JP2001210360A - Manufacturing method of all-solid secondary battery - Google Patents

Manufacturing method of all-solid secondary battery

Info

Publication number
JP2001210360A
JP2001210360A JP2000021851A JP2000021851A JP2001210360A JP 2001210360 A JP2001210360 A JP 2001210360A JP 2000021851 A JP2000021851 A JP 2000021851A JP 2000021851 A JP2000021851 A JP 2000021851A JP 2001210360 A JP2001210360 A JP 2001210360A
Authority
JP
Japan
Prior art keywords
solid
solid electrolyte
secondary battery
binder
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000021851A
Other languages
Japanese (ja)
Inventor
Nobuyuki Kitahara
暢之 北原
Toshihiko Kamimura
俊彦 上村
Hiromitsu Mishima
洋光 三島
Shinji Umagome
伸二 馬込
Makoto Osaki
誠 大崎
Toru Hara
亨 原
Hisashi Higuchi
永 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000021851A priority Critical patent/JP2001210360A/en
Publication of JP2001210360A publication Critical patent/JP2001210360A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an all-solid secondary battery, with which the ionic conductivity is improved by improving the filling rates of electrodes or solid electrolyte, while the reaction of each particle at the terminal of the all-solid secondary battery or in the solid electrolyte are suppressed, and the formation of air gap in these terminals and the solid electrolyte is suppressed. SOLUTION: In the manufacturing method of the all-solid secondary battery, a formed material of the positive electrode materials containing a binding material, the solid electrolyte materials and the negative electrode materials are laminated, and subsequently this laminated formed material is fired, and later a positive electrode current collecting body and a negative electrode current collecting body are formed at the outside of this fired body. In this method, the above laminated and formed material is fired by means of a microwave heating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は全固体二次電池の製
造方法に関する。
The present invention relates to a method for manufacturing an all-solid secondary battery.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】従
来、各種電池の電解質としては、一般に、水系あるいは
非水系の電解液が使用されていたが、近年、ビデオ撮影
装置、ノートパソコン、あるいは携帯電話などの携帯用
情報端末機器に代表される各種電子応用機器の薄型かつ
軽量小型化の要求に伴い、前述のような液状の電解質に
代えて、正負一対の電極間に高分子材料で構成されたゲ
ル状の電解質を用いた固体電解質電池が注目されてい
る。
2. Description of the Related Art Conventionally, an aqueous or non-aqueous electrolyte has been generally used as an electrolyte for various batteries. Recently, however, a video camera, a notebook computer, or a mobile phone has been used. In response to the demand for thin, lightweight and compact electronic devices represented by portable information terminal devices such as portable information terminal devices, instead of the liquid electrolyte as described above, a polymer material is formed between a pair of positive and negative electrodes. A solid electrolyte battery using a gel electrolyte has attracted attention.

【0003】また、電解質として無機固体電解質や高分
子固体電解質を用いることで構成した固体電解質電池も
各種提案されている。これら電池では固体であるがゆえ
に塗布積層などの方法で薄型化が可能になり、携帯機器
への積極的な搭載が図られている。
[0003] Various types of solid electrolyte batteries using an inorganic solid electrolyte or a polymer solid electrolyte as an electrolyte have also been proposed. Since these batteries are solid, they can be thinned by a method such as coating and lamination, and are actively mounted on portable devices.

【0004】さらに、電極活物質ならびに電解質として
何れも無機化合物で構成することで作製された全固体二
次電池も安全性が高く、温度使用範囲が広範に取れると
いったメリットを生かせるものとして提唱されている。
Further, an all-solid-state secondary battery manufactured by using an inorganic compound as both an electrode active material and an electrolyte has also been proposed as having high safety and taking advantage of a wide temperature use range. I have.

【0005】このような全固体電池を形成する有力な方
法として、特開平8−138724号公報に示すよう
に、固体電解質の軟化点以上かつガラス転移点以下の温
度での加圧加熱による成形方法が試みられている。しか
しながら、電極内部や固体電解質の層内での物質移動を
十分に起こすためには、長時間の加熱が必要であること
や、活物質と固体電解質の反応が進行してしまい、イオ
ン伝導が不動体化してしまうといった問題があった。
As an effective method for forming such an all-solid-state battery, as disclosed in JP-A-8-138724, a molding method by heating under pressure at a temperature between the softening point of the solid electrolyte and the glass transition point or lower is disclosed. Have been tried. However, in order to sufficiently cause mass transfer within the electrode or the solid electrolyte layer, long-time heating is required, and the reaction between the active material and the solid electrolyte proceeds, so that ionic conduction is immobile. There was a problem of becoming embodied.

【0006】そこで、これらの問題を解決する方法とし
て、固体電解質と混合した電極活物質や固体電解質自体
をマイクロ波の照射によって高速に溶解接合する方法が
考えられる。この方法では、固体電解質を極めて短時間
に溶融させ、活物質との反応を抑制しつつ接合を成し遂
げるものであり、界面形成をコントロールした作製法と
して有力な方法である。
Therefore, as a method for solving these problems, a method in which the electrode active material mixed with the solid electrolyte or the solid electrolyte itself is melt-bonded at high speed by microwave irradiation can be considered. In this method, the solid electrolyte is melted in a very short time to achieve the bonding while suppressing the reaction with the active material, and is an effective method as a manufacturing method in which the interface formation is controlled.

【0007】一方、全固体二次電池では、電極あるいは
固体電解質に空隙が存在した場合、イオン移動が妨げら
れることで徐々に劣化していくという問題がある。リチ
ウムイオン電池であれば、電解液や樹脂バインダーなど
が充填されて、このような空隙は存在しないものの、焼
結などによって全固体電池を形成する場合には、先に延
べたような理由から長時間の焼成を必要とし、反応温度
特性が各々異なる物質同志で反応を起こさず、物質移動
のみによる空隙の除去は困難であった。
On the other hand, the all-solid-state secondary battery has a problem that, when a gap exists in the electrode or the solid electrolyte, the ion transfer is hindered, and the battery gradually deteriorates. In the case of a lithium ion battery, such a void does not exist because the electrolyte solution or the resin binder is filled.However, when an all solid battery is formed by sintering or the like, a long time is required for the reason described above. It requires time calcination, does not react with substances having different reaction temperature characteristics, and it is difficult to remove voids by mass transfer alone.

【0008】本発明は、このような従来技術の問題点に
鑑みてなされたものであり、全固体二次電池の電極と固
体電解質中の各粒子の反応を抑えつつ、これら電極と固
体電解質中に空隙が発生することを解消し、もって電極
あるいは固体電解質の充填率の向上させてイオン伝導度
が向上した全固体二次電池の製造方法を提供することを
目的とする。
The present invention has been made in view of such problems of the prior art, and suppresses a reaction between an electrode of an all-solid secondary battery and each particle in the solid electrolyte, while preventing the electrode and the solid electrolyte from being solid. It is an object of the present invention to provide a method for manufacturing an all-solid-state secondary battery in which the generation of voids is eliminated and the filling rate of electrodes or solid electrolytes is improved, thereby improving ionic conductivity.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る全固体二次電池の製造方法では、結
着材を含有する正極材料と固体電解質材料と負極材料の
生成形体を積層し、次いでこの積層した生成形体を焼成
し、しかる後この焼成体の外側に正極集電体と負極集電
体を形成する全固体二次電池の製造方法において、前記
積層した生成形体をマイクロ波加熱して焼成することを
特徴とする。
According to a first aspect of the present invention, there is provided a method for manufacturing an all-solid secondary battery, comprising a positive electrode material containing a binder, a solid electrolyte material, and a negative electrode material. And then firing the laminated formed body, and thereafter, in a method for manufacturing an all-solid secondary battery in which a positive electrode current collector and a negative electrode current collector are formed outside the fired body, It is characterized by firing by microwave heating.

【0010】上記全固体二次電池の製造方法では、前記
結着材中にリチウムを含む層状無機酸化物を含有するこ
とが望ましい。
[0010] In the above method for manufacturing an all-solid secondary battery, it is desirable that the binder contains a layered inorganic oxide containing lithium.

【0011】[0011]

【発明の実施の形態】以下、各請求項に係る発明を詳細
に説明する。図1は、各請求項に係る全固体二次電池の
一実施形態を示す図である。全固体電池は、正電極1と
負電極3とで固体電解質2を挟んで電池要素9が構成さ
れ、この電池要素9の外側に集電体4、5を形成し、さ
らに全体をコーティング外装6で被覆した構造になって
いる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the invention according to each claim will be described in detail. FIG. 1 is a diagram showing one embodiment of an all solid state secondary battery according to each claim. In the all-solid-state battery, a battery element 9 is configured by sandwiching a solid electrolyte 2 between a positive electrode 1 and a negative electrode 3, current collectors 4 and 5 are formed outside the battery element 9, and the entire body is coated with a coating 6. The structure is covered with.

【0012】正電極l、負電極3、および固体電解質2
はそれぞれ以下に示す材料から構成される。すなわち、
電極1、2の材料である活物質としては、遷移金属のカ
ルコゲン化物や、スピネル構造の遷移金属酸化物があげ
られる。カルコゲン化物としてはTiO2、Cr38
25、MnO2、CoO2などの酸化物系、TiS2
VS2、FeSなどの硫化物系などがあげられ、スピネ
ル構造としてはLiMn24に代表される各種遷移金属
酸化物、あるいはその一部元素置換型酸化物や、Li4
Mn512などの各種遷移金属酸化物やその一部元素置
換型酸化物を用いることができる。硫化物系では活物質
の大気中水分などとの反応性が高いことから、酸化物系
の活物質材料が望ましい。
A positive electrode 1, a negative electrode 3, and a solid electrolyte 2
Are composed of the following materials. That is,
Examples of the active material that is a material of the electrodes 1 and 2 include a chalcogenide of a transition metal and a transition metal oxide having a spinel structure. As chalcogenides, TiO 2 , Cr 3 O 8 ,
Oxides such as V 2 O 5 , MnO 2 , CoO 2 , TiS 2 ,
VS 2, FeS and sulfide such as mentioned, various transition metal oxides as a spinel structure represented by LiMn 2 O 4, or a portion thereof the element replacement type oxide or, Li 4
Various transition metal oxides such as Mn 5 O 12 and partial element substitution type oxides thereof can be used. In a sulfide-based material, an oxide-based active material is preferable because the active material has high reactivity with atmospheric moisture and the like.

【0013】これらの材料を正極1および負極3の活物
質として用いる場合、その組み合わせには特に限定され
るものではなく、2種類の遷移金属酸化物あるいは硫化
物の充放電電位を比較して、より貴な電位を示すものを
正極1に用い、またより卑な電位を示すものを負極3に
用いることで任意の電池電圧をもつ構成とすることがで
きる。さらに、電極1、3における電子電導性補助の目
的から、SnO2あるいはTiO2、ITOあるいはカー
ボンといった導電性の添加物を添加してもよい。
When these materials are used as the active materials of the positive electrode 1 and the negative electrode 3, the combination is not particularly limited, and the charge and discharge potentials of two types of transition metal oxides or sulfides are compared. A structure having an arbitrary battery voltage can be obtained by using a material having a more noble potential for the positive electrode 1 and a material having a more noble potential for the negative electrode 3. Further, a conductive additive such as SnO 2, TiO 2 , ITO or carbon may be added for the purpose of assisting the electron conductivity in the electrodes 1 and 3.

【0014】また、本発明で用いる無機固体電解質2に
は,例えばLi1.3Al0.3Ti1.7(PO43やLi3.6
Ge0.60.44などの結晶質固体電解質、30LiI
−41Li2O−29P25や40Li2O―30LiI
一35B23−25LiNbO3、10Li2O―25B
23−15SiO2−50ZnOなどの酸化物系非晶質
固体電解質、45LiI−37Li2S−18P25
Li3PO4−63Li2S−36SiS2などの硫化物系
非晶質固体電解質などを用いることができるが、活物質
の安定性の見地からサイクル充放電性能を維持するため
に、酸化物系材料を用いることが好ましい。
The inorganic solid electrolyte 2 used in the present invention includes, for example, Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 and Li 3.6
Crystalline solid electrolyte such as Ge 0.6 V 0.4 O 4, 30LiI
-41Li 2 O-29P 2 O 5 and 40Li 2 O-30LiI
One 35B 2 O 3 -25LiNbO 3, 10Li 2 O-25B
2 O 3 -15SiO 2 oxide-based amorphous solid electrolytes such as -50ZnO, 45LiI-37Li 2 S- 18P 2 S 5 and Li 3 PO 4 -63Li 2 sulfide such as S-36SiS 2 amorphous solid Although an electrolyte or the like can be used, it is preferable to use an oxide-based material in order to maintain cycle charge / discharge performance from the viewpoint of stability of the active material.

【0015】これらの材料を結合する結着材としては、
ガラス封止材料などに代表される酸化物ガラスでリン酸
塩ガラスや、ホウ酸塩ガラス、珪酸塩ガラス、ホウ珪酸
塩ガラスを主体とした多成分系酸化物ガラスなどの低融
点ガラスが適し、溶融するためには特定のマイクロ波周
波数において、選択的な加熱が可能な材料であることが
必要である。また、結着材中への添加材としては、Li
2MnO3やLi2TiO3などのLiを含んだ層状無機酸
化物を用いることが好ましい。
[0015] As a binder for binding these materials,
Suitable for use is an oxide glass represented by a glass sealing material, such as a phosphate glass, a low melting glass such as a borate glass, a silicate glass, or a multi-component oxide glass mainly composed of a borosilicate glass. In order to melt, the material needs to be capable of selectively heating at a specific microwave frequency. As an additive in the binder, Li
It is preferable to use a layered inorganic oxide containing Li such as 2 MnO 3 or Li 2 TiO 3 .

【0016】一方、集電体7、8を構成する材料として
は、Au、Ag、Pd、Pt、Ni、Al、Cu、また
はTiから選ばれた何れか一つあるいは二つ以上の金属
もしくはその合金を主成分とする金属材料、あるいはそ
の導電性ペーストなどが用いられる。また、電極1、3
上に形成する集電体7、8の蒸着方法は特に限定されな
いが、真空蒸着法、スクリーン印刷法、スパッタリング
法、CVD法、あるいはメッキ法などによって形成でき
る。
On the other hand, the material constituting the current collectors 7 and 8 is any one or two or more metals selected from Au, Ag, Pd, Pt, Ni, Al, Cu, and Ti, or a metal thereof. A metal material containing an alloy as a main component or a conductive paste thereof is used. Also, electrodes 1, 3
The method for depositing the current collectors 7 and 8 formed thereon is not particularly limited, but the current collectors 7 and 8 can be formed by a vacuum deposition method, a screen printing method, a sputtering method, a CVD method, a plating method, or the like.

【0017】電池要素9は、図1に示した絶縁性樹脂の
コーティング外装6によって被覆または梱包され、全固
体二次電池10を形成している。このコーティング外装
6の材料としては、ポリエチレン、ポリプロピレン、ポ
リエステル、およびポリイミドなどの高分子樹脂をコー
ティングすることによって被覆されている。
The battery element 9 is covered or packaged with the insulating resin coating 6 shown in FIG. 1 to form an all-solid secondary battery 10. The material of the coating exterior 6 is covered by coating a polymer resin such as polyethylene, polypropylene, polyester, and polyimide.

【0018】次に、電池要素9の形成方法を説明する。
上述した材料の生成形体を積層して形成する。積層体の
形成は、各電極層と固体電解質層をシート成形あるいは
基板上へスクリーン印刷した後に乾燥して基板を除去す
ることにより形成できる。シート成形の場合、まず各電
極および固体電解質のペーストを必要とする厚みにスク
リーン印刷やドクターブレード法で塗布した後、得られ
たシートを乾燥して固体電解質を正負両電極で挟んで電
池要素9を形成する。また、この電池要素9の生成形体
は、正極1、負極3、および固体電解質2のすべてをス
クリーン印刷法などで形成することも可能である。
Next, a method for forming the battery element 9 will be described.
The formed form of the above-mentioned material is laminated and formed. The laminate can be formed by removing the substrate by drying after forming each electrode layer and the solid electrolyte layer into a sheet or screen printing on the substrate. In the case of sheet forming, first, each electrode and the paste of the solid electrolyte are applied to a required thickness by screen printing or a doctor blade method, and then the obtained sheet is dried, and the solid electrolyte is sandwiched between the positive and negative electrodes to form the battery element 9. To form Further, in the formed form of the battery element 9, all of the positive electrode 1, the negative electrode 3, and the solid electrolyte 2 can be formed by a screen printing method or the like.

【0019】このようにして形成された積層体は、予め
大気中で焼成して脱バインダー処理を行ない、粒子の結
着に用いた有機バインダーを除去する。その後、マイク
ロ波焼成炉において積層体全体を結着材が完全には溶融
しない温度範囲において予備加熱してその温度で保持す
る。その状態で安定した後、マイクロ波を短時間照射し
て結着材を選択的に溶解して結着し、全固体二次電池の
電池要素9を形成する。焼成に用いるマイクロ波出力の
周波数は、2.45GHz〜28GHzなどの市販され
ているマイクロ波焼成炉の周波数を使用できる。マイク
ロ波の吸収率は加熱対象とする材料によって変化するた
め、理想的には材料の吸収(加熱)特性に合わせた周波
数による焼成方法を選択することが望ましい。さらにマ
イクロ波の出力は対象物へ100%吸収されることが理
想であるが、極端なマイクロ波の集中によって対象物が
破壊することを避ける必要がある場合がある。このよう
な場合、周囲をマイクロ波に殆ど透明な、あるいはやや
吸収のある例えばアルミナなどの容器や断熱材などによ
って対象物を囲って、装置出力のマイクロ波の極端な集
中を避けることができ、均質な焼成を目的とする場合な
どに有効である。また、対象物の温度測定には、通常非
接触式の赤外線式温度計やシース型熱電対を直接接触さ
せることで行なう。
The laminate thus formed is baked in the air in advance to remove the binder, thereby removing the organic binder used for binding the particles. Thereafter, the entire laminate is preheated in a microwave firing furnace in a temperature range where the binder is not completely melted, and is maintained at that temperature. After stabilizing in that state, microwaves are irradiated for a short time to selectively dissolve and bind the binder, thereby forming the battery element 9 of the all-solid secondary battery. As the frequency of the microwave output used for firing, a frequency of a commercially available microwave firing furnace such as 2.45 GHz to 28 GHz can be used. Since the microwave absorptivity varies depending on the material to be heated, it is ideally desirable to select a firing method using a frequency that matches the absorption (heating) characteristics of the material. Further, it is ideal that the output of the microwave is absorbed 100% by the object. However, there is a case where it is necessary to prevent the object from being destroyed due to the extreme concentration of the microwave. In such a case, the surroundings are almost transparent to the microwave, or the target is surrounded by a container or a heat insulating material such as alumina having a little absorption, so that the extreme concentration of the microwave of the device output can be avoided. It is effective for the purpose of uniform firing. The temperature of the object is measured by directly contacting a non-contact type infrared thermometer or a sheath-type thermocouple.

【0020】また、焼成時の雰囲気は材料に酸化物を用
いていることから、大気雰囲気中で行われるが、原料に
よっては酸化還元反応を調整する目的で各種雰囲気で行
われても全く支障はない。また、これらの一連の工程は
同一炉内で連続してできることが望ましいが、設備の構
造などから困難な場合には、材料のハンドリングに気を
つけて行なえば別々の炉内で行なうこともできる。
The firing is performed in an air atmosphere because an oxide is used as a material. However, depending on the raw material, there is no problem even if the firing is performed in various atmospheres for the purpose of adjusting the oxidation-reduction reaction. Absent. In addition, it is desirable that these series of steps can be continuously performed in the same furnace, but if it is difficult due to the structure of the equipment, etc., it can be performed in separate furnaces if care is taken in material handling. .

【0021】このようにして作製した電池要素9の各電
極1、3の表面へ集電体4、5を形成し、金属端子を導
電性ペーストなどで接合して乾燥した後、樹脂コーティ
ングによる外装6をディッピングなどでコーティングし
て硬化させて全固体二次電池とする。
The current collectors 4 and 5 are formed on the surfaces of the electrodes 1 and 3 of the battery element 9 manufactured as described above, and the metal terminals are joined with a conductive paste or the like and dried. 6 is coated by dipping or the like and cured to form an all-solid secondary battery.

【0022】[0022]

【実施例】(実施例1)各電池要素の形成は以下のよう
にして行なった。正極活物質としてLi[Li0.1Mn
1.9]O4を用いた。出発原料としてMnO 2に対してLi
2CO3などの化合物をLi:Mnのモル比が1.1:
1.9となるように混合し、大気中の450℃〜750
℃で焼成することで合成した。この活物質80重量%に
対して無機固体電解質として30LiI−41Li2
−29P25粉体を12重量%、結着材として低融点ガ
ラス(ここでは50P25−30PbO−20ZnO)
を8重量%を添加して十分に混合した。この混合粉体に
対して成形用バインダーとしてポリビニルブチラールを
5重量%外添加し、ボールミルを用いてトルエンを溶剤
にペーストの調製した。調製したペーストを100μm
の厚みに成形して溶剤を揮散させた。
EXAMPLES (Example 1) The formation of each battery element is as follows.
It was done. Li [Li as a positive electrode active material0.1Mn
1.9] OFourWas used. MnO as starting material TwoFor Li
TwoCOThreeAnd a compound having a molar ratio of Li: Mn of 1.1:
1.9 and mixed at 450 ° C. to 750 in air.
It was synthesized by firing at ℃. 80% by weight of this active material
On the other hand, 30LiI-41Li as an inorganic solid electrolyteTwoO
-29PTwoOFive12% by weight of powder, low melting point as binder
Lass (50P here)TwoOFive-30PbO-20ZnO)
Was added and mixed well. This mixed powder
On the other hand, polyvinyl butyral was used as a molding binder.
5% by weight, and toluene is added to the solvent using a ball mill.
To prepare a paste. 100 μm of prepared paste
And the solvent was volatilized.

【0023】一方、負極活物質としてLi[Li1/3
5/3]O4を用いた。出発原料としてTiO2に対して
Li2CO3などの化合物をLi:Tiのモル比が4:5
になるように混合し、大気中の650〜950℃で焼成
した。この負極活物質を用いて、正極と同様に、活物質
80重量%に対して、無機固体電解質(30LiI−4
1Li2O−29P25)粉体を12重量%、結着材と
して正極で用いた低融点ガラスと同じ低融点ガラスを8
重量%を混合して負極混合粉体を作製した。この負極混
合粉体に対して成形用バインダーとして正極と同様のバ
インダーを5重量%外添加し、ボールミルを用いてトル
エンを溶剤にペーストの調製した。調製したペーストを
80μmの厚みに成形して溶剤を揮散させた。
On the other hand, Li [Li 1/3 M
n5 / 3 ] O4 was used. As a starting material, a compound such as Li 2 CO 3 with respect to TiO 2 is used in a molar ratio of Li: Ti of 4: 5.
And baked at 650 to 950 ° C. in the atmosphere. Using this negative electrode active material, an inorganic solid electrolyte (30LiI-4
1Li 2 O-29P 2 O 5 ) powder was 12% by weight, and the same low melting point glass as the low melting point glass used for the positive electrode was used as the binder.
% By weight to prepare a negative electrode mixed powder. 5% by weight of the same binder as the positive electrode was added as a binder for molding to the negative electrode mixed powder, and a paste was prepared using a ball mill with toluene as a solvent. The prepared paste was formed into a thickness of 80 μm to evaporate the solvent.

【0024】また、上記固体電解質に対して、やはり同
じ低融点ガラス材料を重量比80:20で混合し、電極
と同様にバインダーを5重量部添加してボールミルを用
いてトルエンを溶剤にペーストを調製した。調製したペ
ーストを正負各焼成電極上にスクリーン印刷法で10μ
mの厚みに積層塗布した。塗布した後、両者を貼りあわ
せて溶剤を揮散させ、3層を一体化した構造の電池要素
にした。このときの電極寸法は30mm×30mm、固
体電解質はさらに1mmずつ大きく塗布した。その後、
大気中の400℃で5時間加熱してバインダーを除去し
た。バインダーを除去した後、引き続いて28GHzの
マイクロ波を照射して焼成した。初めはマイクロ波出力
を100w未満の小さな出力に安定させて、電池要素全
体を350〜450℃の一定温度に維持した。その後、
マイクロ波出力を0.1〜2kWの範囲で30秒間重畳
照射し、結着材を溶解した。この瞬間の熱電対による測
定温度は650℃であった。マイクロ波の重畳終了と同
時にすべての加熱も停止し、電池要素を室温まで降下さ
せた後に取り出した。このとき、マイクロ波出力と焼成
した後の電池要素の緻密度とを調べた結果を表1に示
す。電極或いは固体電解質の接合は可能であり、またマ
イクロ波の重畳により、固体電解質そのものの変質は確
認されなかった。マイクロ波出力800wの条件におけ
る断面写真を図2に示す。
Also, the same low melting point glass material was mixed with the above solid electrolyte at a weight ratio of 80:20, and 5 parts by weight of a binder were added similarly to the electrode, and the paste was dissolved in toluene and a solvent using a ball mill. Prepared. The prepared paste is applied to each of the positive and negative fired electrodes by 10 μm by screen printing.
m. After the application, the two were adhered to each other to evaporate the solvent to obtain a battery element having a structure in which three layers were integrated. At this time, the electrode dimensions were 30 mm × 30 mm, and the solid electrolyte was further applied by 1 mm each. afterwards,
The binder was removed by heating at 400 ° C. in the air for 5 hours. After removing the binder, the substrate was subsequently irradiated with microwaves of 28 GHz and fired. Initially, the microwave output was stabilized at a small output of less than 100 W, and the entire battery element was maintained at a constant temperature of 350 to 450 ° C. afterwards,
The microwave output was superimposedly irradiated in a range of 0.1 to 2 kW for 30 seconds to dissolve the binder. The temperature measured by the thermocouple at this moment was 650 ° C. All heating was stopped at the same time as the completion of microwave superposition, and the battery element was taken out after being cooled to room temperature. At this time, the results of examining the microwave output and the compactness of the fired battery element are shown in Table 1. Electrodes or solid electrolytes could be joined, and no alteration of the solid electrolyte itself was confirmed by superposition of microwaves. FIG. 2 shows a cross-sectional photograph under the condition of a microwave output of 800 w.

【0025】取り出した電池要素の正負各電極上へは、
29.5mm×29.5mmの大きさにAuを全面に真空
蒸着して集電体を形成した。各電極側いずれも蒸着量が
2500Åとなるように行った。蒸着した後、Al箔
(20μm)による電極端子2枚を正負両電極へ1枚ず
つ導電性接着剤で接続して乾燥硬化させた後、全体を樹
脂へディッピングしてコーティング外装を形成し、加熱
硬化させて全固体電池を完成した。
On the positive and negative electrodes of the removed battery element,
Au was vacuum-deposited on the entire surface to a size of 29.5 mm × 29.5 mm to form a current collector. The deposition was performed so that the deposition amount on each electrode side was 2500 °. After vapor deposition, two electrode terminals made of Al foil (20 μm) are connected to both positive and negative electrodes one by one with a conductive adhesive, dried and cured, and then the whole is dipped in resin to form a coating package, and heated. It was cured to complete an all-solid-state battery.

【0026】このマイクロ波出力800wの条件で作製
した電池要素の充放電特性評価を二次電池充放電装置で
行なった。充電条件として50μAの電流で全固体電池
を3.5Vまで充電し、電圧が3.5Vに到達した後、
充電を停止して5分間保持し、その後1.0Vの電圧ま
で50μAの放電電流で放電し、放電を停止して5分間
保持し、再度3.5Vまで充電するという繰り返しによ
る充放電サイクル試験を行った。充放電は加速試験のた
め80℃で実施した。電池性能の評価は、サイクル毎の
放電容量の推移を5セルについて行った。その結果を表
2に示す。 (比較例1−1)実施例1において積層した後に400
℃の加熱によるバインダーを除去した後、マイクロ波の
照射出力のみを変更し、固体電解質が溶融するマイクロ
波出力を確認したところ、マイクロ波の出力3.2kw
以上の重畳により溶融することがわかった。その結果を
表1に示す。 (比較例1−2)実施例1において積層した後に400
℃のバインダー除去の加熱に引き続き、マイクロ波によ
らない400〜750℃の温度で加熱を行なって結着材
を溶融した。各サンプルとも1℃/minの昇温速度で
昇温して30分間保持した後、ヒーターを切っている。
これらの電池要素を用いて積層体を作製し、素電池を作
製した。このときの電池要素の緻密度測定結果を表1に
示し、650℃で加熱した接合断面写真を図3に示す。
電池要素は実施例1と同様にAuを蒸着した後、Al箔
集電体を導電性接着によって正負各電極へ1枚ずつ加熱
硬化させて接合した。その後、やはり実施例1と同様に
樹脂でコーティング外装を形成して比較電池とした。作
製した電池は、実施例1と同様に80℃で二次電池充放
電装置によってサイクル特性評価を行った。その結果を
表2に示す。
The charge / discharge characteristics of the battery element manufactured under the condition of the microwave output of 800 w were evaluated by a secondary battery charge / discharge device. As a charging condition, the all solid state battery was charged to 3.5 V with a current of 50 μA, and after the voltage reached 3.5 V,
A charge / discharge cycle test was repeatedly performed in which charging was stopped and held for 5 minutes, followed by discharging with a discharge current of 50 μA to a voltage of 1.0 V, stopping discharging, holding for 5 minutes, and charging again to 3.5 V. went. The charge and discharge were performed at 80 ° C. for the acceleration test. The evaluation of the battery performance was carried out with respect to the transition of the discharge capacity for each cycle for 5 cells. Table 2 shows the results. (Comparative Example 1-1) After lamination in Example 1, 400
After removing the binder by heating at ℃, only the microwave irradiation output was changed and the microwave output at which the solid electrolyte was melted was confirmed. The microwave output was 3.2 kW.
It turned out that it melt | dissolves by the above superposition. Table 1 shows the results. (Comparative Example 1-2) After lamination in Example 1, 400
Following the heating for removing the binder at a temperature of 400C, heating was performed at a temperature of 400 to 750C without using microwaves to melt the binder. Each sample was heated at a rate of 1 ° C./min and maintained for 30 minutes, and then the heater was turned off.
A laminate was produced using these battery elements to produce a unit cell. Table 1 shows the measurement results of the densities of the battery elements at this time, and FIG.
For the battery element, Au was vapor-deposited in the same manner as in Example 1, and then the Al foil current collector was heated and cured one by one to each of the positive and negative electrodes by conductive bonding and joined. Thereafter, a coating battery was formed with a resin in the same manner as in Example 1 to obtain a comparative battery. The cycle characteristics of the fabricated battery were evaluated at 80 ° C. using a secondary battery charging / discharging device in the same manner as in Example 1. Table 2 shows the results.

【0027】[0027]

【表1】 [Table 1]

【0028】この結果、マイクロ波の出力を上げすぎる
と、結着材自体の発泡や活物質との反応によって、全固
体電池の形成が困難となることが判明し、最適なマイク
ロ波出力の範囲があることが確認できた。つまり、実施
例1の場合では図2にみられるように、出力800wの
条件のもとで焼成した場合において、活物質と固体電解
質、或いは活物質や固体電解質と結着材との界面が隙間
なく緻密であることが確認された。
As a result, it has been found that if the microwave output is too high, it becomes difficult to form an all-solid-state battery due to foaming of the binder itself and reaction with the active material. It was confirmed that there was. That is, in the case of the first embodiment, as shown in FIG. 2, when firing is performed under the condition of an output of 800 W, the interface between the active material and the solid electrolyte, or the interface between the active material or the solid electrolyte and the binder is a gap. And it was confirmed that it was dense.

【0029】一方、マイクロ波で加熱しなかった比較例
2においては、400℃の加熱のみでは、形状が保持が
できず、形状が保持できた650℃の加熱においては、
図3に示したように、接合界面には一部空隙が見られ、
完全な緻密化には不十分であることが確認された。加熱
温度をさらにあげて750℃とすることで、結着材の流
動を起こそうとした場合には、充填率の向上はみられる
ものの、界面では反応による変色が起こって絶縁化して
しまった。
On the other hand, in Comparative Example 2 in which heating was not performed by microwaves, the shape could not be maintained only by heating at 400 ° C., and in 650 ° C. where the shape could be maintained by heating at 400 ° C.
As shown in FIG. 3, some voids are seen at the bonding interface,
It was confirmed that it was insufficient for complete densification. When the heating temperature was further increased to 750 ° C., when the binder was to be caused to flow, although the filling factor was improved, discoloration due to the reaction occurred at the interface, resulting in insulation.

【0030】このことから、実施例1が比較例1に比べ
て、マイクロ波による瞬時の加熱が電池要素内部での電
極活物質粒子や固体電解質との反応を伴わずに界面の接
合形成を速やかに行い、充填率向上が起こっているとい
える。
From the above, it can be seen that instant heating by microwaves in Example 1 is faster than that in Comparative Example 1 without causing a reaction with the electrode active material particles and the solid electrolyte inside the battery element, thereby forming a junction at the interface more quickly. It can be said that the filling rate is improved.

【0031】[0031]

【表2】 [Table 2]

【0032】一方、充放電特性に関しては初期容量確認
の段階から容量が4分の1以下であるという明らかな違
いが認められた。サイクルを経過していった150サイ
クル目では、実施例1は初期に対してほぼ同じ放電容量
を示すのに対し、比較例1では容量劣化が急激に進行し
て150サイクル目では充放電そのものの測定ができな
くなった。これは図に示された空隙がイオン移動を阻害
しているものと推測される。 (実施例2)ガラスなどの結着材中への層状化合物とし
てLi2MnO3を用いた。出発原料としてMnO2に対
してLiOH・H2Oなどの化合物をモル比Li:Mn
=2:1となるようボールミルでIPAを溶媒に混合
し、乾燥した後、大気中の650〜900℃で焼成して
合成した。この原料を振動ミルで十分粉砕した後、実施
例1で用いた結着材に対して、Li2MnO3を10重量
%の比でポットミルを用いてIPAを溶媒に湿式混合し
た。そして、120℃の熱風で乾燥したものを改めて結
着材材として用いた。このこと以外は実施例1に示した
条件で全固体電池を作製して実施例1と同様に充放電測
定を行なった。その結果を表3に示す。 (比較例2)結着材に対して、実施例2と同様にLi2
MnO3を重量比で9:1の割合で混合した以外は、比
較例1と同じ条件で全固体電池を作製した。充放電測定
は比較例1と同様に行なった。その結果を表3に示す。
On the other hand, with respect to the charge / discharge characteristics, a clear difference that the capacity was 1/4 or less was recognized from the stage of confirming the initial capacity. At the 150th cycle after passing the cycle, Example 1 shows almost the same discharge capacity as the initial stage, whereas in Comparative Example 1, the capacity deterioration rapidly progressed and at the 150th cycle, the charge / discharge itself was not increased. I can no longer measure. This is presumed to be due to the fact that the voids shown in the figure hinder ion migration. Example 2 Li 2 MnO 3 was used as a layered compound in a binder such as glass. As a starting material, a compound such as LiOH · H 2 O is used in a molar ratio of Li: Mn to MnO 2 .
= 2: 1, IPA was mixed with the solvent in a ball mill, dried, and then fired at 650 to 900 ° C. in the atmosphere for synthesis. After sufficiently pulverizing this raw material with a vibration mill, IPA was wet-mixed with the binder used in Example 1 using a pot mill with Li 2 MnO 3 at a ratio of 10% by weight using a pot mill. The material dried with hot air at 120 ° C. was used again as a binder. Except for this, an all-solid-state battery was manufactured under the conditions shown in Example 1, and charge / discharge measurement was performed in the same manner as in Example 1. Table 3 shows the results. (Comparative Example 2) Li 2 was added to the binder in the same manner as in Example 2.
An all-solid-state battery was manufactured under the same conditions as in Comparative Example 1, except that MnO 3 was mixed at a weight ratio of 9: 1. The charge / discharge measurement was performed in the same manner as in Comparative Example 1. Table 3 shows the results.

【0033】[0033]

【表3】 [Table 3]

【0034】比較例2においては、比較例1と同様に結
着材の添加効果は確認できなかった。一方、実施例1の
全固体二次電池と比較し、実施例2においては、明らか
な充放電容量の増大が確認された。これは、結着材へ添
加した添加材によるイオン伝導性の改善に伴う電池の内
部抵抗低減の効果によると思われる。また、本方法で
は、結着材中への層状酸化物の分散を工程簡略化の観点
から積層後の溶解時に行なう方法を取ったが、予め結着
材中へ分散したものを積層し、さらに溶解することでも
その効果は全く変わらない。
In Comparative Example 2, as in Comparative Example 1, the effect of adding the binder could not be confirmed. On the other hand, as compared with the all-solid-state secondary battery of Example 1, in Example 2, a clear increase in charge / discharge capacity was confirmed. This is considered to be due to the effect of reducing the internal resistance of the battery due to the improvement of the ion conductivity due to the additive added to the binder. Further, in the present method, the method of dispersing the layered oxide in the binder was performed at the time of dissolution after lamination from the viewpoint of simplification of the process, but the layer dispersed in advance in the binder was laminated. Dissolution does not change its effect at all.

【0035】なお、本発明においてはスピネル型構造を
持つLi[Li0.1Mn1.9]O4、Li[Li1/3Mn
5/3]O4を活物質として用いる共に、固体電解質として
10Li2O−25B23−15SiO2−50ZnO
などを用い、さらにLiを含む層状化合物としてLi2
MnO3を用いたが、発明の趣旨を逸脱しない範囲であ
れば活物質材料および固体電解質は種々変更できる。
In the present invention, Li [Li 0.1 Mn 1.9 ] O 4 and Li [Li 1/3 Mn having a spinel structure are used.
5/3 ] O 4 as an active material and 10Li 2 O-25 B 2 O 3 -15 SiO 2 -50 ZnO as a solid electrolyte
And Li 2 as a layered compound containing Li.
Although MnO 3 was used, the active material and the solid electrolyte can be variously changed without departing from the spirit of the invention.

【0036】また、加工におけるマイクロ波の出力につ
いては、対象とする材料の量並びに誘電率および使用す
るマイクロ波の周波数などによって変化する。したがっ
て、これらの加工におけるマイクロ波の出力および周波
数並びに重畳の時間などの条件は特に限定されるもので
なく、本発明の趣旨を逸脱しない範囲であれば種々変更
可能である。
The output of the microwave in the processing varies depending on the amount of the target material, the dielectric constant, the frequency of the microwave to be used, and the like. Therefore, conditions such as the microwave output and frequency and the time of superimposition in these processes are not particularly limited, and can be variously changed without departing from the spirit of the present invention.

【0037】[0037]

【発明の効果】以上のように、請求項1に係る全固体二
次電池の製造方法によれば、結着材を含有する正極材料
と固体電解質材料と負極材料の生成形体を積層し、マイ
クロ波加熱して焼成することから、結着材を選択的に溶
融することで粒子との緻密な接合界面を形成して積層す
ることが可能となり、全固体二次電池のイオン電導性と
サイクル特性が向上する。このことは、製造工程を簡略
化、効率を飛躍的に上げることが可能になることを意味
する。
As described above, according to the method of manufacturing an all-solid secondary battery according to the first aspect, a positive electrode material containing a binder, a solid electrolyte material, and a formed form of a negative electrode material are laminated, By wave heating and firing, it is possible to form a dense bonding interface with the particles by selectively melting the binder, and to laminate, and the ionic conductivity and cycle characteristics of the all-solid secondary battery Is improved. This means that the manufacturing process can be simplified and efficiency can be dramatically increased.

【0038】また、本来イオン伝導に寄与しない結着材
へ層状化合物を分散させることで、結着材自体へのイオ
ン伝導性が付与される。このため、界面接合との相乗効
果でさらに性能向上を図ることができる。
Further, by dispersing the layered compound in a binder that does not originally contribute to ion conduction, ionic conductivity is given to the binder itself. Therefore, the performance can be further improved by a synergistic effect with the interface bonding.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る全固体二次電池の構成を示す図で
ある。
FIG. 1 is a diagram showing a configuration of an all-solid secondary battery according to the present invention.

【図2】実施例1で形成された接合界面の写真である。FIG. 2 is a photograph of a bonding interface formed in Example 1.

【図3】比較例1−2で形成された接合界面の写真であ
る。
FIG. 3 is a photograph of a bonding interface formed in Comparative Example 1-2.

【符号の説明】[Explanation of symbols]

1:正極、2:固体電解質、3:負極、4:集電体
(正)、5:集電体(負)、6:コーティング外装、
7:集電体端子(正)、8:集電体端子(負)、9:電
池要素、10:全固体二次電池
1: positive electrode, 2: solid electrolyte, 3: negative electrode, 4: current collector (positive), 5: current collector (negative), 6: coating exterior,
7: current collector terminal (positive), 8: current collector terminal (negative), 9: battery element, 10: all solid state secondary battery

───────────────────────────────────────────────────── フロントページの続き (72)発明者 馬込 伸二 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 大崎 誠 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 原 亨 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 樋口 永 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 Fターム(参考) 5H029 AJ05 AJ14 AK03 AK05 AL03 AL04 AM11 AM12 BJ04 BJ12 CJ02 DJ08 EJ05  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Shinji Magome 3-5 Koikodai, Seika-cho, Soraku-gun, Kyoto Prefecture Inside the Central Research Laboratory, Kyocera Corporation (72) Inventor Makoto Osaki 3-chome Koikadai, Soraku-cho, Kyoto Prefecture 5 Kyocera Corporation Central Research Laboratory (72) Inventor Tohru Hara 3-chome, Soka-cho, Soraku-gun, Kyoto Prefecture 5-5-2 Kyocera Corporation Central Research Laboratory (72) Inventor Eiji Higuchi Koikadai, Soraku-gun, Kyoto Prefecture 3-5-5 Kyocera Corporation Central Research Laboratory F-term (reference) 5H029 AJ05 AJ14 AK03 AK05 AL03 AL04 AM11 AM12 BJ04 BJ12 CJ02 DJ08 EJ05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 結着材を含有する正極材料と固体電解質
材料と負極材料の生成形体を積層し、次いでこの積層し
た生成形体を焼成し、しかる後この焼成体の外側に正極
集電体と負極集電体を形成する全固体二次電池の製造方
法において、前記積層した生成形体をマイクロ波加熱し
て焼成することを特徴とする全固体二次電池の製造方
法。
1. A positive electrode material containing a binder, a solid electrolyte material, and a formed product of a negative electrode material are laminated, and then the laminated formed product is fired. A method for producing an all-solid secondary battery that forms a negative electrode current collector, wherein the stacked formed body is microwave-heated and fired.
【請求項2】 前記結着材中にリチウムを含む層状無機
酸化物を含有することを特徴とする請求項1に記載の全
固体二次電池の製造方法。
2. The method for manufacturing an all-solid secondary battery according to claim 1, wherein the binder contains a layered inorganic oxide containing lithium.
JP2000021851A 2000-01-26 2000-01-26 Manufacturing method of all-solid secondary battery Pending JP2001210360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000021851A JP2001210360A (en) 2000-01-26 2000-01-26 Manufacturing method of all-solid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000021851A JP2001210360A (en) 2000-01-26 2000-01-26 Manufacturing method of all-solid secondary battery

Publications (1)

Publication Number Publication Date
JP2001210360A true JP2001210360A (en) 2001-08-03

Family

ID=18548210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000021851A Pending JP2001210360A (en) 2000-01-26 2000-01-26 Manufacturing method of all-solid secondary battery

Country Status (1)

Country Link
JP (1) JP2001210360A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002089236A1 (en) * 2001-04-24 2002-11-07 Matsushita Electric Industrial Co., Ltd. Secondary cell and production method thereof
JP2006185913A (en) * 2004-12-02 2006-07-13 Ohara Inc All solid lithium ion secondary battery and solid electrolyte
JP2007134305A (en) * 2005-10-13 2007-05-31 Ohara Inc Lithium ion conductive solid electrolyte and method for manufacturing same
WO2007086219A1 (en) * 2006-01-24 2007-08-02 Murata Manufacturing Co., Ltd. Solid state battery
JP2007258148A (en) * 2006-02-24 2007-10-04 Ngk Insulators Ltd All-solid battery
JP2007294429A (en) * 2006-03-30 2007-11-08 Ohara Inc Lithium ion conductive solid electrolyte and its manufacturing method
WO2007135790A1 (en) 2006-05-23 2007-11-29 Incorporated National University Iwate University Total solid rechargeable battery
JP2008538649A (en) * 2005-04-21 2008-10-30 ザ ポターニン インスティテュート リミテッド Method for manufacturing a solid state power supply
JP2009224318A (en) * 2008-02-22 2009-10-01 Kyushu Univ All-solid-state cell
JP2011192606A (en) * 2010-03-16 2011-09-29 Toyota Motor Corp Method of manufacturing electrolyte/electrode laminate, electrolyte and electrode laminate, and all-solid battery
JP2012186181A (en) * 2005-10-13 2012-09-27 Ohara Inc Method for producing lithium ion conductive solid electrolyte
JP2012195242A (en) * 2011-03-18 2012-10-11 Tokyo Electric Power Co Inc:The Method for manufacturing active material for lithium ion secondary battery, and use therefor
KR101230684B1 (en) 2009-09-24 2013-02-07 다이니폰 스크린 세이조우 가부시키가이샤 Battery manufacturing method and battery
JP2013157195A (en) * 2012-01-30 2013-08-15 Tdk Corp Inorganic all-solid secondary battery
US8592090B2 (en) 2004-08-18 2013-11-26 Central Research Institute Of Electric Power Industry Solid polymer electrolyte battery and method for manufacturing positive electrode sheet used therein
JP5430930B2 (en) * 2006-05-23 2014-03-05 ナミックス株式会社 All solid state secondary battery
JP2015008073A (en) * 2013-06-25 2015-01-15 トヨタ自動車株式会社 Method for manufacturing all-solid battery
US9209486B2 (en) 2007-11-12 2015-12-08 Kyushu University All-solid-state cell
US9209484B2 (en) 2007-11-12 2015-12-08 Kyushu University All-solid-state cell
US9457512B2 (en) 2007-05-11 2016-10-04 Namics Corporation Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery
KR20190026606A (en) 2017-09-05 2019-03-13 도요타 지도샤(주) Slurry, method for producing solid electrolyte layer, and method for producing all-solid-state battery
JP2020155291A (en) * 2019-03-19 2020-09-24 トヨタ自動車株式会社 Manufacturing method of positive electrode mixture
US10847794B2 (en) 2016-05-27 2020-11-24 Toyota Jidosha Kabushiki Kaisha Oxide electrolyte sintered body and method for producing the same
US11251462B2 (en) 2017-12-28 2022-02-15 Toyota Jidosha Kabushiki Kaisha Battery separator, lithium battery and methods for producing them
US11264640B2 (en) 2017-09-21 2022-03-01 Toyota Jidosha Kabushiki Kaisha Garnet-type ion-conducting oxide and method for producing oxide electrolyte sintered body

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7094500B2 (en) 2001-04-24 2006-08-22 Matsushita Electric Industrial Co., Ltd. Secondary battery
WO2002089236A1 (en) * 2001-04-24 2002-11-07 Matsushita Electric Industrial Co., Ltd. Secondary cell and production method thereof
US8592090B2 (en) 2004-08-18 2013-11-26 Central Research Institute Of Electric Power Industry Solid polymer electrolyte battery and method for manufacturing positive electrode sheet used therein
JP2006185913A (en) * 2004-12-02 2006-07-13 Ohara Inc All solid lithium ion secondary battery and solid electrolyte
JP2008538649A (en) * 2005-04-21 2008-10-30 ザ ポターニン インスティテュート リミテッド Method for manufacturing a solid state power supply
US9580320B2 (en) 2005-10-13 2017-02-28 Ohara Inc. Lithium ion conductive solid electrolyte and method for manufacturing the same
JP2007134305A (en) * 2005-10-13 2007-05-31 Ohara Inc Lithium ion conductive solid electrolyte and method for manufacturing same
JP2012186181A (en) * 2005-10-13 2012-09-27 Ohara Inc Method for producing lithium ion conductive solid electrolyte
WO2007086219A1 (en) * 2006-01-24 2007-08-02 Murata Manufacturing Co., Ltd. Solid state battery
JP2007258148A (en) * 2006-02-24 2007-10-04 Ngk Insulators Ltd All-solid battery
JP2007294429A (en) * 2006-03-30 2007-11-08 Ohara Inc Lithium ion conductive solid electrolyte and its manufacturing method
WO2007135790A1 (en) 2006-05-23 2007-11-29 Incorporated National University Iwate University Total solid rechargeable battery
US8883347B2 (en) 2006-05-23 2014-11-11 Namics Corporation All solid state secondary battery
US9263727B2 (en) 2006-05-23 2016-02-16 Namics Corporation All solid state secondary battery
JP5430930B2 (en) * 2006-05-23 2014-03-05 ナミックス株式会社 All solid state secondary battery
US9457512B2 (en) 2007-05-11 2016-10-04 Namics Corporation Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery
US9209484B2 (en) 2007-11-12 2015-12-08 Kyushu University All-solid-state cell
US9209486B2 (en) 2007-11-12 2015-12-08 Kyushu University All-solid-state cell
JP2009224318A (en) * 2008-02-22 2009-10-01 Kyushu Univ All-solid-state cell
US8920522B2 (en) 2009-09-24 2014-12-30 Dainippon Screen Mfg. Co., Ltd. Battery manufacturing method and battery
KR101230684B1 (en) 2009-09-24 2013-02-07 다이니폰 스크린 세이조우 가부시키가이샤 Battery manufacturing method and battery
JP2011192606A (en) * 2010-03-16 2011-09-29 Toyota Motor Corp Method of manufacturing electrolyte/electrode laminate, electrolyte and electrode laminate, and all-solid battery
JP2012195242A (en) * 2011-03-18 2012-10-11 Tokyo Electric Power Co Inc:The Method for manufacturing active material for lithium ion secondary battery, and use therefor
JP2013157195A (en) * 2012-01-30 2013-08-15 Tdk Corp Inorganic all-solid secondary battery
JP2015008073A (en) * 2013-06-25 2015-01-15 トヨタ自動車株式会社 Method for manufacturing all-solid battery
US10847794B2 (en) 2016-05-27 2020-11-24 Toyota Jidosha Kabushiki Kaisha Oxide electrolyte sintered body and method for producing the same
KR20190026606A (en) 2017-09-05 2019-03-13 도요타 지도샤(주) Slurry, method for producing solid electrolyte layer, and method for producing all-solid-state battery
US10840545B2 (en) 2017-09-05 2020-11-17 Toyota Jidosha Kabushiki Kaisha Slurry, method for producing solid electrolyte layer, and method for producing all-solid-state battery
US11264640B2 (en) 2017-09-21 2022-03-01 Toyota Jidosha Kabushiki Kaisha Garnet-type ion-conducting oxide and method for producing oxide electrolyte sintered body
US11251462B2 (en) 2017-12-28 2022-02-15 Toyota Jidosha Kabushiki Kaisha Battery separator, lithium battery and methods for producing them
JP2020155291A (en) * 2019-03-19 2020-09-24 トヨタ自動車株式会社 Manufacturing method of positive electrode mixture
JP7177989B2 (en) 2019-03-19 2022-11-25 トヨタ自動車株式会社 Method for manufacturing positive electrode mixture

Similar Documents

Publication Publication Date Title
JP2001210360A (en) Manufacturing method of all-solid secondary battery
US11417873B2 (en) Solid-state batteries, separators, electrodes, and methods of fabrication
US20200335756A1 (en) Solid-state battery separators and methods of fabrication
JP5418803B2 (en) All solid battery
US8808407B2 (en) Method of manufacturing a solid lithium ion secondary battery with an electrolyte layer and/or positive electrode layer containing a crystallite having a lithium ion conducting property
KR100883376B1 (en) Lithium ion conductive solid electrolyte and method for manufacturing the same
JP5312969B2 (en) Method for producing lithium ion secondary battery
JP6265580B2 (en) Battery and manufacturing method thereof
JP5987103B2 (en) All solid ion secondary battery
WO2014020654A1 (en) All-solid ion secondary cell
KR20170133316A (en) Lithium ion conductors, solid electrolyte layers, electrodes, batteries and electronic devices
JP2001243984A (en) Solid electrolyte battery and its manufacturing method
WO2018062092A1 (en) Lithium ion-conducting solid electrolyte and all-solid-state lithium-ion secondary battery
JP2009094029A (en) All-solid lithium secondary battery, and electrode for all-solid lithium secondary battery
JP2000331684A (en) Laminated solid secondary battery
JP2001068150A (en) Method of manufacturing whole solid secondary battery
JP5849543B2 (en) Electrode body for lithium ion secondary battery, method for producing electrode body for lithium ion secondary battery, and lithium ion secondary battery
JP2001043893A (en) Whole solid secondary battery and its manufacture
JP2000251938A (en) Manufacture of all solid lithium battery
JP2000340255A (en) Lithium battery
JP2018163736A (en) Methods for manufacturing composite and battery
JP2001043892A (en) Lithium battery
JP2020095814A (en) Electrode for lithium ion battery, lithium ion battery, and method for manufacturing electrode for lithium ion battery
JP2001185123A (en) Whole solid secondary battery
JP2001093536A (en) Lithium cell