JP2001273913A - Solid electrolytic type fuel cell and fuel cell - Google Patents

Solid electrolytic type fuel cell and fuel cell

Info

Publication number
JP2001273913A
JP2001273913A JP2000089601A JP2000089601A JP2001273913A JP 2001273913 A JP2001273913 A JP 2001273913A JP 2000089601 A JP2000089601 A JP 2000089601A JP 2000089601 A JP2000089601 A JP 2000089601A JP 2001273913 A JP2001273913 A JP 2001273913A
Authority
JP
Japan
Prior art keywords
cell
current collector
fuel cell
cap member
cell body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000089601A
Other languages
Japanese (ja)
Other versions
JP4721487B2 (en
Inventor
Yuji Tateishi
勇二 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000089601A priority Critical patent/JP4721487B2/en
Publication of JP2001273913A publication Critical patent/JP2001273913A/en
Application granted granted Critical
Publication of JP4721487B2 publication Critical patent/JP4721487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolytic type fuel cell which can prevent gas leakage between the cell body and the cap members and a fuel cell. SOLUTION: This is constituted with an air electrode 32 on one side of the sold electrolyte 31 and a fuel electrode 33 on the other side. In the solid electrolytic fuel cell installed with the cylindrical cell body 34 equipped with a current collector 35 electrically connected with the air electrode 32 or the fuel electrode 33 and a cap member 43 which is externally fitted and joined to one end of the cell body 34, the surface of the current collector 35 of the part where the cap member 43 is externally fitted is made to be a circular arc face 40 along the circumferential direction of the cell body 40.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固体電解質型燃料電
池セルおよび燃料電池に関し、特にセル本体の一端部が
キャップ部材で封止された円筒状の固体電解質型燃料電
池セルおよび燃料電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell and a fuel cell, and more particularly to a cylindrical solid oxide fuel cell and a fuel cell in which one end of a cell body is sealed with a cap member. is there.

【0002】[0002]

【従来技術】固体電解質型燃料電池セルはその作動温度
が900〜1050℃と高温であるため発電効率が高
く、第3世代の発電システムとして期待されている。
2. Description of the Related Art A solid oxide fuel cell has a high power generation efficiency because its operating temperature is as high as 900 to 1050 ° C., and is expected as a third generation power generation system.

【0003】一般に固体電解質型燃料電池セルとしては
円筒型と平板型が知られている。平板型の固体電解質型
燃料電池セルは、発電の単位体積当たり出力密度が高い
という特徴を有するが、実用化に関してはガスシール不
完全性やセル内の温度分布の不均一性などの問題があ
る。それに対して、円筒型の固体電解質型燃料電池セル
では、出力密度は低いものの、セルの機械的強度が高
く、またセル内の温度の均一性が保てるという特徴があ
る。両形状の固体電解質型燃料電池セルとも、それぞれ
の特徴を生かして積極的に研究開発が進められている。
[0003] Generally, a cylindrical type and a flat type are known as solid oxide fuel cells. Plate-type solid oxide fuel cells have the feature of high power density per unit volume of power generation, but there are problems with practical use, such as incomplete gas seals and non-uniform temperature distribution in the cell. . On the other hand, a cylindrical solid oxide fuel cell has the features that although the output density is low, the mechanical strength of the cell is high and the temperature uniformity in the cell can be maintained. Both types of solid oxide fuel cells are being actively researched and developed utilizing their respective characteristics.

【0004】円筒型の固体電解質型燃料電池セルは、図
7に示すように開気孔率30〜40%程度のLaMnO
3系材料からなる多孔性の空気極2を形成し、その表面
にY23含有のZrO2からなる固体電解質3を被覆
し、さらにこの表面に多孔性のNi−ジルコニアの燃料
極4を設けて構成されている。燃料電池のモジュールに
おいては、各単セルはLaCrO3系の集電体(インタ
ーコネクタ)5を介して接続される。発電は、例えば、
空気極2内部に空気6(酸素)を、外部に燃料7(水
素)を流し、1000〜1050℃の温度で行われる。
As shown in FIG. 7, a cylindrical solid oxide fuel cell has a LaMnO having an open porosity of about 30 to 40%.
A porous air electrode 2 made of a tertiary material is formed, the surface thereof is coated with a solid electrolyte 3 made of ZrO 2 containing Y 2 O 3 , and a porous Ni-zirconia fuel electrode 4 is further formed on this surface. It is provided and configured. In the fuel cell module, each single cell is connected via a LaCrO 3 -based current collector (interconnector) 5. Power generation, for example,
Air 6 (oxygen) flows inside the air electrode 2 and fuel 7 (hydrogen) flows outside, and the temperature is set at 1000 to 1050 ° C.

【0005】上記のような円筒型の固体電解質型燃料電
池セルを製造する方法としては、近年、製造工程を簡略
化し、且つ製造コストを低減するために、各構成材料の
うち少なくとも2つを同時焼成する、いわゆる共焼結法
が提案されている。この共焼結法は、例えば、円筒型の
空気極成形体に、固体電解質成形体および集電体成形体
をロール状に巻き付けて同時焼成を行い、その後、固体
電解質表面に燃料極を形成する方法である。
[0005] In recent years, as a method for manufacturing a cylindrical solid oxide fuel cell as described above, in order to simplify the manufacturing process and reduce the manufacturing cost, at least two of the constituent materials are simultaneously used. A so-called co-sintering method for firing has been proposed. In this co-sintering method, for example, a solid electrolyte molded body and a current collector molded body are wound around a cylindrical air electrode molded body in a roll shape and simultaneously fired, and thereafter, a fuel electrode is formed on the solid electrolyte surface. Is the way.

【0006】例えば、特開平9−129245号公報に
は、円筒型の空気極成形体の表面にシート状の固体電解
質成形体を巻き付けた後、シート状の固体電解質成形体
の端部が開口した部分(切欠部)を研磨して平坦状とな
した後、シート状の集電体成形体を積層圧着し、焼成
し、この後、金属を含有するスラリーを固体電解質表面
に塗布して燃料極を形成した円筒型の固体電解質型燃料
電池セルが開示されている。また、シート状の燃料極成
形体をシート状の固体電解質成形体に積層し、同に焼成
することも開示されている。
For example, Japanese Patent Application Laid-Open No. 9-129245 discloses that a sheet-like solid electrolyte molded body is wound around the surface of a cylindrical air electrode molded body, and then the end of the sheet-like solid electrolyte molded body is opened. After the portion (notch portion) is polished and flattened, a sheet-shaped current collector molded body is laminated and pressed, baked, and then a metal-containing slurry is applied to the surface of the solid electrolyte to form a fuel electrode. Discloses a solid oxide fuel cell having a cylindrical shape. It is also disclosed that a sheet-shaped fuel electrode formed body is laminated on a sheet-shaped solid electrolyte formed body and fired in the same manner.

【0007】[0007]

【発明が解決しようとする課題】円筒状固体電解質型燃
料電池セルの一端は封止する必要があるため、セル本体
の一端部にキャップ部材成形体を外嵌し、キャップ部材
成形体の焼成時の焼成収縮により封止することが提案さ
れている。
Since it is necessary to seal one end of the cylindrical solid oxide fuel cell, the cap member molded body is fitted over one end of the cell body, and when the cap member molded body is fired. It has been proposed to seal by firing shrinkage.

【0008】しかしながら、上記したように、シート状
の固体電解質成形体の端部が開口した部分(切欠部)を
研磨して平坦状となした後、この部分にシート状の集電
体成形体を積層圧着し、焼成した場合、集電体の表面中
央部は平坦となっており、セル本体の一端部にキャップ
部材を外嵌したとしても、集電体の表面中央部において
キャップ部材による封止が不十分となり、セル本体の内
部と外部間のガスリークが生じる虞があった。
However, as described above, the sheet-shaped solid electrolyte molded body is polished to flatten the opening (notch portion) at the end, and then the sheet-shaped solid collector molded body is formed in this portion. When laminated and pressed and fired, the central part of the surface of the current collector is flat, and even if the cap member is fitted to one end of the cell body, sealing with the cap member is performed at the central part of the surface of the current collector. Stoppage was insufficient, and gas leakage between the inside and the outside of the cell body might occur.

【0009】セル本体とキャップ部材との間に接合材を
介して接合することも考えられるが、ル本体の一端部と
キャップ部材成形体との間の隙間は、集電体の表面中央
部とキャップ部材成形体との隙間が最も大きいため、や
はりこの部分の封止が他の部分と比較して不十分とな
り、セル本体の内部と外部間のガスリークが生じる虞が
あった。
Although it is conceivable to join the cell body and the cap member via a joining material, a gap between one end of the fuel cell body and the cap member molded body is located between the center of the surface of the current collector and the cap member. Since the gap with the cap member molded body is the largest, the sealing of this portion is still insufficient compared with the other portions, and there is a possibility that gas leaks between the inside and the outside of the cell body.

【0010】本発明は、セル本体とキャップ部材間にお
けるガスリークを防止できる固体電解質型燃料電池セル
および燃料電池を提供することを目的とする。
An object of the present invention is to provide a solid oxide fuel cell and a fuel cell which can prevent gas leakage between a cell body and a cap member.

【0011】[0011]

【課題を解決するための手段】本発明の固体電解質型燃
料電池セルは、固体電解質の片面に多孔質の空気極を、
他面に多孔質の燃料極を形成してなり、前記空気極また
は前記燃料極に電気的に接続された集電体を具備する円
筒状のセル本体と、該セル本体の一端部に外嵌され接合
されたキャップ部材とを具備する固体電解質型燃料電池
セルにおいて、前記キャップ部材が外嵌される部分の集
電体表面を、前記セル本体の周方向に沿った円弧面とし
たものである。
According to the present invention, there is provided a solid oxide fuel cell comprising a porous air electrode on one side of a solid electrolyte,
A cylindrical cell main body having a porous fuel electrode formed on the other surface and including a current collector electrically connected to the air electrode or the fuel electrode, and externally fitted to one end of the cell main body And a cap member joined and joined, wherein the surface of the current collector at a portion where the cap member is fitted is an arc surface along the circumferential direction of the cell body. .

【0012】このような構成を採用することにより、セ
ル本体の一端部がキャップ部材により均一に封止でき、
セル本体の集電体表面とキャップ部材との間からのガス
リークを防止でき、封止信頼性を向上できる。
By adopting such a configuration, one end of the cell body can be uniformly sealed by the cap member.
Gas leakage from between the current collector surface of the cell body and the cap member can be prevented, and sealing reliability can be improved.

【0013】また、セル本体の一端部に、キャップ部材
を接合材を介して接合することにより、セル本体の一端
部が接合材およびキャップ部材により均一に接合封止で
き、セル本体の集電体表面とキャップ部材との間からの
ガスリークを確実に防止できる。
[0013] Further, by joining a cap member to one end of the cell body via a joining material, one end of the cell body can be uniformly joined and sealed by the joining material and the cap member, and the current collector of the cell body can be sealed. Gas leakage from between the surface and the cap member can be reliably prevented.

【0014】さらに、集電体表面における円弧面の曲率
半径をセル本体の半径の3倍以下とすることにより、セ
ル本体の一端部がキャップ部材により均一に封止でき
る。
Further, by setting the radius of curvature of the arc surface on the current collector surface to be three times or less the radius of the cell main body, one end of the cell main body can be uniformly sealed by the cap member.

【0015】このような固体電解質型燃料電池セルは、
例えば、固体電解質の片面に多孔質空気極を、他面に多
孔質の燃料極を形成してなり、前記空気極または燃料極
に電気的に接続された集電体を具備する円筒状のセル本
体を作製する工程と、該セル本体の一端部に、キャップ
部材成形体を外嵌する工程と、焼成することにより前記
キャップ部材成形体を焼成収縮させて前記セル本体に接
合する工程とを具備する固体電解質型燃料電池セルの製
法であって、前記セル本体の作製工程が、円筒状の空気
極成形体または燃料極成形体の外面に固体電解質成形体
を形成する工程と、これを仮焼する工程と、前記固体電
解質成形体の一部と前記空気極成形体または前記燃料極
成形体の一部とが連続した所定の曲率を有する同一面と
なるまで前記仮焼体外周面を研摩する工程と、該連続同
一面にシート状の集電体成形体を積層する工程と、この
積層体を焼成する工程とを具備する製法により得られ
る。
Such a solid oxide fuel cell has the following features:
For example, a cylindrical cell comprising a solid electrolyte and a porous air electrode formed on one surface and a porous fuel electrode formed on the other surface, and comprising a current collector electrically connected to the air electrode or the fuel electrode. A step of manufacturing a main body, a step of externally fitting a cap member molded body to one end of the cell main body, and a step of firing and shrinking the cap member molded body by firing to join the cell member to the cell main body. A method for producing a solid oxide fuel cell, comprising: forming a solid electrolyte molded body on the outer surface of a cylindrical air electrode molded body or fuel electrode molded body; And polishing the calcined body outer peripheral surface until a part of the solid electrolyte molded body and a part of the air electrode molded body or the fuel electrode molded body have the same continuous surface having a predetermined curvature. Process and a sheet-like Laminating the collector formed body obtained by the process comprising the step of firing the laminate.

【0016】このような製法においては、集電体成形体
が積層される連続同一面が所定の曲率を有する円弧面と
されているため、集電体成形体の表面が連続同一面の形
状を反映しており、焼成後においては集電体表面がセル
本体の周方向に沿った円弧面となり、このような集電体
を有するセル本体の一端部にキャップ部材成形体を外嵌
し、焼成すると、キャップ部材成形体が焼成収縮し、セ
ル本体の一端部を均一に締めつけ接合でき、セル本体の
一端部がキャップ部材により均一に封止でき、セル本体
の集電体表面とキャップ部材との間からのガスリークを
防止でき、封止信頼性を向上できる。
In such a manufacturing method, since the continuous same surface on which the current collector molded body is laminated is an arc surface having a predetermined curvature, the surface of the current collector molded body has the same shape as the continuous same surface. After firing, the surface of the current collector becomes an arc surface along the circumferential direction of the cell body, and the cap member molded body is externally fitted to one end of the cell body having such a current collector, and fired. Then, the cap member molded body shrinks by firing, one end of the cell body can be uniformly tightened and joined, one end of the cell body can be uniformly sealed by the cap member, and the current collector surface of the cell body and the cap member can be bonded together. Gas leakage from between can be prevented, and sealing reliability can be improved.

【0017】[0017]

【発明の実施の形態】図1乃至図3は本発明の固体電解
質型燃料電池セルを示すもので、図2は図1のA−A線
に沿った断面図、図3は図1のB−B線に沿った断面図
である。本発明の固体電解質型燃料電池セルは、図2に
示すように、円筒状の固体電解質31の内面に多孔性の
空気極32、外面に多孔性の燃料極33を形成してセル
本体34が構成されており、このセル本体34は、その
外面に、空気極32と電気的に接続する集電体35を有
している。
1 to 3 show a solid oxide fuel cell according to the present invention. FIG. 2 is a sectional view taken along the line A--A of FIG. 1, and FIG. 3 is a sectional view of FIG. It is sectional drawing which followed the -B line. As shown in FIG. 2, the solid electrolyte fuel cell of the present invention has a porous solid air electrode 32 formed on the inner surface of a cylindrical solid electrolyte 31 and a porous fuel electrode 33 formed on the outer surface thereof. The cell body 34 has a current collector 35 electrically connected to the air electrode 32 on the outer surface thereof.

【0018】即ち、固体電解質31の一部に切欠部36
が形成され、固体電解質31の内面に形成されている空
気極32の一部が露出しており、この露出面37および
切欠部36近傍の固体電解質31の両端部表面が集電体
35により被覆され、集電体35が、固体電解質31の
両端部表面、および固体電解質31の切欠部36から露
出した空気極32の表面に接合されている。
That is, the notch 36 is formed in a part of the solid electrolyte 31.
Is formed, and a part of the air electrode 32 formed on the inner surface of the solid electrolyte 31 is exposed, and both ends of the solid electrolyte 31 near the exposed surface 37 and the notch 36 are covered with the current collector 35. The current collector 35 is joined to the surfaces of both ends of the solid electrolyte 31 and the surface of the air electrode 32 exposed from the notch 36 of the solid electrolyte 31.

【0019】空気極32と電気的に接続する集電体35
は、ほぼ段差のない連続同一面39を覆うように積層さ
れており、燃料極33とは電気的に接続されていない。
Current collector 35 electrically connected to air electrode 32
Are laminated so as to cover the continuous same surface 39 having almost no step, and are not electrically connected to the fuel electrode 33.

【0020】この集電体35は、セル同士を接続する際
に、他のセルの燃料極にNiフェルトを介して電気的に
接続され、これにより燃料電池モジュールが構成され
る。連続同一面39は、固体電解質成形体の両端部と空
気極成形体の一部とが連続したほぼ同一面となるまで、
固体電解質成形体の両端部間を研磨することにより形成
される。
When connecting the cells, the current collector 35 is electrically connected to the fuel electrode of another cell via Ni felt, thereby constituting a fuel cell module. The continuous same surface 39 is formed until both end portions of the solid electrolyte formed body and a part of the air electrode formed body become substantially the same continuous surface.
It is formed by polishing between both ends of the solid electrolyte molded body.

【0021】この連続同一面39は、図2に示したよう
に、セル本体34の横断面でみると所定の曲率を有する
円弧状とされており、この連続同一面39に積層された
集電体35の露出表面は、連続同一面39の表面形状を
反映した形状の円弧面40、即ち、セル本体34の周方
向に沿った円弧面40とされている。このセル本体34
の横断面における集電体35の断面の表面は所定の曲率
を有する円弧状とされている。
As shown in FIG. 2, the continuous same surface 39 is formed in an arc shape having a predetermined curvature when viewed in a cross section of the cell body 34. The exposed surface of the body 35 is an arc surface 40 having a shape reflecting the surface shape of the continuous same surface 39, that is, an arc surface 40 along the circumferential direction of the cell body 34. This cell body 34
The surface of the cross section of the current collector 35 in the horizontal cross section is an arc having a predetermined curvature.

【0022】集電体35表面における円弧面40の曲率
半径は、セル本体34の半径の3倍以下であることが望
ましい。円弧面40の曲率半径は、特に1〜2倍である
ことが望ましい。
The radius of curvature of the arc surface 40 on the surface of the current collector 35 is desirably not more than three times the radius of the cell body 34. It is particularly desirable that the radius of curvature of the arc surface 40 is 1 to 2 times.

【0023】そして、セル本体34の一端部には、図1
および図4に示すように、キャップ部材43が外嵌され
接合されている。キャップ部材43は、セル本体34の
固体電解質31および集電体35の周りに嵌着されてお
り、これらとキャップ部材43とは接合材45により接
合されている。この接合材45による接合は、固体電解
質31と集電体35との段差を埋め、より効果的に封止
するという点から望ましい。
FIG. 1 shows one end of the cell body 34.
As shown in FIG. 4, a cap member 43 is fitted and joined to the outside. The cap member 43 is fitted around the solid electrolyte 31 and the current collector 35 of the cell main body 34, and these are joined to the cap member 43 by a joining material 45. The joining by the joining material 45 is desirable from the viewpoint that the step between the solid electrolyte 31 and the current collector 35 is filled and more effectively sealed.

【0024】尚、集電体35は、キャップ部材43が嵌
着される部分のみ円弧面40とされていれば良く、全面
が円弧面とされている必要はない。
The current collector 35 only needs to have the arc surface 40 only at the portion where the cap member 43 is fitted, and the entire surface need not be the arc surface.

【0025】キャップ部材43および接合材45は、固
体電解質31と同一材料または類似する組成から構成さ
れており、例えば、Y23を8モル%の割合で含有する
ZrO2から形成されている。
The cap member 43 and the joining material 45 are made of the same material or a similar composition as the solid electrolyte 31, and are made of, for example, ZrO 2 containing Y 2 O 3 at a ratio of 8 mol%. .

【0026】固体電解質31は、例えば3〜20モル%
のY23あるいはYb23を含有した部分安定化あるい
は安定化ZrO2が用いられ、空気極32は、例えば、
LaおよびMnを含有するペロブスカイト型複合酸化物
を主成分とするもので、Caを酸化物換算で8〜10重
量%、希土類元素のうち少なくとも一種を酸化物換算で
10〜20重量%含有しても良い。希土類元素として
は、Y、Nd、Dy、Er、Yb等があり、このうちで
もYが望ましい。燃料極33としては、例えば、50〜
80重量%Niを含むZrO2(Y23含有)が用いら
れる。
The solid electrolyte 31 is, for example, 3 to 20 mol%
Partially stabilized or stabilized ZrO 2 containing Y 2 O 3 or Yb 2 O 3 is used.
It is mainly composed of a perovskite-type composite oxide containing La and Mn, and contains 8 to 10% by weight of Ca in terms of oxide and 10 to 20% by weight of at least one of rare earth elements in terms of oxide. Is also good. Rare earth elements include Y, Nd, Dy, Er, Yb and the like, and among them, Y is desirable. As the fuel electrode 33, for example, 50 to
ZrO 2 containing 80 wt% Ni (containing Y 2 O 3 ) is used.

【0027】集電体35は、金属元素としてLa、Cr
およびMgを含有するぺロブスカイト型結晶を主結晶と
するものであり、希土類元素やアルカリ土類金属元素を
含有するものであっても良い。集電体35には、さらに
MgO結晶を含有することが、集電体35の熱膨張係数
を高くして、固体電解質31や空気極32のそれと一致
させることができるため望ましい。
The current collector 35 is composed of La and Cr as metal elements.
And a perovskite-type crystal containing Mg as a main crystal, and may contain a rare earth element or an alkaline earth metal element. It is desirable that the current collector 35 further contain MgO crystals since the thermal expansion coefficient of the current collector 35 can be increased to match that of the solid electrolyte 31 and the air electrode 32.

【0028】以上のように構成された固体電解質型燃料
電池セルは、以下のようにして作製できる。例えば、円
筒状の空気極成形体(または空気極仮焼体)の外表面
に、ドクターブレード法により作製したシート状の固体
電解質成形体を、その両端が離間するように(開口部が
形成されるように)貼り付け、仮焼した後、固体電解質
仮焼体の両端間と空気極仮焼体が連続同一面となるまで
研摩する。この際、連続同一面の形状が、断面からみて
円弧状となるように研摩する。
The solid oxide fuel cell constructed as described above can be manufactured as follows. For example, a sheet-like solid electrolyte molded body produced by a doctor blade method is formed on an outer surface of a cylindrical air electrode molded body (or an air electrode calcined body) so that both ends thereof are separated (opening is formed). After sticking and calcining, polishing is performed until both ends of the solid electrolyte calcined body and the cathode calcined body are continuously on the same plane. At this time, the polishing is performed so that the shape of the continuous same surface is an arc when viewed from the cross section.

【0029】そして、この連続同一面にシート状の集電
体成形体を貼り付け、さらに、固体電解質仮焼体上には
シート状の燃料極を貼り付け、1400〜1600℃の
温度で2〜10時間大気中で焼成して作製される。
Then, a sheet-shaped current collector molded body is adhered to the continuous same surface, and further, a sheet-shaped fuel electrode is adhered to the solid electrolyte calcined body. It is produced by firing in the air for 10 hours.

【0030】このようにして作製されたセル本体の一端
部に、接合材を塗布し、キャップ部材成形体を外嵌し、
1200〜1400℃の温度で大気中で焼成することに
より、キャップ部材成形体を焼成収縮させてセル本体3
4に接合するとともに、接合材により強固に接合する。
[0030] A bonding material is applied to one end of the cell body thus manufactured, and a cap member molded body is externally fitted.
By firing in the air at a temperature of 1200 to 1400 ° C., the cap member molded body is fired and shrunk to form the cell body 3.
4 and firmly joined by a joining material.

【0031】以上のように構成された固体電解質型燃料
電池セルでは、集電体成形体が積層される連続同一面3
9が所定の曲率を有する円弧面とされているため、集電
体成形体の表面が連続同一面の形状を反映し、焼成後に
おいては集電体35表面が、セル本体34の周方向に沿
った円弧面40とされており、このような集電体35を
有するセル本体34の一端部に、接合材を介してキャッ
プ部材成形体を外嵌し、焼成すると、キャップ部材成形
体が焼成収縮し、セル本体34の一端部を接合材を介し
て均一に締めつけ接合でき、セル本体34の一端部がキ
ャップ部材43により均一に封止され、セル本体34の
集電体35表面とキャップ部材43との間からのガスリ
ークを防止でき、封止信頼性を向上できる。
In the solid oxide fuel cell constructed as described above, the continuous same surface 3 on which the current collector molded body is laminated is formed.
Since 9 is an arc surface having a predetermined curvature, the surface of the current collector molded body reflects the shape of the continuous same surface, and the surface of the current collector 35 is fired in the circumferential direction of the cell body 34 after firing. The cap member molded body is externally fitted via a bonding material to one end of the cell body 34 having such a current collector 35 and fired, and the cap member molded body is fired. The cell body 34 contracts, and one end of the cell body 34 can be uniformly tightened and joined via a bonding material. One end of the cell body 34 is uniformly sealed by the cap member 43, and the surface of the current collector 35 of the cell body 34 and the cap member 43 can be prevented, and sealing reliability can be improved.

【0032】本発明の燃料電池は、例えば、図6に示す
ように、反応容器51内に、酸素含有ガス室仕切板5
3、燃焼室仕切板55、燃料ガス室仕切板57を用いて
酸素含有ガス室A、燃焼室B、反応室C、燃料ガス室D
が形成されている。
As shown in FIG. 6, for example, the fuel cell according to the present invention includes an oxygen-containing gas chamber partition plate 5 in a reaction vessel 51.
3. Oxygen-containing gas chamber A, combustion chamber B, reaction chamber C, fuel gas chamber D using combustion chamber partition plate 55 and fuel gas chamber partition plate 57.
Are formed.

【0033】反応容器51内には、上記した複数の有底
筒状の固体電解質型燃料電池セル59が収容されてお
り、これらの固体電解質型燃料電池セル59は、燃焼室
仕切板55に形成されたセル挿入孔60に挿入固定され
ており、その開口部61は燃焼室仕切板55から燃焼室
B内に突出しており、その内部には酸素含有ガス室仕切
板53に固定された酸素含有ガス導入管63の一端が挿
入されている。
A plurality of the above-described bottomed cylindrical solid oxide fuel cells 59 are accommodated in the reaction vessel 51. These solid oxide fuel cells 59 are formed on the combustion chamber partition plate 55. The opening 61 protrudes from the combustion chamber partition plate 55 into the combustion chamber B, and contains therein the oxygen-containing gas chamber partition plate 53 fixed to the oxygen-containing gas chamber partition plate 53. One end of the gas introduction pipe 63 is inserted.

【0034】燃焼室仕切板55には、余剰の未反応燃料
ガスを反応室Cから燃焼室Bに排出するために、複数の
排気孔64が形成されており、燃料ガス室仕切板57に
は、燃料ガス室Dから反応室C内に供給するための供給
孔が形成されている。
A plurality of exhaust holes 64 are formed in the combustion chamber partition plate 55 to discharge surplus unreacted fuel gas from the reaction chamber C to the combustion chamber B. In addition, a supply hole for supplying from the fuel gas chamber D into the reaction chamber C is formed.

【0035】また、反応容器51には、例えば水素から
なる燃料ガスを導入する燃料ガス導入口65、例えば、
空気を導入する酸素含有ガス導入口67、燃焼室B内で
燃焼したガスを排出するための排気口69が形成されて
いる。
The reaction vessel 51 has a fuel gas inlet 65 for introducing a fuel gas such as hydrogen, for example.
An oxygen-containing gas inlet 67 for introducing air and an outlet 69 for discharging gas burned in the combustion chamber B are formed.

【0036】このような固体電解質型燃料電池は、酸素
含有ガス室Aからの酸素含有ガス、例えば空気を、酸素
含有ガス導入管63を介して固体電解質型燃料電池セル
59内にそれぞれ供給し、かつ、燃料ガス室Dからの燃
料ガスを複数の固体電解質型燃料電池セル59間に供給
し、反応室Cにて反応させ発電し、余剰の空気と未反応
燃料ガスを燃焼室Bにて燃焼させ、燃焼したガスが排気
口69から外部に排出される。
In such a solid oxide fuel cell, the oxygen-containing gas, for example, air from the oxygen-containing gas chamber A is supplied into the solid oxide fuel cell 59 via the oxygen-containing gas introducing pipe 63, respectively. In addition, the fuel gas from the fuel gas chamber D is supplied between the plurality of solid oxide fuel cells 59 and reacted in the reaction chamber C to generate power, and excess air and unreacted fuel gas are burned in the combustion chamber B. Then, the burned gas is discharged to the outside through the exhaust port 69.

【0037】尚、本発明の燃料電池は、上記した図6の
燃料電池に限定されるものではなく、反応容器内に、上
記した燃料電池セルを複数収容していれば良い。
The fuel cell of the present invention is not limited to the fuel cell shown in FIG. 6, but it is sufficient that a plurality of the above-described fuel cells are accommodated in a reaction vessel.

【0038】[0038]

【実施例】円筒状の空気極成形体を押出成形により成形
し、仮焼して(La0.560.14Ca0.30.98MnO3
空気極仮焼体を作製した。固体電解質としてY23を8
モル%の割合で含有する安定化ジルコニアを用いてドク
ターブレード法により、厚さ100μmのシート状の第
1固体電解質成形体を、さらに厚さ15μmのシート状
の第2固体電解質成形体をそれぞれ作製した。
EXAMPLE A cylindrical air electrode compact was formed by extrusion and calcined to produce a (La 0.56 Y 0.14 Ca 0.3 ) 0.98 MnO 3 air calcined body. 8 Y 2 O 3 as solid electrolyte
A 100 μm-thick sheet-shaped first solid electrolyte molded body and a 15 μm-thick sheet-shaped second solid electrolyte molded body are each produced by a doctor blade method using stabilized zirconia containing a mole% of zirconia. did.

【0039】次に、燃料極成形体の作製について説明す
る。平均粒径が0.4μmのNi粉末に対し、平均粒径
が0.6μmのY23を8モル%の割合で含有するZr
2粉末を準備し、Ni/YSZ比率(重量分率)が6
5/35になるように調合し、粉砕混合処理を行い、ス
ラリー化した。その後、調製したスラリーを第2固体電
解質成形体上に、30μmになるように全面に印刷し、
燃料極成形体を作製した。
Next, the production of the fuel electrode compact will be described. Zr containing 8 mol% of Y 2 O 3 having an average particle diameter of 0.6 μm with respect to Ni powder having an average particle diameter of 0.4 μm.
O 2 powder was prepared and the Ni / YSZ ratio (weight fraction) was 6
The mixture was prepared to be 5/35, crushed and mixed, and slurried. Then, the prepared slurry was printed on the entire surface of the second solid electrolyte molded body so as to have a thickness of 30 μm,
A fuel electrode compact was produced.

【0040】次に、市販の純度99.9%以上のLa2
3、Cr23、MgOを出発原料として、これをLa
(Mg0.3Cr0.70.973の組成になるように秤量混
合した後1500℃で3時間仮焼粉砕し、この固溶体粉
末を用いてスラリーを調製し、ドクターブレード法によ
り厚さ100μmのシート状の集電体成形体を作製し
た。
Next, commercially available La 2 having a purity of 99.9% or more is used.
Starting from O 3 , Cr 2 O 3 , and MgO, this
(Mg 0.3 Cr 0.7 ) 0.97 O 3 The composition was weighed and mixed to obtain a composition, and then calcined and pulverized at 1500 ° C. for 3 hours. A slurry was prepared using the solid solution powder, and a 100 μm thick sheet was formed by a doctor blade method. Was formed.

【0041】まず、前記空気極仮焼体に前記第1固体電
解質成形体を、その両端部が開口するようにロール状に
巻き付け1150℃で5時間の条件で仮焼した。仮焼
後、第1固体電解質仮焼体の両端部間を空気極仮焼体が
露出するように、かつ、円弧状に研磨し、所定の曲率を
有する連続同一面を形成した。
First, the first solid electrolyte molded body was wound around the air electrode calcined body in a roll shape so that both ends thereof were opened, and calcined at 1150 ° C. for 5 hours. After calcining, the first solid electrolyte calcined body was polished in an arc shape so that the air electrode calcined body was exposed between both end portions to form a continuous same surface having a predetermined curvature.

【0042】次に、第1固体電解質仮焼体表面に、燃料
極成形体が形成された第2固体電解質成形体を、第1固
体電解質仮焼体と第2固体電解質成形体が当接するよう
に積層し、乾燥した後、上記連続同一面に集電体成形体
を貼り付け、積層成形体を作製した。この積層成形体を
大気中1500℃で6時間共焼結し、セル本体を作製し
た。
Next, the second solid electrolyte molded body having the fuel electrode molded body formed thereon is placed on the surface of the first solid electrolyte calcined body so that the first solid electrolyte calcined body and the second solid electrolyte molded body come into contact with each other. And dried, and then a current collector molded body was attached to the same continuous surface to produce a laminated molded body. This laminated molded body was co-sintered at 1500 ° C. for 6 hours in the atmosphere to produce a cell body.

【0043】焼結後、集電体表面の曲率半径を求めた。
この曲率半径(r)は、図5に示すように、曲率半径が
変化している点A、B間の中点をCとし、点A、C間の
中点Dからの垂線と、点B、C間の中点Eからの垂線と
の交点Fを求め、この交点Fと点Dまたは点E間の距離
を曲率半径(r)とした。また、セル本体の半径Rを、
点Cを通過する直径と直交する部分の半径とした。そし
て、セル本体の半径(R)に対する集電体表面の曲率半
径(r)の比(r/R)を求め、表1に記載した。
After sintering, the radius of curvature of the current collector surface was determined.
As shown in FIG. 5, the radius of curvature (r) is defined as C, the midpoint between points A and B where the radius of curvature changes, a perpendicular line from midpoint D between points A and C, and point B. , C, and an intersection F with a perpendicular from the midpoint E is determined, and the distance between the intersection F and the point D or the point E is defined as a radius of curvature (r). Also, the radius R of the cell body is
The radius of a portion orthogonal to the diameter passing through the point C was used. Then, the ratio (r / R) of the radius of curvature (r) of the surface of the current collector to the radius (R) of the cell body was determined and is shown in Table 1.

【0044】次に、セル本体の一端部にキャップ部材を
接合した。キャップ部材の接合は、以下のような手順で
行った。Y23を8モル%の割合で含有する平均粒子径
が1μmのZrO2粉末に水を溶媒として加えてスラリ
ーを調製し、このスラリーに前記セル本体の一端部を浸
漬し、厚さ100μmになるように一端部外周面に塗布
し乾燥した。このセル本体の一端部には、燃料極は形成
されておらず、集電体と固体電解質が表面に露出してい
る。
Next, a cap member was joined to one end of the cell body. The joining of the cap members was performed in the following procedure. A slurry is prepared by adding water as a solvent to ZrO 2 powder containing Y 2 O 3 at a ratio of 8 mol% and having an average particle diameter of 1 μm, and one end of the cell body is immersed in the slurry to have a thickness of 100 μm. Was applied to the outer peripheral surface of one end and dried. No fuel electrode is formed at one end of the cell body, and the current collector and the solid electrolyte are exposed on the surface.

【0045】キャップ形状を有するキャップ部材成形体
(有底円筒状)は、前記スラリー組成と同組成の粉末を
用いて静水圧成形(ラバープレス)を行い切削加工し
た。その後、前記スラリーを被覆したセル本体の一端部
をキャップ部材成形体に挿入し、大気中1300℃の温
度で1時間焼成を行い、セル本体の一端部をキャップ部
材により接合し、固体電解質型燃料電池セルを作製し
た。
A molded cap member having a cap shape (cylindrical shape with a bottom) was subjected to isostatic pressing (rubber pressing) using a powder having the same composition as that of the slurry, and cut. Thereafter, one end of the cell body coated with the slurry is inserted into the cap member molded body, and baked at a temperature of 1300 ° C. in the atmosphere for 1 hour, and one end of the cell body is joined by the cap member, and the solid electrolyte fuel A battery cell was manufactured.

【0046】この固体電解質型燃料電池セルの内部に1
kgf/cm2の圧力の空気を導入し、水中にキャップ
部材近傍を埋没させることにより、初期のガスリークの
有無を観察した。また、各試料の内部に空気、外部に水
素を流し、1000℃で100時間および500時間放
置した後のガスリークの有無を、上記と同様の方法によ
り観察し、その結果を表1に記載した。
In the solid oxide fuel cell, 1
By introducing air at a pressure of kgf / cm 2 and burying the vicinity of the cap member in water, the presence or absence of an initial gas leak was observed. Further, the presence or absence of gas leakage after air was flowed inside each sample and hydrogen was passed outside and left at 1000 ° C. for 100 hours and 500 hours was observed by the same method as described above, and the results are shown in Table 1.

【0047】[0047]

【表1】 [Table 1]

【0048】表1より、集電体表面が平坦な試料No.
1では、500時間後にガスリークが発生するのに対し
て、本発明の試料では、初期および500時間経過後に
おいてもガスリークが生じないことが判る。
From Table 1, it can be seen that Sample No. 1 has a flat collector surface.
In the sample No. 1, gas leakage occurs after 500 hours, whereas in the sample of the present invention, gas leakage does not occur even at the initial stage and after 500 hours.

【0049】[0049]

【発明の効果】本発明の固体電解質型燃料電池セルで
は、シート状の集電体成形体が積層される連続同一面が
所定の曲率を有する円弧面とされているため、集電体成
形体の表面が連続同一面の形状を反映し、焼成後におい
ては集電体表面が円弧面となり、このような集電体を有
するセル本体の一端部にキャップ部材成形体を外嵌し、
焼成することによりキャップ部材成形体が焼成収縮し、
セル本体の一端部を均一に締めつけ接合でき、セル本体
の一端部をキャップ部材により均一に封止し、セル本体
の集電体表面とキャップ部材との間からのガスリークを
防止でき、封止信頼性を向上できる。
In the solid oxide fuel cell unit according to the present invention, since the continuous same surface on which the sheet-shaped current collector molded body is laminated is an arc surface having a predetermined curvature, the current collector molded body is formed. The surface reflects the shape of the continuous same plane, the surface of the current collector becomes a circular arc surface after firing, and the cap member molded body is externally fitted to one end of the cell body having such a current collector,
By firing, the molded cap member shrinks by firing,
One end of the cell body can be uniformly tightened and joined, one end of the cell body can be uniformly sealed with a cap member, and gas leakage from between the current collector surface of the cell body and the cap member can be prevented. Performance can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の固体電解質型燃料電池セルを示す斜視
図である。
FIG. 1 is a perspective view showing a solid oxide fuel cell unit of the present invention.

【図2】図1のA−A線に沿った断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図1のB−B線に沿った断面図である。FIG. 3 is a sectional view taken along line BB of FIG. 1;

【図4】図1の縦断面図である。FIG. 4 is a longitudinal sectional view of FIG.

【図5】集電体表面の曲率半径の測定法を説明するため
の説明図である。
FIG. 5 is an explanatory diagram for explaining a method of measuring a radius of curvature of a current collector surface.

【図6】燃料電池を示す説明図である。FIG. 6 is an explanatory diagram showing a fuel cell.

【図7】従来の固体電解質型燃料電池セルを示す斜視図
である。
FIG. 7 is a perspective view showing a conventional solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

31・・・固体電解質 32・・・空気極 33・・・燃料極 34・・・セル本体 35・・・集電体 40・・・円弧面 43・・・キャップ部材 45・・・接合材 51・・・反応容器 59・・・固体電解質型燃料電池セル DESCRIPTION OF SYMBOLS 31 ... Solid electrolyte 32 ... Air electrode 33 ... Fuel electrode 34 ... Cell main body 35 ... Current collector 40 ... Arc surface 43 ... Cap member 45 ... Bonding material 51 ... Reaction vessel 59 ... Solid oxide fuel cell

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】固体電解質の片面に空気極を、他面に燃料
極を形成してなり、前記空気極または前記燃料極に電気
的に接続された集電体を具備する円筒状のセル本体と、
該セル本体の一端部に外嵌され接合されたキャップ部材
とを具備する固体電解質型燃料電池セルにおいて、前記
キャップ部材が外嵌される部分の集電体表面を、前記セ
ル本体の周方向に沿った円弧面としたことを特徴とする
固体電解質型燃料電池セル。
1. A cylindrical cell body comprising a solid electrolyte having an air electrode formed on one surface and a fuel electrode formed on the other surface, and comprising a current collector electrically connected to the air electrode or the fuel electrode. When,
In a solid oxide fuel cell comprising a cap member externally fitted to and joined to one end of the cell body, the current collector surface of the portion where the cap member is fitted externally is arranged in the circumferential direction of the cell body. A solid oxide fuel cell unit characterized by having an arcuate surface along it.
【請求項2】セル本体の一端部に、キャップ部材が接合
材を介して接合されていることを特徴とする請求項1記
載の固体電解質型燃料電池セル。
2. The solid oxide fuel cell according to claim 1, wherein a cap member is joined to one end of the cell body via a joining material.
【請求項3】集電体表面における円弧面の曲率半径が、
セル本体の半径の3倍以下であることを特徴とする請求
項1または2記載の固体電解質型燃料電池セル。
3. A method according to claim 1, wherein the radius of curvature of the arc surface on the current collector surface is:
3. The solid oxide fuel cell according to claim 1, wherein the radius of the cell is not more than three times the radius of the cell body.
【請求項4】反応容器内に、請求項1乃至3のうちいず
れかに記載の固体電解質型燃料電池セルを複数収容して
なることを特徴とする燃料電池。
4. A fuel cell comprising a plurality of solid oxide fuel cells according to claim 1 in a reaction vessel.
JP2000089601A 2000-03-28 2000-03-28 Solid electrolyte fuel cell and fuel cell Expired - Fee Related JP4721487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000089601A JP4721487B2 (en) 2000-03-28 2000-03-28 Solid electrolyte fuel cell and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000089601A JP4721487B2 (en) 2000-03-28 2000-03-28 Solid electrolyte fuel cell and fuel cell

Publications (2)

Publication Number Publication Date
JP2001273913A true JP2001273913A (en) 2001-10-05
JP4721487B2 JP4721487B2 (en) 2011-07-13

Family

ID=18605337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000089601A Expired - Fee Related JP4721487B2 (en) 2000-03-28 2000-03-28 Solid electrolyte fuel cell and fuel cell

Country Status (1)

Country Link
JP (1) JP4721487B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012423A (en) * 2005-06-30 2007-01-18 Kyocera Corp Fuel battery cell and fuel battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644991A (en) * 1992-07-27 1994-02-18 Ngk Insulators Ltd Manufacture of interconnector for solid electrolyte type fuel cell
JPH103932A (en) * 1996-06-12 1998-01-06 Mitsubishi Heavy Ind Ltd Cylindrical lateral stripe type solid electrolyte fuel cell
JPH11283634A (en) * 1998-03-31 1999-10-15 Kyocera Corp Cylindrical solid electrolyte fuel cell
JPH11283640A (en) * 1998-03-31 1999-10-15 Kyocera Corp Cylindrical solid-electrolyte fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644991A (en) * 1992-07-27 1994-02-18 Ngk Insulators Ltd Manufacture of interconnector for solid electrolyte type fuel cell
JPH103932A (en) * 1996-06-12 1998-01-06 Mitsubishi Heavy Ind Ltd Cylindrical lateral stripe type solid electrolyte fuel cell
JPH11283634A (en) * 1998-03-31 1999-10-15 Kyocera Corp Cylindrical solid electrolyte fuel cell
JPH11283640A (en) * 1998-03-31 1999-10-15 Kyocera Corp Cylindrical solid-electrolyte fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012423A (en) * 2005-06-30 2007-01-18 Kyocera Corp Fuel battery cell and fuel battery

Also Published As

Publication number Publication date
JP4721487B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
RU2310952C2 (en) Tubular cell (alternatives), tubular-cell battery with current passage over generating line, and method for its manufacture
JP3495654B2 (en) Cell tube seal structure
JP5061408B2 (en) STACK FOR SOLID ELECTROLYTE FUEL CELL AND SOLID ELECTROLYTE FUEL CELL
JP2013012397A (en) Solid oxide fuel cell and fuel cell module
JP2004152645A (en) Solid oxide fuel cell constituted in honeycomb structure, and fluid supply method in solid oxide fuel cell
JP3166888B2 (en) Solid oxide fuel cell stack
JP2000164239A (en) Electrochemical cell unit and electrochemical cell
JP2004039573A (en) Sealing material for low-temperature operation solid oxide fuel cell
JP2004146130A (en) Sealing structure and sealing method of solid oxide fuel cell
JP2004146131A (en) Sealing structure and sealing method of solid oxide fuel cell
KR20120033661A (en) Metal-supported solid oxide fuel cell and manufacturing method
JP3238087B2 (en) Solid oxide fuel cell
JP4721500B2 (en) Solid oxide fuel cell and method for producing the same
JP2001273913A (en) Solid electrolytic type fuel cell and fuel cell
JPH07235316A (en) Cylindrical solid electrolyte fuel cell
JPH05275106A (en) Solid electrolyte fuel cell
JP2980921B2 (en) Flat solid electrolyte fuel cell
JP4638070B2 (en) Cylindrical fuel cell, method for producing the same, and fuel cell
JPH11121019A (en) Electrochemical cell and electrochemical device
JP2005085522A (en) Supporting membrane type solid oxide fuel cell
JPH0837011A (en) Fuel cell base board in hollow flat plate form
JP3238086B2 (en) Solid oxide fuel cell
JPH03238758A (en) Fuel cell of solid electrolyte type
JP3285856B2 (en) Solid oxide fuel cell
JP2003036863A (en) Cell for solid electrolyte type fuel cell and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees