JPH08291391A - Surface treatment of hydrogen occlusion alloy material, activation treatment of hydrogen occlusion alloy electrode, activating solution, and hydrogen occlusion alloy electrode having excellent initial activity - Google Patents

Surface treatment of hydrogen occlusion alloy material, activation treatment of hydrogen occlusion alloy electrode, activating solution, and hydrogen occlusion alloy electrode having excellent initial activity

Info

Publication number
JPH08291391A
JPH08291391A JP8059978A JP5997896A JPH08291391A JP H08291391 A JPH08291391 A JP H08291391A JP 8059978 A JP8059978 A JP 8059978A JP 5997896 A JP5997896 A JP 5997896A JP H08291391 A JPH08291391 A JP H08291391A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
hydrogen
activation
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8059978A
Other languages
Japanese (ja)
Other versions
JP3337189B2 (en
Inventor
Shinichi Towata
真一 砥綿
Kazuhiko Ito
一彦 伊東
Hiroaki Kadoura
弘明 門浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP05997896A priority Critical patent/JP3337189B2/en
Publication of JPH08291391A publication Critical patent/JPH08291391A/en
Application granted granted Critical
Publication of JP3337189B2 publication Critical patent/JP3337189B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To provide a surface treatment method for a hydrogen occlusion alloy mate rial having excellent surface activity or a hydrogen occlusion alloy material for obtaining electrodes, or an activation treatment method or activation method therefor, an activating soln. used for the same and a hydrogen occlusion alloy electrode having excellent initial activity. CONSTITUTION: The surface treatment method for the hydrogen occlusion alloy material by bringing a surface treating liquid, such as NH4 F.HF soln., into contact with the hydrogen occlusion allay material to remove surface activity-hindering materials, such as oxide, and forming surface active parts consisting of fine ruggedness and/or fine cracks in the hydrogen occlusion part and/or hydrogen passage part on the surface of the hydrogen occlusion alloy material, the activation treatment method for the hydrogen occlusion alloy electrode and the hydrogen occlusion alloy electrode having the excellent initial activity. The method for activating the alloy by automatically precipitating the active metal on the alloy surface by utilizing a difference in ionization tendencies and the activating soln. used for the same.

Description

【発明の詳細な説明】Detailed Description of the Invention 【発明の属する技術分野】TECHNICAL FIELD OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金材料の表
面処理方法、水素吸蔵合金電極の活性化処理方法、水素
吸蔵合金の活性化方法、それに用いる活性化溶液、およ
び初期活性に優れた水素吸蔵合金電極に関するものであ
る。
INDUSTRIAL APPLICABILITY The present invention is excellent in a surface treatment method for a hydrogen storage alloy material, an activation treatment method for a hydrogen storage alloy electrode, a hydrogen storage alloy activation method, an activation solution used therefor, and an excellent initial activity. The present invention relates to a hydrogen storage alloy electrode.

【0002】[0002]

【従来の技術】従来より、水素吸蔵合金は、不活性ガス
雰囲気または真空雰囲気中で溶解し、金型に鋳込んで鋳
造材とした後、900〜1100℃の温度で長期間の均
質化熱処理を行い、その後、Arガス等の不活性ガス雰
囲気中で機械的な粉砕又は/及び水素の吸蔵放出を所定
の粒径が得られるまで繰り返す方法で製造されている。
最近では、不活性ガスを用いたガスアトマイズ法を採用
して、原料を溶解して溶湯をガスアトマイズすることに
より、粉末を容易に製造することが試みられている。と
ころが、水素吸蔵合金は、活性な金属元素を多く含んで
いるため、粉末表面は酸化され易く酸化層が形成され、
この酸化層によって水素化反応が阻害されてしまう。特
に、ガスアトマイズ法により製造した粉末は、酸化層が
厚く形成されるため、粉砕粉よりも水素吸蔵材として用
いる初期における水素吸蔵が困難である。
2. Description of the Related Art Conventionally, a hydrogen storage alloy is melted in an inert gas atmosphere or a vacuum atmosphere, cast into a mold to form a cast material, and then homogenized at a temperature of 900 to 1100 ° C. for a long period of time. After that, mechanical pulverization and / or hydrogen absorption / desorption in an inert gas atmosphere such as Ar gas are repeated until a predetermined particle size is obtained.
Recently, it has been attempted to easily produce a powder by adopting a gas atomizing method using an inert gas and melting a raw material to gas atomize a molten metal. However, since the hydrogen storage alloy contains many active metal elements, the powder surface is easily oxidized and an oxide layer is formed,
This oxide layer hinders the hydrogenation reaction. In particular, the powder produced by the gas atomization method has a thick oxide layer, so that it is more difficult to occlude hydrogen in the initial stage of use as a hydrogen occluding material than pulverized powder.

【0003】従って、これら水素吸蔵合金に水素を吸蔵
させるためには、高温で真空脱気し、高圧水素を導入し
て活性化させる処理を多数回繰返す初期活性化処理が必
要となり、水素活性化処理は煩雑でコスト高であるとい
う問題があった。
Therefore, in order to store hydrogen in these hydrogen storage alloys, it is necessary to carry out an initial activation treatment in which vacuum degassing at high temperature and introduction of high pressure hydrogen for activation are repeated many times. There is a problem that the processing is complicated and the cost is high.

【0004】そこで、これら問題を解決するために、弗
化金属化合物の過飽和水溶液や酸、アルカリ溶液中に浸
漬処理する方法が多数提案されている。
In order to solve these problems, a number of methods have been proposed in which the metal fluoride compound is immersed in a supersaturated aqueous solution, an acid or an alkaline solution.

【0005】例えば、K3 AlF6 などの弗化金属化合
物の過飽和水溶液を薬液として金属材を処理することに
より、この金属材の表面又は表層部を高活性化する「金
属材の活性化処理法」(特開平5−213601号公
報)が提案されている。これにより、金属材を容易に活
性化することができ、従来のような高温高真空脱気や高
温高圧での多数回の活性化処理を大幅に緩和することが
できるとしている。また、活性化された金属材を大気中
で安定化でき、取扱い易い処理法を提供できるとしてい
る。
For example, by treating a metal material with a supersaturated aqueous solution of a metal fluoride compound such as K 3 AlF 6 as a chemical solution, the surface or surface layer portion of the metal material is highly activated. (Japanese Patent Laid-Open No. 5-213601) has been proposed. As a result, the metal material can be easily activated, and the conventional high-temperature, high-vacuum deaeration and the activation treatment under high temperature and high pressure many times can be significantly eased. In addition, it is said that the activated metal material can be stabilized in the air and a treatment method that is easy to handle can be provided.

【0006】また、他の方法として、塩酸処理を施した
水素吸蔵合金粒子からなる「水素吸蔵合金電極」(特開
平5−225975号公報)が提案されている。これよ
り、水素吸蔵合金電極を構成する水素吸蔵合金の粒子
は、塩酸処理によって表面の酸化被膜が除去されている
ので、これを負極とした電池の初期活性化に際し、初回
放電容量が増加し、初期活性化に要する充放電サイクル
数が減少するとしている。
As another method, there has been proposed a "hydrogen storage alloy electrode" (Japanese Patent Laid-Open No. 225975/1993) comprising hydrogen storage alloy particles treated with hydrochloric acid. From this, the particles of the hydrogen storage alloy constituting the hydrogen storage alloy electrode, since the oxide film on the surface is removed by the hydrochloric acid treatment, during the initial activation of the battery using this as the negative electrode, the initial discharge capacity increases, The number of charge / discharge cycles required for initial activation is said to decrease.

【0007】また、他の方法として、Zr−Ni系で一
般式がABα(α=1.5〜2.5)で表され、合金層
が実質的に金属間化合物のLaves相に属し、その結
晶構造が六方晶のC14型または(および)立方晶のC
15型である水素吸蔵合金粉末を結着剤とともに電極と
した後、100〜120℃のアルカリ溶液に浸漬した
「水素吸蔵合金電極の製造法」(特開平5−13576
5号公報)が提案されている。これより、水素吸蔵合金
電極の初期活性を向上させ、利用率、寿命特性も向上さ
せることができるとしている。
As another method, in the Zr-Ni system, the general formula is represented by ABα (α = 1.5 to 2.5), and the alloy layer substantially belongs to the Laves phase of the intermetallic compound. Hexagonal C14 type and / or cubic C
"Method for producing hydrogen storage alloy electrode" in which 15-type hydrogen storage alloy powder was made into an electrode together with a binder and then immersed in an alkaline solution at 100 to 120 ° C (JP-A-5-13576).
No. 5) has been proposed. As a result, the initial activity of the hydrogen storage alloy electrode can be improved, and the utilization rate and life characteristics can be improved.

【0008】特開昭60−190570号公報には水素
吸蔵合金粉末の表面に還元剤を用いる自己触媒型の湿式
無電解めっき方法により銅および/またはニッケル金属
を被覆することを特徴とする水素吸蔵合金の製造方法が
開示されている。特開平5−144434号公報には水
素吸蔵合金を導電性支持体に圧着後、湿式電気めっき法
もしくは無電解めっき法により、銅、鉄、ニッケル、コ
バルトおよびパラジウムの少なくとも1種を析出させる
か、或いは水素吸蔵合金を導電性支持体に圧着後、次亜
リン酸塩及び水素化ホウ素化合物の少なくとも1種の還
元剤で処理することにより電極を形成することを特徴と
する水素吸蔵電極の製造方法を開示している。また特開
平6−068876号公報では水素を電気化学的に吸
蔵、放出する水素吸蔵合金粉末によって形成された電極
であって、前記電極表面にニッケル−コバルト合金がメ
ッキされていることを特徴とする水素吸蔵合金電極を開
示している。
JP-A-60-190570 discloses that hydrogen storage alloy powder is coated with copper and / or nickel metal on the surface of the hydrogen storage alloy powder by a self-catalytic wet electroless plating method using a reducing agent. A method of making an alloy is disclosed. JP-A-5-144434 discloses that at least one of copper, iron, nickel, cobalt and palladium is deposited by a wet electroplating method or an electroless plating method after a hydrogen storage alloy is pressure-bonded to a conductive support. Alternatively, a method for producing a hydrogen storage electrode, characterized in that the electrode is formed by pressure-bonding a hydrogen storage alloy on a conductive support and then treating it with at least one reducing agent of a hypophosphite and a borohydride compound. Is disclosed. Further, in JP-A-6-068876, an electrode formed of a hydrogen storage alloy powder that electrochemically stores and releases hydrogen, characterized in that the surface of the electrode is plated with a nickel-cobalt alloy. A hydrogen storage alloy electrode is disclosed.

【0009】これらの方法では処理液による表面酸化層
等の表面活性阻害物の削除が十分ではなかったが、特開
昭63−72894号公報では、チタン、ジルコン、バ
ナジウム、ニオブ、タンタル、モリブデン、タングステ
ンおよびこれらの金属の合金よりなる群から選択された
材料からなる部品を電着被覆するに際し、前記部品を電
着被覆する前に脱脂しかつフッ化物−もしくはフッ化水
素酸含有の酸洗浴にて酸洗することからなる電着被覆方
法において、前記部品をpH<4を有する酸混合物とし
ての酸洗浴にて硝酸の不存在下に酸洗すると供に活性化
させ、酸洗浴における滞留時間を短時間で目に見える水
素発生が生ずるように選択し、次いで前記部品を水中で
短時間洗浄し、その後に部品を電着浴中で被覆すること
を特徴とする電着被覆方法が開示されている。この方法
では酸洗浴としてフッ化水素酸またはアルカリフッ化物
が用いられ、前記方法に比べ活性化がより高度に進む。
Although these methods did not sufficiently remove surface activity inhibitors such as a surface oxide layer by the treatment liquid, in JP-A-63-72894, titanium, zircon, vanadium, niobium, tantalum, molybdenum, In electrodeposition coating a part made of a material selected from the group consisting of tungsten and alloys of these metals, degreasing and fluoride- or hydrofluoric acid-containing pickling bath prior to electrodeposition coating the part. In the electrodeposition coating method, which comprises acid pickling with an acid mixture, the parts are activated by pickling them in a pickling bath as an acid mixture having a pH <4 in the absence of nitric acid, and the residence time in the pickling bath is increased. Electrodeposition, characterized in that it is chosen such that visible hydrogen evolution occurs in a short time, then said part is briefly washed in water, after which the part is coated in an electrodeposition bath. METHOD covering is disclosed. In this method, hydrofluoric acid or alkali fluoride is used as the pickling bath, and activation is more advanced than in the above method.

【0010】[0010]

【発明が解決しようとする課題】しかし、特開平5−2
13601号公報に記載された金属材の活性化処理法で
は、酸化ジルコニウムはフッ化水素酸を除く酸水溶液、
アルカリ、塩、全有機溶媒に不溶であるため、Zr−N
iベースのAB2 型水素吸蔵合金の粉末表面に形成され
る酸化物層は除去されないという問題を有している。ま
た、粉末表面に形成した酸化ジルコニウム皮膜は、水素
透過能が極めて低いため、反応容器に処理粉末を充填
し、室温で真空脱気を行った後に1.5 MPaの水素ガスを
導入して放置しても水素が吸蔵されず、活性されにくい
という問題を有している。
However, Japanese Unexamined Patent Publication (Kokai) No. 5-2.
In the metal material activation treatment method described in Japanese Patent No. 13601, zirconium oxide is an aqueous acid solution excluding hydrofluoric acid,
Insoluble in alkalis, salts and all organic solvents, so Zr-N
There is a problem that the oxide layer formed on the powder surface of the i-based AB 2 type hydrogen storage alloy is not removed. Also, the zirconium oxide film formed on the powder surface has a very low hydrogen permeability, so the reaction container was filled with the treated powder, vacuum degassing was performed at room temperature, and then 1.5 MPa hydrogen gas was introduced and allowed to stand. However, it has a problem that hydrogen is not occluded and is hard to be activated.

【0011】また、特開平5−225975号公報に記
載された水素吸蔵合金電極は、該電極の製造のための処
理法をZr−NiベースのAB2 型水素吸蔵合金に適用
しても、酸化ジルコニウムはフッ化水素酸を除く酸水溶
液、アルカリ、塩、全有機溶媒に不溶であるため、合金
粉末表面に形成された酸化物層は均一に除去することが
困難であるという問題を有している。また、粉末表面に
形成した酸化ジルコニウム皮膜は、水素透過能をもたな
いため、初期の活性化が完了するまでには、水素の吸蔵
・放出を多数回繰り返す必要があるという問題を有して
いる。
Further, the hydrogen storage alloy electrode described in JP-A-5-225975 is not oxidized even if the treatment method for manufacturing the electrode is applied to a Zr-Ni-based AB 2 type hydrogen storage alloy. Since zirconium is insoluble in acid aqueous solutions except hydrofluoric acid, alkalis, salts, and all organic solvents, it is difficult to uniformly remove the oxide layer formed on the surface of the alloy powder. There is. In addition, since the zirconium oxide film formed on the powder surface does not have hydrogen permeability, it has a problem that it is necessary to repeat hydrogen absorption and desorption many times before the initial activation is completed. There is.

【0012】また、特開平5−135765号公報に記
載された水素吸蔵合金電極の製造法は、100〜120
℃の高い処理温度で、しかも0.5〜5時間もの長い処理
時間が必要とされ、処理に時間とコストがかかるという
問題を有している。また、気─固相反応による活性化の
場合には、真空脱ガスと水素ガス導入(30分保持)を
30回以上繰り返す必要があり、煩雑でコスト高である
という問題を有している。
Further, the method for producing a hydrogen storage alloy electrode described in JP-A-5-135765 is 100-120.
There is a problem that a high processing temperature of ℃ and a long processing time of 0.5 to 5 hours are required, and the processing takes time and cost. Further, in the case of activation by gas-solid reaction, it is necessary to repeat vacuum degassing and hydrogen gas introduction (holding for 30 minutes) 30 times or more, which is complicated and costly.

【0013】特開昭60−190570号、特開平5−
144434号、特開平6−068876号では処理液
による表面酸化層等の表面活性阻害物の削除が十分にな
されず、後にめっきにより活性層を水素吸蔵合金表面に
形成させたとしても、水素吸蔵合金の活性化はさほど進
まなかった。特開昭63−72894号公報では、その
明細書に記載されているようにめっきするための煩雑な
工程が必要であり、その工程の途中で活性化した水素吸
蔵合金が再び劣化する可能性があった。
JP-A-60-190570, JP-A-5-
In JP-A-144434 and JP-A-6-068876, the surface-oxidation-inhibiting substances such as the surface-oxidized layer are not sufficiently removed by the treatment liquid, and even if the active layer is later formed on the surface of the hydrogen-absorbing alloy by plating, Activation did not proceed so much. JP-A-63-72894 requires a complicated process for plating as described in the specification, and the activated hydrogen storage alloy may be deteriorated again during the process. there were.

【0014】そこで、本発明者らは、上述の如き従来技
術の問題点を解決すべく鋭意研究し、各種の系統的実験
を重ねた結果、本発明を成すに至ったものである。
Therefore, the inventors of the present invention have earnestly studied to solve the above-mentioned problems of the prior art, and as a result of various systematic experiments, the present invention has been accomplished.

【0015】(発明の目的)本発明の目的は、表面活性
に優れた水素吸蔵合金材料を得るための水素吸蔵合金材
料の表面処理方法を提供するにある。本発明の他の目的
は、表面活性に優れた水素吸蔵合金電極を得るための水
素吸蔵合金材料の活性化処理方法を提供するにある。本
発明の他の目的は、初期活性に優れた水素吸蔵合金電極
を提供するにある。本発明の他の目的は、より活性化効
果の大きな活性化方法およびそれに用いる活性化溶液を
提供することにある。
(Object of the Invention) An object of the present invention is to provide a surface treatment method of a hydrogen storage alloy material for obtaining a hydrogen storage alloy material having excellent surface activity. Another object of the present invention is to provide a method for activation treatment of a hydrogen storage alloy material for obtaining a hydrogen storage alloy electrode having excellent surface activity. Another object of the present invention is to provide a hydrogen storage alloy electrode having excellent initial activity. Another object of the present invention is to provide an activation method having a greater activation effect and an activation solution used therefor.

【0016】本発明者らは、上述の従来技術の問題に対
して、以下のことに着眼した。すなわち、水素吸蔵合金
材料のなかで、先ず、Zr−Ni系Laves相水素吸
蔵合金に着目した。このZr−Ni系Laves相水素
吸蔵合金粉末は、表面に安定な酸化物層を形成するた
め、初期活性化が困難である。そこで、この水素吸蔵合
金粉末の初期活性化のメカニズムを検討するなかで、水
素吸蔵合金粉末表面を所定の適切な表面状態(構造)と
することにより、水素吸蔵合金粉末の初期活性化が向上
することを見い出した。そして、特殊な化学処理により
水素吸蔵合金粉末の表面に形成される酸化物などの表面
活性阻害物質を除去するとともに、該水素吸蔵合金粉末
表面を所定の適切な表面状態(構造)とすることにより
水素透過性に優れた高活性な表面を作り、初期活性化を
改善できることに着眼し、本発明を成すに至った。
The present inventors have focused their attention on the following problems of the prior art. That is, among the hydrogen storage alloy materials, the Zr—Ni-based Laves phase hydrogen storage alloy was first focused on. This Zr—Ni-based Laves phase hydrogen storage alloy powder forms a stable oxide layer on the surface, so that initial activation is difficult. Therefore, in examining the mechanism of the initial activation of the hydrogen storage alloy powder, the initial activation of the hydrogen storage alloy powder is improved by setting the surface of the hydrogen storage alloy powder to a predetermined appropriate surface state (structure). I found a thing. Then, by removing a surface activity inhibitor such as an oxide formed on the surface of the hydrogen storage alloy powder by a special chemical treatment, and by making the surface of the hydrogen storage alloy powder into a predetermined appropriate surface state (structure) The present invention has been completed by focusing on the fact that a highly active surface excellent in hydrogen permeability is formed and initial activation can be improved.

【0017】[0017]

【課題を解決するための手段】[Means for Solving the Problems]

(第1発明の構成)本発明の水素吸蔵合金材料の表面処
理方法は、水素吸蔵合金材料に表面処理液を接触させて
処理し、該水素吸蔵合金表面に形成される酸化物などの
表面活性阻害物質を除去するとともに、少なくとも前記
水素吸蔵合金材料表面の水素吸蔵部または/および水素
通過部に、微細な凹凸および/または微細なクラックか
らなる表面活性部を形成してなることを特徴とする。
(Structure of the first invention) A surface treatment method for a hydrogen storage alloy material according to the present invention comprises treating a hydrogen storage alloy material with a surface treatment liquid in contact with the surface treatment solution to form a surface active substance such as an oxide formed on the surface of the hydrogen storage alloy. In addition to removing the inhibitory substance, at least the hydrogen absorbing portion of the surface of the hydrogen absorbing alloy material and / or the hydrogen passing portion is formed with a surface active portion having fine irregularities and / or fine cracks. .

【0018】(第2発明の構成)本発明の水素吸蔵合金
電極の活性化処理方法は、Zr−Ni系Laves相水
素吸蔵合金に表面処理液を接触させて処理し、該水素吸
蔵合金表面に形成される酸化物などの表面活性阻害物質
を除去するとともに、少なくとも前記水素吸蔵合金表面
の水素吸蔵部または/および水素通過部に、微細な凹凸
および/または微細なクラックからなる表面活性部を形
成してなることを特徴とする。
(Structure of the Second Invention) The method for activating the hydrogen-absorbing alloy electrode of the present invention comprises treating a Zr-Ni-based Laves phase hydrogen-absorbing alloy with a surface treatment liquid, and treating the surface of the hydrogen-absorbing alloy. While removing surface activity-inhibiting substances such as oxides that are formed, at least the hydrogen occluding portion and / or hydrogen passing portion of the surface of the hydrogen occluding alloy is provided with a surface activating portion having fine irregularities and / or fine cracks. It is characterized by being done.

【0019】(第3発明の構成)本発明の水素吸蔵合金
電極は、NH4 F・HF溶液処理を施した水素吸蔵合金
材料からなることを特徴とする。 (第4発明の構成)本発明の水素吸蔵合金の活性化方法
は、水素吸蔵合金の成分元素の一部をNH4 FとHFの
混合溶液に接触させることにより溶解し、それと同時に
該接触された水素吸蔵合金を、該溶解した合金成分より
イオン化傾向が小さい金属イオンに接触させることによ
り、該金属イオンを金属へ還元するとともに該水素吸蔵
合金に付着させることを特徴とする。
(Structure of the Third Invention) The hydrogen storage alloy electrode of the present invention is characterized by being made of a hydrogen storage alloy material which has been treated with an NH 4 F / HF solution. (Structure of Fourth Aspect of Invention) In the method for activating a hydrogen storage alloy of the present invention, a part of the constituent elements of the hydrogen storage alloy is dissolved by bringing it into contact with a mixed solution of NH 4 F and HF, and at the same time, the contact is performed. Another feature of the present invention is that the hydrogen storage alloy is brought into contact with metal ions having a smaller ionization tendency than the melted alloy components to reduce the metal ions to a metal and attach them to the hydrogen storage alloy.

【0020】(第5発明の構成)また、本発明の水素吸
蔵合金の活性化方法は、第4発明の方法において、水素
吸蔵合金を特にZr−Ni系Laves相水素吸蔵合金
とすることを特徴とする。 (第6発明の構成)本発明の水素吸蔵合金の活性化方法
は、第4、第5発明の方法において、前記金属イオンを
Ni,Mn,Pd,Co,Cuのうちの少なくとも一つ
のイオンとすることを特徴とする。
(Structure of Fifth Invention) The method for activating a hydrogen storage alloy of the present invention is characterized in that, in the method of the fourth invention, the hydrogen storage alloy is a Zr-Ni type Laves phase hydrogen storage alloy. And (Structure of Sixth Invention) A method for activating a hydrogen storage alloy according to the present invention is the method according to the fourth and fifth inventions, wherein the metal ion is at least one of Ni, Mn, Pd, Co and Cu. It is characterized by doing.

【0021】[0021]

【発明の実施の形態】本発明の水素吸蔵合金材料の表面
処理方法、水素吸蔵合金電極の活性化処理方法により、
何故水素吸蔵合金材料の表面を高活性化できるか、また
本発明の水素吸蔵合金が何故初期活性に優れているのか
のメカニズムについては、未だ必ずしも明らかではない
が、次のように考えられる。
BEST MODE FOR CARRYING OUT THE INVENTION A surface treatment method for a hydrogen storage alloy material and an activation treatment method for a hydrogen storage alloy electrode according to the present invention,
The mechanism why the surface of the hydrogen storage alloy material can be highly activated and why the hydrogen storage alloy of the present invention is excellent in initial activity are not yet clear, but are considered as follows.

【0022】(第1発明の作用)本発明の水素吸蔵合金
材料の表面処理方法は、水素吸蔵合金材料に表面処理液
を接触させて処理し、該水素吸蔵合金表面に形成される
酸化物などの表面活性阻害物質を除去する。これによ
り、水素吸蔵合金の表面を、清浄化するとともに、合金
表面での水素との接触および吸着と解離が容易となり、
合金内部への水素拡散が生じやすくなるので、水素化反
応が迅速に進行することができる。さらに、本発明は、
少なくとも前記水素吸蔵合金材料表面の水素吸蔵部また
は/および水素通過部に、微細な凹凸および/または微
細なクラックからなる表面活性部を形成する。これによ
り、水素吸蔵合金の表面積が増大するため、水素との反
応面積が増大するので水素化の反応速度を速くすること
ができる。
(Operation of the First Invention) The surface treatment method for a hydrogen storage alloy material of the present invention comprises treating the hydrogen storage alloy material with a surface treatment liquid in contact therewith to form an oxide or the like formed on the surface of the hydrogen storage alloy. To remove the surface activity inhibitor. This cleans the surface of the hydrogen storage alloy, and facilitates contact with hydrogen and adsorption and dissociation on the alloy surface,
Since hydrogen diffusion easily occurs inside the alloy, the hydrogenation reaction can proceed rapidly. Further, the present invention provides
At least the surface active portion having fine irregularities and / or fine cracks is formed on the hydrogen storage portion and / or the hydrogen passage portion on the surface of the hydrogen storage alloy material. As a result, the surface area of the hydrogen storage alloy increases, and the reaction area with hydrogen increases, so that the hydrogenation reaction rate can be increased.

【0023】以上により、本発明の表面処理方法によ
り、表面活性に優れた水素吸蔵合金材料を得ることがで
きるものと考えられる。
From the above, it is considered that the surface treatment method of the present invention makes it possible to obtain a hydrogen storage alloy material having excellent surface activity.

【0024】(第2発明の作用)本発明の水素吸蔵合金
電極の活性化処理方法は、Zr−Ni系Laves相水
素吸蔵合金に表面処理液を接触させて処理し、該水素吸
蔵合金表面に形成される酸化物などの表面活性阻害物質
を除去する。これにより、水素吸蔵合金の表面を、清浄
化するとともに、水素吸蔵合金表面での水素との接触お
よび吸着と解離が容易となり、合金内部への水素拡散が
生じやすくなるので、水素化反応が迅速に進行すること
ができる。さらに、本発明は、少なくとも前記水素吸蔵
合金表面の水素吸蔵部または/および水素通過部に、微
細な凹凸および/または微細なクラックからなる表面活
性部を形成する。これにより、水素吸蔵合金の表面積が
増大するため、水素との反応面積が増大するので水素化
の反応速度を速くすることができる。
(Operation of the Second Invention) The activation treatment method for a hydrogen storage alloy electrode according to the present invention is performed by bringing a surface treatment solution into contact with a Zr-Ni type Laves phase hydrogen storage alloy to treat the surface of the hydrogen storage alloy. Remove surface activity inhibitors such as oxides that are formed. This cleans the surface of the hydrogen storage alloy, facilitates contact with hydrogen on the surface of the hydrogen storage alloy, adsorption and dissociation, and facilitates hydrogen diffusion into the interior of the alloy. Can proceed to. Further, according to the present invention, a surface active portion having fine irregularities and / or fine cracks is formed at least in the hydrogen storage portion and / or the hydrogen passage portion of the surface of the hydrogen storage alloy. As a result, the surface area of the hydrogen storage alloy increases, and the reaction area with hydrogen increases, so that the hydrogenation reaction rate can be increased.

【0025】以上により、本発明の活性化処理方法によ
り、表面活性に優れた水素吸蔵合金電極を得ることがで
きるものと考えられる。
From the above, it is considered that the activation treatment method of the present invention makes it possible to obtain a hydrogen storage alloy electrode having excellent surface activity.

【0026】(第3発明の作用)本発明の水素吸蔵合金
電極は、水素吸蔵合金材料にNH4 F・HF溶液処理を
施してなる。これにより、水素吸蔵合金表面に形成され
る酸化物などの表面活性阻害物質を除去して水素吸蔵合
金の表面を清浄化するとともに、合金表面での水素との
接触および吸着と解離が容易となり、合金内部への水素
拡散が生じやすくなるので、水素化反応が迅速に進行す
ることができる。さらに、本発明は、水素吸蔵合金にN
4 F・HF溶液を接触させて処理することにより、少
なくとも前記水素吸蔵合金材料表面の水素吸蔵部または
/および水素通過部に、微細な凹凸および/または微細
なクラックからなる表面活性部が形成される。これによ
り、水素吸蔵合金の表面積が増大するため、水素との反
応面積が増大するので水素化の反応速度を速くすること
ができる。
(Operation of Third Invention) The hydrogen storage alloy electrode of the present invention is formed by subjecting a hydrogen storage alloy material to an NH 4 F.HF solution treatment. This removes surface activity inhibiting substances such as oxides formed on the surface of the hydrogen storage alloy to clean the surface of the hydrogen storage alloy, and facilitates contact with hydrogen on the alloy surface and adsorption and dissociation, Since hydrogen diffusion easily occurs inside the alloy, the hydrogenation reaction can proceed rapidly. Furthermore, the present invention provides a hydrogen storage alloy with N
By treating with contact with a H 4 F / HF solution, a surface active portion consisting of fine irregularities and / or fine cracks is formed at least in the hydrogen storage portion and / or hydrogen passage portion of the surface of the hydrogen storage alloy material. To be done. As a result, the surface area of the hydrogen storage alloy increases, and the reaction area with hydrogen increases, so that the hydrogenation reaction rate can be increased.

【0027】以上により、本発明の水素吸蔵合金電極
は、表面活性に優れているものと考えられる。本発明の
水素吸蔵合金電極は、初期活性に優れた水素吸蔵合金電
極である。 (第4発明の作用)本発明の水素吸蔵合金の活性化方法
は、まず、水素吸蔵合金の成分元素の一部をNH4 F・
HF混合溶液に接触させることにより溶解する。これに
より、水素吸蔵合金の表面を清浄化するとともに、表面
の水素吸蔵部または/および水素透過部に、微細な凹凸
および/または微細なクラックからなる表面活性部を形
成する。これにより、水素吸蔵合金の表面積が増大する
ため、水素との反応面積が増大するので水素化の反応速
度を速くすることができる。
From the above, the hydrogen storage alloy electrode of the present invention is considered to have excellent surface activity. The hydrogen storage alloy electrode of the present invention is a hydrogen storage alloy electrode having excellent initial activity. (Operation of Fourth Invention) In the method for activating a hydrogen storage alloy of the present invention, first, a part of the constituent elements of the hydrogen storage alloy is NH 4 F.
It is dissolved by bringing it into contact with the HF mixed solution. As a result, the surface of the hydrogen storage alloy is cleaned and, at the same time, the surface of the hydrogen storage portion and / or the hydrogen permeation portion of the surface is formed with the surface active portion having fine irregularities and / or fine cracks. As a result, the surface area of the hydrogen storage alloy increases, and the reaction area with hydrogen increases, so that the hydrogenation reaction rate can be increased.

【0028】従来技術には、その後処理された水素吸蔵
合金を電気めっき浴や無電解めっき浴に浸漬して電気的
あるいは還元剤を用いて化学的に浴中の金属イオンを還
元して水素吸蔵合金の表面に析出させるものがあった。
本発明では、溶解反応と同時に、溶解処理された水素吸
蔵合金を、溶解した合金成分よりイオン化傾向が小さい
金属イオンに接触させる。合金成分が溶解する時には、
その成分が電子を放出して陽イオンとなって溶解する。
放出された電子は通常、水素イオンやその他の酸化剤に
吸収され、溶解反応が進行していく。
In the prior art, the hydrogen storage alloy that has been treated after that is immersed in an electroplating bath or an electroless plating bath, and the metal ions in the bath are electrically or chemically reduced using a reducing agent to store hydrogen. Some were deposited on the surface of the alloy.
In the present invention, simultaneously with the dissolution reaction, the dissolved hydrogen storage alloy is brought into contact with metal ions having a smaller ionization tendency than the dissolved alloy components. When the alloy components melt,
The component releases an electron and becomes a cation and dissolves.
The emitted electrons are usually absorbed by hydrogen ions and other oxidants, and the dissolution reaction proceeds.

【0029】本発明では、この時に溶解イオンよりイオ
ン化傾向の小さい金属イオンを溶液中に同時に存在させ
ることによりこの金属イオンが溶解しつつある成分から
電子を受け取り、電子を受け取ることによって該金属イ
オンは還元されるので溶解成分に代わって金属となって
自動的に析出していく。これら析出金属は溶解反応によ
って形成されたニッケル触媒層の欠陥を埋める作用をす
るので水素吸蔵合金に水素を吸蔵、放出させた時に起こ
る劣化を抑制することができる。さらには、析出金属が
ニッケルを始めとする水素接触反応等の触媒活性を有す
る時には、単なる溶解反応による水素吸蔵合金の活性化
よりも、より多くの活性金属層が水素吸蔵合金表面に形
成されることになるので、水素吸蔵合金の活性化がより
高度に進行する。
In the present invention, at this time, metal ions having a smaller ionization tendency than dissolved ions are simultaneously present in the solution to receive electrons from the component in which the metal ions are being dissolved, and the metal ions are received by the electrons. Since it is reduced, it will automatically become a metal instead of the dissolved component and will be deposited. Since these deposited metals have a function of filling the defects of the nickel catalyst layer formed by the dissolution reaction, it is possible to suppress deterioration that occurs when hydrogen is stored and released in the hydrogen storage alloy. Furthermore, when the deposited metal has catalytic activity such as hydrogen contact reaction including nickel, more active metal layers are formed on the surface of the hydrogen storage alloy than the activation of the hydrogen storage alloy by mere dissolution reaction. Therefore, the activation of the hydrogen storage alloy progresses to a higher degree.

【0030】本発明の方法によれば金属イオンの析出が
溶解反応と同時に行えるので、従来必要であった各工程
間での水洗、乾燥等の工程を省略することができる。さ
らには、途中の工程が省略できたために途中段階での水
素吸蔵合金活性表面の劣化が生じない。 (第5発明の作用)本発明では第4発明の水素吸蔵合金
をZr−Ni系Laves相水素吸蔵合金とする。これ
により合金成分の溶解反応がより活発に進行するため、
表面の水素吸蔵部または/および水素透過部に、形成さ
れる微細な凹凸および/または微細なクラックがより生
じやすくなる。さらには、溶液中に添加した金属イオン
がより容易に合金の溶解と同時に析出するようになるの
で、水素吸蔵合金の水素吸蔵、放出反応に対する活性化
効果がより大きくなる。
According to the method of the present invention, the precipitation of metal ions can be carried out simultaneously with the dissolution reaction, so that it is possible to omit the conventionally required steps such as washing with water and drying. Furthermore, since the intermediate steps can be omitted, the active surface of the hydrogen storage alloy does not deteriorate during the intermediate steps. (Operation of Fifth Invention) In the present invention, the hydrogen storage alloy of the fourth invention is a Zr—Ni-based Laves phase hydrogen storage alloy. As a result, the melting reaction of the alloy components proceeds more actively,
Fine irregularities and / or fine cracks to be formed are more likely to be formed in the hydrogen storage part and / or the hydrogen permeable part on the surface. Furthermore, since the metal ions added to the solution are more easily precipitated at the same time as the alloy is dissolved, the activation effect on the hydrogen storage / release reaction of the hydrogen storage alloy is further increased.

【0031】(第6発明の作用)本発明はNi,Mn,
Pd,Co,Cuのうちの少なくとも一つのイオンを、
NH4 とHFの混合溶液に溶解させた水素吸蔵合金の活
性化溶液である。この活性化溶液には水素吸蔵合金の溶
解反応に活性なNH4 F・HFと、溶解した合金成分イ
オンよりイオン傾向の小さい金属イオンであるNi,M
n,Pd,Co,Cuのうちの少なくとも一つのイオン
を、NH4 FとHFの混合溶液に溶解させた水素吸蔵合
金の活性化溶液である。この活性化溶液には水素吸蔵合
金の溶解反応に活性なNH4 F・HFと、溶解した合金
成分イオンよりイオン化傾向の小さい金属イオンである
Ni,Mn,Pd,Co,Cuのうちの少なくとも一つ
のイオンとが同時に存在する。
(Operation of Sixth Invention) The present invention is applicable to Ni, Mn,
At least one ion of Pd, Co, and Cu is
It is an activation solution of a hydrogen storage alloy dissolved in a mixed solution of NH 4 and HF. This activating solution contains NH 4 F.HF which is active in the dissolution reaction of the hydrogen storage alloy, and Ni and M which are metal ions having a smaller ionic tendency than the dissolved alloy component ions.
It is an activating solution of a hydrogen storage alloy in which at least one ion of n, Pd, Co and Cu is dissolved in a mixed solution of NH 4 F and HF. This activating solution contains at least one of NH 4 F.HF which is active in the dissolution reaction of the hydrogen storage alloy and Ni, Mn, Pd, Co and Cu which are metal ions having a smaller ionization tendency than the dissolved alloy component ions. There are two ions at the same time.

【0032】このため、合金成分の溶解反応が生じやす
く、水素吸蔵合金表面の水素吸蔵部または/および水素
透過部に微細な凹凸および/または微細なクラックが形
成される。また、溶解イオンよりイオン化傾向の小さい
金属イオンが存在するため、溶解と同時に前記金属イオ
ンが水素吸蔵合金表面に析出する。この活性化溶液を用
いることにより、水素吸蔵合金の本発明の活性化方法を
より効率的、より迅速に進めることができる。金属イオ
ンは好適にはNiCl2 、MnCl2 、PdCl2 、C
oCl2 、CuClなどの塩の形で溶液中に溶解され
る。また、これら金属イオンは0.1mol/l 〜0.5mo
l/l 添加する。添加量がこれより小さいと金属イオンを
析出させる効果がほとんどない。添加量をこれより多く
しても、活性化効果にあまり寄与しない上に金属の重量
を増加させてしまい、合金の特性が相対的に低下してし
まう。
For this reason, the dissolution reaction of the alloy components is likely to occur, and fine irregularities and / or fine cracks are formed on the hydrogen storage part and / or hydrogen permeation part on the surface of the hydrogen storage alloy. Moreover, since there are metal ions having a smaller ionization tendency than the dissolved ions, the metal ions are simultaneously deposited on the surface of the hydrogen storage alloy. By using this activation solution, the activation method of the present invention for a hydrogen storage alloy can be advanced more efficiently and more quickly. The metal ions are preferably NiCl 2 , MnCl 2 , PdCl 2 , C
It is dissolved in the solution in the form of salt such as oCl 2 , CuCl. Moreover, these metal ions are 0.1 mol / l to 0.5 mo.
Add l / l. If the addition amount is smaller than this, there is almost no effect of precipitating metal ions. Even if the amount of addition is larger than this, it does not contribute much to the activation effect and increases the weight of the metal, so that the properties of the alloy are relatively deteriorated.

【0033】さらに具体的に本発明の実施の形態を説明
する。 <水素吸蔵合金材料の表面処理方法> (水素吸蔵合金材料について)表面処理する水素吸蔵合
金は、粉砕粉、ガスアトマイズ粉などどのような形態の
ものでもよい。なお、粉末表面を最適状態に制御する場
合は、粉末表面の酸化状態によって好適な形態を選択す
る。水素吸蔵合金粉末をPTFEなどの結着剤で混練し
てペースト状にする場合は、粉末と表面処理液との接触
状態が変化するため、所望の好適な形態を選択する。ま
た、表面処理を、短時間で、均一な処理を行うには粉末
状態で処理することが好ましい。
The embodiment of the present invention will be described more specifically. <Surface Treatment Method of Hydrogen Storage Alloy Material> (Regarding Hydrogen Storage Alloy Material) The hydrogen storage alloy to be surface treated may be in any form such as pulverized powder or gas atomized powder. When controlling the powder surface to the optimum state, a suitable form is selected depending on the oxidation state of the powder surface. When the hydrogen storage alloy powder is kneaded with a binder such as PTFE to form a paste, the contact state between the powder and the surface treatment liquid changes, so a desired suitable form is selected. Further, the surface treatment is preferably performed in a powder state in order to perform uniform treatment in a short time.

【0034】(水素吸蔵合金材料の表面活性部につい
て)本発明により形成される表面活性部は、少なくとも
前記水素吸蔵合金材料表面の水素吸蔵部または/および
水素通過部に形成された、微細な凹凸および/または微
細なクラックからなる。これは、水素吸蔵合金材料に表
面処理液を接触させて、該水素吸蔵合金表面に形成され
る酸化物などの表面活性阻害物質を除去するとともに形
成されてなる。
(Regarding Surface Active Portion of Hydrogen Storage Alloy Material) The surface active portion formed according to the present invention has fine irregularities formed on at least the hydrogen storage portion and / or the hydrogen passage portion of the surface of the hydrogen storage alloy material. And / or consists of fine cracks. This is formed by bringing a surface treatment liquid into contact with the hydrogen storage alloy material to remove surface activity inhibiting substances such as oxides formed on the surface of the hydrogen storage alloy.

【0035】この表面活性部は、酸化物等の表面活性
阻害物質が除去された表面であり、さらに2μm以下
の微細なZrO2 粒子が表面に突出して分散しており、
それらの粒子の脱落によって形成された凹部が分散し
た凹凸表面であり、または/および表面処理液の腐食
作用等によって表層部に形成された微細な溝または割れ
(微細なクラック)が分散した構造を有している。〜
(及び/又は)の構造を有することにより、粉末
の表面積が著しく増大するため、水素との接触、または
吸着する面積が増大することになり、水素化反応が迅速
に進行し、初期活性化を著しく向上させることができ
る。
The surface active portion is a surface from which surface activity inhibiting substances such as oxides have been removed, and fine ZrO 2 particles of 2 μm or less are projected and dispersed on the surface,
A structure in which concaves and convexes formed by dropping of these particles are uneven surfaces and / or fine grooves or cracks (fine cracks) formed in the surface layer due to the corrosive action of the surface treatment liquid are dispersed. Have ~
By having the (and / or) structure, the surface area of the powder is remarkably increased, and the area for contacting with or adsorbing hydrogen is increased, and the hydrogenation reaction proceeds rapidly and the initial activation is It can be significantly improved.

【0036】本発明により形成する表面活性部は、表面
積が0.03 m2/g 以上であることが好ましい。これによ
り、表面活性部を表面活性に優れ、初期活性化に優れた
より好適な表面状態(構造)とすることができる。すな
わち、水素との反応面積が増大するため、水素化速度が
著しく向上し、初期活性化が短時間で可能となる。な
お、表面活性部の表面積が0.04 m2/g 以上が、より好
適である。
The surface active portion formed according to the present invention preferably has a surface area of 0.03 m 2 / g or more. As a result, the surface active portion can have a more suitable surface state (structure) having excellent surface activity and excellent initial activation. That is, since the reaction area with hydrogen is increased, the hydrogenation rate is remarkably improved, and the initial activation can be performed in a short time. The surface area of the surface active portion is more preferably 0.04 m 2 / g or more.

【0037】(表面処理液)本発明において適用する表
面処理液は、水素吸蔵合金材料に接触させることによ
り、水素吸蔵合金表面に形成される酸化物などの表面活
性阻害物質を除去するとともに、少なくとも前記水素吸
蔵合金材料表面の水素吸蔵部または/および水素通過部
に、微細な凹凸および/または微細なクラックからなる
表面活性部を形成することができる処理液であれば、ど
のようなものでもよく、特に限定されるものではない。
具体的には、NH4 F・HFなどが挙げられる。
(Surface Treatment Liquid) The surface treatment liquid applied in the present invention removes surface activity inhibiting substances such as oxides formed on the surface of the hydrogen storage alloy by contacting the hydrogen storage alloy material, and at least Any treatment liquid may be used as long as it can form a surface active portion having fine irregularities and / or fine cracks in the hydrogen storage portion and / or hydrogen passage portion of the surface of the hydrogen storage alloy material. It is not particularly limited.
Specific examples include NH 4 F.HF and the like.

【0038】この中でも特に、NH4 F・HF溶液が好
ましい。NH4 F・HF溶液は、Zr酸化物の除去に優
れ、電気容量が格段に大きいZr−Niをベースとした
一般式がABα(α=1.5〜2.5)型水素吸蔵合金材料
の表面活性化や初期活性化に極めて有効である。また、
表面処理液としてNH4 F・HF溶液を用いた場合に
は、合金元素中のNiは他の元素に比べて溶液中への溶
出が非常に少ないため、水素化反応での触媒となるNi
が表層部に濃縮され、Niリッチ層を短時間で形成する
ことができるので好ましい。
Of these, NH 4 F.HF solution is particularly preferable. The NH 4 F / HF solution is excellent in removing Zr oxide, and has a general formula based on Zr-Ni having a remarkably large electric capacity of ABα (α = 1.5 to 2.5) type hydrogen storage alloy material. It is extremely effective for surface activation and initial activation. Also,
When an NH 4 F / HF solution is used as the surface treatment liquid, Ni in the alloying elements is much less eluted into the solution than other elements, and therefore Ni that serves as a catalyst in the hydrogenation reaction is obtained.
Is concentrated on the surface layer portion, and the Ni-rich layer can be formed in a short time, which is preferable.

【0039】表面処理液の濃度、処理時間、処理に当た
っての他の好適な構成については、水素吸蔵合金材料に
接触させることにより得られる表面活性部の所望の表面
状態(構造)に合わせて適宜決定される。なお、表面処
理液の濃度は、0.5重量%以上の濃度が好ましく、さら
に1重量%〜5重量%がより好ましいが、処理する合金
組成、処理する粉末量や粒径、処理時間により適宜変更
することができる。処理時間は、表面処理液の濃度、処
理する粉末量によって変化するが、5〜30分が好まし
い。処理温度は、室温〜120℃の温度範囲内が好まし
い。なお、25℃〜35℃がより好ましい。表面処理液
と処理粉末の比は、1重量%濃度の溶液20mlに対し
て水素吸蔵合金粉末5g〜10g程度が好ましい。
The concentration of the surface treatment solution, the treatment time, and other suitable constitutions for the treatment are appropriately determined in accordance with the desired surface state (structure) of the surface active portion obtained by contacting with the hydrogen storage alloy material. To be done. The concentration of the surface treatment liquid is preferably 0.5% by weight or more, more preferably 1% by weight to 5% by weight, but it may be adjusted depending on the alloy composition to be treated, the amount of powder to be treated, the particle size, and the treatment time. Can be changed. The treatment time varies depending on the concentration of the surface treatment liquid and the amount of powder to be treated, but is preferably 5 to 30 minutes. The treatment temperature is preferably in the temperature range of room temperature to 120 ° C. In addition, 25 degreeC-35 degreeC are more preferable. The ratio of the surface treatment liquid to the treatment powder is preferably about 5 g to 10 g of the hydrogen storage alloy powder with respect to 20 ml of the 1 wt% concentration solution.

【0040】(好適な水素吸蔵合金材料について)本発
明を適用できる水素吸蔵合金材料として、Zr−Niを
ベースとした一般式がABα(α=1.5〜2.5)で表さ
れる金属間化合物のLaves相である水素吸蔵合金材
料が好適である。この材料は、結晶構造が六方晶のC1
4型、または立方晶のC15型の水素吸蔵合金である。
この材料は、従来の電極等に用いられている希土類系A
5 型水素吸蔵合金に比べて電気容量が格段に大きい特
徴を有するが、表面状態の問題から活性化が容易ではな
いと考えられており、本発明の適用の効果が極めて大き
い。ABα(α=1.5〜2.5)型水素吸蔵合金として
(Zr−Ti)(V−Ni−Mn−Fe)2.1 、Zr
(V−Ni−Mn−Cr)2.1 、(Zr−Ti)(V−
Ni−Mn−Cr)2.1 などが好適である。
(Preferable Hydrogen Storage Alloy Material) As a hydrogen storage alloy material to which the present invention can be applied, a metal represented by the general formula ABα (α = 1.5 to 2.5) based on Zr-Ni. A hydrogen storage alloy material that is the Laves phase of the intermetallic compound is suitable. This material is C1 with a hexagonal crystal structure.
It is a type 4 or cubic C15 type hydrogen storage alloy.
This material is a rare earth-based A used in conventional electrodes.
It has a characteristic that the electric capacity is remarkably larger than that of the B 5 type hydrogen storage alloy, but it is considered that activation is not easy due to the problem of the surface state, and the effect of applying the present invention is extremely large. ABα (α = 1.5 to 2.5) type hydrogen storage alloy (Zr-Ti) (V-Ni-Mn-Fe) 2.1 , Zr
(V-Ni-Mn-Cr) 2.1 , (Zr-Ti) (V-
Ni-Mn-Cr) 2.1 and the like are preferable.

【0041】(好適な表面活性部)本発明の表面処理法
により得られる水素吸蔵合金材料の表面活性部は、水素
活性化金属元素の濃縮層であることが好ましい。これに
より、水素化反応において触媒となる水素活性化金属元
素の濃度が濃い層を水素吸蔵合金材料の表面に形成する
ことができるので、表面活性に優れ、初期活性に優れた
水素吸蔵合金材料を得ることができる。
(Preferable Surface Active Portion) The surface active portion of the hydrogen storage alloy material obtained by the surface treatment method of the present invention is preferably a concentrated layer of a hydrogen activated metal element. As a result, a layer having a high concentration of the hydrogen-activating metal element serving as a catalyst in the hydrogenation reaction can be formed on the surface of the hydrogen-absorbing alloy material, so that a hydrogen-absorbing alloy material having excellent surface activity and excellent initial activity can be obtained. Obtainable.

【0042】(好適な表面活性部)本発明の表面処理法
により得られる水素吸蔵合金材料の表面活性部は、Ni
の濃縮層であることがより好ましい。これにより、水素
化反応において触媒となるNiの濃度が濃いNiリッチ
層を水素吸蔵合金材料の表面に形成することができるの
で、より表面活性に優れた、より初期活性に優れた水素
吸蔵合金材料を得ることができる。
(Preferable surface active part) The surface active part of the hydrogen storage alloy material obtained by the surface treatment method of the present invention is Ni
It is more preferable that the concentrated layer is. As a result, since a Ni-rich layer having a high concentration of Ni serving as a catalyst in the hydrogenation reaction can be formed on the surface of the hydrogen storage alloy material, the hydrogen storage alloy material having more excellent surface activity and more excellent initial activity. Can be obtained.

【0043】(好適な水素吸蔵合金材料の表面処理方
法)本発明の好適な水素吸蔵合金材料の表面処理方法
は、Zr−Ni系Laves相水素吸蔵合金材料にNH
4 F・HF溶液を接触させて処理し、該水素吸蔵合金材
料表面に形成される酸化物などの表面活性阻害物質を除
去するとともに、少なくとも前記水素吸蔵合金材料表面
の水素吸蔵部または/および水素通過部に、微細な凹凸
および/または微細なクラックからなる表面活性部を形
成してなることを特徴とする。
(Preferable Surface Treatment Method of Hydrogen Storage Alloy Material) The preferable surface treatment method of the hydrogen storage alloy material of the present invention is to use Zr-Ni type Laves phase hydrogen storage alloy material with NH.
4 F · HF solution is contacted and treated to remove surface activity inhibiting substances such as oxides formed on the surface of the hydrogen storage alloy material, and at least the hydrogen storage part or / and hydrogen on the surface of the hydrogen storage alloy material. It is characterized in that a surface active portion composed of fine irregularities and / or fine cracks is formed in the passage portion.

【0044】Zrは、TiやNiよりも酸化反応速度が
大きく、粉末作製過程でZrが選択的に酸化され、表面
にZrを含む酸化皮膜が生成される。このZrを含む酸
化皮膜は、水素透過性が極めて低い構造を形成している
ので、Zrを含む酸化皮膜がある状態では活性化が困難
である。本発明の表面処理方法は、表面処理液としてN
4 F・HF溶液を用いるので、水素吸蔵合金粉末の表
面に形成されたZrを含む酸化皮膜が均一にかつ短時間
で除去できる。これより、水素吸蔵合金表面での水素と
の接触、吸蔵・解離が容易になり、水素化反応が迅速に
進行するので、初期活性を著しく改善することができ
る。
Zr has a higher oxidation reaction rate than Ti or Ni, and Zr is selectively oxidized during the powder preparation process to form an oxide film containing Zr on the surface. Since the oxide film containing Zr forms a structure having extremely low hydrogen permeability, it is difficult to activate the oxide film containing Zr. The surface treatment method of the present invention uses N as the surface treatment liquid.
Since the H 4 F.HF solution is used, the oxide film containing Zr formed on the surface of the hydrogen storage alloy powder can be removed uniformly and in a short time. As a result, contact with hydrogen on the surface of the hydrogen storage alloy, storage and dissociation thereof are facilitated, and the hydrogenation reaction proceeds rapidly, so that the initial activity can be remarkably improved.

【0045】(初期活性化:水素吸蔵)本発明の水素吸
蔵合金電極の活性化処理方法は、上記表面処理した水素
吸蔵合金材料を、反応容器に充填して真空引き後、水素
を導入することにより水素を吸蔵させることを特徴とす
る。初期活性化処理により水素吸蔵合金材料に水素を吸
蔵させるには、加熱することなく低真空度で真空引き
し、従来より低圧(例、約1MPa)で、かつ常温で水
素を導入することにより、速やかに水素を吸蔵させるこ
とができる。このとき、温度や圧力などを変えることに
より、水素吸蔵量を制御することができる。これより、
従来のような高温高真空脱気や高圧高温での初期活性化
を、しかも10回以上行うなどの煩雑な活性化処理を必
要とせず、簡便な条件で1回の処理でも初期活性化処理
を行うことができる。
(Initial Activation: Hydrogen Storage) In the activation processing method of the hydrogen storage alloy electrode of the present invention, the surface-treated hydrogen storage alloy material is filled in a reaction vessel and vacuum is drawn, and then hydrogen is introduced. It is characterized in that it absorbs hydrogen. In order to store hydrogen in the hydrogen storage alloy material by the initial activation treatment, vacuuming is performed at a low vacuum degree without heating, and hydrogen is introduced at a lower pressure (eg, about 1 MPa) than before and at room temperature. It is possible to occlude hydrogen promptly. At this time, the hydrogen storage amount can be controlled by changing the temperature or pressure. Than this,
There is no need for complicated activation treatments such as conventional high-temperature high-vacuum degassing and high-pressure high-temperature initial activation, and moreover, 10 times or more, and the initial activation treatment can be performed by simple treatment even once. It can be carried out.

【0046】<水素吸蔵合金電極の活性化処理方法>本
発明の水素吸蔵合金電極の活性化処理方法のより具体的
な発明、好適な発明、限定的な発明については、上記水
素吸蔵合金材料の表面処理方法において述べた“より具
体的な発明、好適な発明、限定的な発明”を適用するこ
とができる。すなわち、“水素吸蔵合金材料につい
て”、“水素吸蔵合金材料の表面活性部について”、
“表面処理液”、“表面処理液の濃度、処理時間、処理
に当たっての他の好適な構成”、“好適な水素吸蔵合金
材料について”、“好適な表面活性部”、“好適な水素
吸蔵合金材料の表面処理方法”、“初期活性化:水素吸
蔵”を適用することができる。
<Method of Activation Treatment of Hydrogen Storage Alloy Electrode> For more specific inventions, preferred inventions and limited inventions of the method of activation treatment of the hydrogen storage alloy electrode of the present invention, refer to the above hydrogen storage alloy material. The "more specific invention, suitable invention, and limited invention" described in the surface treatment method can be applied. That is, "about hydrogen storage alloy material", "about surface active part of hydrogen storage alloy material",
"Surface treatment liquid", "Concentration of surface treatment liquid, treatment time, other suitable composition for treatment", "About suitable hydrogen storage alloy material", "Suitable surface active part", "Suitable hydrogen storage alloy" The material surface treatment method "and" initial activation: hydrogen storage "can be applied.

【0047】(電極の製造方法)水素吸蔵合金電極の製
造方法の一例を簡単に説明する。先ず、焼結式電極の場
合は、水素吸蔵合金と導電助剤(例えば、Ni、Cu、
黒鉛、Co等の1種以上)を所定の重量比に混合し、該
混合粉末をプレス成形またはロール成形などしてペレッ
ト状またはシート状の成形体とする。その後、Ar等の
不活性ガス雰囲気、H2 ガス雰囲気または真空雰囲気中
で高温(好ましくは600〜700℃)で焼結して電極
を作製する。このとき、水素吸蔵合金電極の活性化処理
は、粉末状態のときでも、ペレット状またはシート状の
成形体のときでも(あるいは、薄膜状態、カプセル状
態、積層状態、他)どのような状態のときでもよいが、
焼結後に行うことが好ましい。
(Method of Manufacturing Electrode) An example of a method of manufacturing the hydrogen storage alloy electrode will be briefly described. First, in the case of a sintered electrode, a hydrogen storage alloy and a conductive auxiliary agent (for example, Ni, Cu,
One or more of graphite, Co, etc.) is mixed in a predetermined weight ratio, and the mixed powder is subjected to press molding or roll molding to obtain a pellet-shaped or sheet-shaped molded body. Then, the electrode is prepared by sintering at a high temperature (preferably 600 to 700 ° C.) in an atmosphere of an inert gas such as Ar, an atmosphere of H 2 gas or a vacuum atmosphere. At this time, the activation treatment of the hydrogen storage alloy electrode may be performed in any state, whether in a powder state, a pellet-shaped or sheet-shaped formed body (or a thin film state, a capsule state, a laminated state, etc.). However,
It is preferably performed after sintering.

【0048】次に、ペースト式電極の場合は、水素吸蔵
合金粉末、導電助剤、およびPTFEなどの結着剤を所
定の重量比で混練し、その後、プレス成形やロール成形
などにより成形し、ペレット状またはシート状の成形体
とする。このとき、水素吸蔵合金電極の活性化処理は、
粉末状態のときでも、ペレット状またはシート状の成形
体のときでも(あるいは、薄膜状態、カプセル状態、積
層状態、他)どのような状態のときでもよいが、成形後
に行うことが好ましい。
Next, in the case of the paste type electrode, the hydrogen storage alloy powder, the conductive auxiliary agent, and the binder such as PTFE are kneaded in a predetermined weight ratio, and thereafter, they are molded by press molding or roll molding. A pellet-shaped or sheet-shaped molded body is used. At this time, the activation treatment of the hydrogen storage alloy electrode is
It may be in a powder state, a pellet-shaped or sheet-shaped molded body (or a thin film state, a capsule state, a laminated state, etc.), but is preferably carried out after molding.

【0049】(好適な水素吸蔵合金電極の活性化処理方
法)本発明の好適な水素吸蔵合金電極の活性化処理方法
は、Zr−Ni系Laves相水素吸蔵合金にNH4
・HF溶液を接触させて処理し、該水素吸蔵合金表面に
形成される酸化物などの表面活性阻害物質を除去すると
ともに、少なくとも前記水素吸蔵合金材料表面の水素吸
蔵部または/および水素通過部に、微細な凹凸および/
または微細なクラックからなる表面活性部を形成してな
り、該表面活性部が比表面積0.03 m2/g 以上を有する
とともに、その少なくとも一部がニッケルの濃縮層から
なり、水素透過性に優れてなることを特徴とする。
(Suitable method for activating hydrogen storage alloy electrode) A preferred method for activating hydrogen storage alloy electrode of the present invention is to use Zr-Ni type Laves phase hydrogen storage alloy with NH 4 F.
· Treatment with an HF solution in contact therewith to remove surface activity-inhibiting substances such as oxides formed on the surface of the hydrogen storage alloy, and at least to the hydrogen storage portion and / or hydrogen passage portion of the surface of the hydrogen storage alloy material. , Fine irregularities and /
Alternatively, a surface active part composed of fine cracks is formed, and the surface active part has a specific surface area of 0.03 m 2 / g or more, and at least a part of the surface active part is made of a nickel enriched layer, which has hydrogen permeability. It is characterized by being excellent.

【0050】(好適な水素吸蔵合金電極の活性化処理方
法)本発明の好適な水素吸蔵合金電極の活性化処理方法
は、Zr−Ni系Laves相水素吸蔵合金に表面処理
液を接触させて処理し、該水素吸蔵合金表面に形成され
る酸化物などの表面活性阻害物質を除去するとともに、
少なくとも前記水素吸蔵合金表面の水素吸蔵部または/
および水素通過部に、微細な凹凸および/または微細な
クラックからなる表面活性部を形成する活性化処理工程
と、該活性化処理工程において表面活性化した水素吸蔵
合金電極を、アルカリ溶液に接触させて二次表面処理す
るアルカリ処理工程と、からなることを特徴とする。
(Preferable method for activation treatment of hydrogen storage alloy electrode) A preferable method for activation treatment of hydrogen storage alloy electrode of the present invention is treatment by bringing a surface treatment liquid into contact with Zr-Ni type Laves phase hydrogen storage alloy. Then, while removing surface activity inhibiting substances such as oxides formed on the surface of the hydrogen storage alloy,
At least the hydrogen storage part on the surface of the hydrogen storage alloy or /
And an activation treatment step of forming a surface active portion having fine irregularities and / or fine cracks in the hydrogen passage portion, and a hydrogen storage alloy electrode surface-activated in the activation treatment step is brought into contact with an alkaline solution. And an alkaline treatment step of performing secondary surface treatment.

【0051】これにより、水素吸蔵合金粉末の表面に形
成されたZrを含む酸化皮膜が均一にかつ短時間で除去
できる。これより、水素化反応において触媒となるNi
の濃度が濃いNiリッチ層を水素吸蔵合金電極の表面に
形成することができるので、水素吸蔵合金表面での水素
との接触、吸蔵・解離が容易になり、水素化反応が迅速
に進行するので、初期活性を著しく改善することができ
る。従って、より表面活性に優れた、より初期活性に優
れた水素吸蔵合金電極を得ることができる。
As a result, the oxide film containing Zr formed on the surface of the hydrogen storage alloy powder can be removed uniformly and in a short time. As a result, Ni that serves as a catalyst in the hydrogenation reaction
Since it is possible to form a Ni-rich layer having a high concentration of hydrogen on the surface of the hydrogen storage alloy electrode, contact with hydrogen on the surface of the hydrogen storage alloy, storage and dissociation become easy, and the hydrogenation reaction proceeds rapidly. , The initial activity can be significantly improved. Therefore, a hydrogen storage alloy electrode having more excellent surface activity and more excellent initial activity can be obtained.

【0052】上記アルカリ処理工程において用いるアル
カリ溶液は、水酸化カリウム(KOH)溶液であること
が好ましい。濃度は、30〜32重量%、処理温度が8
0〜120℃、処理時間が1〜30時間が好適である。
The alkali solution used in the alkali treatment step is preferably a potassium hydroxide (KOH) solution. The concentration is 30 to 32% by weight and the treatment temperature is 8
It is suitable that the treatment time is 0 to 120 ° C. and the treatment time is 1 to 30 hours.

【0053】<水素吸蔵合金電極>本発明の二次電池負
極用水素吸蔵合金電極は、NH4 F・HF溶液処理を施
した水素吸蔵合金材料からなり、初期活性に優れてい
る。
<Hydrogen Storage Alloy Electrode> The hydrogen storage alloy electrode for a secondary battery negative electrode of the present invention is made of a hydrogen storage alloy material that has been treated with an NH 4 F / HF solution, and has excellent initial activity.

【0054】<活性化方法>水素吸蔵合金の成分元素の
一部をNH4 F・HF混合溶液に接触させることにより
溶解し、それと同時に該接触処理された水素吸蔵合金
を、該溶解した合金成分よりイオン化傾向が小さい金属
イオンに接触させることにより、該金属イオンを金属へ
還元するとともに該水素吸蔵合金に付着させることを特
徴とする水素吸蔵合金の活性化方法もしくは、該水素吸
蔵合金をZr−Ni系Laves相水素吸蔵合金とする
水素吸蔵合金の活性化方法において、該金属イオンとし
てNi,Mn,Pd,Co,Cuのうちの少なくとも一
つのイオンを用いる。
<Activation method> A part of the constituent elements of the hydrogen storage alloy are dissolved by bringing them into contact with an NH 4 F / HF mixed solution, and at the same time, the contact-treated hydrogen storage alloy is mixed with the dissolved alloy components. A method for activating a hydrogen storage alloy, which comprises contacting a metal ion having a smaller ionization tendency to reduce the metal ion to a metal and attaching the metal ion to the hydrogen storage alloy, or the hydrogen storage alloy containing Zr- In the method for activating a hydrogen storage alloy that is a Ni-based Laves phase hydrogen storage alloy, at least one ion of Ni, Mn, Pd, Co, and Cu is used as the metal ion.

【0055】この方法によれば、水素吸蔵合金成分の溶
解反応が生じ、水素吸蔵合金表面の水素吸蔵部または/
および水素透過部に微細な凹凸および/または微細なク
ラックが形成される。また、前記金属イオンは溶解イオ
ンよりイオン化傾向が小さいため、合金成分の溶解と同
時にこれら金属イオンが水素吸蔵合金表面に析出する。
これにより、水素吸蔵合金の活性化がより顕著に進む。
According to this method, the dissolution reaction of the hydrogen storage alloy component occurs, and the hydrogen storage part on the surface of the hydrogen storage alloy or /
And fine irregularities and / or fine cracks are formed in the hydrogen permeable portion. Further, since the metal ions have a smaller ionization tendency than the dissolved ions, these metal ions are deposited on the surface of the hydrogen storage alloy simultaneously with the dissolution of the alloy components.
As a result, the activation of the hydrogen storage alloy proceeds more significantly.

【0056】[0056]

【実施例】以下に、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0057】(実施例1)先ず、Zr−Ni系をベース
にしたLaves相水素吸蔵合金((Zr−Ti)(V
−Ni−Mn−Fe)2.1 、Zr(V−Ni−Mn−C
r)2.1 )を真空溶解し、Arガスアトマイズによって
水素吸蔵合金粉末を作製した。次いで、該合金粉末を石
英管に真空封入し、1050℃×1〜3時間の均質化熱
処理を施し、C15型(立方晶)の結晶構造とした。得
られた合金粉末の表面性状の観察を、走査型電子顕微鏡
(SEM)(倍率:〜10,000倍)で行った。その結果
を、図2に示す。
Example 1 First, a Laves phase hydrogen storage alloy ((Zr-Ti) (V
-Ni-Mn-Fe) 2.1 , Zr (V-Ni-Mn-C)
r) 2.1 ) was melted in vacuum, and hydrogen storage alloy powder was produced by Ar gas atomization. Next, the alloy powder was vacuum-sealed in a quartz tube, and homogenized and heat-treated at 1050 ° C. for 1 to 3 hours to obtain a C15 type (cubic crystal) crystal structure. The surface properties of the obtained alloy powder were observed with a scanning electron microscope (SEM) (magnification: up to 10,000 times). The result is shown in FIG.

【0058】次に、得られた合金粉末に、表面処理を施
した。NH4 F・HF溶液(濃度:1%)に前記合金粉
末(粉末粒径:74μm以下)を浸漬し、室温で5〜3
0分間の表面処理を行った。なお、溶液の量は、二種類
とした。 NH4 F・HF溶液20mlに対して前記合金粉末5
gとなるようにした(試料番号:1〜3)。 NH4 F・HF溶液60mlに対して前記合金粉末5
gとなるようにした(試料番号:4)。 処理した粉末は、水洗したのち、真空脱気して乾燥を行
った。
Then, the obtained alloy powder was subjected to a surface treatment. The alloy powder (powder particle size: 74 μm or less) is dipped in a NH 4 F / HF solution (concentration: 1%), and is allowed to stand at room temperature for 5 to 3
Surface treatment was performed for 0 minutes. The amount of solution was two. The above alloy powder 5 against 20 ml of NH 4 F / HF solution
g (sample number: 1 to 3). The above alloy powder 5 against 60 ml of NH 4 F / HF solution
g (Sample No. 4). The treated powder was washed with water, degassed in vacuum and dried.

【0059】(表面状態観察)前記処理後の合金粉末の
表面性状の観察を、走査型電子顕微鏡(SEM)(倍
率:〜10,000倍)で行った。試料番号1についての結果
を、図1に示す。図1および図2より明らかなように、
処理時間が5分と短時間でも合金粉末表面の酸化物層が
除去され、表面に微細な凹凸および微細なクラック
(溝)が形成されていることが分かる。
(Observation of Surface State) The surface properties of the alloy powder after the above treatment were observed with a scanning electron microscope (SEM) (magnification: up to 10,000 times). The results for sample number 1 are shown in FIG. As is clear from FIGS. 1 and 2,
It can be seen that the oxide layer on the surface of the alloy powder was removed even when the treatment time was as short as 5 minutes, and fine irregularities and fine cracks (grooves) were formed on the surface.

【0060】比較のために、本実施例の上記作製した水
素吸蔵合金粉末をK3 AlF6 で処理した比較用合金粉
末(試料番号:C2)について、処理後の合金粉末の表
面性状の観察を、上記と同様に走査型電子顕微鏡(SE
M)(倍率:〜10,000倍)で行った。その結果を、図3
に示す。同図から明らかなように、K3 AlF6 で処理
した場合には、表面酸化物が除去されておらず、本実施
例の表面状態(図1)とは著しく異なっていることが分
かる。これは、Zr−Ni系をベースにしたLaves
相水素吸蔵合金は、K3 AlF6 では本発明の表面活性
部を形成することができないものと考えられる。
For comparison, with respect to the comparative alloy powder (sample number: C2) obtained by treating the above-prepared hydrogen-absorbing alloy powder of this example with K 3 AlF 6 , the surface property of the treated alloy powder was observed. , Scanning electron microscope (SE
M) (magnification: up to 10,000 times). The result is shown in FIG.
Shown in As is clear from the figure, the surface oxide is not removed when treated with K 3 AlF 6 , which is significantly different from the surface state of this example (FIG. 1). This is a Laves based on the Zr-Ni system.
It is considered that the phase hydrogen storage alloy cannot form the surface active portion of the present invention with K 3 AlF 6 .

【0061】(処理液溶出元素分析)次に、処理液中に
溶出した合金元素を、誘導結合プラズマ発光分光分析に
より調査した。その結果を、表1に示す。
(Analysis of Elution Element of Treatment Solution) Next, the alloy elements eluted in the treatment solution were investigated by inductively coupled plasma optical emission spectroscopy. The results are shown in Table 1.

【0062】[0062]

【表1】 [Table 1]

【0063】なお、表1中に、溶液中に溶出した元素の
重量%を( )内に併せて示す。その結果、NH4 ・H
F溶液中に溶出した合金元素の量を比較すると、Ni量
は極めて少なく、処理時間が長くなっても合金元素の溶
出量の変化は少ないことが分かる。また、合金粉末処理
量に対して処理液量を3倍にすると、Niを除いた合金
元素は3倍に達したが、Ni量は1.5倍であった。この
結果、溶液濃度を一定にした場合は、合金粉末処理量に
対する溶液量の比率を変えることにより、処理による合
金粉末表面の状態を制御でき、処理が容易となることが
分かる。
In Table 1, the weight% of the element eluted in the solution is also shown in parentheses. As a result, NH 4 · H
Comparing the amounts of alloying elements eluted in the F solution, it can be seen that the amount of Ni is extremely small and that the elution amount of the alloying elements does not change even if the treatment time is long. Further, when the treatment liquid amount was tripled with respect to the alloy powder treatment amount, the alloy elements except Ni reached three times, but the Ni amount was 1.5 times. As a result, it is understood that when the solution concentration is kept constant, the state of the alloy powder surface due to the treatment can be controlled by changing the ratio of the solution amount to the alloy powder treatment amount, and the treatment becomes easy.

【0064】比較のために、H2 SO4 で処理した比較
用合金粉末(試料番号C1)およびK3 AlF6 で処理
した比較用合金粉末(試料番号:C2)について、上記
と同様に処理液に溶出した合金元素の分析を行った。そ
の結果を、表1に併せて示す。その結果、H2 SO4
処理した場合(試料番号C1)には、何れの合金元素も
合金組成とほぼ同量ずつ溶出していることが確認され
た。また、K3 AlF6で処理した場合(試料番号:C
2)には、合金元素の溶出量が僅かであり、顕著な表面
変化は見られなかったことが確認された。
For comparison, with respect to the comparative alloy powder treated with H 2 SO 4 (Sample No. C1) and the comparative alloy powder treated with K 3 AlF 6 (Sample No. C2), the same treatment liquid as above was used. The alloy elements eluted in the above were analyzed. The results are also shown in Table 1. As a result, when treated with H 2 SO 4 (Sample No. C1), it was confirmed that each alloy element was eluted in almost the same amount as the alloy composition. When treated with K 3 AlF 6 (sample number: C
In 2), it was confirmed that the amount of alloy elements eluted was small and no remarkable surface change was observed.

【0065】(表面層分析)次に、表面処理後の合金粉
末について、表層部のオージェ分析を行った。その結果
を、試料番号1について図4に示す。なお、比較のた
め、前記表面処理前の合金粉末について、同様にオージ
ェ分析を行った。その結果を、図5に示す。図4および
図5より明らかなように、本実施例の表面処理後の合金
粉末は、表層部における合金元素の深さ方向分布を見る
と、Niの濃度が高くなっており、Niが濃縮された領
域が形成されていることが分かる。また、XPS分析を
行った結果、表面にはフッ化物の形成は認められなかっ
た。
(Surface Layer Analysis) Next, with respect to the alloy powder after the surface treatment, Auger analysis of the surface layer portion was performed. The results are shown in FIG. 4 for sample number 1. For comparison, Auger analysis was similarly performed on the alloy powder before the surface treatment. The result is shown in FIG. As is clear from FIGS. 4 and 5, in the alloy powder after the surface treatment of this example, when the distribution of the alloy elements in the surface layer in the depth direction is seen, the concentration of Ni is high and the Ni is concentrated. It can be seen that there are formed regions. As a result of XPS analysis, formation of fluoride was not recognized on the surface.

【0066】(活性化分析1)表面処理後の合金粉末に
ついて、活性化処理−水素吸蔵試験により行った。すな
わち、水素吸蔵合金に水素を吸蔵させるためには、高温
真空脱気し、高圧水素を導入して活性化させる処理を多
数回繰返す初期活性化処理が必要となる。少ない回数の
活性化処理で十分な量の水素を吸蔵することが望まれて
おり、水素吸蔵合金のこの初期活性特性が重要な意味を
有する。本実施例により得られた合金粉末のうち、粒径
44μm以下に篩い分けた試料番号1の粉末3gを反応
容器に充填し、80℃〜100℃で真空脱気後、1.5M
Paの水素を導入し該雰囲気に30分暴露する操作を1
サイクルとし、この操作を繰り返して活性化処理を行っ
た。その結果を、図6に示す。
(Activation analysis 1) The alloy powder after surface treatment was subjected to activation treatment-hydrogen storage test. That is, in order to store hydrogen in the hydrogen storage alloy, it is necessary to perform initial activation treatment in which high-temperature vacuum degassing and introduction of high-pressure hydrogen for activation are repeated many times. It is desired to store a sufficient amount of hydrogen with a small number of activation treatments, and this initial activation characteristic of the hydrogen storage alloy has an important meaning. Of the alloy powders obtained in this example, 3 g of the powder of sample No. 1 sieved to a particle size of 44 μm or less was charged into a reaction vessel, vacuum degassing was performed at 80 ° C. to 100 ° C., and then 1.5 M
The operation of introducing Pa hydrogen and exposing it to the atmosphere for 30 minutes is 1
This operation was repeated as a cycle to carry out the activation treatment. The result is shown in FIG.

【0067】比較のために、H2 SO4 で処理した比較
用合金粉末(試料番号C3)、KOHで処理した比較用
合金粉末(試料番号:C4)、および、無処理の比較用
合金粉末(試料番号:C5)について、上記と同様に活
性化処理試験を行った。その結果を、図6に併せて示
す。
For comparison, a comparative alloy powder treated with H 2 SO 4 (Sample No. C3), a comparative alloy powder treated with KOH (Sample No. C4), and an untreated comparative alloy powder ( With respect to the sample number: C5), the activation treatment test was conducted in the same manner as above. The results are also shown in FIG.

【0068】図6より明らかなように、本実施例の粉末
合金の場合には、1回の活性化処理で十分な量の水素を
吸蔵し、極めて容易に活性化されていることが分かる。
これに対し、無処理の比較用合金粉末(試料番号:C
3)は、20回以上繰り返し活性化処理を行っても、水
素吸蔵量がほとんど認められず、活性化されていないこ
とが分かる。また、H2 SO4 で処理した比較用合金粉
末(試料番号:C1)およびKOHで処理した比較用合
金粉末(試料番号:C4)は、何れも活性化されるまで
に数回〜20数回以上の活性化処理が必要であり、本実
施例に比べて初期活性性が悪いことが確認された。
As is clear from FIG. 6, in the case of the powder alloy of this example, a sufficient amount of hydrogen was stored in one activation treatment, and activation was extremely easy.
On the other hand, untreated comparative alloy powder (sample number: C
In the case of 3), even if the activation treatment was repeated 20 times or more, almost no hydrogen storage amount was observed, which means that it was not activated. Further, the comparative alloy powder treated with H 2 SO 4 (sample number: C1) and the comparative alloy powder treated with KOH (sample number: C4) were both activated several times to 20 times. It was confirmed that the above activation treatment was necessary and the initial activity was poor as compared with the present example.

【0069】(活性化分析2)活性化時間(水素に暴露
する時間)と水素吸蔵量との関係を調べた。本実施例に
より得られた合金粉末のうち、粒径44μm以下に篩い
分けた試料番号1の粉末3gを反応容器に充填し、室温
で真空脱気後、1.5MPaの水素を導入し、反応容器を
0℃に冷却し水素雰囲気中での暴露時間と水素吸蔵量と
の関係を調べた。その結果を、図7に示す。
(Activation analysis 2) The relationship between the activation time (time of exposure to hydrogen) and the hydrogen storage amount was examined. Of the alloy powders obtained in this example, 3 g of the powder of sample No. 1 sieved to a particle size of 44 μm or less was charged into a reaction vessel, vacuum degassing was performed at room temperature, and then 1.5 MPa of hydrogen was introduced to react. The container was cooled to 0 ° C., and the relationship between the exposure time in a hydrogen atmosphere and the hydrogen storage amount was examined. The result is shown in FIG. 7.

【0070】比較のために、無処理の比較用合金粉末
(試料番号:C5)について、上記と同様に活性化処理
試験を行った。その結果を、図7に併せて示す。また、
比較のために、K3 AlF6 で処理した比較用合金粉末
(試料番号:C2)について、上記と同様に活性化処理
試験を行った。その結果を、図8に示す。
For comparison, an activation treatment test was conducted on the untreated comparative alloy powder (Sample No. C5) in the same manner as above. The results are also shown in FIG. 7. Also,
For comparison, the activation treatment test was performed on the comparative alloy powder (sample number: C2) treated with K 3 AlF 6 in the same manner as above. The result is shown in FIG.

【0071】図7より明らかなように、本実施例の合金
粉末の場合には、活性化処理が1回では水素雰囲気暴露
10分ぐらいから水素を吸蔵しはじめ、2時間程で最大
吸蔵量に達した。その後、再度80℃×30分真空脱気
して水素を導入すると(2回目の活性化処理)、10分
程度で最大吸蔵量に達し、容易に水素を吸蔵できること
が分かる。これに対し、無処理の比較用合金粉末(試料
番号:C5)は、水素雰囲気への暴露が1時間以上経過
しても、水素をほとんど吸蔵していないことが確認され
た。また、K3 AlF6 で処理した比較用合金粉末(試
料番号:C2)は図8から明らかなように、水素雰囲気
での暴露が3時間経過しても、水素はほとんど吸蔵され
ていないことが確認された。
As is clear from FIG. 7, in the case of the alloy powder of the present example, when the activation treatment is once, hydrogen absorption starts from about 10 minutes of exposure to the hydrogen atmosphere and the maximum storage amount reaches about 2 hours. Reached After that, when vacuum degassing is performed again at 80 ° C. for 30 minutes and hydrogen is introduced (second activation treatment), the maximum storage amount is reached in about 10 minutes, and it can be seen that hydrogen can be easily stored. On the other hand, it was confirmed that the untreated comparative alloy powder (Sample No. C5) hardly occludes hydrogen even after 1 hour or more of exposure to a hydrogen atmosphere. As is clear from FIG. 8, the comparative alloy powder (sample number: C2) treated with K 3 AlF 6 shows that hydrogen is hardly occluded even after 3 hours of exposure in a hydrogen atmosphere. confirmed.

【0072】(実施例2)実施例1のAB2 型合金で粒
径75μm 以下のZrNi2 系粉末を用いた本実施例の
活性化処理を行った。活性化処理は合金粉末2gを濃度
1%のNH4 F・HF溶液20mlに入れ、室温で5分
間処理を行った後に水洗し、真空乾燥することによって
行った。実施例1と同様に合金元素の深さ方向の分布を
オージェ(AES)分析により調べた結果、得られた処
理粉末表面のZr酸化物は活性化処理によって除去さ
れ、Niが表面に濃縮されていることがわかった。Ni
は触媒としての働きがあるので、表面に形成されたNi
濃縮層は水素化の反応速度を改善し、初期活性を向上さ
せることができる。また、Ni濃縮層は保護被膜として
の働きもあり、水素吸蔵合金の酸化を防止して、活性を
維持することができる。
Example 2 The activation treatment of this example was carried out using the AB 2 type alloy of Example 1 and ZrNi 2 type powder having a particle size of 75 μm or less. The activation treatment was carried out by placing 2 g of the alloy powder in 20 ml of a NH 4 F.HF solution having a concentration of 1%, performing treatment at room temperature for 5 minutes, washing with water, and vacuum drying. As a result of investigating the depthwise distribution of alloying elements by Auger (AES) analysis as in Example 1, the Zr oxide on the surface of the obtained treated powder was removed by the activation treatment, and Ni was concentrated on the surface. I found out that Ni
Acts as a catalyst, so Ni formed on the surface
The concentrated layer can improve the reaction rate of hydrogenation and improve the initial activity. In addition, the Ni-concentrated layer also functions as a protective film, and can prevent the hydrogen storage alloy from oxidizing and maintain its activity.

【0073】さらに、本実施例の活性化効果を調べるた
め、次に示す(5)〜(8)の4種類の活性化方法を行
い、Niによる活性化を行った。Ni量は水素吸蔵合金
が非磁性であり、Niが強磁性であることから活性化粉
末の磁化を測定することによって求めることができる。
比較例(C3、C4)として公知の無電解Ni−Pめっ
き方法によって処理した粉末を用いた。以上の結果を表
2に示す。
Further, in order to examine the activation effect of the present embodiment, four types of activation methods (5) to (8) shown below were carried out to activate with Ni. The amount of Ni can be determined by measuring the magnetization of the activated powder because the hydrogen storage alloy is non-magnetic and Ni is ferromagnetic.
As comparative examples (C3, C4), powders treated by a known electroless Ni-P plating method were used. Table 2 shows the above results.

【0074】[0074]

【表2】 [Table 2]

【0075】(5)合金粉末2gを2.7%NiCl2
溶液20mlに入れ、室温で5分間処理を行った後に水
洗して真空乾燥した。得られた粉末には強磁性相が認め
られず、Niが析出しなかった。 (6)合金粉末2gを濃度1%のNH4 F・HF溶液2
0mlに入れ、室温で5分間処理を行った後に水洗して
真空乾燥した。得られた粉末には強磁性相が認められ、
Niが析出した。
(5) 2 g of the alloy powder was added to 2.7% NiCl 2
The solution was added to 20 ml, treated at room temperature for 5 minutes, washed with water, and vacuum dried. No ferromagnetic phase was observed in the obtained powder, and Ni was not precipitated. (6) 2 g of alloy powder is used to prepare a 1% NH 4 F / HF solution 2
The mixture was added to 0 ml, treated at room temperature for 5 minutes, washed with water, and vacuum dried. The obtained powder has a ferromagnetic phase,
Ni was deposited.

【0076】(7)合金粉末2gを濃度1%のNH4
・HF溶液20mlに入れ、室温で5分間処理を行った
後に水洗し、その後に2.7%NiCl2 溶液20ml
に入れ、室温で5分間活性化を行った後に水洗して真空
乾燥した。得られた活性化粉末には強磁性相が認めら
れ、Niが析出した。(5)と比較すると、2.7%N
iCl2 溶液で活性化する前に1%のNH4 F・HF溶
液で処理しているので粉末表面の酸化物が除去され、N
iが析出しやすくなったことが分かる。また、(6)に
比べてNi析出量を増やすことができた。
(7) 2 g of alloy powder was added to NH 4 F having a concentration of 1%.
・ Put in 20 ml of HF solution, treat for 5 minutes at room temperature, then wash with water, and then 20 ml of 2.7% NiCl 2 solution
After activating for 5 minutes at room temperature, it was washed with water and vacuum dried. A ferromagnetic phase was observed in the obtained activated powder, and Ni was precipitated. 2.7% N compared with (5)
Since it was treated with a 1% NH 4 F.HF solution before being activated with an iCl 2 solution, oxides on the powder surface were removed, and N
It can be seen that i was easy to precipitate. Further, the amount of Ni deposited could be increased as compared with (6).

【0077】(8)合金粉末2gを濃度1%のNH4
・HF+2.7%NiCl2 混合溶液20mlに入れ、
室温で5分間活性化を行った後に水洗して真空乾燥し
た。得られた粉末には強磁性相が認められ、短時間に多
量にNiが析出した。これによりNi源を含んだ混合溶
液を用いることにより、効率よく合金が活性化されるこ
とがわかった。
(8) 2 g of the alloy powder was added to NH 4 F having a concentration of 1%.
・ Put it in 20 ml of HF + 2.7% NiCl 2 mixed solution,
After activation at room temperature for 5 minutes, it was washed with water and dried under vacuum. A ferromagnetic phase was observed in the obtained powder, and a large amount of Ni was precipitated in a short time. From this, it was found that the alloy was efficiently activated by using the mixed solution containing the Ni source.

【0078】(C3)合金粉末2gを濃度1%のNH4
F・HF溶液で粉末表面の酸化物を除去した後に水洗
し、公知の無電解Ni−Pめっきを60℃で5分間処理
した後に水洗して真空乾燥した。 (C4)合金粉末2gを濃度1%のNH4 F・HF溶液
で粉末表面の酸化物を除去した後に水洗し、公知の無電
解Ni−Pめっきを60℃で15分間処理した後に水洗
して真空乾燥した。
(C3) 2 g of alloy powder was added to NH 4 with a concentration of 1%.
After the oxide on the powder surface was removed with an F.HF solution, the powder was washed with water, and a known electroless Ni-P plating was treated at 60 ° C for 5 minutes, then washed with water and vacuum dried. (C4) 2 g of the alloy powder was washed with water after removing oxides on the powder surface with a NH 4 F / HF solution having a concentration of 1%, and treated with known electroless Ni-P plating at 60 ° C. for 15 minutes and then washed with water. Vacuum dried.

【0079】これら比較例では処理時間を長くすること
によってNiめっき量を増加させることができるが、本
実施例の活性化に比べてNi量がかなり少なかった。こ
のように、本実施例の活性化は公知のめっき法よりも処
理工程が少なく、しかも効率よくNiを析出させること
ができることがわかった。
In these comparative examples, the amount of Ni plating can be increased by increasing the treatment time, but the amount of Ni was considerably smaller than that in the activation of this example. As described above, it was found that the activation of this example requires less treatment steps than the known plating method, and moreover, Ni can be efficiently deposited.

【0080】(実施例3)実施例2の活性化溶液におい
てNH4 F・HF溶液の濃度を1%と5%に変え、さら
に、それぞれの場合についてNiCl2 の濃度を0〜1
2%の間で変えた混合溶液を用い、溶液20mlに対し
て実施例2と同様の未処理合金粉末2gを室温で5分間
活性化を行った後に水洗して真空乾燥し、活性化粉末を
得た。これのNi量を実施例2と同様の方法により求
め、図9に示した。これから分かるようにNH4 F・H
F溶液の濃度を高くすると短時間で多量にNiが析出
し、NiCl2 の濃度が増すほど析出するNi量は増加
することがわかる。1%のNH4F・HF溶液の場合に
は、NiCl2 の濃度が2.7%以上になると析出する
Ni量が飽和する傾向にある。このようにNi析出量は
活性化溶液の濃度を変えることによって調節可能であ
る。また、活性化の時間を変えることによっても調節可
能である。
Example 3 In the activation solution of Example 2, the concentration of NH 4 F.HF solution was changed to 1% and 5%, and the concentration of NiCl 2 was 0 to 1 in each case.
Using the mixed solution changed between 2%, 2 g of the untreated alloy powder similar to that used in Example 2 was activated in 20 ml of the solution at room temperature for 5 minutes, washed with water and vacuum dried to obtain the activated powder. Obtained. The Ni content of this was determined by the same method as in Example 2, and is shown in FIG. As you can see, NH 4 F ・ H
It can be seen that when the concentration of the F solution is increased, a large amount of Ni is deposited in a short time, and the more the concentration of NiCl 2 is, the more the amount of Ni deposited is increased. In the case of a 1% NH 4 F.HF solution, when the concentration of NiCl 2 is 2.7% or more, the amount of precipitated Ni tends to be saturated. In this way, the amount of Ni deposited can be adjusted by changing the concentration of the activation solution. It can also be adjusted by changing the activation time.

【0081】(実施例4)実施例3の1%NH4 F・H
F活性化溶液について、NiCl2 の濃度を10%以下
の範囲で変化させ、実施例2と同様の未処理合金粉末を
活性化した。各種活性化溶液20mlに対して合金粉末
2gを室温で5分間活性化を行った後に水洗して真空乾
燥し、活性化粉末を得た。これらの粉末のNi量を磁化
率より求めるといづれも3.3%以下の範囲であった。
得られた活性化水素吸蔵合金を用いて、Ni−金属水素
化物二次電池を構成し、活性化の効果を調べた。
Example 4 1% NH 4 F · H of Example 3
With respect to the F activating solution, the concentration of NiCl 2 was changed within the range of 10% or less to activate the untreated alloy powder similar to that in Example 2. 2 g of the alloy powder was activated in 20 ml of each activation solution at room temperature for 5 minutes, washed with water and vacuum dried to obtain an activation powder. When the Ni content of these powders was calculated from the magnetic susceptibility, they were all in the range of 3.3% or less.
A Ni-metal hydride secondary battery was constructed using the obtained activated hydrogen storage alloy, and the activation effect was investigated.

【0082】活性化粉末と導電助材の黒鉛および結着材
のPTFEを91:5:4の割合で混練し、それを金型
に入れφ12mm×0.6mmのペレットを成形した。ペレ
ットをニッケルメッシュで包み電極を作製し、負極とし
た。正極には発泡Ni集電体に水酸化ニッケルを充填し
た電極を用いた。2枚の正極でセパレータを介して負極
を挟み、アクリル板で両側から締めつけて開放型電池を
組み立てた。電解液には5N KOH+1N LiOH
を用いた。
The activated powder, graphite as a conduction aid, and PTFE as a binder were kneaded at a ratio of 91: 5: 4 and put into a mold to form pellets of φ12 mm × 0.6 mm. The pellet was wrapped with nickel mesh to prepare an electrode, which was used as a negative electrode. As the positive electrode, an electrode in which a foamed Ni current collector was filled with nickel hydroxide was used. An open-type battery was assembled by sandwiching the negative electrode between two positive electrodes with a separator interposed therebetween and tightening both sides with an acrylic plate. 5N KOH + 1N LiOH for electrolyte
Was used.

【0083】この電池に対して、0.1Cの条件で10
回充放電を繰り返して初期活性化を行った後に、0.2
Cに切り替えて充放電試験を行った。得られた充放電回
数と合金容量との関係を図10に示す。合金容量は電極
の活物質として仕込んだ水素吸蔵合金の単位重量当たり
に放電できた電気容量として求められる。図より、析出
したNi量が増加すると少ない充放電回数で高容量が得
られ初期活性化されやすくなることがわかった。2.5
%Ni量では最も少ない回数で初期活性化され、0.2
Cでも高容量が得られた。この結果からNi量として
0.5〜3.5%の範囲で初期活性化効果があり、特に
Ni量2.5〜3.5%の時が好適であった。
With respect to this battery, 10
After the initial activation by repeating charging and discharging twice, 0.2
The charging / discharging test was conducted by switching to C. The relationship between the obtained number of times of charge and discharge and the alloy capacity is shown in FIG. The alloy capacity is obtained as the electric capacity that can be discharged per unit weight of the hydrogen storage alloy charged as the active material of the electrode. From the figure, it was found that when the amount of deposited Ni increases, a high capacity can be obtained with a small number of times of charge and discharge, and initial activation is facilitated. 2.5
% Ni content is 0.2 times the initial activation, 0.2
Even in C, a high capacity was obtained. From these results, there was an initial activation effect when the Ni content was in the range of 0.5 to 3.5%, and the Ni content of 2.5 to 3.5% was particularly preferable.

【0084】(実施例5)本実施例による活性化水素吸
蔵合金電極(9)と、比較例としてそれぞれ公知のアル
カリ処理による水素吸蔵合金電極(C5)、無電解Ni
−Bめっきによる水素吸蔵合金電極(C6)、および無
電解Ni−Pめっきによる水素吸蔵合金電極(C7)を
充放電させ、その合金利用率を図11に比較した。例
(9)の電極には、実施例2と同様の未処理合金粉末5
gを1%のNH4 F・HF+2.7%NiCl2 混合溶
液50mlに入れ、室温で5分間活性化を行った後に水
洗して真空乾燥して得られた活性化粉末、即ち実施例4
で最も良い結果が得られた活性化粉末を用いた。
(Embodiment 5) The activated hydrogen storage alloy electrode (9) according to the present embodiment, the hydrogen storage alloy electrode (C5) by the well-known alkali treatment as a comparative example, and the electroless Ni.
The hydrogen storage alloy electrode (C6) by -B plating and the hydrogen storage alloy electrode (C7) by electroless Ni-P plating were charged and discharged, and the alloy utilization rates thereof were compared with FIG. 11. For the electrode of Example (9), untreated alloy powder 5 similar to that of Example 2 was used.
g was added to 50 ml of a 1% NH 4 F.HF + 2.7% NiCl 2 mixed solution, activated at room temperature for 5 minutes, washed with water, and vacuum dried to obtain an activated powder, that is, Example 4
The activated powder which gave the best result in was used.

【0085】C5は6N KOH溶液に実施例2と同様
の未処理合金粉末5gを入れ、80℃で30時間処理し
た後、水洗・真空乾燥して作製した粉末である。C6、
C7は1%NH4 F・HF溶液で粉末表面の酸化物を除
去して水洗した後、60℃で15分間無電解めっきを行
い、水洗・真空乾燥して作製した粉末である。これらの
粉末を用いて次のような方法でNi−金属水素化物電池
を作製した。
C5 is a powder prepared by adding 5 g of the untreated alloy powder similar to that used in Example 2 to a 6N KOH solution, treating at 80 ° C. for 30 hours, washing with water and vacuum drying. C6,
C7 is a powder produced by removing oxides on the powder surface with a 1% NH 4 F.HF solution and washing with water, then performing electroless plating at 60 ° C. for 15 minutes, washing with water and vacuum drying. Using these powders, a Ni-metal hydride battery was produced by the following method.

【0086】上記の実施例、比較例の粉末と2wt%メチ
ルセルロース溶液を77:23の割合で混練してペース
トにし、それを発泡ニッケル集電体(30×40mm) に充填
し、乾燥した後にプレスして負極を作製した。これを用
いて実施例4と同様の電池を構成した。この電池を0.
044Cの条件で3回充放電を繰り返して初期活性化を
行った後に、0.2Cに切り替えて図11の結果を得
た。これより、本実施例の(9)は比較例(C5)(C
6)(C7)に比べて少ない充放電回数で初期活性化さ
れるだけでなく、高率充放電条件でも高い合金利用率が
得られることがわかった。
The powders of the above Examples and Comparative Examples and a 2 wt% methylcellulose solution were kneaded at a ratio of 77:23 to form a paste, which was filled in a foamed nickel current collector (30 × 40 mm), dried and pressed. Then, a negative electrode was produced. Using this, a battery similar to that in Example 4 was constructed. This battery
After repeating charge and discharge three times under the condition of 044C and performing initial activation, the temperature was switched to 0.2C and the result of FIG. 11 was obtained. From this, (9) of this example is comparative example (C5) (C
6) Compared with (C7), it was found that not only the initial activation was performed with a smaller number of times of charge and discharge, but also a high alloy utilization rate was obtained under high rate charge and discharge conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1において得られた、表面処理
後の合金粉末の表面状態を示す走査型電子顕微鏡写真図
(倍率:〜10,000倍)である。
FIG. 1 is a scanning electron micrograph (magnification: up to 10,000 times) showing a surface state of an alloy powder after surface treatment obtained in Example 1 of the present invention.

【図2】本発明の実施例1において得られた、表面処理
前の合金粉末(未処理粉末)の表面状態を示す走査型電
子顕微鏡写真図(倍率:〜10,000倍)である。
FIG. 2 is a scanning electron micrograph (magnification: up to 10,000 times) showing the surface state of the alloy powder before surface treatment (untreated powder) obtained in Example 1 of the present invention.

【図3】本発明の比較例(試料番号:C2)において得
られた、表面処理後の合金粉末の表面状態を示す走査型
電子顕微鏡写真図(倍率:〜10,000倍)である。
FIG. 3 is a scanning electron micrograph (magnification: up to 10,000 times) showing the surface state of the alloy powder after the surface treatment, which was obtained in the comparative example of the present invention (sample number: C2).

【図4】本発明の実施例1において得られた、表面処理
後の合金粉末の表層部のオージェ分析結果を示す線図で
ある。
FIG. 4 is a diagram showing the Auger analysis result of the surface layer portion of the alloy powder after the surface treatment obtained in Example 1 of the present invention.

【図5】本発明の実施例1において得られた、表面処理
前の合金粉末(未処理粉末)の表層部のオージェ分析結
果を示す線図である。
FIG. 5 is a diagram showing Auger analysis results of the surface layer portion of the alloy powder before surface treatment (untreated powder) obtained in Example 1 of the present invention.

【図6】本発明の実施例1において得られた、表面処理
後の合金粉末の活性化処理試験(活性化分析1)結果を
示す線図である。
FIG. 6 is a diagram showing the results of the activation treatment test (activation analysis 1) of the alloy powder after the surface treatment obtained in Example 1 of the present invention.

【図7】本発明の実施例1において得られた、表面処理
後の合金粉末の活性化処理試験(活性化分析2)結果を
示す線図である。
FIG. 7 is a diagram showing the results of the activation treatment test (activation analysis 2) of the alloy powder after the surface treatment obtained in Example 1 of the present invention.

【図8】本発明の比較例(試料番号:C2)において得
られた、表面処理後の合金粉末の活性化処理試験(活性
化分析2)結果を示す線図である。
FIG. 8 is a diagram showing the results of activation treatment test (activation analysis 2) of alloy powder after surface treatment, which was obtained in a comparative example (sample number: C2) of the present invention.

【図9】本実施例3の活性化粉末の磁化σs とNi量と
の関係を示す線図である。
FIG. 9 is a diagram showing the relationship between the magnetization σs and the amount of Ni of the activated powder of the third embodiment.

【図10】本実施例4の活性化粉末から作られた電極の
合金容量と充放電回数との関係を示す線図である。
FIG. 10 is a graph showing the relationship between the alloy capacity and the number of charge / discharge cycles of an electrode made from the activated powder of Example 4.

【図11】本実施例5の活性化粉末および比較例粉末か
ら作られた電極の合金利用率と充放電回数との関係を示
す線図である。
FIG. 11 is a graph showing the relationship between the alloy utilization rate and the number of charge / discharge cycles of electrodes made from the activated powder of Example 5 and the comparative powder.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 4/38 H01M 4/38 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01M 4/38 H01M 4/38 A

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金材料に表面処理液を接触さ
せて処理し、該水素吸蔵合金表面に形成される酸化物な
どの表面活性阻害物質を除去するとともに、少なくとも
前記水素吸蔵合金材料表面の水素吸蔵部または/および
水素通過部に、微細な凹凸および/または微細なクラッ
クからなる表面活性部を形成してなることを特徴とする
水素吸蔵合金材料の表面処理方法。
1. A surface treatment liquid is brought into contact with a hydrogen storage alloy material for treatment to remove surface activity inhibiting substances such as oxides formed on the surface of the hydrogen storage alloy, and at least the surface of the hydrogen storage alloy material is treated. A surface treatment method for a hydrogen storage alloy material, which comprises forming a surface active portion having fine irregularities and / or fine cracks in the hydrogen storage portion and / or the hydrogen passage portion.
【請求項2】 表面活性部が、比表面積0.03 m2/g 以
上を有してなり、水素透過性に優れてなることを特徴と
する請求項1記載の水素吸蔵合金材料の表面処理方法。
2. The surface treatment of a hydrogen storage alloy material according to claim 1, wherein the surface active portion has a specific surface area of 0.03 m 2 / g or more and is excellent in hydrogen permeability. Method.
【請求項3】 表面処理液が、NH4 F・HF溶液であ
ることを特徴とする請求項1記載の水素吸蔵合金材料の
表面処理方法。
3. The surface treatment method for a hydrogen storage alloy material according to claim 1, wherein the surface treatment liquid is an NH 4 F.HF solution.
【請求項4】 表面活性部が、水素活性化金属元素の濃
縮層であることを特徴とする請求項1記載の水素吸蔵合
金材料の表面処理方法。
4. The surface treatment method for a hydrogen storage alloy material according to claim 1, wherein the surface active portion is a concentrated layer of a hydrogen activated metal element.
【請求項5】 表面活性部が、ニッケルの濃縮層である
ことを特徴とする請求項1記載の水素吸蔵合金材料の表
面処理方法。
5. The surface treatment method for a hydrogen storage alloy material according to claim 1, wherein the surface active portion is a nickel enriched layer.
【請求項6】 水素吸蔵合金材料が、Zr−Ni系La
ves相水素吸蔵合金であることを特徴とする請求項1
〜請求項5のいづれかに記載された水素吸蔵合金材料の
表面処理方法。
6. The hydrogen storage alloy material is Zr—Ni-based La.
2. A ves phase hydrogen storage alloy.
The surface treatment method for a hydrogen storage alloy material according to claim 5.
【請求項7】 請求項1〜請求項5のいづれかに記載さ
れた表面処理方法により表面処理された水素吸蔵合金材
料を、真空引き後、水素を導入することにより水素を吸
蔵させることを特徴とする水素吸蔵合金材料の初期活性
化処理法。
7. A hydrogen storage alloy material surface-treated by the surface treatment method according to claim 1 is evacuated, and then hydrogen is introduced to occlude hydrogen. Initial activation treatment method for hydrogen storage alloy materials.
【請求項8】 Zr−Ni系Laves相水素吸蔵合金
に表面処理液を接触させて処理し、該水素吸蔵合金表面
に形成される酸化物などの表面活性阻害物質を除去する
とともに、少なくとも前記水素吸蔵合金表面の水素吸蔵
部または/および水素通過部に、微細な凹凸および/ま
たは微細なクラックからなる表面活性部を形成してなる
ことを特徴とする水素吸蔵合金電極の活性化処理方法。
8. A Zr—Ni-based Laves phase hydrogen storage alloy is treated by bringing it into contact with a surface treatment liquid to remove surface activity inhibiting substances such as oxides formed on the surface of the hydrogen storage alloy, and at least the hydrogen. A method for activating a hydrogen storage alloy electrode, comprising forming a surface active portion having fine irregularities and / or fine cracks in a hydrogen storage portion and / or a hydrogen passage portion on the surface of the storage alloy.
【請求項9】 表面活性部が、比表面積0.03 m2/g 以
上を有してなり、水素透過性に優れてなることを特徴と
する請求項8記載の水素吸蔵合金電極の活性化処理方
法。
9. The activation of a hydrogen storage alloy electrode according to claim 8, wherein the surface active portion has a specific surface area of 0.03 m 2 / g or more and is excellent in hydrogen permeability. Processing method.
【請求項10】 表面処理液が、NH4 F・HF溶液であ
ることを特徴とする請求項8記載の水素吸蔵合金電極の
活性化処理方法。
10. The activation treatment method for a hydrogen storage alloy electrode according to claim 8, wherein the surface treatment liquid is an NH 4 F.HF solution.
【請求項11】 表面活性部が、水素活性化金属元素の濃
縮層であることを特徴とする請求項8記載の水素吸蔵合
金電極の活性化処理方法。
11. The activation treatment method for a hydrogen storage alloy electrode according to claim 8, wherein the surface active portion is a concentrated layer of a hydrogen activated metal element.
【請求項12】 表面活性部が、ニッケルの濃縮層である
ことを特徴とする請求項8記載の水素吸蔵合金電極の活
性化処理方法。
12. The activation treatment method for a hydrogen storage alloy electrode according to claim 8, wherein the surface active portion is a nickel concentrated layer.
【請求項13】 前記表面処理液により表面処理後、アル
カリ溶液で二次表面処理してなることを特徴とする請求
項8〜請求項12のいづれかに記載された水素吸蔵合金電
極の活性化処理方法。
13. The activation treatment of the hydrogen storage alloy electrode according to claim 8, wherein after the surface treatment with the surface treatment liquid, a secondary surface treatment with an alkaline solution is performed. Method.
【請求項14】 二次表面処理において用いるアルカリ溶
液が、水酸化カリウム溶液であることを特徴とする請求
項12記載の水素吸蔵合金電極の活性化処理方法。
14. The activation treatment method for a hydrogen storage alloy electrode according to claim 12, wherein the alkaline solution used in the secondary surface treatment is a potassium hydroxide solution.
【請求項15】 請求項8〜請求項12のいづれかに記載さ
れた活性化処理方法により活性化処理された水素吸蔵合
金を、真空引き後、水素を導入することにより水素を吸
蔵させることを特徴とする水素吸蔵合金電極の初期活性
化処理法。
15. A hydrogen storage alloy that has been activated by the activation treatment method according to any one of claims 8 to 12 is evacuated, and then hydrogen is introduced to occlude hydrogen. Initial activation treatment method of hydrogen storage alloy electrode.
【請求項16】 NH4 F・HF溶液処理を施した水素吸
蔵合金材料からなることを特徴とする初期活性に優れた
二次電池負極用の水素吸蔵合金電極。
16. A hydrogen storage alloy electrode for a secondary battery negative electrode having excellent initial activity, which is made of a hydrogen storage alloy material treated with an NH 4 F / HF solution.
【請求項17】 水素吸蔵合金の成分元素の一部をNH
4 F・HF混合溶液に接触させることにより溶解し、そ
れと同時に該接触された水素吸蔵合金を、該溶解した合
金成分よりイオン化傾向が小さい金属イオンに接触させ
ることにより、該金属イオンを金属へ還元するとともに
該水素吸蔵合金に付着させることを特徴とする水素吸蔵
合金の活性化方法。
17. A part of the constituent elements of the hydrogen storage alloy is NH.
4 F-HF mixed solution is dissolved by contact, and at the same time, the contacted hydrogen storage alloy is contacted with a metal ion having a smaller ionization tendency than the dissolved alloy component, thereby reducing the metal ion to a metal And a method of activating a hydrogen storage alloy, characterized in that the hydrogen storage alloy is attached to the hydrogen storage alloy.
【請求項18】 水素吸蔵合金がZr−Ni系Lave
s相水素吸蔵合金であることを特徴とする請求項17記
載の水素吸蔵合金の活性化方法。
18. The hydrogen storage alloy is Zr—Ni-based Lave.
The method for activating a hydrogen storage alloy according to claim 17, which is an s-phase hydrogen storage alloy.
【請求項19】 前記金属イオンとしてNi,Mn,P
d,Co,Cuのうちの少なくとも一つのイオンを用い
ることを特徴とする請求項17または18記載の水素吸
蔵合金の活性化方法。
19. Ni, Mn, P as the metal ions
The method for activating a hydrogen storage alloy according to claim 17 or 18, wherein at least one ion of d, Co, and Cu is used.
【請求項20】 Ni,Mn,Pd,Co,Cuのうち
の少なくとも一つのイオンを、NH4 F・HF混合溶液
に溶解させたことを特徴とする請求項17〜19のいづ
れかの方法に使用する水素吸蔵合金の活性化溶液。
20. The method according to claim 17, wherein at least one ion selected from Ni, Mn, Pd, Co and Cu is dissolved in an NH 4 F / HF mixed solution. Activated solution of hydrogen storage alloy.
JP05997896A 1995-02-22 1996-02-21 Surface treatment method for hydrogen storage alloy material, activation method for hydrogen storage alloy electrode, activation solution, and hydrogen storage alloy electrode with excellent initial activity Expired - Fee Related JP3337189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05997896A JP3337189B2 (en) 1995-02-22 1996-02-21 Surface treatment method for hydrogen storage alloy material, activation method for hydrogen storage alloy electrode, activation solution, and hydrogen storage alloy electrode with excellent initial activity

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5986095 1995-02-22
JP7-59860 1995-02-22
JP05997896A JP3337189B2 (en) 1995-02-22 1996-02-21 Surface treatment method for hydrogen storage alloy material, activation method for hydrogen storage alloy electrode, activation solution, and hydrogen storage alloy electrode with excellent initial activity

Publications (2)

Publication Number Publication Date
JPH08291391A true JPH08291391A (en) 1996-11-05
JP3337189B2 JP3337189B2 (en) 2002-10-21

Family

ID=26400938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05997896A Expired - Fee Related JP3337189B2 (en) 1995-02-22 1996-02-21 Surface treatment method for hydrogen storage alloy material, activation method for hydrogen storage alloy electrode, activation solution, and hydrogen storage alloy electrode with excellent initial activity

Country Status (1)

Country Link
JP (1) JP3337189B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10149824A (en) * 1996-11-20 1998-06-02 Matsushita Electric Ind Co Ltd Manufacture of hydrogen storage alloy electrode
WO1998033613A1 (en) * 1997-01-31 1998-08-06 Sanyo Electric Co., Ltd. Hydrogen storage alloy powder ane method of manufacturing the same
JPH10214620A (en) * 1997-01-30 1998-08-11 Sanyo Electric Co Ltd Manufacture of hydrogen storage alloy electrode
JPH10255779A (en) * 1997-03-14 1998-09-25 Toshiba Corp Manufacture for nickel hydrogen storage battery
JPH11154511A (en) * 1997-11-19 1999-06-08 Okuno Chem Ind Co Ltd Surface treatment hydrogen storage alloy, surface treatment method, hydride electrode using surface treatment hydrogen storage alloy
JP2000239701A (en) * 1999-02-24 2000-09-05 Masaki Uchida Method for activating hydrogen storage alloy
JP2000268818A (en) * 1999-03-18 2000-09-29 Matsushita Electric Ind Co Ltd Activating method for hydrogen storage alloy for battery, and alkaline storage battery using it
JP2001093522A (en) * 1999-09-22 2001-04-06 Sanyo Electric Co Ltd Hydrogen storage alloy particles and preparation
JP2001135311A (en) * 1999-11-04 2001-05-18 Matsushita Electric Ind Co Ltd Alkaline storage battery
JP2002146449A (en) * 2000-11-02 2002-05-22 Toyota Motor Corp Method for regenerating hydrogen storage alloy
JP2002309327A (en) * 2001-04-11 2002-10-23 Sanyo Electric Co Ltd Hydrogen storage alloy for electrode, its manufacturing method, hydrogen-storage-alloy electrode, and alkaline storage battery
JP2004074020A (en) * 2002-08-19 2004-03-11 National Institute Of Advanced Industrial & Technology Hydrogen dissociation and separation membrane
WO2009154046A1 (en) * 2008-06-18 2009-12-23 日立マクセル株式会社 Surface-roughened high-density functional particle, method for producing the same, and method for processing target substance using the same
JP2010142804A (en) * 2008-12-19 2010-07-01 Gkss Forschungszentrum Geesthacht Gmbh Method for activating or regenerating hydrogen absorption material

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10149824A (en) * 1996-11-20 1998-06-02 Matsushita Electric Ind Co Ltd Manufacture of hydrogen storage alloy electrode
JPH10214620A (en) * 1997-01-30 1998-08-11 Sanyo Electric Co Ltd Manufacture of hydrogen storage alloy electrode
JP3662939B2 (en) * 1997-01-31 2005-06-22 三洋電機株式会社 Hydrogen storage alloy powder and method for producing the same
WO1998033613A1 (en) * 1997-01-31 1998-08-06 Sanyo Electric Co., Ltd. Hydrogen storage alloy powder ane method of manufacturing the same
KR100502871B1 (en) * 1997-01-31 2005-07-25 산요덴키가부시키가이샤 Hydrogen storage alloy powder and method of manufacturing the same
JPH10255779A (en) * 1997-03-14 1998-09-25 Toshiba Corp Manufacture for nickel hydrogen storage battery
JPH11154511A (en) * 1997-11-19 1999-06-08 Okuno Chem Ind Co Ltd Surface treatment hydrogen storage alloy, surface treatment method, hydride electrode using surface treatment hydrogen storage alloy
JP2000239701A (en) * 1999-02-24 2000-09-05 Masaki Uchida Method for activating hydrogen storage alloy
JP2000268818A (en) * 1999-03-18 2000-09-29 Matsushita Electric Ind Co Ltd Activating method for hydrogen storage alloy for battery, and alkaline storage battery using it
JP2001093522A (en) * 1999-09-22 2001-04-06 Sanyo Electric Co Ltd Hydrogen storage alloy particles and preparation
JP2001135311A (en) * 1999-11-04 2001-05-18 Matsushita Electric Ind Co Ltd Alkaline storage battery
JP2002146449A (en) * 2000-11-02 2002-05-22 Toyota Motor Corp Method for regenerating hydrogen storage alloy
JP2002309327A (en) * 2001-04-11 2002-10-23 Sanyo Electric Co Ltd Hydrogen storage alloy for electrode, its manufacturing method, hydrogen-storage-alloy electrode, and alkaline storage battery
JP2004074020A (en) * 2002-08-19 2004-03-11 National Institute Of Advanced Industrial & Technology Hydrogen dissociation and separation membrane
WO2009154046A1 (en) * 2008-06-18 2009-12-23 日立マクセル株式会社 Surface-roughened high-density functional particle, method for producing the same, and method for processing target substance using the same
JP2010000409A (en) * 2008-06-18 2010-01-07 Hitachi Maxell Ltd Surface-roughened high-density functional particle, method for producing the same and method for treating target substance by using the same
JP2010142804A (en) * 2008-12-19 2010-07-01 Gkss Forschungszentrum Geesthacht Gmbh Method for activating or regenerating hydrogen absorption material

Also Published As

Publication number Publication date
JP3337189B2 (en) 2002-10-21

Similar Documents

Publication Publication Date Title
JP3337189B2 (en) Surface treatment method for hydrogen storage alloy material, activation method for hydrogen storage alloy electrode, activation solution, and hydrogen storage alloy electrode with excellent initial activity
JP2002334695A (en) Secondary battery and manufacturing method of secondary battery
JP2024023286A (en) Method for manufacturing hydrogen storage material
JP3318141B2 (en) Method for producing hydrogen storage alloy electrode
JP2982805B1 (en) Hydrogen storage alloy for battery, method for producing the same, and alkaline storage battery using the same
Choi et al. An electroless copper plating method for Ti, Zr-based hydrogen storage alloys
JP4688986B2 (en) Surface treatment method of hydrogen storage alloy for battery materials
JP2975625B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH10162820A (en) Manufacture of hydrogen storage alloy for alkaline storage battery
JP4378521B2 (en) Surface-treated hydrogen storage alloy, surface treatment method, and hydride electrode using surface-treated hydrogen storage alloy
JPH09312157A (en) Hydrogen storage alloy electrode and manufacture thereof
JP3433008B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JPS61233968A (en) Manufacture of hydrogen occlusion electrode
JP3547920B2 (en) Method for producing hydrogen storage alloy electrode
JPH08333603A (en) Hydrogen storage alloy particle and its production
JPH11130401A (en) High activation treatment of hydrogen storage alloy
JP3368772B2 (en) Method for producing hydrogen storage alloy powder
JPH1150263A (en) Production of stabilized hydrogen storage alloy
JP2000169903A (en) Manufacture of hydrogen storage alloy powder
JP2003229134A (en) Fuel cell
JPH11204104A (en) Nickel-hydrogen secondary battery and manufacture of hydrogen storage alloy thereof
JP3561577B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JPH08241712A (en) Alkaline storage battery and its manufacture
JP2000243386A (en) Hydrogen storage alloy electrode and its manufacture
WO2018123579A1 (en) Method for producing negative electrode material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees