JP2001280276A - Multistage compressor - Google Patents

Multistage compressor

Info

Publication number
JP2001280276A
JP2001280276A JP2000093721A JP2000093721A JP2001280276A JP 2001280276 A JP2001280276 A JP 2001280276A JP 2000093721 A JP2000093721 A JP 2000093721A JP 2000093721 A JP2000093721 A JP 2000093721A JP 2001280276 A JP2001280276 A JP 2001280276A
Authority
JP
Japan
Prior art keywords
compression element
compression
stage
length
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000093721A
Other languages
Japanese (ja)
Other versions
JP3579324B2 (en
Inventor
Toshiyuki Ebara
俊行 江原
Satoru Imai
悟 今井
Masaya Tadano
昌也 只野
Atsushi Oda
淳志 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000093721A priority Critical patent/JP3579324B2/en
Publication of JP2001280276A publication Critical patent/JP2001280276A/en
Application granted granted Critical
Publication of JP3579324B2 publication Critical patent/JP3579324B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce an amount of leakage occurring between a compression chamber P or an intake chamber V and spring holes 38 and 48. SOLUTION: A front stage compression element 30 formed that rollers 3 and 43 are eccentrically rotationally moved in cylinders 31 and 41 and vanes 3 and 45 make contact with the rollers 33 and 43 to partition an intake chamber V and a compression chamber P from each other and a rear stage compression element 40 are intercoupled through a coupling pipe. The length of a vane hole 46 of the rear stage compression element 40 is decreased to a value shorter than the length of a vane hole 36 in correspondence to a moving distance available when the vanes 35 and 45 are moved according to eccentric rotational movement of the rollers 33 and 43 and an amount of leakage occurring between the compression chamber P or the intake chamber V and the spring holes 38 and 48.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮室と吸気室と
を区画するベーンの背後に形成されたバネ孔と、圧縮室
又は吸気室との間で生じる冷媒のリークを効率的に抑制
した多段圧縮機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention effectively suppresses refrigerant leakage occurring between a compression hole or an intake chamber and a spring hole formed behind a vane that separates a compression chamber and an intake chamber. It relates to a multi-stage compressor.

【0002】[0002]

【従来の技術】従来、ロータリ圧縮機等の圧縮機は種々
の技術分野に用いられ、冷媒としてはこれまでR−22
等の塩素を含む冷媒(以下、特定フロンガスと記載す
る)が用いられていた。
2. Description of the Related Art Conventionally, compressors such as rotary compressors have been used in various technical fields.
A refrigerant containing chlorine (hereinafter, referred to as a specific freon gas) has been used.

【0003】しかし、このR−22冷媒は、オゾン層を
破壊する原因となることが判明し規制対象となり、特定
フロンガスに代わる冷媒の研究開発が盛んに行われ、二
酸化炭素冷媒がその候補として期待されている。
However, this R-22 refrigerant has been found to be a cause of destruction of the ozone layer, and has been subject to regulation. Research and development of refrigerants in place of specific CFCs have been actively conducted, and carbon dioxide refrigerant is expected as a candidate. Have been.

【0004】このような二酸化炭素冷媒を用いたロータ
リ圧縮機として、圧縮要素を複数備えた多段圧縮機があ
る。以下、二酸化炭素冷媒を特に他の冷媒と区別しなけ
ればならない場合を除き単に冷媒と記載する。
As a rotary compressor using such a carbon dioxide refrigerant, there is a multistage compressor provided with a plurality of compression elements. Hereinafter, a carbon dioxide refrigerant is simply referred to as a refrigerant unless it is necessary to distinguish it from other refrigerants.

【0005】多段圧縮機は、複数の圧縮要素と、これを
駆動する駆動要素とを有し、これらが密閉容器内に収納
された構成となっている。
[0005] The multi-stage compressor has a plurality of compression elements and a drive element for driving the compression elements, and these are housed in a closed container.

【0006】図3は、かかる多段圧縮機のうち2段ロー
タリ圧縮機における前段圧縮要素130(図3において
上側の図)及び後段圧縮要素140(図3において下側
の図)の要部を示した図である。
FIG. 3 shows a main part of a former-stage compression element 130 (upper view in FIG. 3) and a latter-stage compression element 140 (lower view in FIG. 3) of a two-stage rotary compressor among such multi-stage compressors. FIG.

【0007】このような圧縮要素は、円筒状のシリンダ
131,141を有し、このシリンダ131,141内
に図示しない駆動要素から駆動力を受けて偏芯回転運動
するローラ133,143が配設されている。
Such a compressing element has cylindrical cylinders 131 and 141, and rollers 133 and 143 which perform eccentric rotational movement by receiving a driving force from a driving element (not shown) are arranged in the cylinders 131 and 141. Have been.

【0008】これにより、ローラ133,143とシリ
ンダ131,141との間に形成される空間がベーン1
35,145により仕切られて吸気室V及び圧縮室Pが
構成され、吸気室Vが拡張することにより冷媒を吸気
し、圧縮室Pが縮小することにより冷媒を圧縮するよう
になっている。
As a result, the space formed between the rollers 133 and 143 and the cylinders 131 and 141 is
An intake chamber V and a compression chamber P are defined by 35 and 145. The expansion of the intake chamber V takes in the refrigerant, and the compression chamber P contracts to compress the refrigerant.

【0009】このベーン135,145は、ベーン孔1
36、146に挿入され、その後端側にはバネ孔13
8、148が形成されて、当該バネ孔138、148に
バネ137、147が挿入されると共に、その挿入口に
蓋139,149が設けられている。
The vanes 135 and 145 are provided in the vane holes 1
36, 146, and a spring hole 13 at the rear end side.
8 and 148 are formed, springs 137 and 147 are inserted into the spring holes 138 and 148, and lids 139 and 149 are provided in the insertion openings.

【0010】そして、バネ孔138、148がなす空間
は、その圧縮要素における吐出圧になるように形成され
ている。
[0010] The space defined by the spring holes 138 and 148 is formed to have the discharge pressure of the compression element.

【0011】これにより、ベーン135,145はバネ
137,147とバネ孔138,148の圧力によりロ
ーラ133,143側に付勢されて、その先端がローラ
133,143に当接して圧縮室Pと吸気室Vとの機密
性を維持するようになっている。
As a result, the vanes 135 and 145 are urged toward the rollers 133 and 143 by the pressures of the springs 137 and 147 and the spring holes 138 and 148. The confidentiality with the intake chamber V is maintained.

【0012】なお、バネ孔138,148は、原則とし
て機密性の蓋139,149により密閉容器内と連通し
ないように形成されるが、密閉容器内の圧力を特定の圧
縮要素におけるバネ孔138,148の圧力と略等しく
なるように設定されている場合には、かかる機密性は当
該圧縮要素において必ずしも必要でない。
The spring holes 138 and 148 are formed in principle so as not to communicate with the inside of the closed container by the airtight covers 139 and 149. If set to be approximately equal to the pressure of 148, such confidentiality is not necessary in the compression element.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、従来は
多段圧縮機における各圧縮要素におけるベーン135,
145のストローク(移動距離)がそれぞれ異なるにも
関わらず、バネ孔138,148の長さが同じに設定さ
れているために、圧縮室P又は吸気室Vとバネ孔13
8,148との間で発生するリークを適切に低減するこ
とができない問題があった。
However, conventionally, the vanes 135 and 135 in each compression element in the multi-stage compressor are used.
Although the strokes (moving distances) of the spring holes 145 are different, the lengths of the spring holes 138 and 148 are set to be the same.
However, there has been a problem in that the leakage occurring between the first and second fins cannot be appropriately reduced.

【0014】即ち、リーク量はバネ孔138,148の
圧力と吸気室V又は圧縮室Pの圧力との差圧及びリーク
抵抗により決る。
That is, the amount of leakage is determined by the pressure difference between the pressure in the spring holes 138 and 148 and the pressure in the intake chamber V or the compression chamber P and the leak resistance.

【0015】このリーク抵抗はリークパスに依存し、当
該リークパスはベーン135,145がシリンダ13
1,141と接する領域であり、シリンダ131,14
1の大きさが一定の場合には、バネ孔138,148の
長さにより略決る。
The leak resistance depends on the leak path, and the leak path is formed by the vanes 135 and 145 that are connected to the cylinder 13.
1, 141, and the cylinders 131, 14
When the size of 1 is constant, it is substantially determined by the length of the spring holes 138 and 148.

【0016】従って、バネ孔138,148の長さを短
くするればリークパスが長くなるので、リーク量を低減
させることができることになるが、従来はこのバネ孔1
38,148の長さを同じ長さにしているのでリーク量
を適切に低減することができなかった。
Accordingly, if the lengths of the spring holes 138 and 148 are shortened, the leak path becomes longer, so that the amount of leak can be reduced.
Since the lengths of 38 and 148 were set to the same length, the leak amount could not be reduced appropriately.

【0017】そこで、本発明は、圧縮室又は吸気室とバ
ネ孔との間で生じるリーク量を適切に低減させて圧縮効
率の高い多段圧縮機を提供することを目的とする。
Accordingly, an object of the present invention is to provide a multi-stage compressor having a high compression efficiency by appropriately reducing the amount of leak generated between a compression chamber or an intake chamber and a spring hole.

【0018】[0018]

【課題を解決するための手段】上記課題を解決するた
め、請求項1にかかる発明は、シリンダ内をローラが偏
芯回転運動し、当該ローラにベーンが当接して吸気室及
び圧縮室が区画されてなる圧縮要素が2以上連結された
多段圧縮機において、ローラの偏芯回転運動に従いベー
ンが動く際の移動距離に対応して当該ベーンの背圧側に
形成されたバネ孔の長さを変えたことを特徴とする。
According to a first aspect of the present invention, a roller rotates eccentrically in a cylinder and a vane abuts on the roller to partition an intake chamber and a compression chamber. In a multi-stage compressor in which two or more compression elements are connected, the length of a spring hole formed on the back pressure side of the vane is changed according to the moving distance when the vane moves according to the eccentric rotation of the roller. It is characterized by having.

【0019】請求項2にかかる発明は、後段側の圧縮要
素におけるバネ孔の長さを、前段側の圧縮要素における
バネ孔の長さより短くしたことを特徴とする。
The invention according to claim 2 is characterized in that the length of the spring hole in the rear compression element is shorter than the length of the spring hole in the front compression element.

【0020】[0020]

【発明の実施の形態】本発明の実施の形態を図を参照し
て説明する。図1は多段圧縮機の例として2段ロータリ
圧縮機の側断面図である。なお、本発明は2段圧縮機に
限定されるものではなく、それ以上の段数を有する圧縮
機であっても良い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a side sectional view of a two-stage rotary compressor as an example of a multi-stage compressor. Note that the present invention is not limited to a two-stage compressor, and may be a compressor having more stages.

【0021】図1に示すロータリ圧縮機は駆動手段であ
るモータ20、このモータ20の下方に設けられた圧縮
手段である前段圧縮要素30及び後段圧縮要素40等を
有して、これらが密閉容器10内に収納され、冷媒とし
て二酸化炭素冷媒(冷媒)が用いられている。
The rotary compressor shown in FIG. 1 has a motor 20 as a driving means, a first-stage compression element 30 and a second-stage compression element 40 as compression means provided below the motor 20, and the like. A carbon dioxide refrigerant (refrigerant) is used as the refrigerant.

【0022】なお、密閉容器10の底部には潤滑油15
が貯留しており、各圧縮要素30,40における摺動部
等を潤滑するようになっている。
The lubricating oil 15 is provided at the bottom of the closed container 10.
Is stored, and lubricates the sliding portions and the like in each of the compression elements 30 and 40.

【0023】前段圧縮要素30には吸入管11が設けら
れて、機外からの冷媒が当該前段圧縮要素30に吸気さ
れ、圧縮されて連結管16を介して後段圧縮要素40に
吸入され、当該後段圧縮要素40で圧縮されて機外に吐
出される。図1における矢印はこのような冷媒の流れを
示している。
The front-stage compression element 30 is provided with a suction pipe 11, and a refrigerant from outside the machine is sucked into the front-stage compression element 30, compressed and sucked into the rear-stage compression element 40 via the connecting pipe 16. It is compressed by the latter-stage compression element 40 and discharged outside the machine. The arrows in FIG. 1 indicate such a flow of the refrigerant.

【0024】このような前段圧縮要素30及び後段圧縮
要素40における吸気及び圧縮機構は同じで、シリンダ
31,41と該シリンダ31,41に内設されたローラ
33,43等を有している。
The intake and compression mechanisms of the first compression element 30 and the second compression element 40 are the same, and include cylinders 31 and 41 and rollers 33 and 43 provided in the cylinders 31 and 41.

【0025】図2は、かかるシリンダ31,41とロー
ラ33,43との関係を明示するための模式図で、上側
が前段圧縮要素30、下側が後段圧縮要素40を示して
いる。
FIG. 2 is a schematic diagram for clearly showing the relationship between the cylinders 31 and 41 and the rollers 33 and 43. The upper side shows the front compression element 30 and the lower side shows the rear compression element 40.

【0026】ローラ33,43には、ベーン35,45
が当接して、ローラ33,43とシリンダ31,41と
の間に形成される三日月状の空間を圧縮室Pと吸気室V
とに区画している。
The rollers 33 and 43 have vanes 35 and 45, respectively.
Are brought into contact with each other to form a crescent-shaped space formed between the rollers 33 and 43 and the cylinders 31 and 41 in the compression chamber P and the intake chamber V.
And divided into

【0027】ベーン35,45は、ベーン孔36,46
に挿入され、後端部がバネ37,47により付勢され
て、先端部がローラ33,43に当接している。
The vanes 35 and 45 have vane holes 36 and 46, respectively.
The rear end is urged by springs 37 and 47, and the front end contacts the rollers 33 and 43.

【0028】このバネ37,47はバネ孔38,48に
挿入され、当該バネ孔38,48が蓋39,49により
塞がれている。
The springs 37, 47 are inserted into spring holes 38, 48, and the spring holes 38, 48 are closed by lids 39, 49.

【0029】なお、バネ孔38,48は、その圧縮要素
のおける吐出圧力になるように図示しない流路が設けら
れている。
The spring holes 38 and 48 are provided with a flow path (not shown) so that the discharge pressure of the compression element is attained.

【0030】これにより、ベーン35,45はバネ3
7,47とバネ孔38,48の圧力とによりローラ3
3,43側に付勢されて、圧縮室Pと吸気室Vとの機密
性が保持されるようになっている。
As a result, the vanes 35 and 45 are
7 and 47 and the pressure of the spring holes 38 and 48, the roller 3
Energized to the sides 3 and 43, the confidentiality between the compression chamber P and the intake chamber V is maintained.

【0031】ローラ33,43の内部には、クランク3
2,42が配設され、当該クランク32,42がモータ
20の回転軸21と連結されて、モータ20が回転する
ことによりローラ33,43はクランク32,42から
力を受けて偏芯回転運動するようになる。
Inside the rollers 33 and 43, there is a crank 3
The cranks 32 and 42 are connected to the rotating shaft 21 of the motor 20, and when the motor 20 rotates, the rollers 33 and 43 receive the force from the cranks 32 and 42 and perform eccentric rotational movement. I will be.

【0032】ローラ33,43が偏芯回転運動すると、
先に述べた三日月状の空間は向きを変え、これに伴い圧
縮室Pと吸気室Vとの容積比が変化して冷媒を吸気し、
圧縮するようになる。
When the rollers 33 and 43 move eccentrically,
The crescent-shaped space described above changes direction, and the volume ratio between the compression chamber P and the suction chamber V changes in accordance with the direction, thereby sucking the refrigerant,
Become compressed.

【0033】多段圧縮機では、前段の圧縮要素が吐出し
た冷媒を後段の圧縮要素が吸気して圧縮するため、後段
側の排除容積を小さくする必要がある。
In the multi-stage compressor, the refrigerant discharged from the upstream compression element is taken in by the downstream compression element and compressed, so that it is necessary to reduce the displacement volume on the downstream side.

【0034】例えば、図1に示す2段構成の場合、前段
圧縮要素30の排除容積を3ccとすれば、後段圧縮要
素40は3cc未満としないと前段圧縮要素30の意味
がなくなってしまう。
For example, in the case of the two-stage configuration shown in FIG. 1, if the excluded volume of the first-stage compression element 30 is 3 cc, the significance of the first-stage compression element 30 will be lost unless the second-stage compression element 40 is less than 3 cc.

【0035】無論、前段圧縮要素30から吐出された冷
媒の全てが後段圧縮要素40に吸気されないとすると、
吸気されない分だけ圧縮効率が低下するので、現実には
後段圧縮要素40は吐出された冷媒を略全て吸気するよ
うになっている。
Of course, if not all of the refrigerant discharged from the first-stage compression element 30 is taken into the second-stage compression element 40,
Since the compression efficiency is reduced by the amount not taken in, the post-stage compression element 40 actually takes in almost all of the discharged refrigerant.

【0036】従って、多段圧縮機においては、後段側に
なるほど排除容積を小さくしなければならず、このため
ローラ43の直径D2をローラ33の直径D1より大き
くしている(D2>D1)。
Accordingly, in the multi-stage compressor, the displacement volume must be reduced toward the rear stage, and therefore, the diameter D2 of the roller 43 is made larger than the diameter D1 of the roller 33 (D2> D1).

【0037】このように、ローラ33,43の大きさが
異なるため、ベーン35,45のストロークも異なる。
As described above, since the sizes of the rollers 33 and 43 are different, the strokes of the vanes 35 and 45 are also different.

【0038】そこで、本実施の形態では、後段圧縮要素
40におけるバネ孔48の長さL2を前段圧縮要素30
におけるバネ孔38の長さL1より短くして(L2<L
1)、リークパスをながくすることによりリーク量の低
減を図っている。
Therefore, in the present embodiment, the length L2 of the spring hole 48 in the rear compression element 40 is
(L2 <L)
1) The leak amount is reduced by reducing the length of the leak path.

【0039】即ち、ベーン35,45のストロークが異
なる場合には、バネの変位量も当然異なり、当該バネ3
7,47を収納するバネ孔38,48の長さもこれに応
じて変えることができる。
That is, when the strokes of the vanes 35 and 45 are different, the displacement amounts of the springs are naturally different.
The length of the spring holes 38, 48 for accommodating 7, 47 can also be changed accordingly.

【0040】例えば、図2に示す場合には、ベーン35
とベーン45とが同じ長さであると、ベーン35,45
とバネ37,47とが接する位置は、後段圧縮要素40
の方がシリンダ外周部側に位置することになる。
For example, in the case shown in FIG.
And the vane 45 are the same length, the vanes 35, 45
The position where the springs 37 and 47 come into contact with each other
Is located on the outer peripheral side of the cylinder.

【0041】従って、このバネ47を収納するバネ孔4
8の長さをもっと小さくすることができるようになる。
Therefore, the spring hole 4 for accommodating the spring 47 is provided.
8 can be made even smaller.

【0042】このような観点から、上述したようにバネ
孔48をバネ孔38より短くして、これによりリークパ
スを長くすることによりリーク量の低減を図っている。
From such a viewpoint, as described above, the amount of leak is reduced by making the spring hole 48 shorter than the spring hole 38 and thereby lengthening the leak path.

【0043】なお、バネ孔48を短くすることはベーン
45がシリンダ41と接する領域(上述したリークパ
ス)が長くなることを意味するので、ベーン35,45
の摺動抵抗の増大が懸念される。
It should be noted that shortening the spring hole 48 means that the region where the vane 45 is in contact with the cylinder 41 (the above-described leak path) becomes longer.
There is a concern that the sliding resistance will increase.

【0044】しかし、シリンダ31,41は略円盤状に
形成されており、従来用いられていたR−22冷媒のと
きのシリンダ厚は16mmであるが、二酸化炭素冷媒の
ときのシリンダ厚は約9mmであるので、基本的に摺動
面積が小さくなっている。
However, the cylinders 31 and 41 are formed in a substantially disk shape, and the cylinder thickness of the conventionally used R-22 refrigerant is 16 mm, while the cylinder thickness of the carbon dioxide refrigerant is about 9 mm. Therefore, the sliding area is basically small.

【0045】従って、冷媒として二酸化炭素冷媒を用い
る場合には、バネ孔48の長さを多少長くすることによ
る摺動抵抗の増大よりもリーク量が押えられる効果の方
が大きい。
Therefore, when a carbon dioxide refrigerant is used as the refrigerant, the effect of suppressing the leak amount is larger than the increase in the sliding resistance due to the length of the spring hole 48 being somewhat increased.

【0046】なお、上記説明では各圧縮要素におけるバ
ネ孔38,48の圧力はその圧縮要素の吐出圧力に略等
しく設定されている場合について説明したが、本発明は
これに限定されるものではなく、当該圧縮要素の吐出圧
以上の圧力に設定されている場合にも適用できることは
言うまでもない。
In the above description, a case has been described where the pressure of the spring holes 38 and 48 in each compression element is set substantially equal to the discharge pressure of the compression element. However, the present invention is not limited to this. Needless to say, the present invention can be applied to the case where the pressure is set to be equal to or higher than the discharge pressure of the compression element.

【0047】[0047]

【発明の効果】以上説明したように請求項1にかかる発
明によれば、ローラの偏芯回転運動に従いベーンが動く
際の移動距離に対応してバネ孔の長さを変えたので、圧
縮室又は吸気室とバネ孔との間で生じるリーク量を適切
に低減させることができ、圧縮効率が向上する。
As described above, according to the first aspect of the present invention, the length of the spring hole is changed in accordance with the moving distance when the vane moves in accordance with the eccentric rotation of the roller. Alternatively, the amount of leak generated between the intake chamber and the spring hole can be appropriately reduced, and the compression efficiency is improved.

【0048】請求項2にかかる発明によれば、後段側の
圧縮要素におけるバネ孔の長さを前段側の圧縮要素にお
けるバネ孔より短くしたので、圧縮室又は吸気室とバネ
孔との間で生じるリーク量を低減でき、圧縮効率が向上
する。
According to the second aspect of the present invention, since the length of the spring hole in the compression element on the rear stage is shorter than the length of the spring hole in the compression element on the front stage, the distance between the compression chamber or the suction chamber and the spring hole can be reduced. The generated leak amount can be reduced, and the compression efficiency is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の説明に適用される2段ロ
ータリ圧縮機の断面図である。
FIG. 1 is a sectional view of a two-stage rotary compressor applied to an embodiment of the present invention.

【図2】図1における圧縮要素の詳細図である。FIG. 2 is a detailed view of a compression element in FIG.

【図3】従来の技術の説明に適用される2段ロータリ圧
縮機における圧縮要素の詳細図である。
FIG. 3 is a detailed view of a compression element in a two-stage rotary compressor applied to the description of the related art.

【符号の説明】[Explanation of symbols]

10 密閉容器 30 前段圧縮要素 31,41 シリンダ 33,43 ローラ 35,45 ベーン 36,46 ベーン孔 37,47 バネ 38,48 バネ孔 39,49 蓋 40 後段圧縮要素 DESCRIPTION OF SYMBOLS 10 Closed container 30 Front compression element 31, 41 Cylinder 33, 43 Roller 35, 45 Vane 36, 46 Vane hole 37, 47 Spring 38, 48 Spring hole 39, 49 Lid 40 Post compression element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 只野 昌也 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 小田 淳志 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 3H029 AA04 AA13 AB03 AB08 BB16 CC02  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masaya Tadano 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Atsushi Oda 2-chome, Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. F term (reference) 3H029 AA04 AA13 AB03 AB08 BB16 CC02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シリンダ内をローラが偏芯回転運動し、
当該ローラにベーンが当接して吸気室及び圧縮室が区画
されてなる圧縮要素が2以上連結された多段圧縮機にお
いて、 前記ローラの偏芯回転運動に従い前記ベーンが動く際の
移動距離に対応して当該ベーンの背圧側に形成されたバ
ネ孔の長さを変えたことを特徴とする多段圧縮機。
A roller eccentrically rotating within a cylinder;
In a multi-stage compressor in which two or more compression elements each having a suction chamber and a compression chamber defined by contacting a vane with the roller are connected, the multi-stage compressor corresponds to a moving distance when the vane moves according to the eccentric rotation of the roller. The length of a spring hole formed on the back pressure side of the vane is changed.
【請求項2】 後段側の前記圧縮要素におけるバネ孔の
長さを、前段側の前記圧縮要素におけるバネ孔の長さよ
り短くしたことを特徴とする請求項1記載の多段圧縮
機。
2. The multi-stage compressor according to claim 1, wherein the length of the spring hole in the compression element on the rear stage is shorter than the length of the spring hole in the compression element on the front stage.
JP2000093721A 2000-03-30 2000-03-30 Multi-stage compressor Expired - Fee Related JP3579324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000093721A JP3579324B2 (en) 2000-03-30 2000-03-30 Multi-stage compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000093721A JP3579324B2 (en) 2000-03-30 2000-03-30 Multi-stage compressor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004167906A Division JP3685798B2 (en) 2004-06-07 2004-06-07 Multistage compressor

Publications (2)

Publication Number Publication Date
JP2001280276A true JP2001280276A (en) 2001-10-10
JP3579324B2 JP3579324B2 (en) 2004-10-20

Family

ID=18608868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000093721A Expired - Fee Related JP3579324B2 (en) 2000-03-30 2000-03-30 Multi-stage compressor

Country Status (1)

Country Link
JP (1) JP3579324B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053335A1 (en) * 2002-12-11 2004-06-24 Matsushita Electric Industrial Co., Ltd. Rotary compressor
CN109026699A (en) * 2018-08-21 2018-12-18 珠海凌达压缩机有限公司 Pump body, compressor and pump body manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053335A1 (en) * 2002-12-11 2004-06-24 Matsushita Electric Industrial Co., Ltd. Rotary compressor
CN109026699A (en) * 2018-08-21 2018-12-18 珠海凌达压缩机有限公司 Pump body, compressor and pump body manufacturing method
CN109026699B (en) * 2018-08-21 2024-03-29 珠海凌达压缩机有限公司 Pump body, compressor and manufacturing method of pump body

Also Published As

Publication number Publication date
JP3579324B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
JP3370046B2 (en) Multi-stage compressor
AU2005240929B2 (en) Rotary compressor
JP4584306B2 (en) Scroll expander
JP2002527670A (en) Scroll type fluid displacement type device for vacuum pump
JP2006207559A (en) Refrigerating cycle device and rotary compressor
KR101581692B1 (en) Compressor
JP2007146747A (en) Refrigerating cycle device
JP2001280276A (en) Multistage compressor
JP2005307764A (en) Rotary compressor
JP2002221171A (en) Scroll compressor
JP2000205164A (en) Rotary compressor
JP2001082369A (en) Two-stage compression type rotary compressor
JP2001153076A (en) Two-stage compression rotary compressor
KR100332801B1 (en) Apparatus for preventing vacuum compression of scroll compressor
JP3685798B2 (en) Multistage compressor
JP2001280278A (en) Multistage compressor
US7223083B2 (en) Scroll compressor
JP2000283066A (en) Scroll compressor
JP2005351111A (en) Scroll compressor
JP2002250292A (en) Closed type rotary compressor and refrigeration/air- conditioning device
JP2001207983A (en) Gas compressor
JP3579323B2 (en) 2-cylinder 2-stage compression rotary compressor
JP4048768B2 (en) Gas compressor
KR20010076889A (en) Low pressure type rotary compressor
JP2003106276A (en) Two-stage compression type rotary compressor

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040715

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees