JP3567004B2 - Photocatalyst and method for producing the same - Google Patents

Photocatalyst and method for producing the same Download PDF

Info

Publication number
JP3567004B2
JP3567004B2 JP33945194A JP33945194A JP3567004B2 JP 3567004 B2 JP3567004 B2 JP 3567004B2 JP 33945194 A JP33945194 A JP 33945194A JP 33945194 A JP33945194 A JP 33945194A JP 3567004 B2 JP3567004 B2 JP 3567004B2
Authority
JP
Japan
Prior art keywords
titanium oxide
compound
photocatalyst
potassium
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33945194A
Other languages
Japanese (ja)
Other versions
JPH08182934A (en
Inventor
雅則 友成
智行 ▲廣▼田
義樹 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP33945194A priority Critical patent/JP3567004B2/en
Publication of JPH08182934A publication Critical patent/JPH08182934A/en
Application granted granted Critical
Publication of JP3567004B2 publication Critical patent/JP3567004B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【産業上の利用分野】
本発明は優れた光触媒機能を有する光触媒およびその製造方法に関する。
【0002】
【従来の技術】
光触媒にそのバンドギャップ以上のエネルギーを持つ波長の光を照射すると光励起により伝導帯に電子を、価電子帯に正孔を生じる。この光励起により生じた電子の持つ強い還元力や正孔の持つ強い酸化力は、有害物質の分解や浄化、水の分解、殺菌、有機物合成などの反応に利用されている。たとえば、特公平2−9850号公報には、光触媒を用いて廃棄物中の有害物質を分解し、浄化することが記載されている。また、特公平4−78326号公報には、光触媒を用いてトイレのし尿臭、ペットの臭い、タバコの臭い、調理臭、体臭などを脱臭することが記載されている。さらに、特公平−29393号公報には、光励起により生起した所定電圧を細胞に接触印加して細胞を殺すことが記載されている。
【0003】
【発明が解決しようとする課題】
光触媒を実際の反応に用いるには、反応中においては光触媒が反応系から飛散しないようにする必要があり、また、反応終了後においては光触媒を反応系から分離する必要があるため、光触媒を支持体上に固定した状態で用いている。光触媒を固定化するためには光触媒を支持体に付着させ、次いで、200〜1000℃の温度で焼成する方法が通常採られている。しかしながら、光触媒を高温で焼成すると、焼成前のものに比べ、光触媒機能が著しく低下するという問題がある。
また、光触媒を高温の反応で用いる場面が増えつつあること、さらには、光触媒を再生する際に高温で焼成する方法が考えられることなどにより、高温の条件でも光触媒機能が低下しない光触媒が嘱望されている。
さらに、反応時間を短縮したり、反応に用いる装置を小型化したりするため、一層優れた光触媒機能を有する光触媒が以前から嘱望されている。
【0004】
【課題を解決するための手段】
本発明者らは、高温度の焼成や反応条件による光触媒機能の劣化が少ない酸化チタン光触媒を得るべく研究した結果、(1)酸化チタンの粒子内部および/またはその表面にカリウム化合物を含有させることにより所望の光触媒が得られること、(2)酸化チタンにアルミニウム化合物および/またはリン化合物とカリウム化合物とを含有させることにより、より好ましい光触媒が得られること、(3)前記(1)、(2)の光触媒を製造するには、酸化チタンと、カリウム化合物と、さらには必要に応じてアルミニウム化合物および/またはリン化合物とを接触させて生成物を得、次いで、該生成物を500〜900℃の温度で焼成する方法が簡便で好ましいこと、(4)本発明の光触媒を支持体に固定化するには、酸化チタンとカリウム化合物と、さらには必要に応じてアルミニウム化合物および/またはリン化合物とを接触させて生成物を得、次いで、該生成物を支持体に付着させ、次いで、500〜900℃の温度で焼成する方法が簡便で好ましいことなどを見出し、本発明を完成した。
【0005】
すなわち、本発明は優れた光触媒機能を有する酸化チタン光触媒を提供することにある。
【0006】
本発明はカリウム化合物を酸化チタン粒子の内部および/またはその表面に含有してなる酸化チタン光触媒である。本発明において酸化チタンとは、アナタース型酸化チタン、ルチル型酸化チタン、無定形酸化チタン、メタチタン酸、オルトチタン酸などの各種の酸化チタンあるいは水酸化チタン、含水酸化チタン、水和酸化チタンを意味する。酸化チタンの平均粒子径は、Scherrerの式より算出して、好ましくは1〜500nm、より好ましくは5〜250nm、もっとも好ましくは5〜100nmである。また、本発明において、カリウム化合物とは、カリウムの酸化物、水酸化物、硫酸塩、ハロゲン化物、硝酸塩などの化合物、さらにはカリウムイオンを含む。カリウムの含有量は、適宜設定できるが、酸化チタンのTiO重量基準に対して、カリウム化合物をカリウム(K)基準に換算して、好ましくは0.01〜10重量%、より好ましくは0.03〜5重量%、もっとも好ましくは0.05〜3重量%である。カリウム化合物が0.01重量%より少なかったり、また、10重量%より多かったりすると光触媒機能が低下する場合があるため、好ましくない。本発明の酸化チタン光触媒は、酸化チタンとカリウム化合物との単なる混合物とは異なり、酸化チタンの粒子表面にカリウム化合物を担持あるいは被覆したり、酸化チタンの粒子内部にカリウム化合物をドープしたりして、カリウム化合物が酸化チタンの粒子内部および/または酸化チタンの粒子表面に存在している状態、特に、酸化チタンの粒子内部に少なくとも存在している状態を保持した粒子である。
【0007】
さらに、本発明は、アルミニウム化合物および/またはリン化合物とカリウム化合物とを含有してなる酸化チタン光触媒である。本発明において、アルミニウム化合物とは、アルミニウムの酸化物、水酸化物、硫酸塩、ハロゲン化物、硝酸塩などの化合物、さらにはアルミニウムイオンを含む。また、リン化合物とは、リンの酸化物、リン酸またはその塩、縮合リン酸またはその塩、ホスフィン酸またはその塩、ホスホン酸またはその塩、ジホスホン酸またはその塩、次リン酸またはその塩などの化合物、さらにはリン酸イオンを含む。アルミニウム化合物および/またはリン化合物の含有量は、適宜設定できるが、酸化チタンのTiO重量基準に対して、アルミニウム化合物をアルミニウム(Al)基準に、リン化合物をリン(P)基準にそれぞれ換算した合量が、好ましくは0.01〜1重量%、より好ましくは0.01〜0.8重量%、もっとも好ましくは0.01〜0.5重量%である。アルミニウム化合物とリン化合物の合量が0.01重量%より少なかったり、また、1重量%より多かったりすると光触媒機能が低下する場合があるため、好ましくない。アルミニウム化合物および/またはリン化合物を含有させる場合のカリウム化合物の含有量は、前記と同様に、酸化チタンのTiO重量基準に対して、好ましくは0.01〜10重量%、より好ましくは0.03〜5重量%、もっとも好ましくは0.05〜3重量%である。アルミニウム化合物および/またはリン化合物を含有させるには、アルミニウム化合物、リン化合物を酸化チタンと混合したり、酸化チタンの粒子表面に担持あるいは被覆したり、酸化チタンの粒子内部にドープしたりすることができる。本発明においては、アルミニウム化合物および/またはリン化合物がカリウム化合物とともに、酸化チタンの粒子内部および/または酸化チタンの粒子表面に存在している状態、特に、アルミニウム化合物および/またはリン化合物が酸化チタンの粒子表面に存在し、カリウム化合物が酸化チタンの粒子内部に少なくとも存在している状態が好ましい。
【0008】
なお、本発明においては、カリウム化合物あるいは必要に応じてアルミニウム化合物および/またはリン化合物のほかに銅、亜鉛、バナジウム、鉄、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、銀、金、白金などの金属またはそれらの化合物を酸化チタン光触媒に含有させてもよい。
【0009】
カリウム化合物が酸化チタンの粒子内部および/または酸化チタンの粒子表面に含有してなる、本発明の光触媒を製造するには、▲1▼カリウム化合物の溶液を酸化チタンあるいは酸化チタンを保持した支持体に浸漬してカリウム化合物を酸化チタンの粒子表面に存在させる方法、▲2▼カリウム化合物の存在下、硫酸チタン、硫酸チタニル、硫酸チタン、塩化チタン、有機チタン化合物などのチタン化合物を、必要に応じてさらに核形成用種子の存在下に、加水分解あるいは中和してカリウム化合物を酸化チタンの粒子内部および/またはその粒子表面に存在させる方法、▲3▼前記▲1▼、▲2▼の方法で得た生成物を500〜900℃の温度で焼成する方法が好ましい。特に前記▲1▼の方法で得た生成物を500〜900℃の温度で焼成すると、カリウム化合物を酸化チタンの粒子内部に少なくとも存在させることができるため好ましい方法である。
【0010】
本発明においては、前記の▲1▼〜▲3▼の方法において得られた生成物を本発明の光触媒として用いることができるが、必要に応じて、該生成物を分別したり、洗浄したり、乾燥したりしてもよい。
【0011】
カリウム化合物と酸化チタンのほかに、アルミニウム化合物および/またはリン化合物を含有してなる光触媒を製造するには前記のカリウム化合物と酸化チタンとを含有してなる光触媒の製造方法に準じた方法で行うことができる。すなわち、前記▲1▼〜▲3▼の方法において、カリウム化合物とともに、アルミニウム化合物および/またはリン化合物を用いるとよい。特に、本発明においては、前記▲1▼、▲2▼の方法に準じて得た、アルミニウム化合物および/またはリン化合物とカリウム化合物と酸化チタンとの生成物を500〜900℃の温度で焼成すると、アルミニウム化合物、リン化合物、カリウム化合物を酸化チタンの粒子内部および/または酸化チタンの粒子表面に存在させることができ、特に、アルミニウム化合物、リン化合物を酸化チタンの粒子表面に存在させ、カリウム化合物を酸化チタンの粒子内部に存在させることができるため好ましい方法である。
【0012】
本発明の光触媒を、有機物質の合成反応や有害物質の分解反応などの種々の光触媒反応に用いるには、それらの処理対象物質の存在下、本発明の光触媒にそのバンドギャップ以上のエネルギーを持つ波長の光を照射する。本発明の光触媒は、使用場面に応じて、溶媒に懸濁した状態、光触媒を粉末の状態、あるいは該粉末を粉砕した状態、さらには、該粉末を成形した状態で用いることができる。本発明の光触媒により分解あるいは酸化して除去する有害物質としては、人体や生活環境に悪影響を及ぼす物質やその可能性がある物質であり、たとえば、種々の生物学的酸素要求物質、大気汚染物質などの環境汚染物質や除草剤、殺菌剤、殺虫剤、殺線虫剤などの種々の農薬などの物質、細菌、放線菌、菌類、藻類、カビ類などの微生物などが挙げられる。環境汚染物質としては、有機ハロゲン化合物、有機リン化合物やそれ以外の有機化合物、窒素化合物、硫黄化合物、シアン化合物、クロム化合物などの無機化合物が挙げられる。有機ハロゲン化合物としては、具体的には、ポリ塩化ビフェニル、フロン、トリハロメタン、トリクロロエチレン、テトラクロロエチレンが例示できる。有機ハロゲン化合物、有機リン化合物以外の有機物質としては、具体的には、界面活性剤や油類などの炭化水素類、アルデヒド類、メルカプタン類、アルコール類、アミン類、アミノ酸、蛋白質が例示できる。また、窒素化合物としては、具体的には、アンモニア、窒素酸化物が例示できる。バンドギャップ以上のエネルギーを持つ波長の光としては、紫外線を含有した光が好ましく、たとえば、太陽光や蛍光灯、ブラックライト、ハロゲンランプ、キセノンフラッシュランプ、水銀灯などの光を用いることができる。特に、300〜400nmの近紫外線を含有した光が好ましい。光の照射量や照射時間などは処理対象物質の量などによって適宜設定できる。
【0013】
【実施例】
以下に本発明の実施例を示すが、本発明はこれに限定されるものではない。
実施例1
2.5モル/リットルの硫酸チタニル水溶液を90℃、3時間保持して加水分解した。このようにして得た加水分解物を濾過し、洗浄した後、110℃、5時間乾燥して、酸化チタン(試料1)を得た。
なお、試料1のScherrerの式から求めた平均粒子径は6nmであった。
【0014】
前記の試料1をTiOに換算して100g/リットルの懸濁液とし、次いで、このTiOに対して、カリウム(K)が1.0重量%に相当する量の水酸化カリウムを添加し、攪拌した後、110℃で蒸発乾固した。このようにして得た生成物を600℃、1時間焼成して、本発明の光触媒(試料A)を得た。
なお、試料Aはカリウム化合物が酸化チタンの粒子表面に存在していると推察された。また、試料AのScherrerの式から求めた平均粒子径は22nmであった。
【0015】
実施例2
実施例1において、焼成温度を800℃としたこと以外は、実施例1と同様に処理して、本発明の光触媒(試料B)を得た。
なお、試料Bはカリウム化合物が少なくとも酸化チタンの粒子内部に存在していると推察された。また、試料BのScherrerの式から求めた平均粒子径は57nmであった。
【0016】
実施例3
前記の試料1をTiOに換算して100g/リットルの懸濁液とし、次いで、このTiOに対して、カリウム(K)が0.3重量%、アルミニウム(Al)が0.03重量%、リン(P)が0.2重量%に相当する量の水酸化カリウム、硫酸アルミニウム(Al(SO)、リン酸(HPO)をそれぞれ添加し、攪拌した後、110℃で蒸発乾固した。このようにして得た生成物を600℃、1時間焼成して、本発明の光触媒(試料C)を得た。
なお、試料Cはカリウム化合物、アルミニウム化合物とリン化合物とが酸化チタンの粒子表面に存在していると推察された。また、試料CのScherrerの式から求めた平均粒子径は18nmであった。
【0017】
実施例4
実施例3において、焼成温度を800℃としたこと以外は、実施例3と同様に処理して、本発明の光触媒(試料D)を得た。
なお、試料Dはカリウム化合物が少なくとも酸化チタンの粒子内部に存在し、アルミニウム化合物とリン化合物とが酸化チタンの粒子表面に存在していると推察された。また、試料DのScherrerの式から求めた平均粒子径は30nmであった。
【0018】
比較例1
前記の試料1を比較試料Eとして用いた。
【0019】
比較例2
前記の試料1を300℃、1時間焼成して、比較試料Fを得た。
なお、試料FのScherrerの式から求めた平均粒子径は12nmであった。
【0020】
比較例3
前記の試料1を600℃、1時間焼成して、比較試料Gを得た。
なお、試料GのScherrerの式から求めた平均粒子径は24nmであった。
【0021】
比較例4
前記の試料1を800℃、1時間焼成して、比較試料Hを得た。
なお、試料HのScherrerの式から求めた平均粒子径は52nmであった。
【0022】
比較例5
前記の試料1をTiOに換算して100g/リットルの懸濁液とし、次いで、このTiOに対して、アルミニウム(Al)が0.03重量%に相当する量の硫酸アルミニウム(Al(SO)を添加し、攪拌した後、110℃で蒸発乾固した。このようにして得た生成物を600℃、1時間焼成して、比較試料Iを得た。
なお、試料IのScherrerの式から求めた平均粒子径は23nmであった。
【0023】
比較例6
前記の試料1をTiOに換算して100g/リットルの懸濁液とし、次いで、このTiOに対してリン(P)が0.2重量%に相当する量のリン酸(HPO)を添加し、攪拌した後、110℃で蒸発乾固した。このようにして得た生成物を600℃、1時間焼成して、比較試料Jを得た。
なお、試料JのScherrerの式から求めた平均粒子径は18nmであった。
【0024】
実施例および比較例で得られた試料(A〜J)の光触媒機能を以下のようにして調べた。
各試料0.1gを純水に分散させ、TiOに換算して4g/リットルの懸濁液とした。これらの懸濁液25mlに2−プロパノール25mlを添加した後、ブラックライト(ピーク波長365nm)を2時間照射して2−プロパノールの光触媒反応を行った。光量は2mW/cmであった。反応前の2−プロパノールと反応後の2−プロパノールの濃度から、各々の試料による分解速度を算出した。その結果を表1に示す。
【0025】
【表1】

Figure 0003567004
【0026】
また、実施例および比較例で得られた試料(D、H)のアンモニアおよび/またはアンモニウムイオンを含有した水溶液の処理試験を行った。すなわち、NHおよびNH の合計濃度が1.67mmol/lの液(pH=7.0)250mlに試料を1g入れ懸濁液とした。この懸濁液に100W高圧水銀ランプから放射する紫外線を照射した。なお、照射面積は137.4cmであり、試料に照射される平均光量は41mW/cmであった。紫外線を5時間照射して、反応前のNHおよびNH の合計濃度と反応後のそれとから、各々の試料による分解速度を算出した。その結果を表2に示す。
【0027】
【表2】
Figure 0003567004
【0028】
これらの結果から明らかなように、本発明の光触媒は優れた光触媒機能を有し、かつ、熱による光触媒機能の劣化が少ないことがわかった。特に、カリウム化合物が少なくとも酸化チタンの粒子内部に存在すると優れた光触媒機能を有することがわかった。この結果より、本発明の光触媒は、熱による光触媒機能の劣化が少ないことから、本発明の光触媒を焼成して支持体に固定する場合にも好適なものであることがわかった。
【0029】
本発明の光触媒を支持体に固定化するには、酸化チタンとカリウム化合物と、さらには、必要に応じてアルミニウム化合物および/またはリン化合物とを接触させて生成物を得、次いで、該生成物を支持体に付着させ、しかるのち、500〜900℃の温度で焼成する方法が簡便であることから好ましい方法である。
前記の生成物を支持体に付着させるには、生成物の懸濁液を調整し、ディップコーティング法、スプレーコーティング法、スピナーコーティング法、ブレードコーティング法、ローラーコーティング法、ワイヤーバーコーティング法、リバースロールコーティング法などの通常の方法で生成物の懸濁液を支持体上に塗布し、必要に応じて乾燥する方法が好ましい。生成物の懸濁液を調整する際には、生成物を硝酸、塩酸などの一塩基酸で解膠したり、水酸化ナトリウム、水酸化アンモニウム、モノエタノールアミンなどのアルカリで分散させるのが好ましい。本発明の光触媒を固定化する支持体は、使用目的、用途などに応じて材質、形状、大きさを適宜選択することができる。材質としては、たとえば、ガラス、金属、セラミックスなどが挙げられ、形状、大きさとしては、たとえば、1枚の厚板、小さな断片、ビーズのような球状体、多孔質体などが挙げられる。光触媒を支持体に固定化するための焼成の温度は、好ましくは200〜1000℃、より好ましくは400〜900℃、もっとも好ましくは500〜900℃である。焼成温度が500〜900℃の範囲であれば、光触媒を支持体に強固に固定化することができるとともに、優れた光触媒機能を有する光触媒体を得ることができる。
【0030】
【発明の効果】
本発明は、カリウム化合物が酸化チタン粒子の内部および/またはその表面に含有してなる光触媒であって、カリウム化合物を酸化チタン粒子の内部および/またはその表面に含有させることにより酸化チタンの光触媒機能を向上させ、優れた光触媒機能を有し、かつ、熱による光触媒機能の劣化が少ない酸化チタン光触媒とすることができる。
【0031】
また、本発明はカリウム化合物と酸化チタンのほか、アルミニウム化合物および/またはリン化合物を含有させることにより酸化チタンの光触媒機能を向上させ、優れた光触媒機能を有し、かつ、熱による光触媒機能の劣化が少ない酸化チタン光触媒とすることができる。特に、アルミニウム化合物および/またはリン化合物とカリウム化合物とを酸化チタン粒子の内部および/またはその表面に含有させると、より一層酸化チタンの光触媒機能を向上させることができるため、好ましい実施態様である。
【0032】
これらの光触媒は、それらの光触媒機能を利用して人体や生活環境に悪影響を及ぼす物質やその可能性がある物質を迅速、かつ、効率よく除去することができるので、工業用途ばかりではなく一般家庭用の脱臭体、殺菌体などとして極めて有用なものである。また、本発明の光触媒は、安全性が高く、さらに、廃棄しても環境を汚さないため、種々の用途に用いることができる。
【0033】
さらに、本発明は、酸化チタンとカリウム化合物と、さらには必要に応じてアルミニウム化合物および/またはリン化合物とを接触させて生成物を得、次いで、該生成物を500〜900℃の温度で焼成する光触媒の製造方法であって、優れた光触媒機能を有する光触媒を簡便に製造することができる。
【0034】
さらに、本発明の光触媒を支持体に固定化するには、酸化チタンとカリウム化合物と、さらに必要に応じてアルミニウム化合物および/またはリン化合物とを接触させて生成物を得、次いで、該生成物を支持体に付着させ、500〜900℃の温度で焼成する固定化した光触媒の製造方法であって、優れた光触媒機能を有する固定化光触媒を簡便に製造することができる。[0001]
[Industrial applications]
The present invention relates to a photocatalyst having an excellent photocatalytic function and a method for producing the same.
[0002]
[Prior art]
When the photocatalyst is irradiated with light having a wavelength having energy equal to or greater than the band gap, photoexcitation generates electrons in the conduction band and holes in the valence band. The strong reducing power of electrons and the strong oxidizing power of holes generated by the photoexcitation are used for reactions such as decomposition and purification of harmful substances, decomposition of water, sterilization, and synthesis of organic substances. For example, Japanese Patent Publication No. 2-9850 describes that a photocatalyst is used to decompose and purify harmful substances in waste. Further, Japanese Patent Publication No. 4-78326 describes that a photocatalyst is used to deodorize toilet odor, pet odor, cigarette odor, cooking odor, body odor and the like. Further, Japanese Patent Publication No. 29393/1990 describes that a predetermined voltage generated by light excitation is applied to a cell to kill the cell.
[0003]
[Problems to be solved by the invention]
In order to use the photocatalyst in the actual reaction, it is necessary to prevent the photocatalyst from scattering from the reaction system during the reaction, and it is necessary to separate the photocatalyst from the reaction system after the reaction is completed. Used while fixed on the body. In order to fix the photocatalyst, a method of adhering the photocatalyst to a support and then calcining at a temperature of 200 to 1000 ° C is usually employed. However, when the photocatalyst is fired at a high temperature, there is a problem that the photocatalytic function is remarkably reduced as compared with that before firing.
In addition, photocatalysts that do not decrease in photocatalytic function even at high temperature conditions have been demanded because photocatalysts are increasingly used in high-temperature reactions, and furthermore, a method of firing at high temperatures when regenerating photocatalysts is considered. ing.
Further, in order to shorten the reaction time and to reduce the size of the apparatus used for the reaction, a photocatalyst having a more excellent photocatalytic function has been long desired.
[0004]
[Means for Solving the Problems]
The present inventors have studied to obtain a titanium oxide photocatalyst with less deterioration of the photocatalytic function due to high-temperature sintering and reaction conditions. As a result, (1) to contain a potassium compound inside and / or on the surface of titanium oxide particles (2) that a more preferable photocatalyst can be obtained by adding an aluminum compound and / or a phosphorus compound and a potassium compound to titanium oxide, and (3) the above (1) and (2). In order to produce the photocatalyst, the titanium oxide, the potassium compound and, if necessary, the aluminum compound and / or the phosphorus compound are brought into contact with each other to obtain a product. (4) In order to immobilize the photocatalyst of the present invention on a support, titanium oxide and potassium must be used. Contacting the compound with, if necessary, an aluminum compound and / or a phosphorus compound to obtain a product, then attaching the product to a support, and then calcining at a temperature of 500 to 900 ° C The inventors have found that the method is simple and preferable, and have completed the present invention.
[0005]
That is, the present invention is to provide a titanium oxide photocatalyst having an excellent photocatalytic function.
[0006]
The present invention is a titanium oxide photocatalyst containing a potassium compound inside and / or on the surface of titanium oxide particles. In the present invention, titanium oxide means various titanium oxides such as anatase-type titanium oxide, rutile-type titanium oxide, amorphous titanium oxide, metatitanic acid, and orthotitanic acid or titanium hydroxide, hydrous titanium oxide, and hydrated titanium oxide. I do. The average particle diameter of the titanium oxide is preferably from 1 to 500 nm, more preferably from 5 to 250 nm, and most preferably from 5 to 100 nm, calculated from the Scherrer's formula. In the present invention, the potassium compound includes compounds such as oxides, hydroxides, sulfates, halides, and nitrates of potassium, and further includes potassium ions. The content of potassium can be appropriately set, but is preferably 0.01 to 10% by weight, more preferably 0.1 to 10% by weight, when the potassium compound is converted to potassium (K) based on TiO 2 weight based on titanium oxide. It is from 03 to 5% by weight, most preferably from 0.05 to 3% by weight. If the amount of the potassium compound is less than 0.01% by weight or more than 10% by weight, the photocatalytic function may deteriorate, which is not preferable. The titanium oxide photocatalyst of the present invention is different from a mere mixture of titanium oxide and a potassium compound, in which the potassium compound is carried or coated on the surface of the titanium oxide particles, or the potassium compound is doped inside the titanium oxide particles. This is a particle that maintains a state in which a potassium compound is present inside the titanium oxide particles and / or on the surface of the titanium oxide particles, in particular, a state where it is present at least inside the titanium oxide particles.
[0007]
Further, the present invention is a titanium oxide photocatalyst comprising an aluminum compound and / or a phosphorus compound and a potassium compound. In the present invention, the aluminum compound includes compounds such as aluminum oxides, hydroxides, sulfates, halides, and nitrates, and further includes aluminum ions. In addition, a phosphorus compound includes phosphorus oxide, phosphoric acid or a salt thereof, condensed phosphoric acid or a salt thereof, phosphinic acid or a salt thereof, phosphonic acid or a salt thereof, diphosphonic acid or a salt thereof, hypophosphoric acid or a salt thereof, and the like. And further contains a phosphate ion. The content of the aluminum compound and / or the phosphorus compound can be appropriately set, but the aluminum compound is converted to the aluminum (Al) standard and the phosphorus compound is converted to the phosphorus (P) standard with respect to the weight of TiO 2 of titanium oxide. The total amount is preferably 0.01 to 1% by weight, more preferably 0.01 to 0.8% by weight, and most preferably 0.01 to 0.5% by weight. If the total amount of the aluminum compound and the phosphorus compound is less than 0.01% by weight or more than 1% by weight, the photocatalytic function may be reduced, which is not preferable. As described above, the content of the potassium compound when the aluminum compound and / or the phosphorus compound is contained is preferably 0.01 to 10% by weight, more preferably 0.1 to 10% by weight, based on the weight of TiO 2 of titanium oxide. It is from 03 to 5% by weight, most preferably from 0.05 to 3% by weight. In order to contain the aluminum compound and / or the phosphorus compound, the aluminum compound and the phosphorus compound may be mixed with titanium oxide, supported or coated on the surface of the titanium oxide particles, or doped inside the titanium oxide particles. it can. In the present invention, the aluminum compound and / or the phosphorus compound are present together with the potassium compound inside the titanium oxide particles and / or on the surface of the titanium oxide particles. It is preferable that the compound is present on the particle surface and the potassium compound is present at least inside the titanium oxide particle.
[0008]
In the present invention, a metal such as copper, zinc, vanadium, iron, cobalt, nickel, ruthenium, rhodium, palladium, silver, gold, platinum or the like, in addition to a potassium compound or an aluminum compound and / or a phosphorus compound as required. Alternatively, those compounds may be contained in a titanium oxide photocatalyst.
[0009]
In order to produce the photocatalyst of the present invention in which the potassium compound is contained inside the titanium oxide particles and / or on the surface of the titanium oxide particles, (1) a solution of the potassium compound is made of titanium oxide or a support holding titanium oxide. (2) a titanium compound such as titanium sulfate, titanyl sulfate, titanium sulfate, titanium chloride, or an organic titanium compound, if necessary, in the presence of the potassium compound. A potassium compound is present inside and / or on the surface of titanium oxide particles by hydrolysis or neutralization in the presence of seeds for nucleation, and (3) the method of (1) or (2) above. The method of baking the product obtained in the above at a temperature of 500 to 900 ° C. is preferred. In particular, when the product obtained by the method (1) is calcined at a temperature of 500 to 900 ° C., the potassium compound can be present at least inside the titanium oxide particles, which is a preferable method.
[0010]
In the present invention, the product obtained by the above methods (1) to (3) can be used as the photocatalyst of the present invention. However, if necessary, the product may be separated or washed. , And may be dried.
[0011]
In order to produce a photocatalyst containing an aluminum compound and / or a phosphorus compound in addition to a potassium compound and titanium oxide, a method similar to the above-mentioned method for producing a photocatalyst containing a potassium compound and titanium oxide is used. be able to. That is, in the methods (1) to (3), an aluminum compound and / or a phosphorus compound may be used together with the potassium compound. In particular, in the present invention, when a product of an aluminum compound and / or a phosphorus compound, a potassium compound, and titanium oxide obtained according to the above methods (1) and (2) is fired at a temperature of 500 to 900 ° C. , An aluminum compound, a phosphorus compound, and a potassium compound can be present inside the titanium oxide particles and / or on the surface of the titanium oxide particles. In particular, when the aluminum compound and the phosphorus compound are present on the titanium oxide particles, This is a preferable method because it can be present inside the titanium oxide particles.
[0012]
In order to use the photocatalyst of the present invention for various photocatalytic reactions such as a synthesis reaction of an organic substance and a decomposition reaction of a harmful substance, the photocatalyst of the present invention has energy equal to or more than its band gap in the presence of the substance to be treated. Irradiate light of wavelength. The photocatalyst of the present invention can be used in a state suspended in a solvent, a state in which the photocatalyst is in a powder state, a state in which the powder is crushed, or a state in which the powder is formed, depending on the use scene. The harmful substances that are decomposed or oxidized and removed by the photocatalyst of the present invention include substances that have a negative effect on the human body and living environment, and substances that may cause such harmful substances. For example, various biological oxygen demanding substances, air pollutants Examples of such substances include environmental pollutants, such as herbicides, fungicides, insecticides, and various pesticides such as nematicides, and microorganisms such as bacteria, actinomycetes, fungi, algae, and molds. Examples of the environmental pollutants include organic halogen compounds, organic phosphorus compounds and other organic compounds, and inorganic compounds such as nitrogen compounds, sulfur compounds, cyanide compounds, and chromium compounds. Specific examples of the organic halogen compound include polychlorinated biphenyl, freon, trihalomethane, trichloroethylene, and tetrachloroethylene. Specific examples of the organic substance other than the organic halogen compound and the organic phosphorus compound include hydrocarbons such as surfactants and oils, aldehydes, mercaptans, alcohols, amines, amino acids, and proteins. In addition, specific examples of the nitrogen compound include ammonia and nitrogen oxides. As light having a wavelength having an energy equal to or greater than the band gap, light containing ultraviolet light is preferable. For example, light from sunlight, a fluorescent lamp, a black light, a halogen lamp, a xenon flash lamp, a mercury lamp, or the like can be used. In particular, light containing near-ultraviolet light of 300 to 400 nm is preferable. The irradiation amount and irradiation time of light can be appropriately set depending on the amount of the substance to be treated.
[0013]
【Example】
Examples of the present invention will be described below, but the present invention is not limited to these examples.
Example 1
A 2.5 mol / liter aqueous solution of titanyl sulfate was hydrolyzed at 90 ° C. for 3 hours. The hydrolyzate thus obtained was filtered, washed, and dried at 110 ° C. for 5 hours to obtain titanium oxide (sample 1).
The average particle diameter of Sample 1 determined from the Scherrer equation was 6 nm.
[0014]
Sample 1 was converted into a suspension of 100 g / liter in terms of TiO 2 , and then potassium hydroxide was added to the TiO 2 in an amount corresponding to 1.0% by weight of potassium (K). After stirring, the mixture was evaporated to dryness at 110 ° C. The product thus obtained was calcined at 600 ° C. for 1 hour to obtain a photocatalyst (sample A) of the present invention.
In addition, in sample A, it was inferred that the potassium compound was present on the surface of the titanium oxide particles. The average particle size of Sample A determined from the Scherrer's equation was 22 nm.
[0015]
Example 2
A photocatalyst of the present invention (sample B) was obtained in the same manner as in Example 1, except that the firing temperature was changed to 800 ° C.
Sample B was presumed to contain a potassium compound at least inside the titanium oxide particles. The average particle size of Sample B determined from the Scherrer's equation was 57 nm.
[0016]
Example 3
The above sample 1 was converted into a suspension of 100 g / liter in terms of TiO 2 , and then 0.3% by weight of potassium (K) and 0.03% by weight of aluminum (Al) based on the TiO 2 . , Potassium hydroxide, aluminum sulfate (Al 2 (SO 4 ) 3 ), and phosphoric acid (H 3 PO 4 ) in an amount corresponding to 0.2% by weight of phosphorus (P) were added, and the mixture was stirred. Evaporated to dryness at ℃. The product thus obtained was calcined at 600 ° C. for 1 hour to obtain a photocatalyst (sample C) of the present invention.
In sample C, it was assumed that a potassium compound, an aluminum compound and a phosphorus compound were present on the surface of the titanium oxide particles. The average particle size of Sample C determined from the Scherrer's equation was 18 nm.
[0017]
Example 4
A photocatalyst of the present invention (sample D) was obtained in the same manner as in Example 3, except that the calcination temperature was changed to 800 ° C.
In sample D, it was inferred that the potassium compound was present at least inside the titanium oxide particles, and the aluminum compound and the phosphorus compound were present on the surface of the titanium oxide particles. The average particle diameter of Sample D determined from the Scherrer's equation was 30 nm.
[0018]
Comparative Example 1
Sample 1 described above was used as Comparative Sample E.
[0019]
Comparative Example 2
The sample 1 was fired at 300 ° C. for 1 hour to obtain a comparative sample F.
The average particle size of Sample F determined by the Scherrer equation was 12 nm.
[0020]
Comparative Example 3
The sample 1 was fired at 600 ° C. for 1 hour to obtain a comparative sample G.
The average particle size of Sample G determined by Scherrer's equation was 24 nm.
[0021]
Comparative Example 4
The sample 1 was fired at 800 ° C. for 1 hour to obtain a comparative sample H.
The average particle size of Sample H determined from the Scherrer's equation was 52 nm.
[0022]
Comparative Example 5
A suspension of 100 g / liter in terms of the sample 1 of the on TiO 2, then, for this TiO 2, the amount of aluminum sulphate aluminum (Al) is equivalent to 0.03 wt% (Al 2 ( After adding SO 4 ) 3 ) and stirring, it was evaporated to dryness at 110 ° C. The product thus obtained was calcined at 600 ° C. for 1 hour to obtain Comparative Sample I.
The average particle size of Sample I determined by the Scherrer's formula was 23 nm.
[0023]
Comparative Example 6
The above sample 1 was converted into a suspension of 100 g / liter in terms of TiO 2 , and then phosphoric acid (H 3 PO 4 ) was added in an amount corresponding to 0.2% by weight of phosphorus (P) based on the TiO 2 . ) Was added and stirred, and then evaporated to dryness at 110 ° C. The product thus obtained was calcined at 600 ° C. for 1 hour to obtain Comparative Sample J.
The average particle size of Sample J determined by Scherrer's equation was 18 nm.
[0024]
The photocatalytic functions of the samples (A to J) obtained in Examples and Comparative Examples were examined as follows.
Each sample 0.1g is dispersed in pure water to obtain a suspension of 4g / l in terms of TiO 2. After adding 25 ml of 2-propanol to 25 ml of these suspensions, black light (peak wavelength 365 nm) was irradiated for 2 hours to perform a photocatalytic reaction of 2-propanol. The light amount was 2 mW / cm 2 . From the concentrations of 2-propanol before the reaction and 2-propanol after the reaction, the decomposition rate of each sample was calculated. Table 1 shows the results.
[0025]
[Table 1]
Figure 0003567004
[0026]
In addition, treatment tests of aqueous solutions containing ammonia and / or ammonium ions of the samples (D, H) obtained in Examples and Comparative Examples were performed. That is, 1 g of a sample was placed in 250 ml of a liquid (pH = 7.0) having a total concentration of NH 3 and NH 4 + of 1.67 mmol / l to form a suspension. The suspension was irradiated with ultraviolet rays emitted from a 100 W high-pressure mercury lamp. The irradiation area was 137.4Cm 2, the average amount of light applied to the sample was 41mW / cm 2. Ultraviolet rays were irradiated for 5 hours, and the decomposition rate of each sample was calculated from the total concentration of NH 3 and NH 4 + before the reaction and that after the reaction. Table 2 shows the results.
[0027]
[Table 2]
Figure 0003567004
[0028]
As is clear from these results, it was found that the photocatalyst of the present invention has an excellent photocatalytic function and that the deterioration of the photocatalytic function by heat is small. In particular, it was found that when the potassium compound was present at least inside the titanium oxide particles, it had an excellent photocatalytic function. From these results, it was found that the photocatalyst of the present invention is suitable for the case where the photocatalyst of the present invention is calcined and fixed to a support, since the photocatalytic function is hardly deteriorated by heat.
[0029]
In order to immobilize the photocatalyst of the present invention on a support, a product is obtained by contacting a titanium oxide and a potassium compound, and further, if necessary, with an aluminum compound and / or a phosphorus compound. Is preferred because it is simple to adhere to a support and then calcined at a temperature of 500 to 900 ° C.
To adhere the product to the support, the suspension of the product is prepared, dip coating method, spray coating method, spinner coating method, blade coating method, roller coating method, wire bar coating method, reverse roll A method in which a product suspension is applied to a support by a usual method such as a coating method, and dried if necessary, is preferred. When preparing a suspension of the product, the product is preferably peptized with a monobasic acid such as nitric acid or hydrochloric acid, or dispersed in an alkali such as sodium hydroxide, ammonium hydroxide or monoethanolamine. . The material, shape and size of the support for immobilizing the photocatalyst of the present invention can be appropriately selected according to the purpose of use, application, and the like. Examples of the material include glass, metal, and ceramics, and examples of the shape and size include a thick plate, a small piece, a spherical body such as beads, and a porous body. The firing temperature for immobilizing the photocatalyst on the support is preferably from 200 to 1000C, more preferably from 400 to 900C, and most preferably from 500 to 900C. When the firing temperature is in the range of 500 to 900 ° C., the photocatalyst can be firmly fixed to the support, and a photocatalyst having an excellent photocatalytic function can be obtained.
[0030]
【The invention's effect】
The present invention relates to a photocatalyst comprising a potassium compound inside and / or on the surface of titanium oxide particles, and a photocatalytic function of titanium oxide by containing a potassium compound inside and / or on the surface of titanium oxide particles. And a titanium oxide photocatalyst having an excellent photocatalytic function and having little deterioration of the photocatalytic function due to heat.
[0031]
In addition, the present invention improves the photocatalytic function of titanium oxide by containing an aluminum compound and / or a phosphorus compound in addition to a potassium compound and titanium oxide, has an excellent photocatalytic function, and deteriorates the photocatalytic function due to heat. With less titanium oxide photocatalyst. In particular, when an aluminum compound and / or a phosphorus compound and a potassium compound are contained inside and / or on the surface of titanium oxide particles, the photocatalytic function of titanium oxide can be further improved, which is a preferred embodiment.
[0032]
These photocatalysts can quickly and efficiently remove substances that have a negative effect on the human body and living environment and substances that have the potential to make use of their photocatalytic functions. It is extremely useful as a deodorant, sterilizer, etc. Further, the photocatalyst of the present invention has high safety and does not pollute the environment even when discarded, so that it can be used for various applications.
[0033]
Furthermore, the present invention provides a product by contacting titanium oxide with a potassium compound and, if necessary, an aluminum compound and / or a phosphorus compound, and then calcining the product at a temperature of 500 to 900 ° C. A photocatalyst having excellent photocatalytic function can be easily produced.
[0034]
Further, in order to immobilize the photocatalyst of the present invention on a support, a product is obtained by contacting titanium oxide with a potassium compound and, if necessary, an aluminum compound and / or a phosphorus compound. Is immobilized on a support and calcined at a temperature of 500 to 900 ° C. to produce an immobilized photocatalyst having an excellent photocatalytic function.

Claims (9)

カリウム化合物が酸化チタン粒子の内部および/またはその表面に含有してなることを特徴とする光触媒。A photocatalyst comprising a potassium compound contained inside and / or on the surface of titanium oxide particles. アルミニウム化合物および/またはリン化合物とカリウム化合物と酸化チタンを含有してなることを特徴とする光触媒。A photocatalyst comprising an aluminum compound and / or a phosphorus compound, a potassium compound and titanium oxide. アルミニウム化合物および/またはリン化合物とカリウム化合物とが酸化チタン粒子の内部および/またはその表面に含有してなることを特徴とする請求項2に記載の光触媒。3. The photocatalyst according to claim 2, wherein the aluminum compound and / or the phosphorus compound and the potassium compound are contained inside and / or on the surface of the titanium oxide particles. 酸化チタンのTiO重量基準に対して、カリウム化合物をカリウム基準に換算して0.01〜10重量%含有してなることを特徴とする請求項1ないし3のいずれか1項に記載の光触媒。The photocatalyst according to any one of claims 1 to 3, wherein the titanium oxide contains 0.01 to 10% by weight of a potassium compound in terms of potassium based on 2 % by weight of TiO of titanium oxide. . 酸化チタンのTiO重量基準に対して、アルミニウム化合物とリン化合物とをそれぞれアルミニウム基準、リン基準に換算した合量が0.01〜1重量%含有してなることを特徴とする請求項2または3に記載の光触媒。 3. The composition according to claim 2, wherein the total amount of the aluminum compound and the phosphorus compound in terms of aluminum and phosphorus is 0.01 to 1% by weight, based on the weight of TiO 2 of titanium oxide. 3. The photocatalyst according to 3. 酸化チタンとカリウム化合物とを接触させて生成物を得、次いで該生成物を500〜900℃の温度で焼成することを特徴とする光触媒の製造方法。A method for producing a photocatalyst, comprising contacting titanium oxide with a potassium compound to obtain a product, and then calcining the product at a temperature of 500 to 900 ° C. 酸化チタンとカリウム化合物とを接触させて生成物を得、次いで該生成物を支持体に付着させ、500〜900℃の温度で焼成することを特徴とする支持体に固定化した光触媒の製造方法。A method for producing a photocatalyst immobilized on a support, comprising contacting titanium oxide with a potassium compound to obtain a product, and then attaching the product to a support and calcining at 500 to 900 ° C. . アルミニウム化合物および/またはリン化合物とカリウム化合物と酸化チタンとを接触させて生成物を得、次いで該生成物を500〜900℃の温度で焼成することを特徴とする光触媒の製造方法。A method for producing a photocatalyst, comprising contacting an aluminum compound and / or a phosphorus compound with a potassium compound and titanium oxide to obtain a product, and then calcining the product at a temperature of 500 to 900 ° C. アルミニウム化合物および/またはリン化合物とカリウム化合物と酸化チタンとを接触させて生成物を得、次いで該生成物を支持体に付着させ、500〜900℃の温度で焼成することを特徴とする支持体に固定化した光触媒の製造方法。A support obtained by contacting an aluminum compound and / or a phosphorus compound with a potassium compound and titanium oxide to obtain a product, then adhering the product to a support and calcining at a temperature of 500 to 900 ° C. Of producing a photocatalyst immobilized on a substrate.
JP33945194A 1994-12-29 1994-12-29 Photocatalyst and method for producing the same Expired - Fee Related JP3567004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33945194A JP3567004B2 (en) 1994-12-29 1994-12-29 Photocatalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33945194A JP3567004B2 (en) 1994-12-29 1994-12-29 Photocatalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08182934A JPH08182934A (en) 1996-07-16
JP3567004B2 true JP3567004B2 (en) 2004-09-15

Family

ID=18327595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33945194A Expired - Fee Related JP3567004B2 (en) 1994-12-29 1994-12-29 Photocatalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP3567004B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4305001B2 (en) * 1996-09-20 2009-07-29 株式会社日立製作所 Articles with a photocatalytic film
JP3511832B2 (en) * 1997-02-21 2004-03-29 株式会社村田製作所 Titanium compound for photochemical reaction and method for producing the same
JP3863621B2 (en) * 1997-02-24 2006-12-27 日東電工株式会社 Adhesive tape
JP3518251B2 (en) * 1997-05-20 2004-04-12 株式会社日立製作所 Oxide photocatalytic thin film and article provided with the same
JP3510082B2 (en) * 1997-05-20 2004-03-22 株式会社日立製作所 Electrical products equipped with low-temperature curing type highly active oxide photocatalytic thin films
CN1117630C (en) * 1997-12-25 2003-08-13 工业技术院 Photocatalyst powder for environmental purification, polymer composition contg. said powder and molded article thereof, and processes for producing these
JP5830527B2 (en) * 2011-04-04 2015-12-09 株式会社日立製作所 Semiconductor device, hydrogen production system, and methane or methanol production system

Also Published As

Publication number Publication date
JPH08182934A (en) 1996-07-16

Similar Documents

Publication Publication Date Title
JP2909403B2 (en) Titanium oxide for photocatalyst and method for producing the same
US5759948A (en) Titanium oxide for photocatalyst and method of producing the same
JP4018161B2 (en) Method for producing titanium oxide for photocatalyst and method for removing harmful substances using the same
JP2001070800A (en) Photocatalyst film composition and photocatalyst body using the same
JPH10305230A (en) Photocatalyst, its production and decomposing and removing method of harmful substance
JP3567004B2 (en) Photocatalyst and method for producing the same
JP4621859B2 (en) Method for producing porous photocatalyst
JP3579082B2 (en) Photocatalyst
JP3987395B2 (en) Visible light responsive photocatalyst, method for producing the same, and photocatalyst using the same
JP3276297B2 (en) Photocatalyst
JPH09239277A (en) Photocatalytic powder, photocatalyst using the powder and environment cleaning method using them
JPH08132075A (en) Treatment of aqueous solution containing ammonia and/or ammonium ion
JPH11179211A (en) Titanium dioxide-base photocatalyst, its production, multifunctional member and method for using same
JP3550947B2 (en) Method for producing and using photocatalytic multifunctional member
JPH0290923A (en) Deodorizing method
JP3431301B2 (en) Tile with photocatalytic function
JP3978635B2 (en) Titanyl oxalate coating liquid and method for producing photocatalytic element using the same
JP4296533B2 (en) Titanium oxide photocatalyst with excellent nitrogen oxide removal performance
JPH07241475A (en) Photocatalyst body, its production and method for removing harmful substance using the same
AU702827B2 (en) Titanium oxide photocatalyst and method of producing the same
JPH06205974A (en) Multiple oxide catalytic body
JP3864223B2 (en) Manufacturing method of environmental materials
JP2005075698A (en) Manufacturing method for titanium oxide composite material coated with silicate
JPH10323568A (en) Porous gel photocatalyst
JPH09271666A (en) Catalyst for purifying organochlorine compound in water

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees