JP2001229731A - Paint for forming transparent conductive layer - Google Patents

Paint for forming transparent conductive layer

Info

Publication number
JP2001229731A
JP2001229731A JP2000041887A JP2000041887A JP2001229731A JP 2001229731 A JP2001229731 A JP 2001229731A JP 2000041887 A JP2000041887 A JP 2000041887A JP 2000041887 A JP2000041887 A JP 2000041887A JP 2001229731 A JP2001229731 A JP 2001229731A
Authority
JP
Japan
Prior art keywords
gold
transparent conductive
fine particles
conductive layer
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000041887A
Other languages
Japanese (ja)
Other versions
JP3750461B2 (en
Inventor
Kenji Kato
賢二 加藤
Masaya Yukinobu
雅也 行延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2000041887A priority Critical patent/JP3750461B2/en
Priority to EP00118392A priority patent/EP1079413B1/en
Priority to DE60023614T priority patent/DE60023614T2/en
Priority to TW089117190A priority patent/TWI235757B/en
Priority to KR1020000049855A priority patent/KR100737923B1/en
Publication of JP2001229731A publication Critical patent/JP2001229731A/en
Priority to US10/329,573 priority patent/US6716480B2/en
Priority to US10/330,278 priority patent/US20030170448A1/en
Application granted granted Critical
Publication of JP3750461B2 publication Critical patent/JP3750461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Paints Or Removers (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a paint for forming a transparent conductive layer that has a high transmissivity and good mechanical strength, and can manufacture transparent conductive base board with a superior profile of transmitted light in the region of visible rays in addition to having such properties as a low resistance, low reflectivity, weather resistance and the like. SOLUTION: This paint for forming transparent conductive layer has a solvent and noble metal fine powders that contains gold fine powders with average diameter of 1 to 100 nm or gold to 5 to 95 wt.% suspended in this solution as the major component, and contains a compound having a mercaptan, sulfide or disulfide group.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ブラウン管(CR
T)、プラズマディスプレイパネル(PDP)、蛍光表示
管(VFD)、液晶ディスプレイ(LCD)等表示装置の前
面板等に利用される透明導電性基材の透明導電層形成用
塗液に係り、特に、高透過率で機械的強度に優れ、か
つ、低抵抗、低反射率並びに耐候性等の諸特性を有する
と共に、可視光線域での透過光線プロファイルに優れた
透明導電性基材の製造を可能とする透明導電層形成用塗
液の改良に関するものである。
The present invention relates to a cathode ray tube (CR)
T), a coating liquid for forming a transparent conductive layer of a transparent conductive substrate used for a front plate of a display device such as a plasma display panel (PDP), a fluorescent display tube (VFD), and a liquid crystal display (LCD). , High transmittance, excellent mechanical strength, low resistance, low reflectance, various properties such as weather resistance, and the production of a transparent conductive substrate with excellent transmission light profile in the visible light region. To improve the coating liquid for forming a transparent conductive layer.

【0002】[0002]

【従来の技術】近年のオフィスオートメーション(O
A)化によりオフィスに多くのOA機器が導入され、O
A機器のディスプレイと向き合って終日作業を行わねば
ならないという環境が最近珍しくない。
2. Description of the Related Art Recent office automation (O)
A) With the introduction of many OA equipment in the office,
In recent years, it is not unusual for an environment in which the user has to work all day facing the display of the device A.

【0003】ところで、OA機器の一例としてコンピュ
ータの陰極線管(上記ブラウン管とも称する:CRT)
等に接して仕事を行う場合、表示画面が見やすく、視覚
疲労を感じさせないことの外に、CRT表面の帯電によ
るほこりの付着や電撃ショックがないこと等が要求され
ている。更に、これ等に加えて最近ではCRTから発生
する低周波電磁波の人体に対する悪影響が懸念され、こ
のような電磁波が外部に漏洩しないことがCRTに対し
て望まれている。
As an example of an OA device, a cathode ray tube (CRT) of a computer is used as a computer.
When performing work in contact with, for example, it is required that the display screen is easy to see and does not cause visual fatigue, and that there is no adhesion of dust or electric shock due to electrification of the CRT surface. Further, in addition to these, recently, there is a concern that a low-frequency electromagnetic wave generated from the CRT may adversely affect the human body, and it is desired for the CRT not to leak such an electromagnetic wave to the outside.

【0004】そして、上記電磁波は偏向コイルやフライ
バックトランスから発生し、テレビジョンの大型化に伴
って益々大量の電磁波が周囲に漏洩する傾向にある。
[0004] The electromagnetic waves are generated from deflection coils and flyback transformers, and a larger amount of electromagnetic waves tends to leak to the surroundings as the television becomes larger.

【0005】ところで、磁界の漏洩は偏向コイルの形状
を変えるなどの工夫で大部分を防止することができる。
一方、電界の漏洩もCRTの前面ガラス表面に透明導電
層を形成することにより防止することが可能である。
The leakage of the magnetic field can be largely prevented by changing the shape of the deflection coil.
On the other hand, electric field leakage can be prevented by forming a transparent conductive layer on the front glass surface of the CRT.

【0006】このような電界の漏洩に対する防止方法
は、近年、帯電防止のために取られてきた対策と原理的
には同一である。しかし、上記透明導電層は、帯電防止
用に形成されていた導電層よりもはるかに高い導電性が
求められている。すなわち、帯電防止用には表面抵抗で
108Ω/□程度で十分とされているが、漏洩電界を防
ぐ(電界シールド)ためには、少なくとも106Ω/□
以下、好ましくは5×103Ω/□以下、さらに好まし
くは103Ω/□以下である低抵抗の透明導電層を形成
する必要がある。
The method of preventing such leakage of the electric field is in principle the same as the countermeasure that has been taken recently to prevent charging. However, the transparent conductive layer is required to have much higher conductivity than the conductive layer formed for antistatic. That is, a surface resistance of about 10 8 Ω / □ is sufficient for antistatic, but at least 10 6 Ω / □ for preventing a leakage electric field (electric field shield).
It is necessary to form a low-resistance transparent conductive layer having a resistivity of preferably 5 × 10 3 Ω / □ or less, more preferably 10 3 Ω / □ or less.

【0007】そこで、上記要求に対処するため、従来よ
りいくつかの提案がなされているが、その中でも低コス
トでかつ低い表面抵抗を実現できる方法として、導電性
微粒子をアルキルシリケート等の無機バインダーと共に
溶媒中に分散した透明導電層形成用塗液をCRTの前面
ガラスに塗布・乾燥後、200℃程度の温度で焼成する
方法が知られている。
Therefore, several proposals have been made in the past to address the above-mentioned demands. Among them, as a method of realizing low cost and low surface resistance, conductive fine particles are combined with an inorganic binder such as alkyl silicate. A method is known in which a coating liquid for forming a transparent conductive layer dispersed in a solvent is applied to the front glass of a CRT, dried, and then fired at a temperature of about 200 ° C.

【0008】そして、この透明導電層形成用塗液を用い
た方法は、真空蒸着やスパッタ法等他の透明導電層の形
成方法に比べてはるかに簡便であり、製造コストも低
く、CRTに処理可能な電界シールドとして極めて有利
な方法である。
The method using the coating liquid for forming a transparent conductive layer is much simpler than other methods for forming a transparent conductive layer such as vacuum vapor deposition and sputtering, the production cost is low, and the process on a CRT is performed. This is a very advantageous method as a possible electric field shield.

【0009】この方法に用いられる上記透明導電層形成
用塗液として、導電性微粒子にインジウム錫酸化物(I
TO)を適用したものが知られている。しかし、得られ
る膜の表面抵抗が104〜106Ω/□と高いため、漏洩
電界を十分に遮蔽するには電界キャンセル用の補正回路
が必要となることから、その分、製造コストが割高とな
る問題があった。一方、上記導電性微粒子に金属粉を用
いた透明導電層形成用塗液では、ITOを用いた塗液に
比べ、若干、膜の透過率が低くなるものの、102〜1
3Ω/□という低抵抗膜が得られる。従って、上述し
た補正回路が必要なくなるためコスト的に有利となり、
今後主流になると思われる。
As the coating liquid for forming a transparent conductive layer used in this method, indium tin oxide (I
One to which TO) is applied is known. However, since the surface resistance of the obtained film is as high as 10 4 to 10 6 Ω / □, a correction circuit for canceling the electric field is required to sufficiently shield the leakage electric field, so that the manufacturing cost is correspondingly high. There was a problem. On the other hand, in the transparent conductive layer forming coating liquid using a metal powder to the conductive fine particles, compared to a coating liquid using ITO, somewhat, although the transmittance of the film is low, 10 2-1
A low resistance film of 0 3 Ω / □ is obtained. Therefore, the above-described correction circuit becomes unnecessary, which is advantageous in terms of cost,
It is expected to become mainstream in the future.

【0010】そして、上記透明導電層形成用塗液に適用
される金属微粒子としては、特開平8−77832号公
報や特開平9−55175号公報等に示されるように空
気中で酸化され難い、銀、金、白金、ロジウム、パラジ
ウム等の貴金属に限られている。これは、貴金属以外の
金属微粒子、例えば、鉄、ニッケル、コバルト等が適用
された場合、大気雰囲気下でこれ等金属微粒子の表面に
酸化物皮膜が必ず形成されてしまい透明導電層として良
好な導電性が得られなくなるからである。
[0010] The metal fine particles applied to the transparent conductive layer forming coating liquid are hardly oxidized in the air as disclosed in JP-A-8-77832 and JP-A-9-55175. It is limited to noble metals such as silver, gold, platinum, rhodium and palladium. This is because when a metal fine particle other than a noble metal, for example, iron, nickel, cobalt or the like is applied, an oxide film is necessarily formed on the surface of the metal fine particle under an air atmosphere, and a good conductive property as a transparent conductive layer is obtained. This is because the property cannot be obtained.

【0011】尚、上述した銀、金、白金、ロジウム、パ
ラジウムなどの比抵抗を比較した場合、白金、ロジウ
ム、パラジウムの比抵抗は、それぞれ10.6、5.
1、10.8μΩ・cmで、銀、金の1.62、2.2
μΩ・cmに比べて高く、表面抵抗の低い透明導電層を
形成するには銀微粒子や金微粒子を適用した方が有利な
ため、上記金属微粒子として銀微粒子や金微粒子等が主
に利用されている。
When the specific resistances of silver, gold, platinum, rhodium, palladium and the like are compared, the specific resistances of platinum, rhodium and palladium are 10.6, 5.
1, 10.8 μΩcm, 1.62 of silver and gold, 2.2
Silver microparticles or gold microparticles are mainly used as the metal microparticles because it is more advantageous to apply silver microparticles or gold microparticles to form a transparent conductive layer having a higher than μΩcm and low surface resistance. I have.

【0012】但し、銀微粒子を適用した場合、硫化、酸
化や食塩水、紫外線等による劣化が激しく耐候性に問題
があるため、上記銀微粒子に代わって、最近、銀微粒子
表面を金等でコーティングした金コート銀微粒子や金と
金以外の複数の貴金属(例えば銀)から成る合金微粒子等
の金含有貴金属微粒子も提案されている。
However, when silver fine particles are applied, they are severely deteriorated by sulfurization, oxidation, salt solution, ultraviolet rays, etc., and have a problem in weather resistance. Therefore, instead of the silver fine particles, the surface of the silver fine particles has recently been coated with gold or the like. Gold-containing noble metal fine particles such as gold-coated silver fine particles and alloy fine particles composed of a plurality of noble metals other than gold and gold (for example, silver) have also been proposed.

