JP2001274376A - Low-resistant garium nitride buffer layer - Google Patents

Low-resistant garium nitride buffer layer

Info

Publication number
JP2001274376A
JP2001274376A JP2000084613A JP2000084613A JP2001274376A JP 2001274376 A JP2001274376 A JP 2001274376A JP 2000084613 A JP2000084613 A JP 2000084613A JP 2000084613 A JP2000084613 A JP 2000084613A JP 2001274376 A JP2001274376 A JP 2001274376A
Authority
JP
Japan
Prior art keywords
gan
buffer layer
layer
algan
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000084613A
Other languages
Japanese (ja)
Inventor
Kiyoteru Yoshida
清輝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2000084613A priority Critical patent/JP2001274376A/en
Publication of JP2001274376A publication Critical patent/JP2001274376A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a GaN buffer layer which is high purity but low resistance. SOLUTION: The buffer layer 2 has heterojunction comprising at least two thin layers comprised of nitride III-V compound semiconductor with Ga as an essential component, for example, AlGaN 2A/GaN 2B/AlGaN 2C. A 2-dimension electron gas layer formed at the heterojunction is positively utilized for low resistance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は基板の上にエピタキ
シャル成長法で成膜される低抵抗GaN系緩衝層に関
し、更に詳しくは、FETやMESFETのような各種
のGaN系半導体素子の製造時に採用することにより、
当該半導体素子の基板裏面への動作電極の形成を可能に
した低抵抗GaN系緩衝層に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-resistance GaN-based buffer layer formed on a substrate by an epitaxial growth method, and more particularly to a method of manufacturing various GaN-based semiconductor devices such as FETs and MESFETs. By doing
The present invention relates to a low-resistance GaN-based buffer layer capable of forming an operation electrode on the back surface of a substrate of the semiconductor device.

【0002】[0002]

【従来の技術】例えばGaN系材料でFETを製造する
場合には、基板の上に例えばMOCVD法やMBE法の
ようなエピタキシャル成長法で所定の組成を有するGa
N系結晶層を順次積層してFET層構造を形成すること
が必要である。その場合、GaN系材料と格子定数が一
致する基板材料は皆無であるため、異種材料から成る基
板が結晶成長用の基板として用いられている。通常はサ
ファイア基板が用いられている。
2. Description of the Related Art For example, when an FET is manufactured from a GaN-based material, a Ga having a predetermined composition is formed on a substrate by an epitaxial growth method such as MOCVD or MBE.
It is necessary to form an FET layer structure by sequentially stacking N-type crystal layers. In this case, there is no substrate material whose lattice constant matches that of the GaN-based material, and thus a substrate made of a different material is used as a substrate for crystal growth. Usually, a sapphire substrate is used.

【0003】しかしながら、このサファイア基板と結晶
成長するGaN結晶との格子不整合率は20%以上であ
るため、両者の格子不整合を緩和し、成膜されたGaN
結晶における結晶欠陥を極力少なくすることを目的とし
て、サファイア基板の上には、一旦、緩衝層を成膜する
ことが行われている。通常、この緩衝層はノンドープの
状態で成膜され、そしてその上に所望する膜厚のn型G
aN結晶層をn型活性層として成膜することによりGa
N系のFET層構造が形成されることになる。
However, since the lattice mismatch between the sapphire substrate and the GaN crystal that grows is 20% or more, the lattice mismatch between the GaN crystal and the grown GaN crystal is reduced, and
For the purpose of minimizing crystal defects in a crystal, a buffer layer is once formed on a sapphire substrate. Usually, this buffer layer is formed in a non-doped state, and an n-type G layer having a desired film thickness is formed thereon.
By forming an aN crystal layer as an n-type active layer, Ga
An N-based FET layer structure is formed.

【0004】上記した緩衝層の成膜に関しては、従来か
ら次のような2段階成長法が適用されている。第1の方
法は、通常、MOCVD法により、例えばトリエチルア
ルミニウム(TEA)とアンモニア(NH3)を用い、
水素をキャリアガスとして用い、成長温度800℃でサ
ファイア基板上に、一旦、厚み5nm程度の極薄なAlN
層を下部緩衝層として成膜し、ついで成長温度を110
0℃に上昇させ、トリメチルガリウム(TMG)とアン
モニア(NH3)を用いて厚膜のノンドープGaN結晶
層を上部緩衝層として前記AlN層の上に成膜する方法
である。
The following two-stage growth method has conventionally been applied to the formation of the buffer layer described above. The first method uses MOCVD, for example, using triethylaluminum (TEA) and ammonia (NH 3 ).
Using hydrogen as a carrier gas, an ultra-thin AlN having a thickness of about 5 nm is temporarily formed on a sapphire substrate at 800 ° C.
The layer is deposited as a lower buffer layer and then grown at a temperature of 110
This is a method in which the temperature is raised to 0 ° C. and a thick non-doped GaN crystal layer is formed as an upper buffer layer on the AlN layer using trimethylgallium (TMG) and ammonia (NH 3 ).

【0005】また、第2の方法としては次のような方法
が適用されている。すなわち、MOCVD法により、例
えばTMGとNH3を用い、水素をキャリアガスとして
用い、温度500〜600℃の低温下で厚み1〜2nm程
度の非晶質GaN層を下部緩衝層として成膜し、ついで
温度を1100℃に上昇してエピタキシャル成長を行
い、前記非晶質GaN層の上に厚膜のノンドープGaN
結晶層を上部緩衝層として成膜する方法である。
The following method is applied as a second method. That is, an amorphous GaN layer having a thickness of about 1 to 2 nm is formed as a lower buffer layer at a low temperature of 500 to 600 ° C. by using, for example, TMG and NH 3 , using hydrogen as a carrier gas by MOCVD, Then, the temperature was increased to 1100 ° C. to perform epitaxial growth, and a thick non-doped GaN was formed on the amorphous GaN layer.
In this method, a crystal layer is formed as an upper buffer layer.

【0006】このようにして成膜された従来のGaN系
緩衝層は、結晶欠陥が多いという問題と、同時に、上部
緩衝層として成膜されている厚膜のノンドープGaN結
晶層が高抵抗であるということに規定されて緩衝層全体
としては高抵抗になっているという問題を有している。
The conventional GaN-based buffer layer formed as described above has a problem that it has many crystal defects, and at the same time, a thick non-doped GaN crystal layer formed as an upper buffer layer has high resistance. As a result, there is a problem that the overall resistance of the buffer layer is high.

【0007】[0007]

【発明が解決しようとする課題】ところで、例えば縦型
のGaN系FETを製造しようとする場合には、基板と
して導電性材料から成る基板を用い、製造した素子の上
面と、下面(すなわち基板裏面)にそれぞれ動作電極を
形成することが必要になる。しかしながら、上記の従来
方法で形成したFET構造においては、基板上に位置す
る緩衝層が高抵抗になっているため、基板の裏面に動作
電極を形成しても電極動作を示さないことになる。した
がって、縦型のGaN系FETを製造しようとする場合
には、緩衝層をノンドープの状態で、かつ低抵抗にする
ことが必要になる。
When a vertical GaN-based FET is to be manufactured, for example, a substrate made of a conductive material is used as the substrate, and the upper and lower surfaces of the manufactured device (ie, the back surface of the substrate). ) Requires the formation of working electrodes. However, in the FET structure formed by the above-described conventional method, since the buffer layer located on the substrate has a high resistance, even if the working electrode is formed on the back surface of the substrate, no electrode operation is exhibited. Therefore, when attempting to manufacture a vertical GaN-based FET, it is necessary to make the buffer layer non-doped and have low resistance.

【0008】本発明は、上記した要請に応えることがで
き、高純度であると同時に、低抵抗であるGaN系緩衝
層の提供を目的とする。
An object of the present invention is to provide a GaN-based buffer layer which can satisfy the above-mentioned demands and has a high purity and a low resistance.

【0009】[0009]

【課題を解決するための手段】本発明者は上記した目的
を達成するために研究を重ねる過程で、HEMTの場合
に代表されるように、互いに高純度である化合物半導体
のヘテロ接合界面には2次元電子ガス層が形成され、そ
の領域における電子は高い移動度を有するという事実に
着目した。そして、上記したGaN系の緩衝層の場合で
も、複数の高純度なGaN系材料を用いてヘテロ接合構
造を形成すれば、互いのヘテロ接合界面には2次元電子
ガス層が形成され、そのことにより、緩衝層を全体とし
て低抵抗化することが可能になるとの着想を抱き、その
着想に基づいて更に研究を重ねた結果、上記着想が正当
であることを確認し、本発明を開発するに至った。
In order to achieve the above-mentioned object, the present inventor has repeatedly studied and found that a heterojunction interface between mutually pure compound semiconductors, as typified by HEMT, has been found. Attention was paid to the fact that a two-dimensional electron gas layer was formed, and the electrons in that region had high mobility. Even in the case of the GaN-based buffer layer described above, if a heterojunction structure is formed using a plurality of high-purity GaN-based materials, a two-dimensional electron gas layer is formed at the heterojunction interface between each other. Thus, the idea that it becomes possible to reduce the resistance of the buffer layer as a whole, and further studies based on the idea, as a result, confirmed that the idea is valid, and to develop the present invention Reached.

【0010】すなわち、本発明の低抵抗GaN緩衝層
は、Gaを必須成分として含む窒化物系III−V族化合
物半導体から成る少なくとも2層の薄層をヘテロ接合し
た層構造になっていることを特徴とする。そして、この
ような層構造としては、AlGaN/GaN/AlGa
N,GaN/AlGaN/GaN,GaN/InGaN
/GaN,InGaN/GaN/InGaN,InAl
GaN/GaN/InAlGaN(ただし、InAlG
aNは、GaNよりもバンドギャップエネルギーが大き
い組成になっている),GaN/InAlGaN/Ga
N,AlGaNP/GaNP/AlGaNP,AlGa
NAs/GaNAs/AlGaNAs,AlGaNP/
InGaNP/AlGaNP,AlGaNAs/InG
aNAs/AlGaNAsのいずれかであることを好適
とする。
That is, the low-resistance GaN buffer layer of the present invention has a layer structure in which at least two thin layers made of a nitride III-V compound semiconductor containing Ga as an essential component are heterojuncted. Features. And, as such a layer structure, AlGaN / GaN / AlGa
N, GaN / AlGaN / GaN, GaN / InGaN
/ GaN, InGaN / GaN / InGaN, InAl
GaN / GaN / InAlGaN (however, InAlG
aN has a composition in which the band gap energy is larger than that of GaN), GaN / InAlGaN / Ga
N, AlGaNP / GaNP / AlGaNP, AlGa
NAs / GaNAs / AlGaNAs, AlGaNP /
InGaNP / AlGaNP, AlGaNAs / InG
It is preferable that any one of aNAs / AlGaNAs is used.

【0011】[0011]

【発明の実施の形態】以下、図面に基づいて本発明の緩
衝層を説明する。図1は、基板1の上に、後述する高純
度な緩衝層2が成膜され、更にその上に、SiドープG
aN結晶層のような同じく高純度な緩衝層2が成膜さ
れ、更にその上に、SiドープGaN結晶層のような同
じく高純度なn型活性層3が形成された断面構造を示
す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a buffer layer according to the present invention will be described with reference to the drawings. FIG. 1 shows that a high-purity buffer layer 2 to be described later is formed on a substrate 1 and further a Si-doped G layer is formed thereon.
A cross-sectional structure is shown in which a similarly high-purity buffer layer 2 such as an aN crystal layer is formed, and a high-purity n-type active layer 3 such as a Si-doped GaN crystal layer is further formed thereon.

【0012】ここで、基板1としては、例えばSi,S
iC,GaAs,GaP,InPなどの基板のヘテロ接
合から成る層構造のような導電性材料から成る基板を用
いれば、この材料からは、n型活性層3に上部電極を、
基板1の裏面に下部電極をそれぞれ形成することによ
り、縦型のFETを製造することができる。緩衝層2
は、全体として、第1緩衝層2A、第2緩衝層2B、お
よび第3緩衝層2Cから成る3層構造になっていて、各
部分緩衝層の接合界面はヘテロ接合界面になっている。
Here, for example, Si, S
If a substrate made of a conductive material such as a layer structure composed of a heterojunction of a substrate such as iC, GaAs, GaP, or InP is used, an upper electrode is formed on the n-type active layer 3 from this material.
By forming the lower electrodes on the back surface of the substrate 1 respectively, a vertical FET can be manufactured. Buffer layer 2
Has a three-layer structure composed of a first buffer layer 2A, a second buffer layer 2B, and a third buffer layer 2C as a whole, and the junction interface of each partial buffer layer is a hetero junction interface.

【0013】そして、これら緩衝層2A,2B,2C
は、Gaを必須成分として含む窒化物系III−V族化合
物半導体で構成されていて、図1の材料の場合、具体的
には、第1緩衝層2AはAlGaN(Al:15原子
%)結晶層、第2緩衝層2BはGaN結晶層、第3緩衝
層2CはAlGaN(Al:20原子%)結晶層になっ
ている。
The buffer layers 2A, 2B, 2C
Is made of a nitride III-V compound semiconductor containing Ga as an essential component. In the case of the material shown in FIG. 1, specifically, the first buffer layer 2A is made of AlGaN (Al: 15 atomic%) crystal. The second buffer layer 2B is a GaN crystal layer, and the third buffer layer 2C is an AlGaN (Al: 20 atomic%) crystal layer.

【0014】この緩衝層2の場合、第1緩衝層2Aと第
2緩衝層2Bの接合界面における第2緩衝層2B側には
2次元電子ガス層g1が形成され、また、第2緩衝層2
Bと第3緩衝層2Cの接合界面における第2緩衝層2B
側にも2次元電子ガス層g2が形成されることになる。
すなわち、2つの接合界面に対応して第2緩衝層2Bの
上下には2つの2次元電子ガス層が形成されている。
[0014] In this case of the buffer layer 2, a first buffer layer 2A in the second buffer layer 2B side at a joint interface of the second buffer layer 2B 2-dimensional electron gas layer g 1 is formed, and the second buffer layer 2
B and second buffer layer 2B at the bonding interface between third buffer layer 2C
So that the two-dimensional electron gas layer g 2 in the side is formed.
That is, two two-dimensional electron gas layers are formed above and below the second buffer layer 2B corresponding to the two bonding interfaces.

【0015】したがって、この第2緩衝層2Bを薄く成
膜することにより、上記した2次元電子ガス層g1,g2
の作用で、当該第2緩衝層2Bの上下方向における抵抗
を低めることが可能になる。具体的には、第2緩衝層2
Bの厚みを10nm以下に設定すれば、上下方向における
導電性を発現せしめることができる。なお、第1緩衝層
2Aと第3緩衝層2Cは、いずれも、第2緩衝層2Bと
の接合界面に2次元電子ガス層を形成するためにのみ成
膜されるものである。したがって、その材料としては、
第2緩衝層2Bにおける材料のバンドギャップエネルギ
ーよりも大きいバンドギャップエネルギーを有する組成
のものが選定される。そして、これら層2A,2Cの厚
みは厚くなくてよく、上記した2次元電子ガス層の形成
に必要な厚みであれば充分である。むしろ、層2A,2
Cの厚みを厚くすると、緩衝層全体の上下方向における
抵抗を高めるようになる。したがって、成膜時に層2
A,2Cを平坦面にするということも勘案して30〜5
0nm程度に設定すればよい。
Therefore, by forming the second buffer layer 2B thinly, the above-described two-dimensional electron gas layers g 1 and g 2 are formed.
With this operation, the resistance of the second buffer layer 2B in the vertical direction can be reduced. Specifically, the second buffer layer 2
If the thickness of B is set to 10 nm or less, conductivity in the vertical direction can be exhibited. Each of the first buffer layer 2A and the third buffer layer 2C is formed only to form a two-dimensional electron gas layer at the bonding interface with the second buffer layer 2B. Therefore, as the material,
A composition having a band gap energy larger than the band gap energy of the material in the second buffer layer 2B is selected. The thicknesses of these layers 2A and 2C do not need to be large, and are sufficient as long as they are necessary for forming the above-described two-dimensional electron gas layer. Rather, layers 2A, 2
Increasing the thickness of C increases the resistance of the entire buffer layer in the vertical direction. Therefore, at the time of film formation, layer 2
30 to 5 in consideration of making A and 2C flat surfaces
It may be set to about 0 nm.

【0016】このような作用効果を発揮する緩衝層2の
層構造としては、それを、第1緩衝層2A/第2緩衝層
2B/第3緩衝層3Cで表現した場合、次のような層構
造を好適例としてあげることができる。すなわち、Al
GaN/GaN/AlGaN,GaN/AlGaN/G
aN,GaN/InGaN/GaN,InGaN/Ga
N/InGaN,InAlGaN/GaN/InAlG
aN(ただし、InAlGaNは、GaNよりもバンド
ギャップエネルギーが大きい組成になっている),Ga
N/InAlGaN/GaN,AlGaNP/GaNP
/AlGaNP,AlGaNAs/GaNAs/AlG
aNAs,AlGaNP/InGaNP/AlGaN
P,AlGaNAs/InGaNAs/AlGaNAs
のいずれかである。
The layer structure of the buffer layer 2 exhibiting the above-mentioned functions and effects can be expressed as a first buffer layer 2A / second buffer layer 2B / third buffer layer 3C. The structure can be given as a preferred example. That is, Al
GaN / GaN / AlGaN, GaN / AlGaN / G
aN, GaN / InGaN / GaN, InGaN / Ga
N / InGaN, InAlGaN / GaN / InAlG
aN (however, InAlGaN has a composition in which the band gap energy is larger than that of GaN), Ga
N / InAlGaN / GaN, AlGaNP / GaNP
/ AlGaNP, AlGaNAs / GaNAs / AlG
aNAs, AlGaNP / InGaNP / AlGaN
P, AlGaNAs / InGaNAs / AlGaNAs
Is one of

【0017】[0017]

【実施例】実施例1 図1で示した材料をMBE法で次のようにして製造し
た。導電性のSi基板1の上に、成長温度750℃で、
まず、1原子層のAlを堆積させた。
EXAMPLE 1 The material shown in FIG. 1 was produced by the MBE method as follows. At a growth temperature of 750 ° C. on a conductive Si substrate 1,
First, one atomic layer of Al was deposited.

【0018】ついで、プラズマ化した窒素(3×10-6
Torr)、金属Ga(5×10-7Torr)、金属Al(1×
10-7Torr)、および金属Si(1×10-9Torr)を用
い、成長温度800℃で厚み3nmのSi添加AlGaN
(Al:15原子%)結晶層を第1緩衝層2Aとして成
膜した。この層の表面のストリークパターンを高速電子
線回折装置(RHEED)で観察したところ平坦である
ことが確認された。
Next, the plasma-converted nitrogen (3 × 10 −6)
Torr), metal Ga (5 × 10 −7 Torr), metal Al (1 ×
10 -7 Torr) and metal Si (1 × 10 -9 Torr) at a growth temperature of 800 ° C. and a thickness of 3 nm with Si-added AlGaN.
A (Al: 15 atomic%) crystal layer was formed as the first buffer layer 2A. When the streak pattern on the surface of this layer was observed with a high-speed electron beam diffractometer (RHEED), it was confirmed that the layer was flat.

【0019】ついで、プラズマ化した窒素(3×10-6
Torr)、金属Ga(5×10-7Torr)のみを用いて上記
第1緩衝層2Aの上に厚み30nmのGaN結晶層を第2
緩衝層2Bとして成膜した。RHEED観察によればこ
の層の表面も平坦であった。更に、上記ガス源に金属A
l(2×10-7Torr)を加えてMBE法を行い、上記第
2緩衝層2Bの上に厚み3nmのAlGaN(Al:20
原子%)結晶層を第3緩衝層2Cとして成膜した。RH
EED観察によればこの層の表面も平坦であった。
Then, the plasma nitrogen (3 × 10 −6)
Torr) and a metal Ga (5 × 10 −7 Torr) alone to form a 30-nm thick GaN crystal layer on the first buffer layer 2A.
A film was formed as the buffer layer 2B. According to RHEED observation, the surface of this layer was also flat. Further, metal A is used as the gas source.
1 (2 × 10 −7 Torr) and the MBE method is performed, and a 3 nm thick AlGaN (Al: 20: 20) is formed on the second buffer layer 2B.
(Atomic%) A crystal layer was formed as the third buffer layer 2C. RH
According to EED observation, the surface of this layer was also flat.

【0020】ついで、プラズマ化した窒素(5×10-5
Torr)と金属Ga(8×10-7Torr)を用い、n型ドー
パントとして金属Si(5×10-8Torr)を用い、成長
温度850℃で上記第3緩衝層2Cの上に厚み30nmの
SiドープGaN結晶層をn型活性層3として成膜し
た。得られた材料につき、C−V測定を行って、緩衝層
のあるヘテロ接合付近のキャリア濃度を調べたところ、
緩衝層2とn型活性層3との界面におけるキャリア濃度
は3×1018cm-3であり、充分に上下方向の導電性を有
することが確認された。このことは、緩衝層に2次元電
子ガス層が形成されていることを根拠づけるものであ
る。
Then, the plasma-converted nitrogen (5 × 10 −5)
Torr) and metal Ga (8 × 10 −7 Torr), metal Si (5 × 10 −8 Torr) as an n-type dopant, and a growth temperature of 850 ° C. and a thickness of 30 nm on the third buffer layer 2C. A Si-doped GaN crystal layer was formed as an n-type active layer 3. The obtained material was subjected to CV measurement to examine the carrier concentration near the heterojunction with the buffer layer.
The carrier concentration at the interface between the buffer layer 2 and the n-type active layer 3 is 3 × 10 18 cm -3, it was confirmed that sufficiently has a vertical conductivity. This is based on the fact that the two-dimensional electron gas layer is formed on the buffer layer.

【0021】実施例2 MBE法により、導電性のSi基板1の上に成長温度7
00℃で、まず、1原子層のGaを堆積させた。つい
で、プラズマ化した窒素(3×10-6Torr)、金属Ga
(5×10-7Torr)、および金属Si(1×10-9Tor
r)を用い、成長温度800℃で厚み3nmのSi添加G
aN結晶層を第1緩衝層2Aとして成膜した。この層の
表面のストリークパターンを高速電子線回折装置(RH
EED)で観察したところ平坦であることが確認され
た。
Example 2 A growth temperature of 7 was formed on a conductive Si substrate 1 by MBE.
At 00 ° C., one atomic layer of Ga was first deposited. Next, plasma-converted nitrogen (3 × 10 −6 Torr), metal Ga
(5 × 10 −7 Torr) and metallic Si (1 × 10 −9 Torr)
r), a 3 nm-thick Si-added G at a growth temperature of 800 ° C.
An aN crystal layer was formed as the first buffer layer 2A. The streak pattern on the surface of this layer is converted to a high-speed electron beam diffractometer (RH
Observation by EED) confirmed that the surface was flat.

【0022】ついで、プラズマ化した窒素(3×10-6
Torr)、金属Ga(8×10-7Torr)および金属Al
(1×10-7Torr)を用いて上記第1緩衝層2Aの上に
厚み30nmのAlGaN(Al:15原子%)結晶層を
第2緩衝層2Bとして成膜した。RHEED観察によれ
ばこの層の表面も平坦であった。ついで、金属Alの供
給を絶ってMBE法を行い、上記第2緩衝層2Bの上に
厚み3nmのGaN結晶層を第3緩衝層2Cとして成膜し
た。RHEED観察によればこの層の表面も平坦であっ
た。
Next, the plasma-converted nitrogen (3 × 10 −6)
Torr), metal Ga (8 × 10 −7 Torr) and metal Al
An AlGaN (Al: 15 atomic%) crystal layer having a thickness of 30 nm was formed as a second buffer layer 2B on the first buffer layer 2A using (1 × 10 −7 Torr). According to RHEED observation, the surface of this layer was also flat. Then, the supply of metal Al was cut off to perform the MBE method, and a GaN crystal layer having a thickness of 3 nm was formed as a third buffer layer 2C on the second buffer layer 2B. According to RHEED observation, the surface of this layer was also flat.

【0023】そして、プラズマ化した窒素(5×10-5
Torr)と金属Ga(8×10-7Torr)を用い、n型ドー
パントとして金属Si(5×10-8Torr)を用い、成長
温度850℃で上記第3緩衝層2Cの上に厚み30nmの
SiドープGaN結晶層をn型活性層3として成膜し
た。得られた材料につき、C−V測定を行って、緩衝層
付近のキャリア濃度を調べたところ、緩衝層2とn型活
性層3との界面におけるキャリア濃度は5×1018cm-3
であり、充分に上下方向の導電性を有することが確認さ
れた。
Then, plasma-converted nitrogen (5 × 10 −5)
Torr) and metal Ga (8 × 10 −7 Torr), metal Si (5 × 10 −8 Torr) as an n-type dopant, and a growth temperature of 850 ° C. and a thickness of 30 nm on the third buffer layer 2C. A Si-doped GaN crystal layer was formed as an n-type active layer 3. The obtained material was subjected to CV measurement to check the carrier concentration near the buffer layer. As a result, the carrier concentration at the interface between the buffer layer 2 and the n-type active layer 3 was 5 × 10 18 cm −3.
It was confirmed that the film had sufficient vertical conductivity.

【0024】なお、上記実施例において、GaN結晶層
の成膜用窒素源としてはラジカル化した窒素やアンモニ
アを用いてもよく、Ga源としてはトリメチルガリウム
(TMG)やトリエチルガリウム(TEG)などの有機
金属ガスを用い、Al源としてはトリメチルアルミニウ
ム(TMA)やトリエチルアルミニウム(TEA)など
の有機金属ガスを用いてもよく、また、不純物としては
Siに代えてシランガスを用いてもよい。
In the above embodiment, radicalized nitrogen or ammonia may be used as a nitrogen source for forming the GaN crystal layer, and a Ga source such as trimethylgallium (TMG) or triethylgallium (TEG) may be used. An organometallic gas may be used, and an organometallic gas such as trimethylaluminum (TMA) or triethylaluminum (TEA) may be used as an Al source, and silane gas may be used instead of Si as an impurity.

【0025】更に、上記実施例では、エピタキシャル成
長法としてMBE法を採用したが、上記した有機金属ガ
スを用いたMOCVD法を適用しても同様の結果をえる
ことができる。
Further, in the above embodiment, the MBE method is adopted as the epitaxial growth method. However, the same result can be obtained by applying the MOCVD method using the above-mentioned organometallic gas.

【0026】[0026]

【発明の効果】以上の説明で明らかなように、本発明の
低抵抗GaN系緩衝層は、高純度の化合物半導体のヘテ
ロ接合界面に形成される2次元電子ガス層を積極的に活
用したものである。したがって、この緩衝層を用いるこ
とにより、縦型のGaN系FETやGaN系MESFE
Tの製造が可能となり、その工業的価値は大である。
As is apparent from the above description, the low-resistance GaN-based buffer layer of the present invention utilizes a two-dimensional electron gas layer formed at the heterojunction interface of a high-purity compound semiconductor. It is. Therefore, by using this buffer layer, a vertical GaN-based FET or a GaN-based MESFE
T can be manufactured, and its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の緩衝層を用いた層構造を示す断面図で
ある。
FIG. 1 is a sectional view showing a layer structure using a buffer layer of the present invention.

【符号の説明】[Explanation of symbols]

1 結晶成長用の基板(導電性Si基板) 2 緩衝層 2A 第1緩衝層(AlGaN) 2B 第2緩衝層(GaN) 2C 第3緩衝層(AlGaN) 3 n型活性層(SiドープGaN) Reference Signs List 1 Crystal growth substrate (conductive Si substrate) 2 Buffer layer 2A First buffer layer (AlGaN) 2B Second buffer layer (GaN) 2C Third buffer layer (AlGaN) 3 n-type active layer (Si-doped GaN)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 33/00 H01S 5/32 Fターム(参考) 4G077 AA03 BE11 BE15 BE42 BE45 DA05 DB08 ED06 EF03 EF04 HA06 5F041 AA40 CA34 CA40 5F073 CA07 CA17 CB04 CB07 DA05 DA06 5F102 GB01 GC01 GD01 GJ03 GJ04 GJ05 GJ06 GK08 GQ01 HC01 5F103 AA04 DD01 GG01 HH03 HH04 JJ03 KK01 LL08 RR05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) H01L 33/00 H01S 5/32 F term (reference) 4G077 AA03 BE11 BE15 BE42 BE45 DA05 DB08 ED06 EF03 EF04 HA06 5F041 AA40 CA34 CA40 5F073 CA07 CA17 CB04 CB07 DA05 DA06 5F102 GB01 GC01 GD01 GJ03 GJ04 GJ05 GJ06 GK08 GQ01 HC01 5F103 AA04 DD01 GG01 HH03 HH04 JJ03 KK01 LL08 RR05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Gaを必須成分として含む窒化物系III
−V族化合物半導体から成る少なくとも2層の薄層をヘ
テロ接合した層構造になっていることを特徴とする低抵
抗GaN系緩衝層。
1. A nitride III containing Ga as an essential component
-A low-resistance GaN-based buffer layer having a layer structure in which at least two thin layers made of a group V compound semiconductor are hetero-joined.
【請求項2】 前記層構造が、AlGaN/GaN/A
lGaN,GaN/AlGaN/GaN,GaN/In
GaN/GaN,InGaN/GaN/InGaN,I
nAlGaN/GaN/InAlGaN(ただし、In
AlGaNは、GaNよりもバンドギャップエネルギー
が大きい組成になっている),GaN/InAlGaN
/GaN,AlGaNP/GaNP/AlGaNP,A
lGaNAs/GaNAs/AlGaNAs,AlGa
NP/InGaNP/AlGaNP,AlGaNAs/
InGaNAs/AlGaNAsのいずれかである請求
項1の低抵抗GaN系緩衝層。
2. The method according to claim 1, wherein the layer structure is AlGaN / GaN / A.
lGaN, GaN / AlGaN / GaN, GaN / In
GaN / GaN, InGaN / GaN / InGaN, I
nAlGaN / GaN / InAlGaN (where In
AlGaN has a composition with a larger band gap energy than GaN), GaN / InAlGaN
/ GaN, AlGaNP / GaNP / AlGaNP, A
lGaNAs / GaNAs / AlGaNAs, AlGa
NP / InGaNP / AlGaNP, AlGaNAs /
2. The low-resistance GaN-based buffer layer according to claim 1, which is one of InGaNAs / AlGaNAs.
JP2000084613A 2000-03-24 2000-03-24 Low-resistant garium nitride buffer layer Pending JP2001274376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000084613A JP2001274376A (en) 2000-03-24 2000-03-24 Low-resistant garium nitride buffer layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000084613A JP2001274376A (en) 2000-03-24 2000-03-24 Low-resistant garium nitride buffer layer

Publications (1)

Publication Number Publication Date
JP2001274376A true JP2001274376A (en) 2001-10-05

Family

ID=18601070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000084613A Pending JP2001274376A (en) 2000-03-24 2000-03-24 Low-resistant garium nitride buffer layer

Country Status (1)

Country Link
JP (1) JP2001274376A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059948A (en) * 2001-08-20 2003-02-28 Sanken Electric Co Ltd Semiconductor device and production method therefor
KR100583163B1 (en) * 2002-08-19 2006-05-23 엘지이노텍 주식회사 Nitride semiconductor and fabrication method for thereof
KR100631414B1 (en) 2005-05-19 2006-10-04 삼성전기주식회사 Semiconductor light emitting diode and method of manufacturing the same
KR100638818B1 (en) 2005-05-19 2006-10-27 삼성전기주식회사 Nitride semiconductor light emitting device
US7569870B2 (en) 2003-01-17 2009-08-04 Sanken Electric Co., Ltd. Gallium-nitride-based compound semiconductor device
WO2011083940A3 (en) * 2010-01-05 2011-11-24 서울옵토디바이스주식회사 Light-emitting diode and method for manufacturing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199759A (en) * 1996-01-19 1997-07-31 Toyoda Gosei Co Ltd Manufacture of group iii nitride semiconductor and semiconductor device
JPH1140850A (en) * 1997-07-23 1999-02-12 Toyoda Gosei Co Ltd Manufacture of iii nitride compound semiconductor element
JPH11162847A (en) * 1997-11-07 1999-06-18 Hewlett Packard Co <Hp> Semiconductor substrate and formation thereof
JP2000299325A (en) * 1999-04-16 2000-10-24 Hitachi Cable Ltd Epitaxial wafer for field effect transistor using gallium nitride compound semiconductor
JP2001196575A (en) * 2000-01-13 2001-07-19 Matsushita Electric Ind Co Ltd Semiconductor device
JP2001313421A (en) * 2000-02-21 2001-11-09 Sanken Electric Co Ltd Semiconductor light-emitting element and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199759A (en) * 1996-01-19 1997-07-31 Toyoda Gosei Co Ltd Manufacture of group iii nitride semiconductor and semiconductor device
JPH1140850A (en) * 1997-07-23 1999-02-12 Toyoda Gosei Co Ltd Manufacture of iii nitride compound semiconductor element
JPH11162847A (en) * 1997-11-07 1999-06-18 Hewlett Packard Co <Hp> Semiconductor substrate and formation thereof
JP2000299325A (en) * 1999-04-16 2000-10-24 Hitachi Cable Ltd Epitaxial wafer for field effect transistor using gallium nitride compound semiconductor
JP2001196575A (en) * 2000-01-13 2001-07-19 Matsushita Electric Ind Co Ltd Semiconductor device
JP2001313421A (en) * 2000-02-21 2001-11-09 Sanken Electric Co Ltd Semiconductor light-emitting element and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059948A (en) * 2001-08-20 2003-02-28 Sanken Electric Co Ltd Semiconductor device and production method therefor
KR100583163B1 (en) * 2002-08-19 2006-05-23 엘지이노텍 주식회사 Nitride semiconductor and fabrication method for thereof
US7368309B2 (en) 2002-08-19 2008-05-06 Lg Innotek Co., Ltd. Nitride semiconductor and fabrication method thereof
US7569870B2 (en) 2003-01-17 2009-08-04 Sanken Electric Co., Ltd. Gallium-nitride-based compound semiconductor device
DE112004000136B4 (en) * 2003-01-17 2010-12-30 Sanken Electric Co. Ltd., Niiza-shi Semiconductor devices
KR100631414B1 (en) 2005-05-19 2006-10-04 삼성전기주식회사 Semiconductor light emitting diode and method of manufacturing the same
KR100638818B1 (en) 2005-05-19 2006-10-27 삼성전기주식회사 Nitride semiconductor light emitting device
WO2011083940A3 (en) * 2010-01-05 2011-11-24 서울옵토디바이스주식회사 Light-emitting diode and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP3708810B2 (en) Nitride III-V compound semiconductor device
CN103715246B (en) Semiconductor device
US8921893B2 (en) Circuit structure having islands between source and drain
JP7019942B2 (en) Compound semiconductor substrate and its manufacturing method, compound semiconductor device and its manufacturing method, power supply device, high output amplifier
JPH11261053A (en) High electron mobility transistor
JPH03266439A (en) Substrate of group iii-v compound semiconductor heterostructure and semiconductor device of group iii-v compound heterostructure
JP2003045899A (en) Semiconductor element
JP2005167275A (en) Semiconductor device
JP4474292B2 (en) Semiconductor device
JPH11297713A (en) Field effect transistor
US11316039B2 (en) Method for manufacturing semiconductor device
JP2004047764A (en) Method for manufacturing nitride semiconductor, semiconductor wafer and semiconductor device
JP2003151996A (en) Electronic device using two-dimensional electronic gas
JP2016058693A (en) Semiconductor device, semiconductor wafer, and method of manufacturing semiconductor device
JPH11261052A (en) High electron mobility transistor
CN102931229A (en) AlGaN/GaN/InGaN double hetero-junction material and production method thereof
KR101473577B1 (en) Semiconductor device and method for manufacturing a semiconductor device
JP2003100778A (en) Semiconductor device
CN109285777B (en) Method for forming epitaxial substrate with N-polar gallium nitride
JP2005285869A (en) Epitaxial substrate and semiconductor device using the same
JP2001274376A (en) Low-resistant garium nitride buffer layer
JP7099255B2 (en) Compound semiconductor equipment, high frequency amplifier and power supply equipment
JP3615068B2 (en) Heterojunction nitride semiconductor device
JP4072858B2 (en) Nitride III-V compound semiconductor device
JP3180734B2 (en) Method for manufacturing field effect transistor

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726