JP3285856B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell

Info

Publication number
JP3285856B2
JP3285856B2 JP2001206065A JP2001206065A JP3285856B2 JP 3285856 B2 JP3285856 B2 JP 3285856B2 JP 2001206065 A JP2001206065 A JP 2001206065A JP 2001206065 A JP2001206065 A JP 2001206065A JP 3285856 B2 JP3285856 B2 JP 3285856B2
Authority
JP
Japan
Prior art keywords
joining jig
cell
powder
cell body
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001206065A
Other languages
Japanese (ja)
Other versions
JP2002110203A (en
Inventor
和正 丸谷
高志 重久
隆 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001206065A priority Critical patent/JP3285856B2/en
Publication of JP2002110203A publication Critical patent/JP2002110203A/en
Application granted granted Critical
Publication of JP3285856B2 publication Critical patent/JP3285856B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有底筒状の固体電
解質型燃料電池セルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bottomed cylindrical solid oxide fuel cell.

【0002】[0002]

【従来技術】従来より、固体電解質型燃料電池はその作
動温度が900〜1050℃と高温であるため発電効率
が高く、第3世代の発電システムとして期待されてい
る。
2. Description of the Related Art Conventionally, since a solid oxide fuel cell has a high operating temperature of 900 to 1050 ° C., it has a high power generation efficiency and is expected as a third generation power generation system.

【0003】一般に、固体電解質型燃料電池セル(以下
セルと略す)には、円筒型と平板型が知られている。平
板型セルは、発電の単位体積当りの出力密度が高いとい
う特長を有するが、実用化に関してはガスシ−ル不完全
性やセル内の温度分布の不均一性などの問題がある。そ
れに対して、円筒型セルでは、出力密度は低いものの、
セルの機械的強度が高く、またセル内の温度の均一性が
保てるという特長がある。両形状のセルとも、それぞれ
の特長を生かして積極的に研究開発が進められている。
[0003] In general, solid oxide fuel cells (hereinafter abbreviated as "cells") are known to be cylindrical and flat. The flat cell has the feature that the output density per unit volume of power generation is high, but there are problems such as imperfect gas seal and non-uniformity of the temperature distribution in the cell in practical use. In contrast, a cylindrical cell has a low power density,
It has the features that the mechanical strength of the cell is high and that the temperature inside the cell can be kept uniform. Both types of cells are being actively researched and developed taking advantage of their respective features.

【0004】図2、図3は従来の円筒型セルCの構成を
示すもので、図3は一端に封止部材6、他端にガス導入
管3及び接合治具2をそれぞれ設けた円筒型セルCの斜
視図、図2は図3の円筒型セルCの中心軸を横切るB−
B線における接合治具2付近の断面図である。
FIGS. 2 and 3 show the configuration of a conventional cylindrical cell C. FIG. 3 shows a cylindrical cell having a sealing member 6 at one end and a gas introducing pipe 3 and a joining jig 2 at the other end. FIG. 2 is a perspective view of the cell C, and FIG.
It is sectional drawing in the vicinity of the joining jig 2 in the B line.

【0005】円筒型セルCのガス導入管3との接合は、
図2に示すように、円筒状のセル本体1と円筒状のガス
導入管3を、通気孔10を有する節11を設けた円筒状
の接合治具2にそれぞれ挿入セットし、接合治具2の節
11に予め形成されたガラス層4をセル本体1の他端及
びガス導入管3の一端に当接し、発電を行う際の昇温時
に前記ガラス層4を軟化溶融させ、セル本体1の他端及
びガス導入管3の一端を前記接合治具2により接合して
いた。
[0005] The joining of the cylindrical cell C with the gas inlet tube 3 is as follows.
As shown in FIG. 2, the cylindrical cell body 1 and the cylindrical gas inlet tube 3 are inserted and set in a cylindrical bonding jig 2 provided with a node 11 having a vent hole 10. The glass layer 4 previously formed in the section 11 is brought into contact with the other end of the cell body 1 and one end of the gas introduction pipe 3, and the glass layer 4 is softened and melted at the time of temperature rise during power generation. The other end and one end of the gas introduction pipe 3 were joined by the joining jig 2.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、セル本
体1の一端及び他端をガラス材を用いて接合する従来の
方法では、実際に発電を行う際に封止、接合することに
なるため完全に封止されているか否かの確認が困難であ
り、シール不良によるセル出力の低下が生じ易い。特
に、セルをスタック化した場合には封止箇所の増加によ
るシール不良が発生し易く、結果として出力が低下する
という問題点があった。
However, in the conventional method of joining one end and the other end of the cell body 1 using a glass material, the cell body 1 is completely sealed and joined when power is actually generated. It is difficult to confirm whether or not the cell is sealed, and the cell output is likely to decrease due to poor sealing. In particular, when the cells are stacked, there is a problem that a sealing failure is likely to occur due to an increase in the number of sealing portions, and as a result, the output is reduced.

【0007】また、一般的に、燃料電池は約1000℃
という高温で数万時間も動作する耐久性が要求される。
従来のガラスシールでは、ガラスを約1000℃で軟化
溶融させることによりガスシールを行っているが、長時
間運転すると溶融成分が滲み出しガスシールができなく
なるといった問題、更には溶融成分がセル本体1の周り
の部品等にまで広がりガラスシールそのものができなく
なるといった問題があった。加えて、ガラス材を軟化溶
融することにより揮発成分が生じ、それがセル本体1内
に付着したり、セル本体1内の酸素と反応して、セルの
性能を劣化させるという問題もあった。
In general, a fuel cell is operated at about 1000 ° C.
It is required to have durability to operate for tens of thousands of hours at such a high temperature.
In the conventional glass seal, gas sealing is performed by softening and melting the glass at about 1000 ° C. However, if the operation is performed for a long time, the molten component oozes out and gas sealing cannot be performed. There is a problem that the glass seal itself cannot be formed because it spreads to parts and the like around the glass. In addition, the softening and melting of the glass material generates volatile components, which adhere to the inside of the cell body 1 or react with oxygen in the cell body 1 to deteriorate the performance of the cell.

【0008】このようなガラスシールには、もう一つ大
きな問題点がある。それは、1回の熱サイクルにしか確
実に対応できないことである。つまり、燃料電池の運転
中に、様々なトラブルにより動作温度の約1000℃か
ら室温まで降温しなければならないときに、ガラスシー
ルの降温時にガラス層の内部残留応力と表面応力が緩和
されにくく、セルの接合部が破壊されることがあった。
[0008] Such a glass seal has another major problem. That is, it can reliably handle only one heat cycle. In other words, during operation of the fuel cell, when the temperature must be lowered from the operating temperature of about 1000 ° C. to room temperature due to various troubles, the internal residual stress and the surface stress of the glass layer are not easily relaxed when the temperature of the glass seal is lowered, and the cell Was sometimes destroyed.

【0009】本発明は、上記事情に鑑みて完成されたも
のであり、その目的は円筒型セルのガスシールの確認が
容易で、ガスシールを容易かつ確実に行うことができる
とともに、ガスシール不良やガラスの揮発成分による出
力低下及び性能劣化を防止し、更には、動作温度から室
温までの降温時にシールされた接合部が破壊されること
のない円筒型セルを提供することを目的とする。
The present invention has been completed in view of the above circumstances, and it is an object of the present invention to make it easy to confirm the gas seal of a cylindrical cell, to perform the gas seal easily and reliably, and to make the gas seal defective. It is another object of the present invention to provide a cylindrical cell that prevents a decrease in output and performance degradation due to volatile components of glass and glass and prevents a sealed joint from being destroyed when the temperature is lowered from an operating temperature to room temperature.

【0010】[0010]

【課題を解決するための手段】本発明の固体電解質型燃
料電池セルは、通気孔を有する節を設けた円筒状の接合
治具の両方の開口に、円筒状の固体電解質型燃料電池セ
ル本体の他端と円筒状のガス導入管の一端とを、各々挿
入して前記節に当接させ、前記接合治具内側面と固体電
解質型燃料電池セル本体外周面との隙間及び接合治具内
側面とガス導入管外周面との隙間を2mm以下とし、該
隙間にセラミック粉末及び/又は金属粒子から成り、平
均粒径が0.1〜10μmの粉体を介装して成ることを
特徴とする。
According to the present invention, there is provided a solid oxide fuel cell having a cylindrical solid oxide fuel cell body provided at both openings of a cylindrical joining jig provided with a node having a vent hole. And the other end of the cylindrical gas inlet tube is inserted and brought into contact with the node, and the gap between the inner surface of the joining jig and the outer peripheral surface of the solid oxide fuel cell body and the inside of the joining jig are removed. The gap between the side surface and the outer peripheral surface of the gas inlet pipe is set to 2 mm or less, and the gap is made of ceramic powder and / or metal particles, and has a mean particle size of 0.1 to 10 μm. I do.

【0011】上記の発明において、前記接合治具の熱膨
張率が固体電解質型燃料電池セル本体の熱膨張率より小
さいか、及び/又は、前記粉体の熱膨張率が固体電解質
型燃料電池セル本体及び接合治具の熱膨張率よりも大き
いことが、固体電解質型燃料電池セル本体と接合治具の
ガスシールを確実にするうえで好適である。
In the above invention, the coefficient of thermal expansion of the joining jig is smaller than the coefficient of thermal expansion of the solid oxide fuel cell body, and / or the coefficient of thermal expansion of the powder is a solid oxide fuel cell. It is preferable that the coefficient of thermal expansion is larger than the thermal expansion coefficient of the main body and the joining jig in order to ensure the gas seal between the solid oxide fuel cell body and the joining jig.

【0012】[0012]

【発明の実施の形態】本発明のセルの構成を、図1に示
す。図1は図3のB−B線に相当する接合治具2a付近
の断面図である。尚、図1において、図2と同じ箇所に
は同一の符号を付している。
FIG. 1 shows the configuration of a cell according to the present invention. FIG. 1 is a cross-sectional view near the joining jig 2a corresponding to the line BB in FIG. In FIG. 1, the same parts as those in FIG. 2 are denoted by the same reference numerals.

【0013】図1においては、セル本体1の他端を、通
気孔10を有する節11を設けた円筒状の接合治具2a
の開口に挿入して前記節11に当接させ、かつ円筒状の
ガス導入管3の一端を接合治具2aの反対側開口に挿入
して節11に当接させ、接合治具2a内側面とセル本体
1外周面との隙間及び接合治具2a内側面とガス導入管
3外周面との隙間にセラミック粉末又は金属粒子からな
る粉体5を介装させ、それらの隙間を封止しセル本体1
とガス導入管を接合している。
In FIG. 1, the other end of the cell body 1 is connected to a cylindrical joining jig 2a provided with a node 11 having a vent hole 10.
And the one end of the cylindrical gas introduction pipe 3 is inserted into the opening on the opposite side of the joining jig 2a and abuts on the node 11, and the inner surface of the joining jig 2a is inserted. A powder 5 made of ceramic powder or metal particles is interposed in the gap between the cell body 1 and the outer peripheral surface and the gap between the inner surface of the joining jig 2a and the outer peripheral surface of the gas introduction pipe 3 to seal the gap. Body 1
And the gas inlet tube.

【0014】本発明のセルは、少なくとも前記構成の接
合治具2aを備えていればよい。
The cell of the present invention only needs to include at least the joining jig 2a having the above-described configuration.

【0015】本発明において、前記接合治具2aはガス
リークを防止するため緻密質セラミックからなるのがよ
く、例えば、Al23、部分安定化ZrO2、安定化Z
rO2、LaCrO3系等のAl、Zr等を主成分とする
セラミックから成る。また、その開気孔率は10%以下
であることが好ましい。前記の緻密質セラミック以外の
セラミックは動作温度の雰囲気中で還元されやすく、開
気孔率が10%超の場合ガスリークが生じ、セルの性能
劣化やセルの破壊につながる。より好ましくは、開気孔
率を5%以下とするのがよい。
In the present invention, the joining jig 2a is preferably made of a dense ceramic in order to prevent gas leakage, for example, Al 2 O 3 , partially stabilized ZrO 2 , stabilized Zr.
It is made of a ceramic mainly composed of Al, Zr or the like such as rO 2 or LaCrO 3 . Further, the open porosity is preferably 10% or less. Ceramics other than the above-mentioned dense ceramics are easily reduced in an atmosphere at an operating temperature, and when the open porosity is more than 10%, a gas leak occurs, which leads to deterioration of cell performance and breakage of the cell. More preferably, the open porosity is 5% or less.

【0016】前記粉体5は、Al、Zr、Ni、Y、C
r、Ca、Mg、Sr、Fe又は希土類元素(Sc、
Y、La、Ce、Pr、Nd、Pm、Sm、Eu、G
d、Tb、Dy、Ho、Er、Tm、Yb又はLu)の
1種以上を主成分とし、その平均粒径が0.1〜10μ
mであることが重要である。前記以外の元素が主成分の
場合、動作温度の約1000℃でセル本体1と接合治具
2aの成分が溶融し合って接合部が脆くなり、セルが破
壊され易い。また、平均粒径が0.1μm未満の場合、
隙間に介装しても粒子が飛散したり落下し易く、10μ
m超の場合粒子の隙間からガスがリークし易い。
The powder 5 is made of Al, Zr, Ni, Y, C
r, Ca, Mg, Sr, Fe or a rare earth element (Sc,
Y, La, Ce, Pr, Nd, Pm, Sm, Eu, G
d, Tb, Dy, Ho, Er, Tm, Yb or Lu) as a main component and an average particle size of 0.1 to 10 μm.
It is important that m. When an element other than the above is the main component, the components of the cell body 1 and the bonding jig 2a melt at an operating temperature of about 1000 ° C., so that the bonding portion becomes brittle and the cell is easily broken. When the average particle size is less than 0.1 μm,
Even if interposed in a gap, particles are easily scattered and fall, 10μ
If it exceeds m, gas leaks easily from gaps between particles.

【0017】本発明のガスシールは、セル本体1と接合
治具2aとの熱膨張率の差を利用した機械的な締めつけ
により行うのが、確実なシールができ好ましい。セル本
体1は、室温から動作温度の約1000℃までの昇温に
より、熱膨張する。このとき、接合治具2aの熱膨張率
がセル本体1のそれより小さいと、接合部分が機械的に
締めつけられる。
The gas seal of the present invention is preferably performed by mechanical tightening utilizing the difference in the coefficient of thermal expansion between the cell body 1 and the joining jig 2a, since a reliable seal can be obtained. The cell body 1 thermally expands by increasing the temperature from room temperature to an operating temperature of about 1000 ° C. At this time, if the coefficient of thermal expansion of the joining jig 2a is smaller than that of the cell body 1, the joining portion is mechanically tightened.

【0018】また、接合治具2aの熱膨張率がセル本体
1の熱膨張率よりも小さくてもその差が僅かな場合や、
逆に接合治具2aの熱膨張率がセル本体1の熱膨張率よ
りも大きい場合には、粉体5の熱膨張率が、セル本体
1、接合治具2aの熱膨張率のいずれよりも大きいこと
が好適である。
Further, even if the coefficient of thermal expansion of the joining jig 2a is smaller than the coefficient of thermal expansion of the cell body 1, if the difference is small,
Conversely, when the coefficient of thermal expansion of the joining jig 2a is larger than the coefficient of thermal expansion of the cell body 1, the coefficient of thermal expansion of the powder 5 is larger than that of either the cell body 1 or the joining jig 2a. Preferably, it is large.

【0019】更に、構造的には、セル本体1と接合治具
2aとの隙間が、ガスの流速方向に平行なこと、つま
り、セル本体1の外周面と接合治具2aの内側面との隙
間に粉体5を介装することが好ましい。この場合、隙間
にかかるガス圧を最小限にできる。
Further, structurally, the gap between the cell body 1 and the joining jig 2a is parallel to the gas flow direction, that is, the gap between the outer peripheral surface of the cell body 1 and the inner surface of the joining jig 2a. It is preferable to interpose the powder 5 in the gap. In this case, the gas pressure applied to the gap can be minimized.

【0020】本発明のセル本体1の具体的構成及び製造
方法について以下に詳述する。まず、支持管1aを兼ね
た円筒状の空気極成形体を押出成形法により作製する。
この空気極成形体は、ペロブスカイト型結晶相を主相と
するLaMnO3系の材料で、その主結晶相の平均粒径
は3〜20μm、特に5〜15μmであることが好まし
い。これは、主結晶相の粒径が3μmより小さいと強度
は高いもののガス透過性が低く、20μmを越えるとガ
ス透過性は高くなるものの強度が不十分となるためであ
る。なお、空気極1bの開気孔率は20〜45%がよ
く、特に30〜40%が好適である。また、その平均細
孔径は、1.0〜5.0μmの範囲がガス透過性に優れ
る。
The specific structure and manufacturing method of the cell body 1 of the present invention will be described below in detail. First, a cylindrical air electrode molded body also serving as the support tube 1a is manufactured by an extrusion molding method.
The air electrode compact is a LaMnO 3 -based material having a perovskite-type crystal phase as a main phase, and the main crystal phase preferably has an average particle size of 3 to 20 μm, particularly preferably 5 to 15 μm. This is because if the particle diameter of the main crystal phase is smaller than 3 μm, the gas permeability is low although the strength is high, and if it exceeds 20 μm, the gas permeability is high but the strength is insufficient. The open porosity of the air electrode 1b is preferably 20 to 45%, particularly preferably 30 to 40%. The average pore diameter in the range of 1.0 to 5.0 μm is excellent in gas permeability.

【0021】次に、空気極成形体の表面に固体電解質1
cの成形体層を形成する。この固体電解質成形体層は、
平均粒径が0.5〜3μmのY23等の公知の安定化剤
により安定化されたZrO2からなる粉体のスラリーを
調製し、その後ドクターブレード法等により前記スラリ
ーから作製されたグリーンシートを、空気極成形体の外
表面に巻き付けて形成する。
Next, the solid electrolyte 1 is placed on the surface of the air electrode molded body.
The molded body layer of c is formed. This solid electrolyte molded layer,
A slurry of powder made of ZrO 2 stabilized with a known stabilizer such as Y 2 O 3 having an average particle size of 0.5 to 3 μm was prepared, and then prepared from the slurry by a doctor blade method or the like. The green sheet is formed by winding the green sheet around the outer surface of the air electrode molded body.

【0022】そして、空気極成形体/固体電解質成形体
を1000〜1300℃の温度で1〜3時間程度仮焼
し、その後、集電体の積層箇所となる固体電解質1c及
び空気極1bの表面の一部を平滑に研磨し、集電体成形
体を積層する。集電体用成形体はLaCrO3系の材料
を使用し、固体電解質成形体と同様にグリーンシートを
積層して形成する。
Then, the air electrode molded body / solid electrolyte molded body is calcined at a temperature of 1000 to 1300 ° C. for about 1 to 3 hours, and thereafter, the surfaces of the solid electrolyte 1c and the air electrode 1b which are to be the laminated portions of the current collector are provided. Is polished smoothly, and a current collector molded body is laminated. The molded body for the current collector uses a LaCrO 3 -based material, and is formed by laminating green sheets in the same manner as the solid electrolyte molded body.

【0023】このようにして作製した空気極1b/固体
電解質1c/集電体成形体は、大気等の酸化性雰囲気中
で、1300〜1600℃の温度で3〜15時間程度同
時焼成することにより共焼結させる。そして、燃料極1
dは、Niを30〜80重量%含有し、その残部がY2
3等の安定化剤で安定化されたZrO2からなる多孔質
のサーメット材料を使用し、前記空気極1b/固体電解
質1c/集電体成形体の所定箇所に燃料極成形体層を形
成して焼結させ、円筒状のセル本体1を作製する。又
は、空気極成形体/固体電解質成形体/集電体成形体を
作製した後、更に燃料極成形体を積層し、これらを同時
焼成してセル本体1を作製することもできる。
The air electrode 1b / solid electrolyte 1c / collector molded body thus manufactured is simultaneously fired at a temperature of 1300 to 1600 ° C. for about 3 to 15 hours in an oxidizing atmosphere such as air. Co-sinter. And fuel electrode 1
d contains 30 to 80% by weight of Ni and the remainder is Y 2
Using a porous cermet material made of ZrO 2 stabilized by a stabilizer such as O 3 , a fuel electrode molded body layer is formed at a predetermined position of the air electrode 1b / solid electrolyte 1c / current collector molded body. And sintering to produce a cylindrical cell body 1. Alternatively, the cell body 1 can be manufactured by stacking a fuel electrode formed body after forming the air electrode formed body / solid electrolyte formed body / current collector formed body and firing them simultaneously.

【0024】次に、緻密質セラミックの焼結体からなる
接合治具2aを作製する。これら接合治具2aは、発電
時のガスシール性が要求されるため、例えば、結晶相の
平均粒径が0.5〜3μm程度のAl23、部分安定化
ZrO2、安定化ZrO2、LaCrO3等を主成分とす
る、ZrO2系、LaCrO3系酸化物の形成粉末を、押
出成形法や静水圧成形法(ラバープレス法)等により成
形し、各々所定の形状に切削加工を行う。この後、大気
等の酸化性雰囲気中で、1300〜1600℃の温度で
3〜5時間程度焼成して作製する。
Next, a bonding jig 2a made of a sintered body of dense ceramic is manufactured. Since these joining jigs 2a are required to have gas sealing properties at the time of power generation, for example, Al 2 O 3 having an average grain size of about 0.5 to 3 μm, partially stabilized ZrO 2 , stabilized ZrO 2 Forming powder of ZrO 2 -based or LaCrO 3 -based oxide mainly composed of LaCrO 3 , LaCrO 3, etc. by extrusion molding or isostatic pressing (rubber pressing), etc. Do. After that, it is baked in an oxidizing atmosphere such as the air at a temperature of 1300 to 1600 ° C. for about 3 to 5 hours to produce.

【0025】最後に、以下のようにして、セル本体1と
接合治具2aとの隙間に粉体5を介装し、ガスシールを
行う。まず、接合治具2aにセル本体1を挿入するが、
このときセル本体1の底面と接合治具2aとの接触部に
ガラスを介装して、ガスシール性を高めてもよい。ただ
し、ガラスは多数回の熱サイクルで使用するのが難しい
ので、数回程度の熱サイクルで使用する場合に好適であ
る。
Finally, the powder 5 is interposed in the gap between the cell body 1 and the joining jig 2a to perform gas sealing as follows. First, the cell body 1 is inserted into the joining jig 2a.
At this time, glass may be interposed at the contact portion between the bottom surface of the cell body 1 and the joining jig 2a to enhance the gas sealing property. However, since it is difficult to use glass in a large number of thermal cycles, it is suitable when used in several thermal cycles.

【0026】次に、前記隙間に粉体5を介装する場合、
粉体5を隙間に充填して圧力を加え固めたり、粉体5を
スラリー状にして隙間に注入し、圧力を加えながら乾燥
させ固めてもよい。そして、隙間に介装された粉体5
は、発電前の室温では固められた状態であり、発電可能
な約1000℃では固められた状態で熱膨張した状態、
あるいは少なくとも部分的に焼結した状態となり、強固
に固着しているものと考えられる。
Next, when the powder 5 is interposed in the gap,
The powder 5 may be filled into the gap and pressurized to harden it, or the powder 5 may be slurried and poured into the gap, dried and hardened while applying pressure. And the powder 5 interposed in the gap
Is in a state of solidification at room temperature before power generation, and in a state of thermal expansion in a state of solidification at about 1000 ° C. where power can be generated,
Alternatively, it is considered that it is at least partially sintered and firmly fixed.

【0027】かくして、本発明は、ガスシールの確認が
容易で、ガスシールを容易かつ確実に行うことができ、
ガスシール不良やガラスの揮発成分による出力低下及び
性能劣化を防止し、また動作温度から室温までの降温時
に接合部が破壊されることがなく、その結果、何回もの
熱サイクルで使用可能になるという作用効果を有する。
Thus, according to the present invention, the gas seal can be easily confirmed, and the gas seal can be performed easily and reliably.
Prevents output degradation and performance degradation due to defective gas seals and volatile components of the glass.Also, the joint is not destroyed when the temperature is lowered from the operating temperature to room temperature, so that it can be used in many thermal cycles. It has the function and effect.

【0028】尚、本発明は上記の実施形態に限定される
ものではなく、本発明の要旨を逸脱しない範囲で種々の
変更は差し支えない。
It should be noted that the present invention is not limited to the above embodiment, and various changes may be made without departing from the gist of the present invention.

【0029】[0029]

【実施例】(実施例)本発明の実施例を以下に示す。ま
ず、図1の構成を有する円筒状のセル本体1を以下のよ
うな共焼結により作製した。
EXAMPLES (Examples) Examples of the present invention are shown below. First, a cylindrical cell body 1 having the configuration shown in FIG. 1 was produced by the following co-sintering.

【0030】純度99.9%以上のLa23、Y23
CaCO3、Mn23を出発原料として、これをLa
0.560.14Ca0.3MnO3の組成になるように秤量混合
した後、1500℃で3時間仮焼して粉砕し、平均粒径
が約5μmの固溶体粉末を得た。この固溶体粉末にバイ
ンダーを添加し、押出成形法で円筒状の空気極成形体を
作製した。
La 2 O 3 , Y 2 O 3 having a purity of 99.9% or more,
Starting from CaCO 3 , Mn 2 O 3 ,
After weighing and mixing so as to have a composition of 0.56 Y 0.14 Ca 0.3 MnO 3, the mixture was calcined at 1500 ° C. for 3 hours and pulverized to obtain a solid solution powder having an average particle size of about 5 μm. A binder was added to the solid solution powder, and a cylindrical air electrode molded body was produced by an extrusion molding method.

【0031】次に、共沈法により得られたY23を8m
ol%の割合で含有する平均粒径が約1μmのZrO2
粉末に、トルエンとバインダーを添加してスラリーを調
製し、ドクターブレード法により前記スラリーから厚み
約130μmのシート状の固体電解質成形体を作製し
た。
Next, 8 m of Y 2 O 3 obtained by the coprecipitation method was used.
ol% of ZrO 2 having an average particle size of about 1 μm.
A slurry was prepared by adding toluene and a binder to the powder, and a sheet-like solid electrolyte molded body having a thickness of about 130 μm was prepared from the slurry by a doctor blade method.

【0032】そして、純度99.9%以上のLa23
Cr23、MgOを出発原料として、これをLa(Mg
0.3Cr0.70.973の組成になるように秤量混合した
後、1500℃で3時間仮焼し粉砕して、平均粒径が約
2μmの固溶体粉末を得た。この固溶体粉末にトルエン
とバインダーを添加してスラリーを調製し、ドクターブ
レード法によりスラリーから厚み約140μmのシート
状の集電体用成形体を作製した。
And La 2 O 3 having a purity of 99.9% or more,
Starting from Cr 2 O 3 and MgO, the starting material is La (Mg
After weighing and mixing so as to have a composition of 0.3 Cr 0.7 ) 0.97 O 3, the mixture was calcined at 1500 ° C. for 3 hours and pulverized to obtain a solid solution powder having an average particle size of about 2 μm. Toluene and a binder were added to the solid solution powder to prepare a slurry, and a sheet-like molded body for a current collector having a thickness of about 140 μm was prepared from the slurry by a doctor blade method.

【0033】この後、空気極成形体に固体電解質成形体
をロール状に巻き付け、1100℃で1時間の仮焼を行
なった。仮焼後、集電体の積層箇所となる空気極仮焼体
及び固体電解質仮焼体のそれぞれの表面の一部を平面研
磨し、前記集電体用成形体を研磨部に帯状に設置した。
その後、大気中において1500℃で6時間の条件で共
焼結した。焼結後、NiO粉末に10mol%Y23
含むZrO2粉末を、(NiO粉末):(ZrO2粉末)
=80:20重量比の割合で混合した混合粉末に、水を
溶媒として加えて作製した燃料極スラリーを、焼結体表
面に塗布し乾燥した。その後、大気中において1400
℃で2時間焼結を行うことにより、厚み50μmの燃料
極1dを作製し、円筒状のセル本体1を作製した。
Thereafter, the solid electrolyte molded body was wound around the air electrode molded body in a roll shape and calcined at 1100 ° C. for 1 hour. After calcination, a part of the surface of each of the air electrode calcined body and the solid electrolyte calcined body to be the laminating portion of the current collector was polished in a plane, and the molded body for the current collector was placed in a band shape on the polishing part. .
Thereafter, co-sintering was performed in the air at 1500 ° C. for 6 hours. After sintering, ZrO 2 powder containing 10 mol% Y 2 O 3 in NiO powder was added to (NiO powder): (ZrO 2 powder)
= 80: 20 A fuel electrode slurry prepared by adding water as a solvent to a mixed powder mixed at a weight ratio of 80:20 was applied to the surface of the sintered body and dried. Then, 1400 in air
By performing sintering at 2 ° C. for 2 hours, a fuel electrode 1 d having a thickness of 50 μm was produced, and a cylindrical cell body 1 was produced.

【0034】次に、図1の接合治具2aを以下のように
作製した。平均粒径が約1μmのAl23、平均粒径が
約1μmのZrO2粉末、3mol%のY23を含む平
均粒径が約2μmのZrO2粉末(3mol Yttrium Stabil
ized Zirconium :3YSZ)、8mol%のY23
含む平均粒径が約2μmのZrO2粉末(8YSZ)、
1mol%のCaOを含む平均粒径が約2μmのZrO
2粉末(Calcium Stabilized Zirconium;CSZ)のい
ずれかを、静水圧成形法(ラバープレス法)により成形
し、所定の形状に切削加工して、セラミック成形体を作
製した。この接合治具2a用セラミック成形体を、大気
中において1400℃で2時間の条件で焼成した。
Next, the joining jig 2a shown in FIG. 1 was manufactured as follows. The average particle size of about 1μm Al 2 O 3, ZrO 2 powder having an average particle size of about 1 [mu] m, 3 mol% of Y mean particle size of about 2 [mu] m ZrO 2 powder containing 2 O 3 (3mol Yttrium Stabil
Zirconium: 3YSZ), ZrO 2 powder containing 8 mol% of Y 2 O 3 and having an average particle size of about 2 μm (8YSZ),
ZrO having an average particle size of about 2 μm containing 1 mol% of CaO
One of the two powders (Calcium Stabilized Zirconium; CSZ) was molded by a hydrostatic molding method (rubber press method), and cut into a predetermined shape to produce a ceramic molded body. The ceramic molded body for the joining jig 2a was fired in the atmosphere at 1400 ° C. for 2 hours.

【0035】このとき、接合治具2aの熱膨張率がセル
本体1のそれよりも小さくなるように各々の部品を組み
合わせて、室温でセル本体1と接合治具2a間の隙間が
0.5〜2mmになるようにした。例えば、上記のよう
に作製したセル本体1の熱膨張率は10.8×10-6
Kで、Al23の接合治具2aは8.0×10-6/K
で、Ni粒子から成る粉体5は16.78×10-6/K
である。
At this time, the components are combined so that the coefficient of thermal expansion of the joining jig 2a is smaller than that of the cell body 1, and the gap between the cell body 1 and the joining jig 2a is 0.5 at room temperature. 22 mm. For example, the cell body 1 manufactured as described above has a coefficient of thermal expansion of 10.8 × 10 −6 /
K, the bonding jig 2a of Al 2 O 3 is 8.0 × 10 −6 / K
The powder 5 composed of Ni particles is 16.78 × 10 −6 / K
It is.

【0036】セル本体1と接合治具2a間の隙間に、表
1に示すような、平均粒径が0.1μm〜10μmの8
YSZ、Al23、ZrO2、Ni等の粉体5をスラリ
ー状にし、介装する。スラリー状の粉体5が乾燥するま
で圧力を加え続け、固化するようにする。そして、約1
000℃まで昇温して、セル内に空気、セル外に水素を
流し、開放起電力を測定することにより、ガスのシール
性を判定した。このとき、開放起電力が0.8V以上の
ものをガスのシール性が良好と判断した。
In the gap between the cell body 1 and the joining jig 2a, as shown in Table 1, 8 particles having an average particle diameter of 0.1 μm to 10 μm
A powder 5 of YSZ, Al 2 O 3 , ZrO 2 , Ni or the like is formed into a slurry and interposed. The pressure is continuously applied until the slurry-like powder 5 dries, so that the slurry 5 solidifies. And about 1
The temperature was raised to 000 ° C., air was flown into the cell and hydrogen was flown outside the cell, and the open electromotive force was measured to determine the gas sealing property. At this time, those having an open electromotive force of 0.8 V or more were judged to have good gas sealing properties.

【0037】[0037]

【表1】 [Table 1]

【0038】表1に示すように、隙間が2mm以下、開
気孔率が10%未満、粉体5の平均粒径が0.1〜10
μmで、開放起電力が0.8V以上であった。また、前
記の条件を満足するものは、室温と約1000℃間の昇
温及び降温の熱サイクルを5回行った後でも、0.8V
以上の開放起電力を保持した。
As shown in Table 1, the gap is 2 mm or less, the open porosity is less than 10%, and the average particle size of the powder 5 is 0.1 to 10%.
In μm, the open electromotive force was 0.8 V or more. Further, those satisfying the above-mentioned conditions can be obtained at a voltage of 0.8 V even after performing a heat cycle of raising and lowering the temperature between room temperature and about 1000 ° C five times.
The above open electromotive force was maintained.

【0039】(比較例1)接合治具2aの組成をAl2
3、その開気効率を1%、隙間の距離を3.0mm、
粉体5の組成を8YSZ、その平均粒径を1μmとした
以外は、実施例と同様にセル本体1,接合治具2aを作
製した。
(Comparative Example 1) The composition of the joining jig 2a was changed to Al 2
O 3 , its opening efficiency is 1%, the distance of the gap is 3.0 mm,
A cell body 1 and a bonding jig 2a were produced in the same manner as in Example, except that the composition of the powder 5 was 8YSZ and the average particle size was 1 μm.

【0040】この場合の開放起電力は、熱サイクル前で
0.8V、5回の熱サイクル後で0.7Vであった。
The open electromotive force in this case was 0.8 V before the thermal cycle and 0.7 V after the five thermal cycles.

【0041】(比較例2)接合治具2aの組成をAl2
3、その開気孔率を1%、隙間の距離を0.5mm、
粉体5の組成をZrO2、その平均粒径を0.01μm
とした以外は、実施例と同様にセル本体1、接合治具2
aを作製した。
(Comparative Example 2) The composition of the bonding jig 2a was changed to Al 2
O 3 , the open porosity is 1%, the gap distance is 0.5 mm,
Powder 5 has a composition of ZrO 2 and an average particle size of 0.01 μm
Cell body 1 and joining jig 2
a was produced.

【0042】この場合の開放起電力は、熱サイクル前で
0V、5回の熱サイクル後で0Vであった。
The open electromotive force in this case was 0 V before the heat cycle and 0 V after the five heat cycles.

【0043】(比較例3)接合治具2aの組成をAl2
3、その開気孔率を1%、隙間の距離を0.5mm、
粉体5の組成をZrO2、その平均粒径を20μmとし
た以外は、実施例と同様にセル本体1、接合部材2aを
作製した。
(Comparative Example 3) The composition of the joining jig 2a was changed to Al 2
O 3 , the open porosity is 1%, the gap distance is 0.5 mm,
A cell body 1 and a joining member 2a were produced in the same manner as in Example, except that the composition of the powder 5 was ZrO 2 and the average particle size was 20 μm.

【0044】この場合の開放起電力は、熱サイクル前で
0V、5回の熱サイクル後で0Vであった。
The open electromotive force in this case was 0 V before the heat cycle and 0 V after the five heat cycles.

【0045】[0045]

【発明の効果】本発明は、円筒状のセル本体の一端を有
底円筒状の接合治具に挿入し、接合治具内側面とセル本
体外周面との隙間にセラミック粉末又は金属粒子から成
る粉体を介装することにより、発電の際のガスシール性
を完全にかつ容易に行うことができるとともに、封止状
態の確認も容易であり、その結果、セル性能を安定させ
ることができ、発電性能を向上させることができる。ま
た、動作温度から室温までの降温時に、封止部及び接合
部に従来使用されていたガラスの熱応力により破壊され
ることがなく、これにより、何回もの熱サイクルで使用
可能になる。
According to the present invention, one end of a cylindrical cell body is inserted into a bottomed cylindrical joining jig, and a gap between an inner surface of the joining jig and an outer peripheral surface of the cell body is made of ceramic powder or metal particles. By interposing the powder, it is possible to completely and easily perform gas sealing at the time of power generation, and it is also easy to confirm the sealing state. As a result, the cell performance can be stabilized, Power generation performance can be improved. Further, when the temperature is lowered from the operating temperature to the room temperature, the glass is not broken by the thermal stress of the glass conventionally used for the sealing portion and the bonding portion, so that it can be used in many thermal cycles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒状セルの接合部付近の構造を示
し、図3のB−B線における断面図である。
FIG. 1 is a cross-sectional view taken along the line BB of FIG. 3 showing a structure near a joint of a cylindrical cell of the present invention.

【図2】従来の円筒状セルの接合部付近の断面図であ
る。
FIG. 2 is a cross-sectional view of the vicinity of a joint of a conventional cylindrical cell.

【図3】円筒状セルの基本構成の部分斜視図である。FIG. 3 is a partial perspective view of a basic configuration of a cylindrical cell.

【符号の説明】[Explanation of symbols]

1:セル本体 1a:支持管 1b:空気極 1c:固体電解質 1d:燃料極 2a:接合治具 3:ガス導入管 5:粉体 10:通気孔 11:節 1: Cell body 1a: Support tube 1b: Air electrode 1c: Solid electrolyte 1d: Fuel electrode 2a: Joining jig 3: Gas introduction tube 5: Powder 10: Vent hole 11: Node

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−170359(JP,A) 特開 平4−104475(JP,A) 特開 平10−162847(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 8/02,8/12 ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-2-170359 (JP, A) JP-A-4-104475 (JP, A) JP-A-10-162847 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01M 8 / 02,8 / 12

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】通気孔を有する節を設けた円筒状の接合治
具の両方の開口に、円筒状の固体電解質型燃料電池セル
本体の他端と円筒状のガス導入管の一端とを、各々挿入
して前記節に当接させ、前記接合治具内側面と固体電解
質型燃料電池セル本体外周面との隙間及び接合治具内側
面とガス導入管外周面との隙間を2mm以下とし、該隙
間にセラミック粉末及び/又は金属粒子から成り、平均
粒径が0.1〜10μmの粉体を介装して成ることを特
徴とする固体電解質型燃料電池セル。
1. The other end of a cylindrical solid oxide fuel cell body and one end of a cylindrical gas inlet tube are provided at both openings of a cylindrical joining jig provided with a node having a vent hole. Each is inserted and brought into contact with the node, the gap between the inner surface of the joining jig and the outer peripheral surface of the solid oxide fuel cell body and the gap between the inner surface of the joining jig and the outer peripheral surface of the gas inlet tube are set to 2 mm or less, A solid oxide fuel cell comprising a ceramic powder and / or metal particles interposed in the gap and having an average particle diameter of 0.1 to 10 μm.
【請求項2】前記接合治具の熱膨張率が固体電解質型燃
料電池セル本体の熱膨張率より小さいか、及び/又は、
前記粉体の熱膨張率が固体電解質型燃料電池セル本体及
び接合治具の熱膨張率よりも大きいことを特徴とする請
求項1記載の固体電解質型燃料電池セル。
2. The thermal expansion coefficient of the joining jig is smaller than the thermal expansion coefficient of the solid oxide fuel cell body, and / or
2. The solid oxide fuel cell according to claim 1, wherein the thermal expansion coefficient of the powder is larger than that of the solid oxide fuel cell body and the joining jig.
JP2001206065A 2001-07-06 2001-07-06 Solid oxide fuel cell Expired - Fee Related JP3285856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001206065A JP3285856B2 (en) 2001-07-06 2001-07-06 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001206065A JP3285856B2 (en) 2001-07-06 2001-07-06 Solid oxide fuel cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP35007396A Division JP3238087B2 (en) 1996-12-27 1996-12-27 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2002110203A JP2002110203A (en) 2002-04-12
JP3285856B2 true JP3285856B2 (en) 2002-05-27

Family

ID=19042259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001206065A Expired - Fee Related JP3285856B2 (en) 2001-07-06 2001-07-06 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3285856B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4587659B2 (en) * 2003-11-26 2010-11-24 京セラ株式会社 Manufacturing method of fuel cell stack
JP2010257947A (en) * 2009-03-30 2010-11-11 Mitsubishi Heavy Ind Ltd Cell tube for solid electrolyte fuel cells, and the solid electrolyte fuel cell

Also Published As

Publication number Publication date
JP2002110203A (en) 2002-04-12

Similar Documents

Publication Publication Date Title
RU2373616C1 (en) Pack of convertible solid-oxide fuel elements and method of its fabrication
JP4511122B2 (en) Fuel cell
KR101820755B1 (en) Cell, cell stack device, module and module-containing device
JP3238087B2 (en) Solid oxide fuel cell
JP2005216760A (en) Fuel cell and its manufacturing method
JP3285856B2 (en) Solid oxide fuel cell
JPH01197972A (en) Plate shaped solid electrolyte type fuel cell
JP3166888B2 (en) Solid oxide fuel cell stack
JP3434883B2 (en) Method for manufacturing fuel cell
JP3550231B2 (en) Plate stack type solid oxide fuel cell and method of manufacturing the same
JP4721500B2 (en) Solid oxide fuel cell and method for producing the same
JP3238086B2 (en) Solid oxide fuel cell
JP3285779B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3281814B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3707155B2 (en) Solid oxide fuel cell
JP4638070B2 (en) Cylindrical fuel cell, method for producing the same, and fuel cell
JP3455054B2 (en) Manufacturing method of cylindrical solid oxide fuel cell
JPH0837011A (en) Fuel cell base board in hollow flat plate form
JP3389469B2 (en) Solid oxide fuel cell
JP3677404B2 (en) Cylindrical solid electrolyte fuel cell
JP2003036863A (en) Cell for solid electrolyte type fuel cell and fuel cell
JP4721487B2 (en) Solid electrolyte fuel cell and fuel cell
JPH11283640A (en) Cylindrical solid-electrolyte fuel cell
JPH11111308A (en) Cylindrical fuel cell
JP4557578B2 (en) Fuel cell, cell stack and fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees