JP3685798B2 - Multistage compressor - Google Patents

Multistage compressor

Info

Publication number
JP3685798B2
JP3685798B2 JP2004167906A JP2004167906A JP3685798B2 JP 3685798 B2 JP3685798 B2 JP 3685798B2 JP 2004167906 A JP2004167906 A JP 2004167906A JP 2004167906 A JP2004167906 A JP 2004167906A JP 3685798 B2 JP3685798 B2 JP 3685798B2
Authority
JP
Japan
Prior art keywords
vane
compression element
stage
spring
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004167906A
Other languages
Japanese (ja)
Other versions
JP2004251289A (en
Inventor
俊行 江原
悟 今井
昌也 只野
淳志 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004167906A priority Critical patent/JP3685798B2/en
Publication of JP2004251289A publication Critical patent/JP2004251289A/en
Application granted granted Critical
Publication of JP3685798B2 publication Critical patent/JP3685798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、圧縮室と吸気室とを区画するベーンの背後に形成されたバネ孔と、圧縮室又は吸気室との間で生じる冷媒のリークを効率的に抑制した多段圧縮機に関する。   The present invention relates to a multistage compressor that efficiently suppresses refrigerant leakage between a spring hole formed behind a vane that partitions a compression chamber and an intake chamber and the compression chamber or the intake chamber.

従来、ロータリ圧縮機等の圧縮機は種々の技術分野に用いられ、冷媒としてはこれまでR−22等の塩素を含む冷媒(以下、特定フロンガスと記載する)が用いられていた。   Conventionally, a compressor such as a rotary compressor has been used in various technical fields, and a refrigerant containing chlorine such as R-22 (hereinafter referred to as a specific chlorofluorocarbon gas) has been used as a refrigerant.

しかし、このR−22冷媒は、オゾン層を破壊する原因となることが判明し規制対象となり、特定フロンガスに代わる冷媒の研究開発が盛んに行われ、二酸化炭素冷媒がその候補として期待されている。   However, this R-22 refrigerant has been found to be a cause of destruction of the ozone layer and is subject to regulation, and research and development of a refrigerant that replaces the specified CFC gas is actively performed, and carbon dioxide refrigerant is expected as a candidate. .

このような二酸化炭素冷媒を用いたロータリ圧縮機として、圧縮要素を複数備えた多段圧縮機がある。以下、二酸化炭素冷媒を特に他の冷媒と区別しなければならない場合を除き単に冷媒と記載する。   As a rotary compressor using such a carbon dioxide refrigerant, there is a multistage compressor provided with a plurality of compression elements. Hereinafter, the carbon dioxide refrigerant is simply referred to as a refrigerant unless it must be distinguished from other refrigerants.

多段圧縮機は、複数の圧縮要素と、これを駆動する駆動要素とを有し、これらが密閉容器内に収納された構成となっている。   The multistage compressor has a plurality of compression elements and a drive element that drives the compression elements, and these are housed in an airtight container.

図3は、かかる多段圧縮機のうち2段ロータリ圧縮機における前段圧縮要素130(図3において上側の図)及び後段圧縮要素140(図3において下側の図)の要部を示した図である。   FIG. 3 is a view showing the main parts of a front-stage compression element 130 (upper view in FIG. 3) and a rear-stage compression element 140 (lower view in FIG. 3) in a two-stage rotary compressor of such a multistage compressor. is there.

このような圧縮要素は、円筒状のシリンダ131,141を有し、このシリンダ131,141内に図示しない駆動要素から駆動力を受けて偏芯回転運動するローラ133,143が配設されている。   Such a compression element has cylindrical cylinders 131 and 141, and rollers 133 and 143 that receive a driving force from a driving element (not shown) and rotate eccentrically are disposed in the cylinders 131 and 141. .

これにより、ローラ133,143とシリンダ131,141との間に形成される空間がベーン135,145により仕切られて吸気室V及び圧縮室Pが構成され、吸気室Vが拡張することにより冷媒を吸気し、圧縮室Pが縮小することにより冷媒を圧縮するようになっている。   As a result, the space formed between the rollers 133 and 143 and the cylinders 131 and 141 is partitioned by the vanes 135 and 145 to form the intake chamber V and the compression chamber P, and the intake chamber V expands to supply the refrigerant. The refrigerant is compressed by taking in air and reducing the compression chamber P.

このベーン135,145は、ベーン孔136、146に挿入され、その後端側にはバネ孔138、148が形成されて、当該バネ孔138、148にバネ137、147が挿入されると共に、その挿入口に蓋139,149が設けられている。   The vanes 135 and 145 are inserted into the vane holes 136 and 146, and spring holes 138 and 148 are formed on the rear end sides thereof, and the springs 137 and 147 are inserted into the spring holes 138 and 148, and the insertion thereof Lids 139 and 149 are provided at the mouth.

そして、バネ孔138、148がなす空間は、その圧縮要素における吐出圧になるように形成されている。   A space formed by the spring holes 138 and 148 is formed to have a discharge pressure in the compression element.

これにより、ベーン135,145はバネ137,147とバネ孔138,148の圧力によりローラ133,143側に付勢されて、その先端がローラ133,143に当接して圧縮室Pと吸気室Vとの機密性を維持するようになっている。   As a result, the vanes 135 and 145 are urged toward the rollers 133 and 143 by the pressures of the springs 137 and 147 and the spring holes 138 and 148, and their tips abut against the rollers 133 and 143 so that the compression chamber P and the intake chamber V And to maintain confidentiality.

なお、バネ孔138,148は、原則として機密性の蓋139,149により密閉容器内と連通しないように形成されるが、密閉容器内の圧力を特定の圧縮要素におけるバネ孔138,148の圧力と略等しくなるように設定されている場合には、かかる機密性は当該圧縮要素において必ずしも必要でない。   In principle, the spring holes 138 and 148 are formed so as not to communicate with the inside of the sealed container by the confidential lids 139 and 149, but the pressure in the sealed container is set to the pressure of the spring holes 138 and 148 in a specific compression element. , Such confidentiality is not necessarily required in the compression element.

しかしながら、従来は多段圧縮機における各圧縮要素におけるベーン135,145のストローク(移動距離)がそれぞれ異なるにも関わらず、バネ孔138,148の長さが同じに設定されているために、圧縮室P又は吸気室Vとバネ孔138,148との間で発生するリークを適切に低減することができない問題があった。   However, conventionally, the lengths of the spring holes 138 and 148 are set to be the same even though the strokes (movement distances) of the vanes 135 and 145 in the compression elements in the multistage compressor are different from each other. There has been a problem that leakage generated between P or the intake chamber V and the spring holes 138 and 148 cannot be reduced appropriately.

即ち、リーク量はバネ孔138,148の圧力と吸気室V又は圧縮室Pの圧力との差圧及びリーク抵抗により決る。   That is, the amount of leak is determined by the differential pressure between the pressure of the spring holes 138 and 148 and the pressure of the intake chamber V or the compression chamber P and the leak resistance.

このリーク抵抗はリークパスに依存し、当該リークパスはベーン135,145がシリンダ131,141と接する領域であり、シリンダ131,141の大きさが一定の場合には、バネ孔138,148の長さにより略決る。   This leak resistance depends on the leak path. The leak path is an area where the vanes 135 and 145 are in contact with the cylinders 131 and 141. When the sizes of the cylinders 131 and 141 are constant, the length of the spring holes 138 and 148 I decide.

従って、バネ孔138,148の長さを短くすればリークパスが長くなるので、リーク量を低減させることができることになるが、従来はこのバネ孔138,148の長さを同じ長さにしているのでリーク量を適切に低減することができなかった。   Therefore, if the lengths of the spring holes 138 and 148 are shortened, the leak path becomes longer, so that the amount of leak can be reduced. Conventionally, the spring holes 138 and 148 have the same length. As a result, the amount of leakage could not be reduced appropriately.

そこで、本発明は、圧縮室又は吸気室とバネ孔との間で生じるリーク量を適切に低減させて圧縮効率の高い多段圧縮機を提供することを目的とする。   Therefore, an object of the present invention is to provide a multistage compressor having high compression efficiency by appropriately reducing the amount of leakage generated between a compression chamber or an intake chamber and a spring hole.