【0013】また、一方では表示画面を見易くするため
に、フェイスパネル表面に防眩処理を施して画面の反射
を抑えることも行われている。この防眩処理は、微細な
凹凸を設けて表面の拡散反射を増加させる方法によって
もなされるが、この方法を用いた場合、解像度が低下し
て画質が落ちるためあまり好ましい方法とはいえない。
従って、むしろ反射光が入射光に対して破壊的干渉を生
ずるように、透明皮膜の屈折率と膜厚とを制御する干渉
法によって防眩処理を行うことが好ましい。このような
干渉法により低反射効果を得るため、一般的には高屈折
率膜と低屈折率膜の光学的膜厚をそれぞれ1/4λと1
/4λ、あるいは1/2λと1/4λに設定した二層構
造膜が採用されており、前述のインジウム錫酸化物(I
TO)微粒子からなる膜もこの種の高屈折率膜として用
いられている。
On the other hand, in order to make the display screen easier to see, a reflection of the screen is suppressed by performing an anti-glare treatment on the face panel surface. This antiglare treatment is also performed by a method of increasing the diffuse reflection of the surface by providing fine irregularities, but this method is not a very preferable method because the resolution is reduced and the image quality is reduced.
Therefore, it is preferable to perform the anti-glare treatment by an interference method that controls the refractive index and the film thickness of the transparent film so that the reflected light causes destructive interference with the incident light. In order to obtain a low reflection effect by such an interference method, generally, the optical thicknesses of the high refractive index film and the low refractive index film are set to 1 / 4λ and 1 respectively.
/ 4λ, or a two-layer structure film set to λλ and 1 / λ is adopted, and the indium tin oxide (I
A film made of (TO) fine particles is also used as this kind of high refractive index film.

【0014】尚、金属においては、光学定数(n−i
k,n:屈折率,i2=−1,k:消衰係数)のうち、
nの値は小さいがkの値がITO等と比べ極端に大きい
ため、金属微粒子からなる透明導電層を用いた場合で
も、ITO(高屈折率膜)と同様に、二層構造膜で光の
干渉による反射防止効果が得られる。
In the case of metal, the optical constant (ni)
k, n: refractive index, i 2 = -1, k: extinction coefficient)
Although the value of n is small, but the value of k is extremely large as compared with ITO or the like, even when a transparent conductive layer made of metal fine particles is used, like a ITO (high-refractive-index film), light of a two-layer structure film is used. An anti-reflection effect due to interference is obtained.

【0015】[0015]

【発明が解決しようとする課題】ところで、金属膜は、
本来、可視光線に対し透明でないため、上述した透明導
電層の透過率を上げるためには透明導電層の膜厚を可能
なかぎり薄くすることが望ましい。
By the way, the metal film is
Since the transparent conductive layer is originally not transparent to visible light, it is desirable to reduce the thickness of the transparent conductive layer as much as possible in order to increase the transmittance of the transparent conductive layer.

【0016】しかし、透明導電層の膜厚を極端に薄くし
て金属微粒子径の1〜3倍程度までにしてしまうと、透
明導電層内での金属微粒子の密度が低下するようにな
る。こうなると金属微粒子同士の接触が少なくなり、こ
の結果、導電パスが十分に形成されなくなるため透明導
電層における抵抗値の上昇を引起こす問題があった。
However, when the thickness of the transparent conductive layer is extremely thinned to be about 1 to 3 times the diameter of the metal fine particles, the density of the metal fine particles in the transparent conductive layer decreases. In such a case, the contact between the metal fine particles is reduced, and as a result, the conductive path is not sufficiently formed, which causes a problem that the resistance value of the transparent conductive layer is increased.

【0017】また、金は化学的に不活性なため、金属微
粒子として上記金微粒子あるいは金含有貴金属微粒子が
適用された透明導電層においては、これ等金微粒子若し
くは金含有貴金属微粒子と透明導電層の一部を構成する
酸化珪素等バインダーマトリックス間の結合が非常に弱
い。このため、透明導電層の膜厚がそれ程薄くない場合
においても膜の強度や耐候性が十分でない問題を有して
いた。
Further, since gold is chemically inert, a transparent conductive layer to which the above-mentioned gold fine particles or gold-containing noble metal fine particles are applied as the metal fine particles is formed of the gold fine particles or the gold-containing noble metal fine particles and the transparent conductive layer. The bond between the binder matrices, such as silicon oxide, which constitutes a part, is very weak. For this reason, there has been a problem that the strength and weather resistance of the transparent conductive layer are not sufficient even when the film thickness is not so small.

【0018】本発明はこの様な問題点に着目してなされ
たもので、その課題とするところは、高透過率で機械的
強度に優れ、かつ、低抵抗、低反射率並びに耐候性等の
諸特性を有すると共に、可視光線域での透過光線プロフ
ァイルに優れた透明導電性基材の製造を可能とする透明
導電層形成用塗液を提供することにある。
The present invention has been made in view of such problems, and has as its object to provide high transmittance, excellent mechanical strength, and low resistance, low reflectance, and weather resistance. An object of the present invention is to provide a coating liquid for forming a transparent conductive layer, which has various properties and enables production of a transparent conductive substrate having an excellent transmission light profile in a visible light region.

【0019】[0019]

【課題を解決するための手段】すなわち、請求項1に係
る発明は、溶媒とこの溶媒に分散された平均粒径1〜1
00nmの金微粒子若しくは金を5〜95重量%含有す
る金含有貴金属微粒子を主成分とし、透明基板上に透明
導電層を形成する透明導電層形成用塗液を前提とし、メ
ルカプト基、スルフィド基またはジスルフィド基を有す
る化合物が含まれていることを特徴とし、また、請求項
2に係る発明は、請求項1記載の発明に係る透明導電層
形成用塗液を前提とし、上記金含有貴金属微粒子が、銀
微粒子の表面に金をコーティングした金コート銀微粒子
であることを特徴とし、請求項3に係る発明は、請求項
1または2記載の発明に係る透明導電層形成用塗液を前
提とし、無機バインダーが含まれていることを特徴とす
る。
That is, according to the first aspect of the present invention, there is provided a solvent and an average particle diameter of 1 to 1 dispersed in the solvent.
It is premised on a coating liquid for forming a transparent conductive layer for forming a transparent conductive layer on a transparent substrate, mainly containing gold fine particles of 00 nm or gold-containing noble metal fine particles containing 5 to 95% by weight of gold, and a mercapto group, a sulfide group or A compound having a disulfide group is contained, and the invention according to claim 2 is based on the premise that the coating liquid for forming a transparent conductive layer according to the invention according to claim 1 is used. Characterized in that it is gold-coated silver fine particles obtained by coating gold on the surface of silver fine particles, and the invention according to claim 3 is based on the premise of the transparent conductive layer forming coating liquid according to the invention according to claim 1 or 2, It is characterized by containing an inorganic binder.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
Embodiments of the present invention will be described below in detail.

【0021】金は化学的に安定で、耐候性、耐薬品性、
耐酸化性等に優れており、更に、比抵抗が銀、銅に次い
で低いため、上記透明導電層の金属微粒子として金微粒
子若しくは金含有貴金属微粒子を用いれば、透明導電層
における良好な導電性と高い化学的安定性の両立が図れ
る。しかし、金属は、元来、可視光において透明性をも
たないため、透明導電層を形成するには金属微粒子を可
視光の波長より小さくしかつ膜厚を非常に薄くしなけれ
ばならない。また、高透過率化を目指すには、膜厚を更
に薄くしていかなければならないが、透明導電層におけ
る膜厚を金属微粒子径の1〜3倍程度までに薄くする
と、透明導電層内での金属微粒子の密度が低くなり、導
電パスが十分に形成されなくなって抵抗値が上昇してし
まう。
Gold is chemically stable, weather resistant, chemical resistant,
It is excellent in oxidation resistance and the like, and further, since the specific resistance is the second lowest after silver and copper, if gold fine particles or gold-containing noble metal fine particles are used as the metal fine particles of the transparent conductive layer, good conductivity in the transparent conductive layer and High chemical stability can be achieved at the same time. However, metal originally has no transparency in visible light, and therefore, to form a transparent conductive layer, the metal fine particles must be made smaller than the wavelength of visible light and very thin. In addition, in order to achieve high transmittance, the film thickness must be further reduced. However, when the film thickness of the transparent conductive layer is reduced to about 1 to 3 times the diameter of the metal fine particles, the thickness of the transparent conductive layer is reduced. The density of the metal fine particles becomes low, the conductive path is not sufficiently formed, and the resistance value increases.

【0022】この問題を解決する方法としては、膜厚が
非常に薄い透明導電層形成中において金属微粒子同士を
ある程度凝集させて高度に発達した網目状(ネットワー
ク)構造を形成する方法が考えられる。すなわち、この
様な網目状構造においては、金属微粒子から成る網目状
部分が導電パスとして機能する一方、網目状構造におい
て形成された穴の部分が光線透過率を向上させる機能を
果たすため、結果として低抵抗でかつ高透過率の透明導
電層を形成できると考えられる。そして、金微粒子若し
くは金含有貴金属微粒子が適用された従来の透明導電層
においても、この網目状構造は塗布後の成膜過程におい
て形成されていたが、透明導電層における膜厚が非常に
薄い場合においてはその形成が不十分となり低抵抗の透
明導電層を形成することが困難であった。
As a method of solving this problem, a method of forming a highly developed network-like (network) structure by aggregating metal fine particles to some extent during formation of a very thin transparent conductive layer is considered. That is, in such a network structure, the network portion formed of metal fine particles functions as a conductive path, while the hole portion formed in the network structure functions to improve light transmittance, and as a result, It is considered that a transparent conductive layer having low resistance and high transmittance can be formed. In a conventional transparent conductive layer to which gold fine particles or gold-containing noble metal fine particles are applied, the network structure is formed in a film forming process after coating. In this case, the formation was insufficient, and it was difficult to form a low-resistance transparent conductive layer.

【0023】本発明は、金と比較的強固な結合を形成す
るメルカプト基、スルフィド基またはジスルフィド基を
有する化合物を透明導電層形成用塗液内に配合した場
合、膜厚が非常に薄い透明導電層形成中においても、メ
ルカプト基、スルフィド基またはジスルフィド基を有す
る上記化合物が、金微粒子若しくは金含有貴金属微粒子
に作用して塗布後の成膜過程において上述した網目状構
造を容易に形成させる効果を有することを見出し完成さ
れたもので、従来よりも高透過率の領域でも低い抵抗値
を得ることが可能となる。
According to the present invention, when a compound having a mercapto group, a sulfide group or a disulfide group which forms a relatively strong bond with gold is blended in a coating liquid for forming a transparent conductive layer, the transparent conductive film having a very thin film thickness is obtained. Even during layer formation, the compound having a mercapto group, a sulfide group or a disulfide group acts on gold fine particles or gold-containing noble metal fine particles to easily form the above-described network structure in a film forming process after coating. It has been found that it has the above, and it is possible to obtain a low resistance value even in a region with a higher transmittance than before.

【0024】また、金微粒子若しくは金含有貴金属微粒
子における網目状構造の上記穴の部分を介して、透明基
板と酸化珪素等バインダーマトリックスとの接触面積が
増大するため透明基板とバインダーマトリックスの結合
が強くなり、この結果、透明導電層における膜強度が高
くなる効果も同時に得ることができる。
Further, the contact area between the transparent substrate and the binder matrix such as silicon oxide is increased through the above-mentioned holes of the network structure in the gold fine particles or the gold-containing noble metal fine particles, so that the bonding between the transparent substrate and the binder matrix is strong. As a result, the effect of increasing the film strength in the transparent conductive layer can be obtained at the same time.

【0025】更に、メルカプト基、スルフィド基または
ジスルフィド基を有する化合物の種類によっては、金微
粒子若しくは金含有貴金属微粒子と比較的強固に結合し
た上記化合物を介し、金微粒子若しくは金含有貴金属微
粒子と酸化珪素等バインダーマトリックスとの結合が図
れるため、透明導電層における膜強度や耐候性の改善も
図れる。例えば、金−銀2成分系貴金属微粒子(すなわ
ち金含有貴金属微粒子)と酸化珪素のバインダーマトリ
ックスとで構成された透明導電層を屋外に放置する(但
し、この透明導電層はガラス基板上に形成されている)
と、雨水や太陽光中の紫外線により1〜2ヶ月で膜劣化
が起きて透明導電層における表面抵抗の上昇を生ずる
が、メルカプト基、スルフィド基またはジスルフィド基
を有する化合物が含まれた透明導電層形成用塗液を用い
て形成された透明導電層においては、金含有貴金属微粒
子の金含有量にもよるが3ヶ月以上の屋外放置でも透明
導電層は全く変化せず、優れた耐候性を示す。また、透
明導電層の膜強度についても、メルカプト基、スルフィ
ド基またはジスルフィド基を有する化合物が含まれた透
明導電層形成用塗液を用いて形成された透明導電層は従
来の透明導電層形成用塗液が適用された透明導電層より
優れている。
Further, depending on the type of the compound having a mercapto group, a sulfide group or a disulfide group, the fine gold particles or the fine gold-containing noble metal particles and the fine silicon-containing noble metal particles are bonded via the above-mentioned compound which is relatively strongly bonded to the fine gold particles or the fine gold-containing noble metal particles. Since bonding with a binder matrix and the like can be achieved, the film strength and weather resistance of the transparent conductive layer can be improved. For example, a transparent conductive layer composed of gold-silver binary noble metal fine particles (that is, gold-containing noble metal fine particles) and a silicon oxide binder matrix is left outdoors (however, this transparent conductive layer is formed on a glass substrate). ing)
In addition, the transparent conductive layer contains a compound having a mercapto group, a sulfide group or a disulfide group, although the film is deteriorated in 1 to 2 months due to rainwater or ultraviolet rays in sunlight and the surface resistance of the transparent conductive layer is increased. In the transparent conductive layer formed using the coating liquid for forming, the transparent conductive layer does not change at all even when left outdoors for 3 months or more, and shows excellent weather resistance, depending on the gold content of the gold-containing noble metal fine particles. . Further, regarding the film strength of the transparent conductive layer, a transparent conductive layer formed using a coating liquid for forming a transparent conductive layer containing a compound having a mercapto group, a sulfide group or a disulfide group is a conventional transparent conductive layer. It is superior to the transparent conductive layer to which the coating liquid is applied.

【0026】ここで、本発明における金微粒子若しくは
金含有貴金属微粒子はその平均粒径が1〜100nmで
あることを要する(請求項1)。上記微粒子において、
1nm未満の場合、この微粒子の製造は困難であり、か
つ、透明導電層形成用塗液中で凝集し易く実用的でない
からである。また、100nmを超えると、形成された
透明導電層の可視光線透過率が低くなり過ぎてしまい、
仮に、膜厚を薄く設定して可視光線透過率を高くした場
合でも、表面抵抗が高くなり過ぎてしまい実用的ではな
いからである。尚、ここで言う平均粒径とは、透過電子
顕微鏡(TEM)で観察される微粒子の平均粒径を示し
ている。
Here, the fine gold particles or fine gold-containing noble metal particles in the present invention need to have an average particle diameter of 1 to 100 nm (claim 1). In the above fine particles,
If it is less than 1 nm, the production of the fine particles is difficult, and the particles are easily aggregated in the coating liquid for forming a transparent conductive layer, which is not practical. Further, if it exceeds 100 nm, the visible light transmittance of the formed transparent conductive layer becomes too low,
This is because, even if the visible light transmittance is increased by setting the film thickness to be thin, the surface resistance becomes too high, which is not practical. Here, the average particle size indicates the average particle size of the fine particles observed by a transmission electron microscope (TEM).

【0027】また、上記金含有貴金属微粒子内の金の含
有量は5〜95重量%の範囲(請求項1)に設定され、
好ましくは50〜90重量%の範囲に設定するとよい。
金の含有量が5重量%未満だと、銀等金以外の貴金属に
対する金の保護効果が弱まって数年という長期で考えた
場合に紫外線等の影響による膜劣化が起こることがあ
り、95重量%を超えるとコスト的に難があるからであ
る。また、上記金含有貴金属微粒子としては、金と金以
外の複数の貴金属から成る上述した合金微粒子等が考え
られるが、中でも、銀微粒子表面に金をコーティングし
た金コート銀微粒子を挙げることができる(請求項2)。
The gold content in the gold-containing noble metal fine particles is set in the range of 5 to 95% by weight (claim 1).
Preferably, it is set in the range of 50 to 90% by weight.
If the content of gold is less than 5% by weight, the effect of protecting gold against noble metals other than gold such as silver is weakened, and when considered over a long period of several years, film deterioration may occur due to the influence of ultraviolet rays and the like, and the weight of 95% %, The cost is difficult. In addition, as the gold-containing noble metal fine particles, the above-described alloy fine particles composed of a plurality of noble metals other than gold and gold can be considered, and among them, gold-coated silver fine particles having silver fine particle surfaces coated with gold can be mentioned ( Claim 2).

【0028】次に、金属微粒子として金コート銀微粒子
が適用され、かつ、メルカプト基、スルフィド基または
ジスルフィド基を有する化合物が含まれた本発明に係る
透明導電層形成用塗液は以下のような方法で製造するこ
とができる。
Next, the coating liquid for forming a transparent conductive layer according to the present invention, in which gold-coated silver fine particles are applied as metal fine particles and which contain a compound having a mercapto group, a sulfide group or a disulfide group, is as follows. It can be manufactured by a method.

【0029】まず、既知の方法[例えば、Carey−Lea
法、Am.J.Sci.、37、47(1889)、Am.J.Sci.、38(188
9)]により銀微粒子のコロイド分散液を調製する。す
なわち、硝酸銀水溶液に、硫酸鉄(II)水溶液とクエン
酸ナトリウム水溶液の混合液を加えて反応させ、沈降物
を濾過・洗浄した後、純水を加えることにより簡単に銀
微粒子のコロイド分散液(Ag:0.1〜10重量%)
が調製される。この銀微粒子のコロイド分散液の調製方
法は平均粒径1〜100nmの銀微粒子が分散されたも
のであれば任意でありかつこれに限定されるものではな
い。次いで、得られた銀微粒子のコロイド分散液に還元
剤を加え、更に、アルカリ金属の金酸塩溶液とメルカプ
ト基、スルフィド基またはジスルフィド基を有する化合
物とを混合したものを加えることで、銀微粒子表面に金
がコーティングされた金コート銀微粒子が得られかつこ
の金コート銀微粒子とメルカプト基、スルフィド基また
はジスルフィド基を有する化合物とが反応してコーティ
ング層表面に上記化合物が結合され若しくはこの化合物
でコーティング層表面が覆われた金コート銀微粒子のコ
ロイド状分散液を得ることができる。
First, a known method [for example, Carey-Lea
Am. J. Sci., 37, 47 (1889), Am. J. Sci., 38 (188
9)] to prepare a colloidal dispersion of fine silver particles. That is, a mixed solution of an aqueous solution of iron (II) sulfate and an aqueous solution of sodium citrate is added to an aqueous solution of silver nitrate to cause a reaction, and the precipitate is filtered and washed, and then pure water is added to easily produce a colloidal dispersion of fine silver particles ( Ag: 0.1 to 10% by weight)
Is prepared. The method for preparing the colloidal dispersion liquid of silver fine particles is arbitrary and is not limited to this as long as silver fine particles having an average particle diameter of 1 to 100 nm are dispersed. Next, a reducing agent is added to the obtained colloidal dispersion liquid of silver fine particles, and further, a mixture of a metal salt solution of an alkali metal and a compound having a mercapto group, a sulfide group or a disulfide group is added, whereby silver fine particles are added. Gold-coated silver fine particles having a surface coated with gold are obtained, and the gold-coated silver fine particles react with a compound having a mercapto group, a sulfide group or a disulfide group, so that the above compound is bonded to the surface of the coating layer or this compound is used. A colloidal dispersion of gold-coated silver fine particles having the coating layer surface covered can be obtained.

【0030】尚、上記銀微粒子のコロイド分散液内にメ
ルカプト基、スルフィド基またはジスルフィド基を有す
る化合物を混合するタイミングとしては、アルカリ金属
の金酸塩溶液と同時に上記化合物を混合するコーティン
グ時以外に、銀微粒子のコロイド分散液内に還元剤とア
ルカリ金属の金酸塩溶液を混合して銀微粒子表面を金で
コーティングしたコーティング処理後に上記化合物を混
合してもよい。但し、金のコーティング処理前におい
て、銀微粒子のコロイド分散液内にメルカプト基、スル
フィド基またはジスルフィド基を有する化合物を単独で
混合させることは好ましくない。上記化合物を単独で混
合させた場合、その後に金のコーティング処理を行なっ
ても十分なコーティングができず、良好な金コート銀微
粒子の分散液が得られないことがあるからである。この
原因として、上記化合物を単独で混合させた場合にメル
カプト基、スルフィド基またはジスルフィド基を有する
上記化合物により銀微粒子表面が覆われていることが考
えられる。
The timing of mixing the compound having a mercapto group, a sulfide group or a disulfide group into the colloidal dispersion of fine silver particles is not limited to the time of coating in which the above compound is mixed simultaneously with the alkali metal aurate solution. Alternatively, the above compound may be mixed after a coating treatment in which a reducing agent and a gold salt solution of an alkali metal are mixed in a colloidal dispersion liquid of silver fine particles to coat the surface of the silver fine particles with gold. However, it is not preferable to mix a compound having a mercapto group, a sulfide group or a disulfide group alone in the colloidal dispersion of silver fine particles before the gold coating treatment. This is because, when the above compounds are mixed alone, sufficient coating cannot be performed even if a subsequent gold coating treatment is performed, and a good dispersion of gold-coated silver fine particles may not be obtained. This may be because the surface of the silver fine particles is covered with the compound having a mercapto group, a sulfide group or a disulfide group when the above compound is mixed alone.

【0031】また、上記還元剤には、ヒドラジン(N2
4)、水素化ホウ素ナトリウム(NaBH4)等の水素
化ホウ素化合物、ホルムアルデヒド等を用いることがで
きるが、銀微粒子のコロイド分散液に加えられたときに
銀超微粒子の凝集を起こさず、金酸塩を金に還元できれ
ば任意でありこれらに限定されるものではない。
In addition, hydrazine (N 2
H 4 ), borohydride compounds such as sodium borohydride (NaBH 4 ), formaldehyde, etc. can be used, but when added to a colloidal dispersion of silver fine particles, ultra-fine silver particles do not aggregate, and It is optional as long as the acid salt can be reduced to gold, and is not limited thereto.

【0032】例えば、金酸カリウム[KAu(O
H)4]をヒドラジンあるいは水素化ホウ素ナトリウム
で還元する場合の還元反応は、それぞれ以下の様に示さ
れる。
For example, potassium aurate [KAu (O
H) 4 ] is reduced as follows with hydrazine or sodium borohydride.

【0033】KAu(OH)4+3/4N24→Au+
KOH+3H2O+3/4N2↑ KAu(OH)4+3/4NaBH4→Au+KOH+3
/4NaOH+3/4H3BO3+3/2H2↑ ここで、還元剤として上記水素化ホウ素ナトリウムを用
いた場合、上記反応式から確認できるように還元反応に
より生じる電解質の濃度が高くなり、後述するように微
粒子が凝集し易く、還元剤としての添加量が限られるた
め、用いる銀微粒子のコロイド分散液における銀濃度を
高くできない不便さがある。
KAu (OH) 4 + 3 / 4N 2 H 4 → Au +
KOH + 3H 2 O + 3 / 4N 2 ↑ KAu (OH) 4 + 3 / 4NaBH 4 → Au + KOH + 3
/ 4NaOH + 3 / 4H 3 BO 3 + 3 / 2H 2 ↑ Here, when the above-mentioned sodium borohydride is used as the reducing agent, as can be confirmed from the above-mentioned reaction formula, the concentration of the electrolyte generated by the reduction reaction becomes high. However, since the fine particles are easily aggregated and the amount of addition as a reducing agent is limited, there is an inconvenience that the silver concentration in the colloidal dispersion of the used silver fine particles cannot be increased.

【0034】一方、還元剤として上記ヒドラジンを用い
た場合、上記反応式から確認できるように還元反応によ
り生じる電解質が少ないため還元剤としてより適してい
る。
On the other hand, when the above-mentioned hydrazine is used as the reducing agent, it is more suitable as the reducing agent because the amount of the electrolyte generated by the reduction reaction is small as can be confirmed from the above reaction formula.

【0035】尚、金のコーティング原料として、アルカ
リ金属の金酸塩以外の塩、例えば塩化金酸(HAuCl
4)、または、塩化金酸塩(NaAuCl4、KAuCl
4等)を用いると、ヒドラジンによる還元反応は以下の
ように示される。
As the gold coating material, a salt other than the alkali metal aurate, for example, chloroauric acid (HAuCl
4 ) or chloroaurate (NaAuCl 4 , KAuCl
Using 4 )), the reduction reaction with hydrazine is shown as follows.

【0036】XAuCl4+3/4N24→Au+XC
l+3HCl+3/4N2↑ (X=H,Na,K等) この様に塩化金酸等を適用した場合、上記金酸塩を用い
た場合と比較して、還元反応による電解質濃度が高くな
るだけでなく塩素イオンを生じるため、これが銀微粒子
と反応し、難溶性の塩化銀を生成してしまうことから、
本発明に係る透明導電層形成用塗液の原料に用いること
は困難である。
XAuCl 4 + 3 / 4N 2 H 4 → Au + XC
1 + 3HCl + 3 / 4N 2 ↑ (X = H, Na, K, etc.) When chloroauric acid or the like is applied in this way, the concentration of electrolyte due to the reduction reaction becomes higher as compared with the case of using the above-mentioned gold salt. Reacts with fine silver particles to produce poorly soluble silver chloride.
It is difficult to use the material for the coating liquid for forming a transparent conductive layer according to the present invention.

【0037】次に、コーティング層表面にメルカプト
基、スルフィド基またはジスルフィド基を有する化合物
が結合され若しくはこの化合物で覆われた金コート銀微
粒子のコロイド状分散液は、この後、透析、電気透析、
イオン交換、限外濾過等の脱塩処理方法により分散液内
の電解質濃度を下げることが好ましい。これは、電解質
濃度を下げないとコロイドは電解質で一般に凝集してし
まうからであり、この現象は、Schulze−Hardy則として
も知られている。
Next, a colloidal dispersion of gold-coated silver fine particles in which a compound having a mercapto group, a sulfide group or a disulfide group is bonded to or covered with the coating layer is subjected to dialysis, electrodialysis,
It is preferable to lower the electrolyte concentration in the dispersion by a desalting treatment method such as ion exchange and ultrafiltration. This is because the colloid generally aggregates in the electrolyte unless the electrolyte concentration is reduced, and this phenomenon is also known as the Schulze-Hardy rule.

【0038】次いで、上記脱塩処理が施された金コート
銀微粒子のコロイド状分散液を減圧エバポレーター、限
外濾過等の方法で濃縮処理して、メルカプト基、スルフ
ィド基またはジスルフィド基を有する化合物が結合され
若しくはこの化合物で覆われた上記金コート銀微粒子の
分散濃縮液を得、この金コート銀微粒子の分散濃縮液
に、溶媒単独若しくは無機バインダーが含まれた溶媒を
混合して成分調整(微粒子濃度、水分濃度等)を行い、
金属微粒子として金コート銀微粒子が適用された本発明
に係る透明導電層形成用塗液が得られる(請求項1〜
3)。
Next, the above-mentioned colloidal dispersion of the gold-coated silver fine particles subjected to the desalting treatment is concentrated by a method such as vacuum evaporator or ultrafiltration to obtain a compound having a mercapto group, a sulfide group or a disulfide group. A dispersion concentrate of the above-mentioned gold-coated silver fine particles bound or covered with this compound is obtained, and the dispersion concentrate of the gold-coated silver fine particles is mixed with a solvent alone or a solvent containing an inorganic binder to adjust the components (fine particles). Concentration, moisture concentration, etc.)
A coating liquid for forming a transparent conductive layer according to the present invention in which gold-coated silver fine particles are applied as metal fine particles is obtained (claim 1
3).

【0039】ここで、脱塩処理方式として限外濾過が適
用された場合、この限外濾過は上述したように濃縮処理
としても作用することから脱塩処理と濃縮処理を同時進
行で行うことも可能である。また、上記溶媒について
は、金コート銀微粒子の分散濃縮液内に含まれる溶媒で
代用してもよい(すなわち、溶媒単独の使用を省略して
もよい)。また、無機バインダーについては、金コート
銀微粒子の分散濃縮液あるいは溶媒内に含ませた状態で
追加混合してもよいし、無機バインダーをそのまま追加
混合してもよく、その混合の方法は任意である。また、
上記溶媒としては特に制限はなく、塗布方法や製膜条件
により、適宜に選定される。例えば、メタノール、エタ
ノール、イソプロパノール、ブタノール、ベンジルアル
コール、ジアセトンアルコール(DAA)等のアルコール
系溶媒、アセトン、メチルエチルケトン(MEK)、メ
チルイソブチルケトン(MIBK)、シクロヘキサノ
ン、イソホロン等のケトン系溶媒、プロピレングリコー
ルメチルエーテル、プロピレングリコールエチルエーテ
ル等のグリコール誘導体、フォルムアミド、N−メチル
フォルムアミド、ジメチルホルムアミド(DMF)、ジ
メチルアセトアミド、ジメチルスルフォキシド(DMS
O)、N−メチル−2−ピロリドン(NMP)等が挙げ
られるが、これらに限定されるものではない。
Here, when ultrafiltration is applied as a desalination treatment method, since the ultrafiltration also acts as a concentration treatment as described above, the desalination treatment and the concentration treatment can be performed simultaneously. It is possible. The solvent may be replaced with the solvent contained in the concentrated dispersion of the gold-coated silver fine particles (that is, the use of the solvent alone may be omitted). In addition, the inorganic binder may be additionally mixed in a state of being contained in the dispersion-concentrated solution or the solvent of the gold-coated silver fine particles, or the inorganic binder may be additionally mixed as it is, and the mixing method is optional. is there. Also,
The solvent is not particularly limited, and is appropriately selected depending on a coating method and film forming conditions. For example, alcohol solvents such as methanol, ethanol, isopropanol, butanol, benzyl alcohol and diacetone alcohol (DAA), ketone solvents such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), cyclohexanone and isophorone, and propylene glycol Glycol derivatives such as methyl ether and propylene glycol ethyl ether, formamide, N-methylformamide, dimethylformamide (DMF), dimethylacetamide, dimethylsulfoxide (DMS
O), N-methyl-2-pyrrolidone (NMP) and the like, but are not limited thereto.

【0040】尚、上記金コート銀微粒子のコロイド分散
液に代えて金微粒子のコロイド分散液を適用した場合、
同様の方法にて金属微粒子として金微粒子が適用された
本発明に係る透明導電層形成用塗液を得ることが可能で
ある。
When a colloidal dispersion of fine gold particles is applied instead of the above-mentioned colloidal dispersion of fine gold-coated silver particles,
In the same manner, it is possible to obtain the coating liquid for forming a transparent conductive layer according to the present invention to which gold fine particles are applied as metal fine particles.

【0041】次に、この様にして得られた本発明に係る
透明導電層形成用塗液を用いて、透明基板、および、こ
の透明基板上に形成されかつ表面にメルカプト基、スル
フィド基またはジスルフィド基を有する化合物が結合さ
れ若しくはこの化合物で覆われた平均粒径1〜100n
mの金微粒子または金−銀2成分系貴金属微粒子等の金
含有貴金属微粒子とバインダーマトリックスを主成分と
する透明導電層とこの上に形成された透明コート層から
成る透明2層膜でその主要部が構成される透明導電性基
材を得ることができる。
Next, using the thus obtained coating solution for forming a transparent conductive layer according to the present invention, a transparent substrate and a mercapto group, a sulfide group or a disulfide formed on the transparent substrate and having a surface thereon. Average particle size of 1 to 100 n to which a compound having a group is bound or covered with this compound
and a transparent conductive layer composed mainly of a gold-containing noble metal fine particle such as a gold fine particle or a gold-silver two-component noble metal fine particle, a binder matrix, and a transparent coat layer formed thereon. Can be obtained.

【0042】そして、透明基板上に上記透明2層膜を形
成するには以下の方法でこれを行うことができる。すな
わち、溶媒と、平均粒径1〜100nmの金微粒子また
は金コート銀微粒子等の金含有貴金属微粒子と、メルカ
プト基、スルフィド基またはジスルフィド基を有する化
合物(この化合物と金微粒子または金含有貴金属微粒子
は反応して上述したように金微粒子または金含有貴金属
微粒子表面は上記化合物により覆われている)とを主成
分とする本発明に係る透明導電層形成用塗液を、ガラス
基板、プラスチック基板等の透明基板上にスプレーコー
ト、スピンコート、ワイヤーバーコート、ドクターブレ
ードコート等の手法にて塗布し、必要に応じて乾燥した
後、例えばシリカゾル等を主成分とする透明コート層形
成用塗布液を上述した手法によりオーバーコートする。
次に、オーバーコートした後、例えば50〜350℃程
度の温度で加熱処理を施しオーバーコートした透明コー
ト層形成用塗布液の硬化を行って上記透明2層膜を形成
する。尚、50〜350℃程度の加熱処理では、金−銀
2成分系貴金属微粒子等の金含有貴金属微粒子は金で保
護されているため問題を生じないが、銀微粒子であると
200℃を超えた場合に酸化拡散により表面抵抗値が上
昇し膜の劣化が生じる。
The above-mentioned transparent two-layer film can be formed on a transparent substrate by the following method. That is, a solvent, a gold-containing noble metal fine particle such as a gold fine particle or a gold-coated silver fine particle having an average particle size of 1 to 100 nm, and a compound having a mercapto group, a sulfide group or a disulfide group (this compound and the gold fine particle or the gold-containing noble metal fine particle are (The surface of the gold fine particles or the gold-containing noble metal fine particles is covered with the compound as described above), and the coating liquid for forming a transparent conductive layer according to the present invention, which is mainly composed of a glass substrate, a plastic substrate, or the like. After coating on a transparent substrate by a method such as spray coating, spin coating, wire bar coating, doctor blade coating, and drying if necessary, for example, a coating liquid for forming a transparent coating layer mainly containing silica sol or the like is described above. Overcoat according to the method described above.
Next, after overcoating, a heat treatment is performed at a temperature of, for example, about 50 to 350 ° C., and the overcoated transparent coating layer forming coating liquid is cured to form the transparent two-layer film. In the heat treatment at about 50 to 350 ° C., no problem occurs because gold-containing noble metal fine particles such as gold-silver binary noble metal fine particles are protected by gold. In this case, the surface resistance increases due to oxidation diffusion, and the film is deteriorated.

【0043】ここで、メルカプト基、スルフィド基また
はジスルフィド基を有する化合物が配合された本発明に
係る透明導電層形成用塗液を用いて透明導電層を形成し
た場合、上記化合物が含まれていない従来の透明導電層
形成用塗液を適用した場合と比較して金微粒子または金
含有貴金属微粒子の網目状構造化が発達し、高透過率領
域での膜の導電性向上に大きく寄与している。
Here, when the transparent conductive layer is formed using the coating liquid for forming a transparent conductive layer according to the present invention containing a compound having a mercapto group, a sulfide group or a disulfide group, the above compound is not contained. Compared to the case where a conventional coating liquid for forming a transparent conductive layer is applied, the network structure of gold fine particles or gold-containing noble metal fine particles has been developed, and has greatly contributed to the improvement of film conductivity in a high transmittance region. .

【0044】また、金微粒子または金含有貴金属微粒子
における網目状構造の上記穴の部分を介し透明基板と酸
化珪素等バインダーマトリックスとの接触面積が増大す
るため、透明基板とバインダーマトリックスの結合が強
くなり、透明導電層における膜強度の向上も図れる。
Further, since the contact area between the transparent substrate and the binder matrix such as silicon oxide increases through the above-described holes of the network structure in the gold fine particles or the gold-containing noble metal fine particles, the bonding between the transparent substrate and the binder matrix becomes stronger. In addition, the film strength of the transparent conductive layer can be improved.

【0045】更に、シリカゾル等を主成分とする透明コ
ート層形成用塗布液を上述した手法によりオーバーコー
トした際、金微粒子若しくは金含有貴金属微粒子と比較
的強固に結合しているメルカプト基、スルフィド基また
はジスルフィド基を有する化合物の官能基と上記シリカ
ゾル等とが相互作用し、上記化合物を介して金微粒子若
しくは金含有貴金属微粒子とシリカゾル等との結合が図
れるため、透明導電層における膜強度や耐候性の改善も
図れる。
Further, when the coating solution for forming a transparent coat layer containing silica sol or the like as a main component is overcoated by the above-described method, a mercapto group or a sulfide group which is relatively strongly bonded to gold fine particles or gold-containing noble metal fine particles. Alternatively, the functional group of the compound having a disulfide group and the silica sol or the like interact with each other to bond the gold fine particles or the gold-containing noble metal fine particles with the silica sol or the like via the compound, so that the film strength or the weather resistance of the transparent conductive layer. Can also be improved.

【0046】尚、上記シリカゾルとしては、オルトアル
キルシリケートに水や酸触媒を加えて加水分解し、脱水
縮重合を進ませた重合物、あるいは既に4〜5量体まで
加水分解縮重合を進ませた市販のアルキルシリケート溶
液を、さらに加水分解と脱水縮重合を進行させた重合物
等を利用することができる。また、脱水縮重合が進行す
ると、溶液粘度が上昇して最終的には固化してしまうの
で、脱水縮重合の度合いについては、ガラス基板やプラ
スチック基板などの透明基板上に塗布可能な上限粘度以
下のところに調整する。但し、脱水縮重合の度合いは上
記上限粘度以下のレベルであれば特に指定されないが、
膜強度、耐候性等を考慮すると重量平均分子量で500
から3000程度が好ましい。そして、アルキルシリケ
ート部分加水分解重合物は、透明2層膜の加熱焼成時に
脱水縮重合反応がほぼ完結して、硬いシリケート膜(酸
化ケイ素を主成分とする膜)になる。また、上記シリカ
ゾルに、弗化マグネシウム微粒子、アルミナゾル、チタ
ニアゾル、ジルコニアゾル等を加え、透明コート層の屈
折率を調節して透明2層膜の反射率を変えることも可能
である。
As the silica sol, a polymer obtained by hydrolyzing ortho-alkyl silicate with water or an acid catalyst to promote dehydration condensation polymerization or hydrolysis-condensation polymerization to tetramer or pentamer has already been achieved. A commercially available alkyl silicate solution can be used as well as a polymer obtained by further promoting hydrolysis and dehydration condensation polymerization. In addition, as dehydration-condensation polymerization proceeds, the solution viscosity increases and eventually solidifies, so the degree of dehydration-condensation polymerization is not more than the upper limit viscosity that can be applied on a transparent substrate such as a glass substrate or a plastic substrate. Adjust to. However, the degree of dehydration polycondensation is not particularly specified as long as the level is not more than the upper limit viscosity,
Considering the film strength and weather resistance, the weight average molecular weight is 500
To about 3000. The alkyl silicate partially hydrolyzed polymer almost completes the dehydration-condensation polymerization reaction when the transparent two-layer film is heated and baked, and becomes a hard silicate film (a film mainly composed of silicon oxide). Further, it is also possible to change the reflectance of the transparent two-layer film by adjusting the refractive index of the transparent coat layer by adding magnesium fluoride fine particles, alumina sol, titania sol, zirconia sol, or the like to the silica sol.

【0047】以上説明したように、本発明に係る透明導
電層形成用塗液を適用して形成された透明導電層を具備
する透明導電性基材は、従来より高透過率で機械的強度
に優れ、低抵抗、低反射率並びに耐候性、耐紫外線性等
の諸特性を有すると共に、可視光線域での透過光線プロ
ファイルに優れているため、例えば、上述したブラウン
管(CRT)、プラズマディスプレイパネル(PD
P)、蛍光表示管(VFD)、フィールドエミッション
ディスプレイ(FED)、エレクトロルミネッセンスデ
ィスプレイ(ELD)、液晶ディスプレイ(LCD)等
表示装置における前面板等に用いることができる。
As described above, the transparent conductive substrate having the transparent conductive layer formed by applying the coating liquid for forming a transparent conductive layer according to the present invention has higher transmittance and mechanical strength than the conventional one. It has excellent properties such as low resistance, low reflectance, weather resistance, and ultraviolet resistance, and has an excellent transmission light profile in the visible light region. For example, the above-described cathode ray tube (CRT), plasma display panel ( PD
P), a fluorescent display tube (VFD), a field emission display (FED), an electroluminescence display (ELD), and a front plate of a display device such as a liquid crystal display (LCD).

【0048】[0048]

【実施例】以下、本発明の実施例を具体的に説明する
が、本発明はこれら実施例に限定されるものではない。
また、本文中の「%」は、透過率、反射率、ヘーズ値の
(%)を除いて「重量%」を示し、また「部」は「重量
部」を示している。
EXAMPLES Examples of the present invention will be specifically described below, but the present invention is not limited to these examples.
Further, “%” in the text indicates “% by weight” excluding (%) of transmittance, reflectance, and haze value, and “part” indicates “part by weight”.

【0049】[実施例1]前述のCarey−Lea法
により銀微粒子のコロイド分散液を調製した。
Example 1 A colloidal dispersion of fine silver particles was prepared by the Carey-Lea method described above.

【0050】具体的には、9%硝酸銀水溶液33gに、
23%硫酸鉄(II)水溶液39gと37.5%クエン酸
ナトリウム水溶液48gの混合液を加えた後、沈降物を
ろ過・洗浄した後、純水を加えて、銀微粒子のコロイド
分散液(Ag:0.15%)を調製した。この銀微粒子
のコロイド分散液80gにヒドラジン1水和物(N24
・H2O)の1%水溶液10.0gを加えて攪拌しなが
ら、金酸カリウム[KAu(OH)4]水溶液(Au:
0.15%)320gと1%チオリンゴ酸水溶液0.6
gの混合液を加え、チオリンゴ酸で覆われた金コート銀
微粒子のコロイド分散液を得た。
Specifically, 33 g of a 9% silver nitrate aqueous solution was
After adding a mixed solution of 39 g of a 23% aqueous solution of iron (II) sulfate and 48 g of a 37.5% aqueous solution of sodium citrate, the precipitate was filtered and washed, and pure water was added thereto to obtain a colloidal dispersion of silver fine particles (Ag : 0.15%). A hydrazine monohydrate (N 2 H 4
• Addition of 10.0 g of a 1% aqueous solution of H 2 O) and stirring, while stirring, an aqueous solution of potassium silicate [KAu (OH) 4 ] (Au:
0.15%) 320 g and 1% thiomalic acid aqueous solution 0.6
g of the mixture was added to obtain a colloidal dispersion of gold-coated silver fine particles covered with thiomalic acid.

【0051】チオリンゴ酸で覆われた金コート銀微粒子
のコロイド分散液をイオン交換樹脂(三菱化学社製商品
名ダイヤイオンSK1B,SA20AP)で脱塩した
後、限外ろ過により濃縮した液にエタノール(EA)と
ジアセトンアルコール(DAA)を加え、チオリンゴ酸で
覆われた金コート銀微粒子が含まれた実施例1に係る透
明導電層形成用塗液(Ag:0.06%、Au:0.2
5%、チオリンゴ酸:0.003%、水:9.7%、D
AA:10.0%、EA:79.9%)を得た。得られ
た実施例1に係る透明導電層形成用塗液を透過電子顕微
鏡で観察した結果、チオリンゴ酸で覆われた金コート銀
微粒子の平均粒径は、7.8nmであった。
A colloidal dispersion of gold-coated silver fine particles covered with thiomalic acid was desalted with an ion exchange resin (trade name: Diaion SK1B, SA20AP, manufactured by Mitsubishi Chemical Corporation), and concentrated by ultrafiltration. EA) and diacetone alcohol (DAA), and a coating liquid for forming a transparent conductive layer according to Example 1 (Ag: 0.06%, Au: 0. 0%) containing gold-coated silver fine particles covered with thiomalic acid. 2
5%, thiomalic acid: 0.003%, water: 9.7%, D
AA: 10.0%, EA: 79.9%). As a result of observing the obtained coating liquid for forming a transparent conductive layer according to Example 1 with a transmission electron microscope, the average particle size of the gold-coated silver fine particles covered with thiomalic acid was 7.8 nm.

【0052】次に、この実施例1に係る透明導電層形成
用塗液を、35℃に加熱されたガラス基板(厚さ3mm
のソーダライムガラス)上に、スピンコート(150r
pm,60秒間)した後、続けて、シリカゾル液から成
る透明コート層形成用塗布液をスピンコート(150r
pm,60秒間)し、更に、200℃、20分間硬化さ
せて、チオリンゴ酸で覆われた金−銀2成分系貴金属微
粒子を有する透明導電層と、酸化ケイ素を主成分とする
シリケート膜から成る透明コート層とで構成された透明
2層膜付きのガラス基板、すなわち、実施例1に係る透
明導電性基材を得た。
Next, the coating liquid for forming a transparent conductive layer according to Example 1 was applied to a glass substrate heated to 35 ° C. (thickness: 3 mm).
Spin coating (150r)
pm, 60 seconds), and subsequently, a coating liquid for forming a transparent coat layer composed of a silica sol liquid is spin-coated (150 rpm).
pm, 60 seconds), and further cured at 200 ° C. for 20 minutes. The transparent conductive layer has gold-silver binary noble metal fine particles covered with thiomalic acid, and a silicate film containing silicon oxide as a main component. A glass substrate with a transparent two-layer film composed of a transparent coat layer and a transparent conductive substrate according to Example 1 was obtained.

【0053】尚、上記200℃、20分間の加熱処理を
施した際、金コート銀微粒子内においては金、銀の熱拡
散による合金化層形成の可能性があり、上記金コート銀
微粒子内のコート層が金単体で構成されているとは限ら
ない場合が存在する。このため、本明細書では、透明導
電層形成用塗液内において金コート銀微粒子が適用され
ている場合においても、金と銀とで構成される透明導電
層内の微粒子については、金コート銀微粒子と表現せず
に上述したように金−銀2成分系貴金属微粒子と表現す
る。
When the above-mentioned heat treatment at 200 ° C. for 20 minutes is performed, there is a possibility that an alloyed layer is formed in the gold-coated silver fine particles by thermal diffusion of gold and silver. There are cases where the coat layer is not always composed of simple gold. For this reason, in the present specification, even when gold-coated silver fine particles are applied in the transparent conductive layer forming coating liquid, the fine particles in the transparent conductive layer composed of gold and silver are gold-coated silver. As described above, the particles are expressed as gold-silver binary noble metal fine particles without being expressed as fine particles.

【0054】ここで、上記シリカゾル液は、メチルシリ
ケート51(コルコート社製商品名)を19.6部、エ
タノール57.8部、1%硝酸水溶液7.9部、純水1
4.7部を用いて、SiO2(酸化ケイ素)固形分濃度
が10%で、重量平均分子量が2850のものを調製
し、最終的に、SiO2固形分濃度が0.8%となるよ
うにイソプロピルアルコール(IPA)とn−ブタノー
ル(NBA)の混合物(IPA/NBA=3/1)によ
り希釈して得ている。
Here, the silica sol solution contained 19.6 parts of methyl silicate 51 (trade name, manufactured by Colcoat), 57.8 parts of ethanol, 7.9 parts of 1% nitric acid aqueous solution, and 1 part of pure water.
Using 4.7 parts, a product having a SiO 2 (silicon oxide) solid content concentration of 10% and a weight average molecular weight of 2850 was prepared, and finally, a SiO 2 solid content concentration of 0.8% was obtained. And a mixture of isopropyl alcohol (IPA) and n-butanol (NBA) (IPA / NBA = 3/1).

【0055】そして、ガラス基板上に形成された透明2
層膜の膜特性(表面抵抗、可視光線透過率、透過率の標
準偏差、ヘーズ値、ボトム反射率/ボトム波長)を以下
の表1に示す。
Then, the transparent 2 formed on the glass substrate
Table 1 below shows the film properties (surface resistance, visible light transmittance, standard deviation of transmittance, haze value, bottom reflectance / bottom wavelength) of the layer film.

【0056】尚、上記ボトム反射率とは透明導電性基材
の反射プロファイルにおいて極小の反射率をいい、ボト
ム波長とは反射率が極小における波長を意味している。
The bottom reflectance refers to a minimum reflectance in the reflection profile of the transparent conductive substrate, and the bottom wavelength refers to a wavelength at which the reflectance is minimum.

【0057】また、製造された実施例1に係る透明導電
性基材の反射プロファイルを図1に、また、透過プロフ
ァイルを図2に合わせて示す。
FIG. 1 shows the reflection profile of the manufactured transparent conductive substrate according to Example 1, and FIG. 2 shows the transmission profile thereof.

【0058】また、表1において可視光線波長域(38
0〜780nm)の透明基板(ガラス基板)を含まない
透明2層膜だけの透過率は、以下の様にして求められて
いる。
In Table 1, the visible light wavelength range (38
The transmittance of only the transparent two-layer film not including the transparent substrate (glass substrate) of 0 to 780 nm) is determined as follows.

【0059】すなわち、 透明基板を含まない透明2層膜だけの透過率(%)=
[(透明基板ごと測定した透過率)/(透明基板の透過
率)]×100 ここで、本明細書においては、特に言及しない限り、透
過率としては、透明基板を含まない透過率(すなわち透
明2層膜の透過率)を用いている。
That is, the transmittance (%) of only the transparent two-layer film not including the transparent substrate =
[(Transmittance measured for each transparent substrate) / (Transmittance of transparent substrate)] × 100 In this specification, unless otherwise specified, the transmittance is the transmittance not including the transparent substrate (that is, transparent). (Transmittance of a two-layer film).

【0060】また、透明2層膜の表面抵抗は、三菱化学
(株)製の表面抵抗計ロレスタAP(MCP−T400)
を用い測定した。ヘイズ値と可視光線透過率は、透明基
板ごと、村上色彩技術研究所製のヘイズメーター(HR
−200)を用いて測定した。反射率および反射・透過
プロファイルは、日立製作所(株)製分光光度計(U−4
000)を用いて測定した。また、チオリンゴ酸で覆わ
れた金コート銀微粒子の粒径は日本電子製の透過電子顕
微鏡で評価している。
The surface resistance of the transparent two-layer film was determined by Mitsubishi Chemical.
Surface resistance meter Loresta AP (MCP-T400) manufactured by Co., Ltd.
It measured using. The haze value and visible light transmittance of each transparent substrate were measured using a haze meter (HR) manufactured by Murakami Color Research Laboratory.
-200). The reflectance and the reflection / transmission profile were measured by a spectrophotometer (U-4, manufactured by Hitachi, Ltd.).
000). The particle size of the gold-coated silver fine particles covered with thiomalic acid was evaluated with a transmission electron microscope manufactured by JEOL.

【0061】[実施例2]実施例1で調製したチオリン
ゴ酸により覆われた金コート銀微粒子コロイド分散液の
濃縮液に、エタノール(EA)、ジアセトンアルコール
(DAA)と無機バインダーとしてテトラメチルシリケー
トの4量体(コルコート社製商品名メチルシリケート5
1)を加えて、チオリンゴ酸で覆われた平均粒径7.8
nmの金コート銀微粒子が含まれた実施例2に係る透明
導電層形成用塗液(Ag:0.06%、Au:0.25
%、チオリンゴ酸:0.003%、SiO2:0.01
%、水:9.7%、DAA:10.0%、EA:79.
9%)を得た。
Example 2 Ethanol (EA) and diacetone alcohol were added to the concentrated solution of the gold-coated silver fine particle colloidal dispersion covered with thiomalic acid prepared in Example 1.
(DAA) and tetramer of tetramethyl silicate as an inorganic binder (trade name: methyl silicate 5 by Colcoat)
1) was added, and the average particle size covered with thiomalic acid was 7.8.
(Ag: 0.06%, Au: 0.25)
%, Thiomalic acid: 0.003%, SiO 2 : 0.01
%, Water: 9.7%, DAA: 10.0%, EA: 79.
9%).

【0062】そして、この実施例2に係る透明導電層形
成用塗液を用いた以外は、実施例1と同様に行い、チオ
リンゴ酸で覆われた金−銀2成分系貴金属微粒子を有す
る透明導電層と、酸化ケイ素を主成分とするシリケート
膜から成る透明コート層とで構成された透明2層膜付き
のガラス基板、すなわち、実施例2に係る透明導電性基
材を得た。
The same procedure as in Example 1 was carried out except that the coating liquid for forming a transparent conductive layer according to Example 2 was used, and the transparent conductive layer containing gold-silver two-component noble metal fine particles covered with thiomalic acid was used. A glass substrate with a transparent two-layer film composed of a layer and a transparent coat layer composed of a silicate film containing silicon oxide as a main component, that is, a transparent conductive substrate according to Example 2 was obtained.

【0063】ガラス基板上に形成された透明2層膜の膜
特性を以下の表1に示す。
Table 1 shows the film characteristics of the transparent two-layer film formed on the glass substrate.

【0064】[実施例3]実施例1と同様の方法で調製
した銀微粒子のコロイド分散液80gを用い、かつ、ヒ
ドラジン1水和物(N24・H2O)の1%水溶液7.
0g、金酸カリウム[KAu(OH)4]水溶液(A
u:0.15%)240gとチオサリチル酸ナトリウム
の1%水溶液0.16gを用いると共に、実施例1と同
様の処理を行なってチオサリチル酸で覆われた平均粒径
9.1nmの金コート銀微粒子が含まれた実施例3に係
る透明導電層形成用塗液(Ag:0.08%、Au:
0.22%、チオサリチル酸:0.002%、水:1
2.1%、DAA:10.0%、EA:77.4%)を
得た。
Example 3 A 80% colloidal dispersion of fine silver particles prepared in the same manner as in Example 1 was used, and a 1% aqueous solution of hydrazine monohydrate (N 2 H 4 .H 2 O) 7 .
0 g, potassium aurate [KAu (OH) 4 ] aqueous solution (A
u: 0.15%) Using 240 g of a 1% aqueous solution of sodium thiosalicylate and 0.16 g of a 1% aqueous solution of sodium thiosalicylate, and treating in the same manner as in Example 1, covered with thiosalicylic acid to form gold-coated silver fine particles having an average particle size of 9.1 nm. The coating liquid for forming a transparent conductive layer according to Example 3 (Ag: 0.08%, Au:
0.22%, thiosalicylic acid: 0.002%, water: 1
2.1%, DAA: 10.0%, EA: 77.4%).

【0065】そして、この実施例3に係る透明導電層形
成用塗液を用いた以外は、実施例1と同様に行い、チオ
サリチル酸で覆われた金−銀2成分系貴金属微粒子を有
する透明導電層と、酸化ケイ素を主成分とするシリケー
ト膜から成る透明コート層とで構成された透明2層膜付
きのガラス基板、すなわち、実施例3に係る透明導電性
基材を得た。
Then, the same procedure as in Example 1 was carried out except that the coating liquid for forming a transparent conductive layer according to Example 3 was used, and the transparent conductive layer containing gold-silver two-component noble metal fine particles covered with thiosalicylic acid was used. A glass substrate with a transparent two-layer film composed of a layer and a transparent coat layer composed of a silicate film containing silicon oxide as a main component, that is, a transparent conductive substrate according to Example 3 was obtained.

【0066】ガラス基板上に形成された透明2層膜の膜
特性を以下の表1に示す。
The film characteristics of the transparent two-layer film formed on the glass substrate are shown in Table 1 below.

【0067】[実施例4]実施例1と同様の方法で調製
した銀微粒子のコロイド分散液80gを用い、かつ、ヒ
ドラジン1水和物(N24・H2O)の1%水溶液1
0.0g、金酸カリウム[KAu(OH)4]水溶液
(Au:0.15%)320gとチオジグリコール酸の
1%水溶液1.2gを用いると共に、実施例1と同様の
処理を行なってチオジグリコール酸で覆われた平均粒径
8.8nmの金コート銀微粒子が含まれた実施例4に係
る透明導電層形成用塗液(Ag:0.06%、Au:
0.24%、チオジグリコール酸:0.006%、水:
10.2%、DAA:10.0%、EA:79.4%)
を得た。
Example 4 Using 80 g of a silver fine particle colloidal dispersion prepared in the same manner as in Example 1, and using a 1% aqueous solution of hydrazine monohydrate (N 2 H 4 .H 2 O) 1
0.0 g, 320 g of an aqueous solution of potassium aurate [KAu (OH) 4 ] (Au: 0.15%) and 1.2 g of a 1% aqueous solution of thiodiglycolic acid were used, and the same treatment as in Example 1 was performed. A coating liquid for forming a transparent conductive layer according to Example 4 containing gold-coated silver fine particles having an average particle size of 8.8 nm covered with thiodiglycolic acid (Ag: 0.06%, Au:
0.24%, thiodiglycolic acid: 0.006%, water:
10.2%, DAA: 10.0%, EA: 79.4%)
I got

【0068】そして、この実施例4に係る透明導電層形
成用塗液を用いた以外は、実施例1と同様に行い、チオ
ジグリコール酸で覆われた金−銀2成分系貴金属微粒子
を有する透明導電層と、酸化ケイ素を主成分とするシリ
ケート膜から成る透明コート層とで構成された透明2層
膜付きのガラス基板、すなわち、実施例4に係る透明導
電性基材を得た。
Then, the same procedure as in Example 1 was carried out except that the coating liquid for forming a transparent conductive layer according to Example 4 was used, and gold-silver two-component noble metal fine particles covered with thiodiglycolic acid were used. A glass substrate with a transparent two-layer film composed of a transparent conductive layer and a transparent coat layer composed of a silicate film containing silicon oxide as a main component, that is, a transparent conductive substrate according to Example 4 was obtained.

【0069】ガラス基板上に形成された透明2層膜の膜
特性を以下の表1に示す。
Table 1 shows the film characteristics of the transparent two-layer film formed on the glass substrate.

【0070】[実施例5]実施例1と同様の方法で調製
した銀微粒子のコロイド分散液80gを用い、かつ、ヒ
ドラジン1水和物(N24・H2O)の1%水溶液1
0.0g、金酸カリウム[KAu(OH)4]水溶液
(Au:0.15%)320gとジチオジグリコール酸
の1%水溶液0.2gを用いると共に、実施例1と同様
の処理を行なってジチオジグリコール酸で覆われた平均
粒径7.1nmの金コート銀微粒子が含まれた実施例5
に係る透明導電層形成用塗液(Ag:0.05%、A
u:0.23%、ジチオジグリコール酸:0.001
%、水:9.3%、DAA:10.0%、EA:80.
3%)を得た。
Example 5 Using a 80 g colloidal dispersion of fine silver particles prepared in the same manner as in Example 1, and using a 1% aqueous solution of hydrazine monohydrate (N 2 H 4 .H 2 O) 1
0.0 g, 320 g of an aqueous solution of potassium gold [KAu (OH) 4 ] (Au: 0.15%) and 0.2 g of a 1% aqueous solution of dithiodiglycolic acid were used, and the same treatment as in Example 1 was performed. Example 5 including gold-coated silver fine particles with an average particle size of 7.1 nm covered with dithiodiglycolic acid
(Ag: 0.05%, A
u: 0.23%, dithiodiglycolic acid: 0.001
%, Water: 9.3%, DAA: 10.0%, EA: 80.
3%).

【0071】そして、この実施例5に係る透明導電層形
成用塗液を用いた以外は、実施例1と同様に行い、ジチ
オジグリコール酸で覆われた金−銀2成分系貴金属微粒
子を有する透明導電層と、酸化ケイ素を主成分とするシ
リケート膜から成る透明コート層とで構成された透明2
層膜付きのガラス基板、すなわち、実施例5に係る透明
導電性基材を得た。
Then, the same procedure as in Example 1 was carried out except that the coating liquid for forming a transparent conductive layer according to Example 5 was used, and gold-silver two-component noble metal fine particles covered with dithiodiglycolic acid were provided. Transparent 2 composed of a transparent conductive layer and a transparent coat layer composed of a silicate film containing silicon oxide as a main component
A glass substrate with a layer film, that is, a transparent conductive substrate according to Example 5 was obtained.

【0072】ガラス基板上に形成された透明2層膜の膜
特性を以下の表1に示す。
Table 1 below shows the film characteristics of the transparent two-layer film formed on the glass substrate.

【0073】[実施例6]実施例1と同様の方法で調製
した銀微粒子のコロイド分散液80gを用い、かつ、ヒ
ドラジン1水和物(N24・H2O)の1%水溶液1
0.0g、金酸カリウム[KAu(OH)4]水溶液
(Au:0.15%)320gとγ−メルカプトプロピ
ルトリメトキシシランの1%水溶液0.6gを用いると
共に、実施例1と同様の処理を行なってγ−メルカプト
プロピルトリメトキシシラン(実際にはメトキシ基は塗
液中で加水分解されてシラノール基[Si−OH]が形
成されている)で覆われた平均粒径8.3nmの金コー
ト銀微粒子が含まれた実施例6に係る透明導電層形成用
塗液(Ag:0.06%、Au:0.23%、γ−メル
カプトプロピルトリメトキシシラン:0.003%、
水:8.6%、DAA:10.0%、EA:81.0
%)を得た。
Example 6 Using a 80 g colloidal dispersion of fine silver particles prepared in the same manner as in Example 1, and using a 1% aqueous solution 1 of hydrazine monohydrate (N 2 H 4 .H 2 O)
The same treatment as in Example 1 was carried out using 0.0 g, 320 g of an aqueous solution of potassium aurate [KAu (OH) 4 ] (Au: 0.15%) and 0.6 g of a 1% aqueous solution of γ-mercaptopropyltrimethoxysilane. To cover the surface with gold having an average particle size of 8.3 nm covered with γ-mercaptopropyltrimethoxysilane (the methoxy group is actually hydrolyzed in the coating solution to form a silanol group [Si—OH]). A coating liquid for forming a transparent conductive layer according to Example 6 containing coated silver fine particles (Ag: 0.06%, Au: 0.23%, γ-mercaptopropyltrimethoxysilane: 0.003%,
Water: 8.6%, DAA: 10.0%, EA: 81.0
%).

【0074】そして、この実施例6に係る透明導電層形
成用塗液を用いた以外は、実施例1と同様に行い、γ−
メルカプトプロピルトリメトキシシランで覆われた金−
銀2成分系貴金属微粒子を有する透明導電層と、酸化ケ
イ素を主成分とするシリケート膜から成る透明コート層
とで構成された透明2層膜付きのガラス基板、すなわ
ち、実施例6に係る透明導電性基材を得た。
The procedure of Example 1 was repeated, except that the coating liquid for forming a transparent conductive layer according to Example 6 was used.
Gold covered with mercaptopropyltrimethoxysilane
A glass substrate with a transparent two-layer film composed of a transparent conductive layer containing silver two-component noble metal fine particles and a transparent coat layer composed of a silicate film containing silicon oxide as a main component, that is, the transparent conductive layer according to Example 6. A base material was obtained.

【0075】ガラス基板上に形成された透明2層膜の膜
特性を以下の表1に示す。
Table 1 below shows the film characteristics of the transparent two-layer film formed on the glass substrate.

【0076】[比較例]実施例1と同様の方法で調製し
た銀微粒子のコロイド分散液80gを用い、かつ、ヒド
ラジン1水和物(N24・H2O)の1%水溶液7.0
g、金酸カリウム[KAu(OH)4]水溶液(Au:
0.15%)240gと1%高分子分散剤水溶液0.4
8gを用いると共に、実施例1と同様の処理を行なって
平均粒径8.3nmの金コート銀微粒子が分散された比
較例に係る透明導電層形成用塗液(Ag:0.08%、
Au:0.23%、水:12.0%、DAA:10.0
%、EA:77.9%)を得た。
COMPARATIVE EXAMPLE 80 g of a colloidal dispersion of fine silver particles prepared in the same manner as in Example 1 was used, and a 1% aqueous solution of hydrazine monohydrate (N 2 H 4 .H 2 O) was used. 0
g, potassium aurate [KAu (OH) 4 ] aqueous solution (Au:
(0.15%) 240 g and 1% polymer dispersant aqueous solution 0.4
8 g and the same treatment as in Example 1 was carried out to disperse the gold-coated silver fine particles having an average particle size of 8.3 nm. The coating liquid for forming a transparent conductive layer according to the comparative example (Ag: 0.08%,
Au: 0.23%, water: 12.0%, DAA: 10.0
%, EA: 77.9%).

【0077】そして、この比較例に係る透明導電層形成
用塗液を用いた以外は、実施例1と同様に行い、金−銀
2成分系貴金属微粒子を有する透明導電層と、酸化ケイ
素を主成分とするシリケート膜から成る透明コート層と
で構成された透明2層膜付きのガラス基板、すなわち、
比較例に係る透明導電性基材を得た。
Then, the same procedure as in Example 1 was carried out except that the coating liquid for forming a transparent conductive layer according to this comparative example was used, and a transparent conductive layer having gold-silver binary noble metal fine particles and a silicon oxide were mainly used. A glass substrate with a transparent two-layer film composed of a transparent coat layer composed of a silicate film as a component,
A transparent conductive substrate according to a comparative example was obtained.

【0078】ガラス基板上に形成された透明2層膜の膜
特性を以下の表1に示す。
Table 1 below shows the film characteristics of the transparent two-layer film formed on the glass substrate.

【0079】[0079]

【表1】 『耐候性試験』実施例1〜6に係る透明導電性基材と比
較例に係る透明導電性基材を、屋外の直射日光があたる
条件下に3ヶ月間放置し、透明基板(ガラス基板)上に
設けた透明2層膜の表面抵抗値とその外観を調べた。こ
の結果を以下の表2に示す。
【table 1】 "Weather resistance test" The transparent conductive substrates according to Examples 1 to 6 and the transparent conductive substrate according to the comparative example were allowed to stand for 3 months under the condition of direct sunlight, and a transparent substrate (glass substrate) was used. The surface resistance value and appearance of the transparent two-layer film provided thereon were examined. The results are shown in Table 2 below.

【0080】[0080]

【表2】 『膜強度試験』実施例1〜6に係る透明導電性基材と比
較例に係る透明導電性基材について、消しゴム試験(す
なわち、各透明導電性基材の膜表面を消しゴムで荷重1
kgの条件下50往復および100往復擦り続け、膜表
面の擦傷を観察し評価する試験)を行い、透明基板(ガ
ラス基板)上に設けた透明2層膜の膜強度を調べた。
[Table 2] "Film Strength Test" An eraser test was conducted on the transparent conductive substrates according to Examples 1 to 6 and the transparent conductive substrate according to the comparative example (that is, the film surface of each transparent conductive substrate was erased with a load of 1
A test for observing and evaluating the scratches on the film surface was carried out by continuously rubbing 50 and 100 reciprocations under the condition of kg, and the film strength of the transparent two-layer film provided on the transparent substrate (glass substrate) was examined.

【0081】結果を以下の表3に示す。The results are shown in Table 3 below.

【0082】[0082]

【表3】 「評 価」 1.表1に示された結果から明らかなように各実施例に
係る透明2層膜の表面抵抗は648〜925Ω/□の範
囲内にあり、かつ、透明2層膜の可視光線透過率も8
6.7〜87.5%の範囲内にあることから、各実施例
に係る透明2層膜は高透過率でかつ低抵抗の特性を具備
していることが確認できる。
[Table 3] “Evaluation” As is clear from the results shown in Table 1, the surface resistance of the transparent two-layer film according to each example is in the range of 648 to 925 Ω / □, and the visible light transmittance of the transparent two-layer film is also 8
Since it is within the range of 6.7 to 87.5%, it can be confirmed that the transparent two-layer film according to each example has characteristics of high transmittance and low resistance.

【0083】これに対し、比較例に係る透明2層膜の可
視光線透過率は86.9%であり高透過率の特性は具備
するが、透明2層膜の表面抵抗は2253Ω/□と高く
低抵抗の特性は具備していないことが確認できる。
On the other hand, the visible light transmittance of the transparent two-layer film according to the comparative example is 86.9%, which is high in transmittance. However, the surface resistance of the transparent two-layer film is as high as 2253 Ω / □. It can be confirmed that low resistance characteristics are not provided.

【0084】2.また、表2に示された結果から明らか
なように各実施例に係る透明2層膜の外観は変化してお
らず、かつ、透明2層膜における表明抵抗の初期値と屋
外放置3ヶ月の値も大きな変化がない。従って、各実施
例に係る透明2層膜の耐候性についても十分な特性を備
えていることが確認できる。
2. Further, as is clear from the results shown in Table 2, the appearance of the transparent two-layer film according to each of the examples did not change, and the initial value of the expression resistance of the transparent two-layer film and the three-month outdoor exposure were measured. The values do not change much. Accordingly, it can be confirmed that the transparent two-layer films according to the respective examples have sufficient weather resistance.

【0085】他方、比較例に係る透明2層膜の外観は変
化していないが、透明2層膜における表明抵抗の初期値
(2253Ω/□)と屋外放置3ヶ月の値(5795Ω/
□)からその値が大きく変化しており、比較例に係る透
明2層膜の耐候性は不十分であることが確認できる。
On the other hand, although the appearance of the transparent two-layer film according to the comparative example did not change, the initial value of the expression resistance in the transparent two-layer film was not changed.
(2253Ω / □) and the value of three months when left outdoors (5795Ω / □)
The value greatly changes from □), and it can be confirmed that the weather resistance of the transparent two-layer film according to the comparative example is insufficient.

【0086】3.更に、表3の結果から、比較例に較べ
て各実施例に係る透明2層膜の機械的強度も十分であ
り、各実施例においてはその透明2層膜における機械的
強度についても十分な特性を備えていることが確認でき
る。
3. Furthermore, from the results in Table 3, the mechanical strength of the transparent two-layer film according to each example is sufficient as compared with the comparative example, and in each example, the mechanical strength of the transparent two-layer film is also sufficient. It can be confirmed that it is provided with.

【0087】[0087]

【発明の効果】請求項1〜3記載の発明に係る透明導電
層形成用塗液によれば、高透過率で機械的強度に優れ、
かつ、低抵抗、低反射率並びに耐候性等の諸特性を有す
ると共に、可視光線域での透過光線プロファイルに優れ
た透明導電性基材を製造できる効果を有する。
According to the coating liquid for forming a transparent conductive layer according to the first to third aspects of the present invention, high transmittance, excellent mechanical strength,
In addition, it has various properties such as low resistance, low reflectance, and weather resistance, and has an effect of producing a transparent conductive substrate having an excellent transmitted light profile in a visible light region.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1に係る透明導電性基材の反射プロファ
イルを示すグラフ図。
FIG. 1 is a graph showing a reflection profile of a transparent conductive substrate according to Example 1.

【図2】実施例1に係る透明導電性基材の透過プロファ
イルを示すグラフ図。
FIG. 2 is a graph showing a transmission profile of a transparent conductive substrate according to Example 1.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01J 9/20 H01J 9/20 A 5G307 // H01B 5/14 H01B 5/14 A H01J 29/88 H01J 29/88 Fターム(参考) 4J038 AA011 AA012 GA13 HA012 HA061 HA162 HA192 HA212 HA432 HA441 JC01 JC02 KA06 KA15 KA20 MA14 NA03 NA11 NA19 NA20 PB09 PC03 PC07 5C028 AA01 AA02 AA07 5C032 AA02 DD02 DE01 DF01 DF02 DF03 DG02 5C094 AA10 AA43 AA44 DA13 EA05 FB01 FB02 FB12 GB10 JA01 JA08 5G301 DA03 DA05 DA32 DA42 DD02 5G307 FA01 FA02 FB02 FC01 FC08 FC09 FC10 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H01J 9/20 H01J 9/20 A 5G307 // H01B 5/14 H01B 5/14 A H01J 29/88 H01J 29/88 F Terms (reference) 4J038 AA011 AA012 GA13 HA012 HA061 HA162 HA192 HA212 HA432 HA441 JC01 JC02 KA06 KA15 KA20 MA14 NA03 NA11 NA19 NA20 PB09 PC03 PC07 5C028 AA01 AA02 AA07 5C032 AA02 DD02 DE01 DF01 A02 FB02 A03 FB02 JA01 JA08 5G301 DA03 DA05 DA32 DA42 DD02 5G307 FA01 FA02 FB02 FC01 FC08 FC09 FC10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】溶媒とこの溶媒に分散された平均粒径1〜
100nmの金微粒子若しくは金を5〜95重量%含有
する金含有貴金属微粒子を主成分とし、透明基板上に透
明導電層を形成する透明導電層形成用塗液において、 メルカプト基、スルフィド基またはジスルフィド基を有
する化合物が含まれていることを特徴とする透明導電層
形成用塗液。
1. A solvent and an average particle size of 1 to 1 dispersed in the solvent.
A mercapto group, a sulfide group or a disulfide group in a transparent conductive layer forming coating liquid for forming a transparent conductive layer on a transparent substrate, mainly containing 100 nm gold fine particles or gold-containing noble metal fine particles containing 5 to 95% by weight of gold; A coating liquid for forming a transparent conductive layer, comprising a compound having the following formula:
【請求項2】上記金含有貴金属微粒子が、銀微粒子の表
面に金をコーティングした金コート銀微粒子であること
を特徴とする請求項1記載の透明導電層形成用塗液。
2. The coating liquid for forming a transparent conductive layer according to claim 1, wherein the gold-containing noble metal fine particles are gold-coated silver fine particles obtained by coating gold on the surface of silver fine particles.
【請求項3】無機バインダーが含まれていることを特徴
とする請求項1または2記載の透明導電層形成用塗液。
3. The coating liquid for forming a transparent conductive layer according to claim 1, further comprising an inorganic binder.
JP2000041887A 1999-08-26 2000-02-18 Transparent conductive layer forming coating liquid, transparent conductive layer and transparent conductive substrate Expired - Fee Related JP3750461B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000041887A JP3750461B2 (en) 2000-02-18 2000-02-18 Transparent conductive layer forming coating liquid, transparent conductive layer and transparent conductive substrate
EP00118392A EP1079413B1 (en) 1999-08-26 2000-08-24 Transparent conductive layered structure and method of producing the same, coating liquid useful therefor, and display that uses transparent conductive layered structure
DE60023614T DE60023614T2 (en) 1999-08-26 2000-08-24 Transparent electrolytic structure and process for its preparation, coating fluid therefor and display device having this structure
TW089117190A TWI235757B (en) 1999-08-26 2000-08-25 Transparent conductive layered structure and method of producing the same, coating liquid for forming transparent coating layer and coating liquid for foaming transparent conductive layer used in the production of transparent conductive layered structure
KR1020000049855A KR100737923B1 (en) 1999-08-26 2000-08-26 Transparent conductive layered structure and method of producing the same, coating liquid for forming transparent coating layer and coating liquid for forming transparent conductive layer used in the production of transparent conductive layered structure, and display that uses transparent conductive layered structure
US10/329,573 US6716480B2 (en) 1999-08-26 2002-12-27 Transparent conductive layered structure and method of producing the same, coating liquid for forming transparent coating layer and coating liquid for forming transparent conductive layer
US10/330,278 US20030170448A1 (en) 1999-08-26 2002-12-30 Transparent conductive layered structure and method of producing the same, coating liquid for forming transparent coating layer and coating liquid for forming transparent conductive layer used in the production of transparent conductive layered structure, and display that uses transparent conductive layered structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000041887A JP3750461B2 (en) 2000-02-18 2000-02-18 Transparent conductive layer forming coating liquid, transparent conductive layer and transparent conductive substrate

Publications (2)

Publication Number Publication Date
JP2001229731A true JP2001229731A (en) 2001-08-24
JP3750461B2 JP3750461B2 (en) 2006-03-01

Family

ID=18565037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000041887A Expired - Fee Related JP3750461B2 (en) 1999-08-26 2000-02-18 Transparent conductive layer forming coating liquid, transparent conductive layer and transparent conductive substrate

Country Status (1)

Country Link
JP (1) JP3750461B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035828A (en) * 2002-07-05 2004-02-05 Tsubakimoto Chain Co Zinc powder capable of being dispersed in water and zinc powder-containing aqueous coating material
WO2005024853A1 (en) * 2003-09-08 2005-03-17 Sumitomo Metal Mining Co., Ltd. Transparent conductive multilayer body, organic el device using same, and methods for manufacturing those
WO2012108502A1 (en) * 2011-02-10 2012-08-16 東海ゴム工業株式会社 Flexible conductive material, method for manufacturing same, and electrode, wiring, electromagnetic wave shielding, and transducer using flexible conductive material
JP2017501015A (en) * 2013-09-24 2017-01-12 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー Process for producing glossy laminated structures at low temperatures

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035828A (en) * 2002-07-05 2004-02-05 Tsubakimoto Chain Co Zinc powder capable of being dispersed in water and zinc powder-containing aqueous coating material
WO2005024853A1 (en) * 2003-09-08 2005-03-17 Sumitomo Metal Mining Co., Ltd. Transparent conductive multilayer body, organic el device using same, and methods for manufacturing those
JPWO2005024853A1 (en) * 2003-09-08 2007-11-08 住友金属鉱山株式会社 Transparent conductive laminate, organic EL element using the same, and method for producing the same
US8040042B2 (en) 2003-09-08 2011-10-18 Sumitomo Metal Mining Co., Ltd. Transparent electroconductive layered structure, organic electroluminescent device using the same layered structure, method for producing the same layered structure, and method for producing the same device
JP4983021B2 (en) * 2003-09-08 2012-07-25 住友金属鉱山株式会社 Transparent conductive laminate, organic EL element using the same, and method for producing the same
WO2012108502A1 (en) * 2011-02-10 2012-08-16 東海ゴム工業株式会社 Flexible conductive material, method for manufacturing same, and electrode, wiring, electromagnetic wave shielding, and transducer using flexible conductive material
JP2017501015A (en) * 2013-09-24 2017-01-12 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー Process for producing glossy laminated structures at low temperatures

Also Published As

Publication number Publication date
JP3750461B2 (en) 2006-03-01

Similar Documents

Publication Publication Date Title
US6673142B2 (en) Transparent conductive layered structure and method of producing the same, and transparent coat layer forming coating liquid used in the method of producing the same, and display device to which transparent conductive layered structure is applied
US6261479B1 (en) Transparent electro-conductive structure, process for its production, transparent electro-conductive layer forming coating fluid used for its production, and process for preparing the coating fluid
JP2002083518A (en) Transparent conductive substrate, its manufacturing method, display device using this transparent conductive substrate, coating solution for forming transparent conductive layer, and its manufacturing method
KR100630595B1 (en) Transparent conductive layered structure and method of producing the same, and coating liquid for forming transparent conductive layer used in production of transparent conductive layered structure and method of producing the same
JP4035934B2 (en) Transparent conductive substrate, method for producing the same, coating solution for forming transparent conductive layer used for production of transparent conductive substrate, and method for producing the same
JP4411672B2 (en) Coating liquid for forming transparent conductive layer and method for producing the same
US6569359B2 (en) Transparent conductive layer forming coating liquid containing formamide
EP1079413B1 (en) Transparent conductive layered structure and method of producing the same, coating liquid useful therefor, and display that uses transparent conductive layered structure
JP3876811B2 (en) Production method of coating liquid for forming transparent conductive layer
JP3750461B2 (en) Transparent conductive layer forming coating liquid, transparent conductive layer and transparent conductive substrate
JP4325201B2 (en) Transparent conductive layer forming coating liquid and transparent conductive film
JP3975310B2 (en) Transparent conductive substrate, method for producing the same, and display device to which the substrate is applied
JP2005154453A (en) Coating liquid for forming transparent conductive layer and transparent conductive base material
WO2002099819A1 (en) Coating solution for forming colored transparent conductive film, base body having colored transparent conductive film and manufacturing method thereof, and display device
JP3520705B2 (en) Coating liquid for forming conductive film, conductive film and method for manufacturing the same
JP3870669B2 (en) Transparent conductive substrate, method for producing the same, coating liquid for forming transparent coat layer used for production of transparent conductive substrate, and display device to which transparent conductive substrate is applied
JP2004071309A (en) Transparent conductive substrate and its manufacturing method and coating liquid for transparent coating layer formation used for manufacturing this transparent conductive substrate and display device applying the same
JP2002069335A (en) Coating liquid for forming transparent electroconductive layer
JP2003020420A (en) Coating liquid containing gold fine particle and method for manufacturing the same
JP2004203939A (en) Transparent electroconductive film-forming coating material, transparent electroconductive film and display having the same
JP2004051746A (en) Coating fluid for forming transparent electrical conductive layer
JP2005135722A (en) Coating liquid for forming transparent conductive layer and transparent conductive substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Effective date: 20041209

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Effective date: 20051128

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20111216

LAPS Cancellation because of no payment of annual fees