JP2001181753A - Alloy powder for copper series high strength sintered parts - Google Patents

Alloy powder for copper series high strength sintered parts

Info

Publication number
JP2001181753A
JP2001181753A JP37201999A JP37201999A JP2001181753A JP 2001181753 A JP2001181753 A JP 2001181753A JP 37201999 A JP37201999 A JP 37201999A JP 37201999 A JP37201999 A JP 37201999A JP 2001181753 A JP2001181753 A JP 2001181753A
Authority
JP
Japan
Prior art keywords
powder
strength
hardness
alloy
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP37201999A
Other languages
Japanese (ja)
Inventor
Shinri Kikukawa
真利 菊川
Yoshiro Niimi
義朗 新見
Osamu Iwazu
修 岩津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP37201999A priority Critical patent/JP2001181753A/en
Publication of JP2001181753A publication Critical patent/JP2001181753A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce sintered parts in which the hardness and strength of a sintered body are high by providing powder high in hardness and strength in the ranges of not deteriorating its compactibility as the raw material required for producing copper series sliding materials, bearing materials, gear parts, diamond tools or the like. SOLUTION: This copper alloy powder has a composition containing, by weight, 1 to 6% Co, furthermore containing 5 to 12% Sn, and the balance Cu with inevitable impurities and has apparent density of 3.5g/cm3 or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する利用分野】本発明は、銅系で高強度の焼
結部品を製造するための粉末冶金用の粉末に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powder for powder metallurgy for producing a copper-based high-strength sintered part.

【0002】[0002]

【従来の技術】銅系の焼結材料は一般に軸受け用または
摺動材用として多く使用されており、鉄系の材料を相手
材として含油で使用する場合は多孔質での使用が多い。
この場合には高密度では使用せず、銅系材料の軟質性が
有効に利用されてきたことが、高強度の銅系焼結合金用
の粉末が開発されなかった原因の一つと考えられる。
2. Description of the Related Art Copper-based sintered materials are generally used for bearings and sliding materials. When iron-based materials are used as oil-impregnated materials, porous materials are often used.
In this case, it is considered that one of the reasons why the high-strength powder for a copper-based sintered alloy was not developed was that the copper-based material was not used at a high density and the softness of the copper-based material was effectively used.

【0003】従来から銅系の焼結合金用粉末としてはC
u−Sn系,Cu−Zn系の粉末が主であり、鋳造材の
組成を粉末としたものであるが、高強度の焼結体を得る
ためには、焼結体の最終組成またはマトリックスを高強
度なものにすることが必要である。最近この従来の銅系
の焼結合金に対して、さらに過酷な条件でも使用可能な
高強度の材料に対する要求も多く、このことも含めて硬
さが高く、強度の大きい材料が求められるようになって
きた。
Conventionally, as a powder for a copper-based sintered alloy, C
u-Sn-based and Cu-Zn-based powders are mainly used, and the composition of the cast material is powdered. To obtain a high-strength sintered body, the final composition or matrix of the sintered body must be changed. It is necessary to have high strength. Recently, with respect to this conventional copper-based sintered alloy, there have been many demands for high-strength materials that can be used even under severer conditions. It has become.

【0004】しかし、高強度の銅合金として有名なアル
ミニウム青銅または高力黄銅系は、いずれもAlを含み
通常の窒素+水素等の焼結雰囲気では焼結が困難であ
り、いまだに焼結合金としては実用化されていないのが
現状である。また、Cu−Zn−Ni系の洋白もあるが
Niを多く含むため高価であり、装飾品用的な用途が主
であり、また強度もそれほど高くないので高強度材料と
しては使われていない様である。
[0004] However, aluminum bronze or high-strength brass, which is famous as a high-strength copper alloy, contains Al and is difficult to sinter in a normal sintering atmosphere of nitrogen and hydrogen. Is currently not in practical use. Also, there is Cu-Zn-Ni-based nickel silver, but it is expensive because it contains a lot of Ni, it is mainly used for decorative articles, and its strength is not so high, so it is not used as a high-strength material. It is like.

【0005】鋳造材ではよく使用されるZnを20重量
%以上と多く含む合金は焼結時に、Znが蒸発し、焼結
体の重量が減少しやすく個々の部品で変動しやすい。ま
た焼結炉を汚染する事もCu−Zn系の焼結材があまり
好まれない理由でもある。バネ用材料として良く用いら
れるリン青銅は、その名前のとうりリンを含むため硬さ
が高く粉末にすると球状化するため成形しにくく、粉末
冶金用としては不向きである。また、ベリリウム銅は有
害元素のベリリウムを含むことと、熱処理が必要なこと
により粉末冶金用としては敬遠されている。
[0005] In an alloy containing a large amount of Zn of 20% by weight or more, which is often used in a cast material, Zn evaporates at the time of sintering, and the weight of the sintered body tends to decrease, and it tends to fluctuate in individual parts. Further, contamination of the sintering furnace is also a reason why Cu-Zn based sintered materials are not so preferred. Phosphor bronze, which is often used as a material for springs, contains phosphorus under its name and has a high hardness. When powdered, it is hard to form because it becomes spherical and is not suitable for powder metallurgy. Further, beryllium copper is avoided for powder metallurgy because it contains harmful element beryllium and requires heat treatment.

【0006】[0006]

【発明が解決しようとする課題】本発明は、銅系の摺動
材料、軸受け材料、ギヤ部品、ダイヤモンド工具等を製
造するために必要な原料として、成形性を劣化させない
範囲で硬さや強度の高い粉末、すなわち、圧粉体抗折力
20kgf/cm2 以上、粉末硬さ(HV)130〜180で、この粉末を
使用した焼結体の圧環強さが40〜80kgf/mm2 で、焼結体
マトリックス硬さ(HV)120 以上である、硬さと強度が高
い焼結部品を製造可能な原料粉末を提供することを課題
とする。
DISCLOSURE OF THE INVENTION The present invention is intended as a raw material necessary for producing copper-based sliding materials, bearing materials, gear parts, diamond tools, etc., in terms of hardness and strength within a range not deteriorating formability. High powder, that is, green bending strength
20 kgf / cm 2 or more, powder hardness (HV) 130 to 180, sintered compact using this powder with 40-80 kgf / mm 2 and sintered body matrix hardness (HV) 120 or more It is an object of the present invention to provide a raw material powder capable of producing a sintered part having high hardness and strength.

【0007】[0007]

【課題を解決するための手段】以上の課題を解決するた
めに本発明は、Coを1〜6重量%含み、さらにSnを
5〜12重量%含み残部がCu及び不可避不純物よりな
り、見掛密度が3.5g/cm3以下であることを特徴と
する銅合金粉末である。本願発明者は成形性を劣化させ
ない範囲で硬さ強度の大きい原料粉末を提供するため検
討を重ねた結果、成形性、焼結性、粉末のハンドリング
性、従来の粉末との適合性等を考慮し、基本材料として
Cu−Sn系を選択した。Snは5重量%以下では十分
な強度が得られず12重量%以上では硬さが高くなりす
ぎ、脆さが見られ圧縮成形には不向となる。そこでSn
は5〜12重量%が良好である。強度をさらに重視する
場合このSn重量%は6〜11%が好適であり、さらに
は、7〜11%が最適である。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention comprises 1 to 6% by weight of Co, further contains 5 to 12% by weight of Sn, and the balance consists of Cu and unavoidable impurities. A copper alloy powder having a density of 3.5 g / cm 3 or less. The inventor of the present application has studied repeatedly to provide a raw material powder having a high hardness strength within a range not deteriorating the formability, and considered the formability, sinterability, powder handling properties, compatibility with conventional powders, and the like. Then, a Cu-Sn-based material was selected as a basic material. If Sn is less than 5% by weight, sufficient strength cannot be obtained, and if it is more than 12% by weight, hardness becomes too high, brittleness is observed, and it is not suitable for compression molding. So Sn
Is preferably 5 to 12% by weight. When the strength is further emphasized, the Sn weight% is preferably from 6 to 11%, and more preferably from 7 to 11%.

【0008】これに本発明の目的である焼結部品での強
度と、高温での耐軟化性等を考慮し検討を重ねた結果、
上記Cu−Snに新たにCoを1〜6重量%合金化させ
て硬さが高い合金を粉末とし、これを原料粉末に焼結部
品にすることで目的が達成できることを見いだした。こ
の組成範囲をはずれCo重量%が1%以下では従来の粉
末と十分な差が見られず、焼結体での強度と、高温での
耐軟化性等の特性が不十分である。また6%以上では強
度の上昇が鈍り遊離したCoが多くなり組成が不均一に
なる。また、粉末の硬さが高くなり成形性が低下し実用
性に欠ける。また6%以上では融点が上昇し溶解とアト
マイズにおいて不利になるためCo重量%は1〜6%が
好適であり、さらには2〜4%が最適である。
[0008] In consideration of the strength of the sintered component and the resistance to softening at high temperatures, which are the objects of the present invention, the inventors of the present invention have conducted repeated studies.
It has been found that the purpose can be achieved by newly alloying 1 to 6% by weight of Co with the above-mentioned Cu-Sn to make an alloy having high hardness into a powder, and making this into a sintered component as a raw material powder. If the composition is out of the composition range and the weight percent of Co is 1% or less, a sufficient difference from the conventional powder is not seen, and the properties such as the strength of the sintered body and the softening resistance at high temperatures are insufficient. If it is 6% or more, the increase in strength becomes slow and the amount of released Co increases, and the composition becomes non-uniform. Further, the hardness of the powder is increased, the moldability is reduced, and the practicability is lacking. If the content is 6% or more, the melting point increases, which is disadvantageous in dissolution and atomization. Therefore, the Co weight% is preferably 1 to 6%, and more preferably 2 to 4%.

【0009】本発明組成の合金粉末が粉末においてのみ
ならず成形、焼結の後、良好な硬さや強度を示す事に対
し、特定の考察に束縛されるわけではないが、この合金
中の各元素について状態図から考察すると、CuとSn
は中間相をいくつか持つが、Cu側のSnの固溶限は大
きく本組成範囲ではほぼα相のみである。Cuに対して
CoはCu側に包晶反応を持ち比較的小さい固溶限を示
し、多く添加した場合低温でCoリッチ相とα相に分離
偏析するが6%以下の少量では、これも少なくほぼ均一
に固溶した合金となりこれが硬さや強度を向上するもの
と考えられる。また、SnとCoも中間相をいくつか持
ち、これはCo3Sn2,CoSn,CoSn2の組成でこれらがマトリ
ックスに均一微細に分散すると、これも強度、高温での
耐軟化性等を改善できると考えられる。
Although the alloy powder of the present invention exhibits good hardness and strength after molding and sintering as well as the powder, it is not bound by any particular consideration, but each alloy in this alloy has Considering the elements from the phase diagram, Cu and Sn
Has several intermediate phases, but the solid solubility limit of Sn on the Cu side is large, and in the present composition range, there is almost only the α phase. Co has a peritectic reaction on the Cu side with respect to Cu and has a relatively small solid solubility limit. It is considered that the alloy becomes a substantially uniform solid solution, which improves the hardness and strength. In addition, Sn and Co also have some intermediate phases. This is a composition of Co 3 Sn 2 , CoSn and CoSn 2 , and when these are uniformly and finely dispersed in the matrix, this also improves the strength, softening resistance at high temperatures, etc. It is considered possible.