上記課題を解決するため、請求項1にかかる発明は、シリンダ内をローラが偏芯回転運動し、当該ローラにベーンが当接して吸気室及び圧縮室が区画されてなる圧縮要素が2以上連結された多段圧縮機において、ローラの偏芯回転運動に従いベーンが動く際の移動距離に対応して当該ベーンの背圧側に形成されたバネ孔の長さを変えたことを特徴とする。   In order to solve the above-mentioned problem, the invention according to claim 1 is characterized in that two or more compression elements in which a roller rotates eccentrically in a cylinder, a vane abuts against the roller, and an intake chamber and a compression chamber are partitioned are connected. In the multistage compressor, the length of the spring hole formed on the back pressure side of the vane is changed in accordance with the moving distance when the vane moves according to the eccentric rotational movement of the roller.

請求項2にかかる発明は、後段側の圧縮要素におけるバネ孔の長さを、前段側の圧縮要素におけるバネ孔の長さより短くしたことを特徴とする。   The invention according to claim 2 is characterized in that the length of the spring hole in the compression element on the rear stage side is shorter than the length of the spring hole in the compression element on the front stage side.

以上説明したように請求項1にかかる発明によれば、ローラの偏芯回転運動に従いベーンが動く際の移動距離に対応してバネ孔の長さを変えたので、圧縮室又は吸気室とバネ孔との間で生じるリーク量を適切に低減させることができ、圧縮効率が向上する。   As described above, according to the first aspect of the present invention, since the length of the spring hole is changed corresponding to the moving distance when the vane moves according to the eccentric rotational movement of the roller, the compression chamber or the intake chamber and the spring are changed. The amount of leakage generated between the holes can be appropriately reduced, and the compression efficiency is improved.

請求項2にかかる発明によれば、後段側の圧縮要素におけるバネ孔の長さを前段側の圧縮要素におけるバネ孔より短くしたので、圧縮室又は吸気室とバネ孔との間で生じるリーク量を低減でき、圧縮効率が向上する。   According to the invention of claim 2, since the length of the spring hole in the rear-stage compression element is made shorter than the spring hole in the front-stage compression element, the amount of leakage generated between the compression chamber or the intake chamber and the spring hole And the compression efficiency is improved.

本発明の実施の形態を図を参照して説明する。図1は多段圧縮機の例として2段ロータリ圧縮機の側断面図である。なお、本発明は2段圧縮機に限定されるものではなく、それ以上の段数を有する圧縮機であっても良い。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a side sectional view of a two-stage rotary compressor as an example of a multistage compressor. The present invention is not limited to a two-stage compressor, and may be a compressor having a higher number of stages.

図1に示すロータリ圧縮機は駆動手段であるモータ20、このモータ20の下方に設けられた圧縮手段である前段圧縮要素30及び後段圧縮要素40等を有して、これらが密閉容器10内に収納され、冷媒として二酸化炭素冷媒(冷媒)が用いられている。   The rotary compressor shown in FIG. 1 has a motor 20 that is a driving means, a front-stage compression element 30 and a rear-stage compression element 40 that are compression means provided below the motor 20. Carbon dioxide refrigerant (refrigerant) is used as the refrigerant.

なお、密閉容器10の底部には潤滑油15が貯留しており、各圧縮要素30,40における摺動部等を潤滑するようになっている。   In addition, the lubricating oil 15 is stored in the bottom part of the airtight container 10, and the sliding part etc. in each compression element 30 and 40 are lubricated.

前段圧縮要素30には吸入管11が設けられて、機外からの冷媒が当該前段圧縮要素30に吸気され、圧縮されて連結管16を介して後段圧縮要素40に吸入され、当該後段圧縮要素40で圧縮されて機外に吐出される。図1における矢印はこのような冷媒の流れを示している。   The front-stage compression element 30 is provided with a suction pipe 11, and refrigerant from outside the machine is sucked into the front-stage compression element 30, compressed, and sucked into the rear-stage compression element 40 through the connection pipe 16, and the rear-stage compression element 30 Compressed at 40 and discharged outside the machine. The arrows in FIG. 1 indicate such a refrigerant flow.

このような前段圧縮要素30及び後段圧縮要素40における吸気及び圧縮機構は同じで、シリンダ31,41と該シリンダ31,41に内設されたローラ33,43等を有している。   The intake and compression mechanisms of the front-stage compression element 30 and the rear-stage compression element 40 are the same, and include cylinders 31 and 41 and rollers 33 and 43 installed in the cylinders 31 and 41.

図2は、かかるシリンダ31,41とローラ33,43との関係を明示するための模式図で、上側が前段圧縮要素30、下側が後段圧縮要素40を示している。   FIG. 2 is a schematic diagram for clearly showing the relationship between the cylinders 31 and 41 and the rollers 33 and 43, and the upper side shows the front stage compression element 30 and the lower side shows the rear stage compression element 40.

ローラ33,43には、ベーン35,45が当接して、ローラ33,43とシリンダ31,41との間に形成される三日月状の空間を圧縮室Pと吸気室Vとに区画している。   The rollers 33 and 43 are in contact with the vanes 35 and 45 to partition a crescent-shaped space formed between the rollers 33 and 43 and the cylinders 31 and 41 into a compression chamber P and an intake chamber V. .

ベーン35,45は、ベーン孔36,46に挿入され、後端部がバネ37,47により付勢されて、先端部がローラ33,43に当接している。   The vanes 35 and 45 are inserted into the vane holes 36 and 46, the rear end portions are urged by the springs 37 and 47, and the front end portions are in contact with the rollers 33 and 43.

このバネ37,47はバネ孔38,48に挿入され、当該バネ孔38,48が蓋39,49により塞がれている。   The springs 37 and 47 are inserted into the spring holes 38 and 48, and the spring holes 38 and 48 are closed by the lids 39 and 49.

なお、バネ孔38,48は、その圧縮要素のおける吐出圧力になるように図示しない流路が設けられている。   The spring holes 38 and 48 are provided with a flow path (not shown) so as to be a discharge pressure in the compression element.

これにより、ベーン35,45はバネ37,47とバネ孔38,48の圧力とによりローラ33,43側に付勢されて、圧縮室Pと吸気室Vとの機密性が保持されるようになっている。   Accordingly, the vanes 35 and 45 are biased toward the rollers 33 and 43 by the pressures of the springs 37 and 47 and the spring holes 38 and 48 so that the confidentiality between the compression chamber P and the intake chamber V is maintained. It has become.

ローラ33,43の内部には、クランク32,42が配設され、当該クランク32,42がモータ20の回転軸21と連結されて、モータ20が回転することによりローラ33,43はクランク32,42から力を受けて偏芯回転運動するようになる。   Cranks 32 and 42 are disposed inside the rollers 33 and 43, and the cranks 32 and 42 are connected to the rotating shaft 21 of the motor 20. Under the force of 42, the eccentric rotational movement starts.

ローラ33,43が偏芯回転運動すると、先に述べた三日月状の空間は向きを変え、これに伴い圧縮室Pと吸気室Vとの容積比が変化して冷媒を吸気し、圧縮するようになる。   When the rollers 33 and 43 are eccentrically rotated, the crescent-shaped space described above changes its direction, and the volume ratio between the compression chamber P and the intake chamber V changes accordingly, and the refrigerant is sucked and compressed. become.

多段圧縮機では、前段の圧縮要素が吐出した冷媒を後段の圧縮要素が吸気して圧縮するため、後段側の排除容積を小さくする必要がある。   In a multi-stage compressor, since the refrigerant discharged from the preceding compression element is sucked and compressed by the latter compression element, it is necessary to reduce the displacement volume on the rear stage side.

例えば、図1に示す2段構成の場合、前段圧縮要素30の排除容積を3ccとすれば、後段圧縮要素40は3cc未満としないと前段圧縮要素30の意味がなくなってしまう。   For example, in the case of the two-stage configuration shown in FIG. 1, if the displacement volume of the front-stage compression element 30 is 3 cc, the meaning of the front-stage compression element 30 is lost unless the rear-stage compression element 40 is less than 3 cc.

無論、前段圧縮要素30から吐出された冷媒の全てが後段圧縮要素40に吸気されないとすると、吸気されない分だけ圧縮効率が低下するので、現実には後段圧縮要素40は吐出された冷媒を略全て吸気するようになっている。   Of course, if all of the refrigerant discharged from the front-stage compression element 30 is not sucked into the rear-stage compression element 40, the compression efficiency is lowered by the amount not sucked. It comes to inhale.

従って、多段圧縮機においては、後段側になるほど排除容積を小さくしなければならず、このためローラ43の直径D2をローラ33の直径D1より大きくしている(D2>D1)。   Therefore, in the multi-stage compressor, the displacement volume must be reduced toward the rear side, and therefore, the diameter D2 of the roller 43 is larger than the diameter D1 of the roller 33 (D2> D1).

このように、ローラ33,43の大きさが異なるため、ベーン35,45のストロークも異なる。   Thus, since the sizes of the rollers 33 and 43 are different, the strokes of the vanes 35 and 45 are also different.

そこで、本実施の形態では、後段圧縮要素40におけるバネ孔48の長さL2を前段圧縮要素30におけるバネ孔38の長さL1より短くして(L2<L1)、リークパスをながくすることによりリーク量の低減を図っている。   Therefore, in the present embodiment, the length L2 of the spring hole 48 in the rear-stage compression element 40 is made shorter than the length L1 of the spring hole 38 in the front-stage compression element 30 (L2 <L1), and the leakage path is shortened to shorten the leak path. The amount is reduced.

即ち、ベーン35,45のストロークが異なる場合には、バネの変位量も当然異なり、当該バネ37,47を収納するバネ孔38,48の長さもこれに応じて変えることができる。   That is, when the strokes of the vanes 35 and 45 are different, the displacement amount of the spring is naturally different, and the lengths of the spring holes 38 and 48 for accommodating the springs 37 and 47 can be changed accordingly.

例えば、図2に示す場合には、ベーン35とベーン45とが同じ長さであると、ベーン35,45とバネ37,47とが接する位置は、後段圧縮要素40の方がシリンダ外周部側に位置することになる。   For example, in the case shown in FIG. 2, if the vane 35 and the vane 45 have the same length, the position where the vanes 35 and 45 and the springs 37 and 47 are in contact with each other is such that the rear compression element 40 is on the cylinder outer peripheral side. Will be located.

従って、このバネ47を収納するバネ孔48の長さをもっと小さくすることができるようになる。   Accordingly, the length of the spring hole 48 for accommodating the spring 47 can be further reduced.

このような観点から、上述したようにバネ孔48をバネ孔38より短くして、これによりリークパスを長くすることによりリーク量の低減を図っている。   From such a viewpoint, as described above, the spring hole 48 is made shorter than the spring hole 38, and thereby the leak path is lengthened, thereby reducing the leak amount.

なお、バネ孔48を短くすることはベーン45がシリンダ41と接する領域(上述したリークパス)が長くなることを意味するので、ベーン35,45の摺動抵抗の増大が懸念される。   Note that shortening the spring hole 48 means that the region where the vane 45 is in contact with the cylinder 41 (the above-described leak path) becomes long, and there is a concern that the sliding resistance of the vanes 35 and 45 may increase.

しかし、シリンダ31,41は略円盤状に形成されており、従来用いられていたR−22冷媒のときのシリンダ厚は16mmであるが、二酸化炭素冷媒のときのシリンダ厚は約9mmであるので、基本的に摺動面積が小さくなっている。   However, the cylinders 31 and 41 are formed in a substantially disk shape, and the cylinder thickness for the R-22 refrigerant used conventionally is 16 mm, but the cylinder thickness for the carbon dioxide refrigerant is about 9 mm. Basically, the sliding area is small.

従って、冷媒として二酸化炭素冷媒を用いる場合には、バネ孔48の長さを多少長くすることによる摺動抵抗の増大よりもリーク量が押えられる効果の方が大きい。   Therefore, when carbon dioxide refrigerant is used as the refrigerant, the effect of suppressing the leakage amount is greater than the increase in sliding resistance by slightly increasing the length of the spring hole 48.

なお、上記説明では各圧縮要素におけるバネ孔38,48の圧力はその圧縮要素の吐出圧力に略等しく設定されている場合について説明したが、本発明はこれに限定されるものではなく、当該圧縮要素の吐出圧以上の圧力に設定されている場合にも適用できることは言うまでもない。   In the above description, the case where the pressure of the spring holes 38 and 48 in each compression element is set to be approximately equal to the discharge pressure of the compression element has been described, but the present invention is not limited to this, and the compression Needless to say, the present invention can be applied to a case where the pressure is set to be equal to or higher than the discharge pressure of the element.

本発明の実施の形態の説明に適用される2段ロータリ圧縮機の断面図である。It is sectional drawing of the two-stage rotary compressor applied to description of embodiment of this invention. 図1における圧縮要素の詳細図である。FIG. 2 is a detailed view of a compression element in FIG. 1. 従来の技術の説明に適用される2段ロータリ圧縮機における圧縮要素の詳細図である。It is detail drawing of the compression element in the two-stage rotary compressor applied to description of a prior art.

符号の説明Explanation of symbols

10 密閉容器
30 前段圧縮要素
31,41 シリンダ
33,43 ローラ
35,45 ベーン
36,46 ベーン孔
37,47 バネ
38,48 バネ孔
39,49 蓋
40 後段圧縮要素



DESCRIPTION OF SYMBOLS 10 Airtight container 30 First stage compression element 31,41 Cylinder 33,43 Roller 35,45 Vane 36,46 Vane hole 37,47 Spring 38,48 Spring hole 39,49 Lid 40 Later stage compression element



Claims (2)

シリンダと、ローラと、ベーンと、
該ベーンを前記ローラに付勢するバネが収納されるバネ孔と、
前記シリンダ内で前記ローラが偏芯回転可能に収納されるシリンダ室と、
前記バネ孔と前記シリンダ室とに連接し、且つ前記ベーンが挿入されるベーン孔と、を備える圧縮要素が2段以上連結され、
各段の前記圧縮要素が一つの密閉容器内に収納されると共に、前記各段の前記ローラが一つの回転軸に連結されてなる多段圧縮機において、
前記ベーン孔の前記ベーンの移動方向の長さを、前段側より後段側を長くしたことを特徴とする多段圧縮機。
Cylinder, roller, vane,
A spring hole in which a spring for urging the vane against the roller is stored;
A cylinder chamber in which the roller is housed in the cylinder so as to be eccentrically rotatable;
Two or more stages of compression elements connected to the spring hole and the cylinder chamber and having a vane hole into which the vane is inserted are connected,
In the multistage compressor in which the compression elements of each stage are housed in one sealed container, and the rollers of each stage are connected to one rotation shaft,
The multistage compressor characterized in that the length of the vane hole in the moving direction of the vane is longer on the rear side than on the front side.
前記圧縮要素の吐出圧力により、前記ベーンを前記ローラに付勢することを特徴とする請求項1に記載の多段圧縮機。


The multistage compressor according to claim 1, wherein the vane is urged to the roller by a discharge pressure of the compression element.


JP2004167906A 2004-06-07 2004-06-07 Multistage compressor Expired - Fee Related JP3685798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004167906A JP3685798B2 (en) 2004-06-07 2004-06-07 Multistage compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004167906A JP3685798B2 (en) 2004-06-07 2004-06-07 Multistage compressor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000093721A Division JP3579324B2 (en) 2000-03-30 2000-03-30 Multi-stage compressor

Publications (2)

Publication Number Publication Date
JP2004251289A JP2004251289A (en) 2004-09-09
JP3685798B2 true JP3685798B2 (en) 2005-08-24

Family

ID=33028737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004167906A Expired - Fee Related JP3685798B2 (en) 2004-06-07 2004-06-07 Multistage compressor

Country Status (1)

Country Link
JP (1) JP3685798B2 (en)

Also Published As

Publication number Publication date
JP2004251289A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
JP2006009792A (en) Rotary compressor
JPWO2006103821A1 (en) Scroll expander
JP5905005B2 (en) Multi-cylinder rotary compressor and refrigeration cycle apparatus
JP2008031920A (en) Rotary compressor
KR101581692B1 (en) Compressor
JP2005194956A (en) Compressor
JP5540557B2 (en) Rotary compressor
JP5504681B2 (en) Rotary compressor
JP3685798B2 (en) Multistage compressor
JPWO2012042825A1 (en) Rotary compressor
JP2008267150A (en) Fluid machine
JP3579324B2 (en) Multi-stage compressor
JP5660151B2 (en) Scroll compressor
JP6758422B2 (en) Rotating compressor
JP2012017690A (en) Rotary compressor
JP5355361B2 (en) Hermetic rotary compressor
JP2009127517A (en) Enclosed compressor
JP4973148B2 (en) Rotary compressor
JP2005147071A (en) Horizontal type multi-stage compression rotary compressor, and air conditioner having the same for automobile
JP2005351111A (en) Scroll compressor
JP2010031734A (en) Rotary compressor
JP2001280278A (en) Multistage compressor
JP2005240564A (en) Rotary compressor
EP1820968B1 (en) Scroll fluid machine
JP3744526B2 (en) Rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040707

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040715

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees