条
件下で行われ、その製造には多大なエネルギーが必要と
されるため、製造コストの高いアンモニア燃料電池は他
の炭化水素系と比べ不利と考えられていた。
2. Description of the Related Art Conventionally, as a method of supplying hydrogen gas as a fuel gas to a fuel cell, hydrogen is supplied by reforming ammonia which is liquid at several atmospheric pressures and around room temperature and contains hydrogen atoms at high density. There is technology to do. However, the production of ammonia, which is a raw material gas, is performed under high temperature and high pressure conditions of about 500 ° C. and about 200 atm by the Haber-Bosch method or the like, and the production requires a large amount of energy. High cost ammonia fuel cells were considered disadvantageous compared to other hydrocarbon systems.

【0003】[0003]

【発明が解決しようという課題】アンモニア改質により
水素を製造する際、改質時に生成する窒素はそのまま破
棄され、再利用されない。また、原料ガスであるアンモ
ニアを新しく補給するには、鉄系の三元触媒を用いて、
水素と窒素から高温、高圧の反応条件下でアンモニアを
製造しなければならない。
When hydrogen is produced by ammonia reforming, nitrogen generated during reforming is discarded as it is and is not reused. In addition, in order to replenish ammonia as a raw material gas, an iron-based three-way catalyst is used,
Ammonia must be produced from hydrogen and nitrogen under high-temperature, high-pressure reaction conditions.

【0004】[0004]

【課題を解決するための手段】前記の課題を解決するた
めには、アンモニア改質時に生成する窒素を前記の触媒
の構成成分である窒素吸蔵性の金属に金属窒化物の形で
吸蔵させ、金属中に吸蔵された窒素の高い反応活性を利
用することで、常圧下水素との反応によりアンモニアと
して再生する。
In order to solve the above-mentioned problems, nitrogen generated during ammonia reforming is occluded in the form of a metal nitride by a nitrogen-absorbing metal which is a component of the catalyst, By utilizing the high reaction activity of nitrogen stored in the metal, it is regenerated as ammonia by reaction with hydrogen under normal pressure.

【0005】[0005]

【作用】 本発明では、従来アンモニア改質による水素
製造の際に、破棄されていた窒素を改質触媒の構成成分
である金属に金属窒化物の形で吸蔵し、安価にアンモニ
アとして再生できる。
According to the present invention, when producing hydrogen by ammonia reforming in the past, nitrogen, which has been discarded, is occluded in the form of metal nitride in the metal constituting the reforming catalyst, and can be regenerated as ammonia at low cost.

【0006】また、再生されたアンモニアを改質するこ
とにより再び水素を製造することができ、アンモニアを
貯蔵媒体として繰り返し水素を供給できる。
Further, hydrogen can be produced again by reforming the regenerated ammonia, and hydrogen can be supplied repeatedly using ammonia as a storage medium.

【0007】[0007]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0008】窒素吸蔵性の金属として鉄を、複合体とす
る酸化物としてを酸化セリウムを用いた複合体粉末を図
2に示す工程に従って作製した。ここで得られる複合体
の鉄金属と酸化セリウムの組成は、鉄とセリウムの硝酸
塩溶液のそれぞれの濃度を変えることで、任意に選ぶこ
とが出来る。
A composite powder using iron as the nitrogen-storing metal and cerium oxide as the composite oxide was prepared according to the process shown in FIG. The composition of the iron metal and cerium oxide of the composite obtained here can be arbitrarily selected by changing the respective concentrations of the nitrate solution of iron and cerium.

【0009】鉄、セリウムの金属比で10:1の複合体
粉末についてアンモニア分解活性を評価した。評価法と
しては、試料1gを反応管に充填し、NH3/He(NH3:He
=5:95体積比)の混合ガスを30ml/分の流速で試料
に供給し、150℃から600℃の温度範囲で反応を行
い、分解後のガスをガスクロマトグラフにより解析し、
アンモニアに帰属される成分ピークの面積変化からアン
モニア分解活性を測定した。比較として同様に硝酸塩よ
り作製した鉄単独の粉末についても同条件下でアンモニ
ア分解活性を評価した。
The ammonia decomposition activity of a composite powder having a metal ratio of iron to cerium of 10: 1 was evaluated. As an evaluation method, 1 g of a sample is filled in a reaction tube, and NH 3 / He (NH 3 : He
= 5: 95 volume ratio) to the sample at a flow rate of 30 ml / min, react in a temperature range of 150 ° C. to 600 ° C., analyze the gas after decomposition by gas chromatography,
The ammonia decomposition activity was measured from the change in the area of the component peak attributed to ammonia. As a comparison, the ammonia decomposition activity was evaluated under the same conditions for a powder of iron alone prepared from nitrate.

【0010】図3に鉄酸化セリウム複合体、鉄微粉末の
アンモニア分解活性を示す。鉄酸化セリウム複合体粉末
は鉄単独のそれと比べ低温領域でアンモニアを水素と窒
素に100%転化し、アンモニア改質触媒として有効に
機能することが確認された。反応後の各試料のSEM観察
から複合体粉末については粉末の凝集は見られず、良好
な微粉末形態を維持していたが、反応後の鉄単独の粉末
については二次粒子のサイズが500マイクロメータに
及ぶものも観察された。鉄を酸化物との複合体とするこ
とで反応過程における鉄の凝集を抑制することから、ア
ンモニア改質触媒として優れた活性が得られる。
FIG. 3 shows the ammonia decomposition activity of the iron-cerium oxide composite and iron fine powder. It was confirmed that the iron-cerium oxide composite powder converted ammonia to hydrogen and nitrogen by 100% in a low temperature region as compared with that of iron alone, and effectively functioned as an ammonia reforming catalyst. From the SEM observation of each sample after the reaction, no aggregation of the powder was observed for the composite powder, and a good fine powder morphology was maintained, but for the powder of iron alone after the reaction, the size of the secondary particles was 500 Something down to the micrometer was also observed. By forming iron in a complex with an oxide, iron coagulation in the reaction process is suppressed, so that excellent activity as an ammonia reforming catalyst can be obtained.

【0011】[0011]

【表1】表1 鉄酸化セリウム複合体の窒素吸蔵および
アンモニア再生特性 *CeO2-Fe複合体中の鉄の体積1m3あたり再生されたア
ンモニア量(標準状態)
Table 1 Nitrogen storage and ammonia regeneration characteristics of cerium oxide composite * Amount of ammonia regenerated per 1 m 3 of iron in CeO 2 -Fe composite (standard condition)

【0012】表1に、鉄酸化セリウム複合体粉末(金属
比で、鉄:セリウム=5:1)をアンモニア気流中、4
50℃、3時間加熱処理することで窒素を吸蔵させ、引
き続き、水素気流中、450℃、3時間で窒素をアンモ
ニアとして放出させた際の結果を示す。表より、窒化し
た鉄酸化セリウム複合体粉末は、その後の水素処理によ
り複合体の単位体積(1m3)当たり1192m3(標準
状態)のアンモニアを再生可能であることが判る。な
お、アンモニア再生量は、窒素吸蔵ならびに水素処理後
の試料の窒素含有量から算出した値である。また、金属
窒化物として金属中に吸蔵された窒素が原子状で存在
し、高い反応性を有すことから、放出された窒素のほぼ
100%がアンモニアとして再生されることを、水素処
理過程(アンモニア生成過程)における放出ガスの定
性、定量分析により確認している。
Table 1 shows that cerium oxide composite powder (iron: cerium = 5: 1 in terms of metal ratio) was mixed with ammonia powder in an ammonia gas stream.
The results obtained when nitrogen was occluded by heat treatment at 50 ° C. for 3 hours, and subsequently nitrogen was released as ammonia at 450 ° C. for 3 hours in a hydrogen stream. From the table, it is found that the nitrided cerium oxide composite powder can regenerate 1192 m 3 (standard state) of ammonia per unit volume (1 m 3 ) of the composite by the subsequent hydrogen treatment. The ammonia regeneration amount is a value calculated from the nitrogen content of the sample after nitrogen storage and hydrogen treatment. Further, since nitrogen absorbed in the metal as metal nitride is present in an atomic state and has high reactivity, almost 100% of the released nitrogen is regenerated as ammonia. Qualitative and quantitative analysis of the released gas during the ammonia generation process).

【0013】図4は、図2の操作により得られた複合体
の粉末X線回折図を示したものである。図より、混合溶
液から回収した沈殿物を水素中、500℃で5時間還元
後、アンモニア中、450℃で3時間窒化することで、
酸化セリウム(CeO2)と鉄窒化物(Fe3N)からなる複合
体(図3b参照)となり、さらに水素中、450℃で3
時間することで、酸化セリウム(CeO2)と鉄金属(Fe)
からなる複合体(図4c参照)となることがわかる。こ
のことより、CeO2との複合化により微粒子化または高分
散された鉄の金属が、効率的なアンモニア分解および窒
素の吸蔵放出を担っていることが判る。
FIG. 4 is a powder X-ray diffraction diagram of the composite obtained by the operation of FIG. From the figure, the precipitate recovered from the mixed solution was reduced in hydrogen at 500 ° C. for 5 hours, and then nitrided in ammonia at 450 ° C. for 3 hours.
A composite composed of cerium oxide (CeO 2 ) and iron nitride (Fe 3 N) (see FIG. 3B) was obtained.
With time, cerium oxide (CeO 2 ) and iron metal (Fe)
(See FIG. 4c). This indicates that the iron metal finely divided or highly dispersed by complexing with CeO 2 is responsible for efficient ammonia decomposition and storage and release of nitrogen.

【0014】[0014]

【発明の効果】本発明は、上記の窒素吸蔵性金属と酸化
物との複合体からなるアンモニア改質触媒を用いて、ア
ンモニアから水素を製造し、改質反応過程において発生
する窒素は、従来そのまま破棄されていたものである
が、本発明ではこれらの窒素を触媒の構成成分である窒
素吸蔵性の金属により金属窒化物の形で金属中に吸蔵
し、吸蔵窒素の高い反応性を利用することで、アンモニ
ア改質反応後、常圧下で水素との反応によりアンモニア
とし、再びこれをアンモニア改質による水素製造の原料
ガスとして使用する。以上のことからアンモニアを水素
の貯蔵媒体とすることで、アンモニアの改質により繰り
返し水素を供給するシステムを構築することができる。
According to the present invention, hydrogen is produced from ammonia using an ammonia reforming catalyst comprising a composite of a nitrogen storage metal and an oxide as described above. Although it has been discarded as it is, in the present invention, these nitrogen are occluded in the metal in the form of a metal nitride by a nitrogen storage metal which is a component of the catalyst, and the high reactivity of the stored nitrogen is utilized. Thus, after the ammonia reforming reaction, ammonia is formed by reaction with hydrogen under normal pressure, and this is used again as a raw material gas for hydrogen production by ammonia reforming. From the above, by using ammonia as a hydrogen storage medium, a system for repeatedly supplying hydrogen by reforming ammonia can be constructed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】窒素吸蔵性金属と酸化物との複合体を用いたア
ンモニア改質による水素の製造工程と金属窒化物として
吸蔵された窒素をアンモニアとして再生するシステムの
工程図である。
FIG. 1 is a process diagram of a process for producing hydrogen by ammonia reforming using a composite of a nitrogen storage metal and an oxide and a system for regenerating nitrogen stored as metal nitride as ammonia.

【図2】鉄とセリウムの硝酸溶液から作製される鉄金属
と酸化セリウムとの複合体の工程図を示したものであ
る。
FIG. 2 shows a process chart of a composite of iron metal and cerium oxide prepared from a nitric acid solution of iron and cerium.

【図3】鉄と酸化セリウム複合体粉末と鉄金属粉末のア
ンモニア分解活性を示したものである。
FIG. 3 shows the ammonia decomposition activity of iron-cerium oxide composite powder and iron metal powder.

【図4】図2で得られた複合体の試料調整後、窒素吸蔵
後、水素処理によるアンモニア再生後の試料の粉末X線
回折図を示したものである。
FIG. 4 is a powder X-ray diffraction diagram of a sample of the composite obtained in FIG. 2 after preparation of the sample, storage of nitrogen, and regeneration of ammonia by hydrogen treatment.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/00 304 C22C 38/00 304 // H01M 8/06 H01M 8/06 R (72)発明者 町田憲一 大阪府箕面市粟生間谷西1丁目4番5− 401号 (72)発明者 伊東正浩 兵庫県西宮市江上町2−12−203号室 Fターム(参考) 4G069 AA02 AA08 BB02A BB04A BB06B BC01A BC08A BC29A BC38A BC43B CC32 DA06 FA01 FB14 FB44 4K020 AA21 AC06 AC07 BB32 BC03 5H027 AA02 BA01 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/00 304 C22C 38/00 304 // H01M 8/06 H01M 8/06 R (72) Inventor Machida Kenichi 1-4-5-1 Aowamatanishi, Minoh-shi, Osaka (72) Inventor Masahiro Ito Room 2-12-203, Egami-cho, Nishinomiya-shi, Hyogo F-term (reference) 4G069 AA02 AA08 BB02A BB04A BB06B BC01A BC08A BC29A BC38A BC43B CC32 DA06 FA01 FB14 FB44 4K020 AA21 AC06 AC07 BB32 BC03 5H027 AA02 BA01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】窒素吸蔵能を有する金属(アルカリ土類金
属、アルカリ金属、遷移金属および希土類金属)もしく
はこれらの金属を少なくとも一種以上含む合金とアルカ
リ土類金属、アルカリ金属、遷移金属および希土類金属
の酸化物との複合体(酸化物含有量50原子%以下)か
らなるアンモニア改質触媒。
1. A metal having a nitrogen storage capacity (alkaline earth metal, alkali metal, transition metal and rare earth metal) or an alloy containing at least one of these metals, and an alkaline earth metal, an alkali metal, a transition metal and a rare earth metal An ammonia reforming catalyst comprising a composite with an oxide of (a content of oxide of 50 atomic% or less).
【請求項2】請求項1におけるアンモニア改質による水
素の製造。
2. The production of hydrogen by ammonia reforming according to claim 1.
【請求項3】請求項1におけるアンモニア改質の際に生
じる窒素を触媒の構成成分である金属の窒化により金属
窒化物の形で吸蔵せしめると共に、金属中に吸蔵された
窒素の高い反応性を利用し、水素との反応によりアンモ
ニアとして再生することで、再び水素製造の原料ガスと
して利用する技術。
3. The method according to claim 1, wherein nitrogen generated during the reforming of ammonia is occluded in the form of a metal nitride by nitriding a metal which is a component of the catalyst, and the high reactivity of the nitrogen occluded in the metal is ensured. Utilizing it and regenerating it as ammonia by reacting with hydrogen, it is used again as a raw material gas for hydrogen production.
JP2000125596A 2000-04-26 2000-04-26 Manufacture of catalyst for ammonia regeneration type hydrogen production and modification condition Pending JP2001300314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000125596A JP2001300314A (en) 2000-04-26 2000-04-26 Manufacture of catalyst for ammonia regeneration type hydrogen production and modification condition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000125596A JP2001300314A (en) 2000-04-26 2000-04-26 Manufacture of catalyst for ammonia regeneration type hydrogen production and modification condition

Publications (1)

Publication Number Publication Date
JP2001300314A true JP2001300314A (en) 2001-10-30

Family

ID=18635520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000125596A Pending JP2001300314A (en) 2000-04-26 2000-04-26 Manufacture of catalyst for ammonia regeneration type hydrogen production and modification condition

Country Status (1)

Country Link
JP (1) JP2001300314A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303482A (en) * 2003-03-28 2004-10-28 Mitsui Eng & Shipbuild Co Ltd Fuel cell power generation process and fuel cell system
WO2010032790A1 (en) 2008-09-17 2010-03-25 株式会社日本触媒 Catalyst for ammonia decomposition, process for producing same, and method of treating ammonia
JP2010094668A (en) * 2008-09-17 2010-04-30 Nippon Shokubai Co Ltd Catalyst for ammonia decomposition, process for producing the same, and method for treating ammonia
JP2010241675A (en) * 2009-03-17 2010-10-28 Nippon Shokubai Co Ltd Method of manufacturing hydrogen
JP2011040362A (en) * 2009-07-14 2011-02-24 Kansai Electric Power Co Inc:The Fuel electrode for solid oxide fuel cell, solid oxide fuel cell, and operation method of solid oxide fuel cell
US8962518B2 (en) 2009-03-17 2015-02-24 Nippon Shokubai Co., Ltd. Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst and process for combusting ammonia using the catalyst
JP2016538127A (en) * 2013-12-10 2016-12-08 中国科学院大▲連▼化学物理研究所Dalian Institute Of Chemical Physics,Chinese Academy Of Sciences Catalysts for ammonia synthesis and ammonia decomposition
KR20200024279A (en) * 2017-07-03 2020-03-06 빅토리아 링크 엘티디 Method for manufacturing ammonia and apparatus for producing ammonia
KR20210052938A (en) 2019-11-01 2021-05-11 (주)원익머트리얼즈 Ruthenium-based ammonia decomposition catalyst and preparation method thereof
KR20230156189A (en) 2022-05-04 2023-11-14 (주)원익머트리얼즈 Method for producing a non-noble metal-based catalyst for decomposition of ammonia, and a non-noble metal-based catalyst for decomposition of ammonia prepared by the method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303482A (en) * 2003-03-28 2004-10-28 Mitsui Eng & Shipbuild Co Ltd Fuel cell power generation process and fuel cell system
JP4605992B2 (en) * 2003-03-28 2011-01-05 三井造船株式会社 Fuel cell power generation process and fuel cell system
KR20110055722A (en) 2008-09-17 2011-05-25 니폰 쇼쿠바이 컴파니 리미티드 Catalyst for ammonia decomposition, process for producing same, and method of treating ammonia
WO2010032790A1 (en) 2008-09-17 2010-03-25 株式会社日本触媒 Catalyst for ammonia decomposition, process for producing same, and method of treating ammonia
JP2010094668A (en) * 2008-09-17 2010-04-30 Nippon Shokubai Co Ltd Catalyst for ammonia decomposition, process for producing the same, and method for treating ammonia
JP2010241675A (en) * 2009-03-17 2010-10-28 Nippon Shokubai Co Ltd Method of manufacturing hydrogen
US8962518B2 (en) 2009-03-17 2015-02-24 Nippon Shokubai Co., Ltd. Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst and process for combusting ammonia using the catalyst
US10857523B2 (en) 2009-03-17 2020-12-08 Nippon Shokubai Co., Ltd. Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst and process for combusting ammonia using the catalyst
JP2011040362A (en) * 2009-07-14 2011-02-24 Kansai Electric Power Co Inc:The Fuel electrode for solid oxide fuel cell, solid oxide fuel cell, and operation method of solid oxide fuel cell
JP2016538127A (en) * 2013-12-10 2016-12-08 中国科学院大▲連▼化学物理研究所Dalian Institute Of Chemical Physics,Chinese Academy Of Sciences Catalysts for ammonia synthesis and ammonia decomposition
KR20200024279A (en) * 2017-07-03 2020-03-06 빅토리아 링크 엘티디 Method for manufacturing ammonia and apparatus for producing ammonia
KR102530323B1 (en) 2017-07-03 2023-05-09 빅토리아 링크 엘티디 Method for producing ammonia and apparatus for producing ammonia
KR20210052938A (en) 2019-11-01 2021-05-11 (주)원익머트리얼즈 Ruthenium-based ammonia decomposition catalyst and preparation method thereof
KR20230156189A (en) 2022-05-04 2023-11-14 (주)원익머트리얼즈 Method for producing a non-noble metal-based catalyst for decomposition of ammonia, and a non-noble metal-based catalyst for decomposition of ammonia prepared by the method

Similar Documents

Publication Publication Date Title
Shi et al. Catalytic oxidation of carbon monoxide by platinum cluster anions
JP6890788B2 (en) Methods for Producing Transition Metal-Supported Intermetallic Compounds, Supported Metal Catalysts, and Ammonia
Lototsky et al. Surface-modified advanced hydrogen storage alloys for hydrogen separation and purification
JP2001520316A (en) Nanocomposites with activated interfaces created by mechanical grinding of magnesium hydride and applications for storing hydrogen
JP2002526658A (en) Lithium-based hydrogen storage composition
JP2002526255A (en) Reversible hydrogen storage composition
JP2001300314A (en) Manufacture of catalyst for ammonia regeneration type hydrogen production and modification condition
Song et al. Hydrogen storage properties of MgH 2 co-catalyzed by LaH 3 and NbH
Tao et al. First-principles predictions of potential hydrogen storage materials: nanosized Ti (core)/Mg (shell) hydrides
CA1241181A (en) Method of separating and purifying hydrogen
JPH08291391A (en) Surface treatment of hydrogen occlusion alloy material, activation treatment of hydrogen occlusion alloy electrode, activating solution, and hydrogen occlusion alloy electrode having excellent initial activity
JP4121711B2 (en) Hydrogen storage metal-containing material and method for producing the same
JP6737455B2 (en) Laves phase intermetallic compound, catalyst using intermetallic compound, and ammonia production method
JP2004523459A (en) How to use molybdenum carbide catalyst
JP2019126776A (en) Catalyst for ammonia synthesis and method for ammonia synthesis using the same
TWI413549B (en) Method for manufacturing catalyst for hydrogen generation
JP7090253B2 (en) Method for producing intermetallic compounds, hydrogen absorption / release materials, catalysts and ammonia
JP2002309331A (en) Hydrogen occlusing/discharging material and its manufacturing method
JP2010142804A (en) Method for activating or regenerating hydrogen absorption material
KR20100012716A (en) Transition metal based catalysts including phosphorus for hydrogen generation from hydrolysis of ammonia-borane and manufacturing method thereof
JP4835824B2 (en) Hydride composite, hydrogen storage material, and production method thereof
JP2002201001A (en) Stabilization method for metal complex hydride water solution
CN114684783B (en) Additive capable of improving hydrogen storage performance of lithium magnesium nitrogen hydride and preparation and application thereof
EP4194088A1 (en) Ammonia synthesis composite catalyst, and method for manufacturing ammonia
JP7417026B1 (en) Hydrogen production catalyst and its production method, and hydrogen production method