【0010】本発明の合金粉末と同一組成の焼結合金を
各元素の粉末のMIXまたは母合金粉末のMIX粉から
製造しようとすると、各元素の固相中での拡散速度が小
さいことと、粉末表面での化合物生成により各元素の拡
散が阻害され、またこの化合物が脆い層を形成するため
とも思われるが、均一な焼結合金が得られず強度が低く
目的を達成できない。
When an attempt is made to produce a sintered alloy having the same composition as the alloy powder of the present invention from the MIX powder of each element powder or the MIX powder of the master alloy powder, the diffusion rate of each element in the solid phase is low, Although it is thought that the diffusion of each element is inhibited by the formation of the compound on the powder surface, and that this compound forms a brittle layer, a uniform sintered alloy cannot be obtained and the strength is low, so that the object cannot be achieved.

【0011】そこで本願発明の粉末の様に、目標組成の
粉末を完全合金粉末として製造することが均一な焼結合
金を得るためには非常に有効である。また、この合金粉
末を使用し粉末冶金で軸受け等の部品を製造することの
理由は第一に最終形状に近い部品が得やすいこと、第二
に微細で均一な組織が得られること、第三に多孔質な部
品が製造できこの多くの孔に潤滑油、潤滑用金属、潤滑
用樹脂等を含浸できることである。
Therefore, it is very effective to produce a powder having a target composition as a complete alloy powder like the powder of the present invention in order to obtain a uniform sintered alloy. In addition, the reasons for manufacturing parts such as bearings by powder metallurgy using this alloy powder are firstly that parts close to the final shape are easy to obtain, secondly that a fine and uniform structure can be obtained, thirdly. A porous part can be manufactured, and many holes can be impregnated with lubricating oil, lubricating metal, lubricating resin and the like.

【0012】本発明の合金粉末は、水アトマイズ法で製
造するが、各金属地金は溶解時の液相では十分均質であ
る。これが水アトマイズにより急冷凝固するため粉末内
部において、この均質な状態がほぼ保たれる。さらに、
焼結体においてもMIX粉からの製造ではないため偏析
がほとんど無く均質な部品が得られることになる。
[0012] The alloy powder of the present invention is produced by a water atomizing method, and each metal base is sufficiently homogeneous in a liquid phase at the time of melting. This is rapidly solidified by water atomization, so that this homogeneous state is substantially maintained inside the powder. further,
Since a sintered body is not produced from MIX powder, a homogeneous part with almost no segregation can be obtained.

【0013】このCu−Sn−Co合金粉末は従来のC
u−SnやCu−Zn系に比べ硬さが高い傾向にあるた
め成形性が良いとはいえない。またこの粉末は従来のC
u−Snに比較してCoを含み融点が高く合金の表面張
力が高くなるためか、見掛密度が高くなる傾向がある。
そこで粉末の見掛密度を更に低くするために粉末の製造
条件の工夫が必要である。この成形性は圧粉体の抗折力
で測定するが、見掛密度が3.5g/cm3をこえると圧
粉体の抗折力が10kgf/cm3以下となり圧粉体の保
形性が悪くハンドリング性が特に劣化する。
The Cu—Sn—Co alloy powder is a conventional C
Since the hardness tends to be higher than that of the u-Sn or Cu-Zn system, it cannot be said that the moldability is good. In addition, this powder is a conventional C
The apparent density tends to be higher, probably because Co contains higher melting point and higher surface tension of the alloy than u-Sn.
Therefore, in order to further reduce the apparent density of the powder, it is necessary to devise the manufacturing conditions of the powder. This formability is measured by the bending strength of the green compact. When the apparent density exceeds 3.5 g / cm 3 , the bending strength of the green compact becomes 10 kgf / cm 3 or less, and the shape preservability of the green compact is reduced. And the handling property is particularly deteriorated.

【0014】そのため良好な成形性を得るためには、見
掛密度が3.5g/cm3以下であることが必要である。
さらに好ましくは3.2g/cm3以下であり、最も好ま
しくは3.0g/cm3以下である。この場合、粉末が不
規則化することで表面の凹凸が大きくなり粉末どうしの
接触面積が多くなり、成形性はもとより焼結性において
も良好な結果が得られることもわかった。次に本発明を
更に詳細に説明する。
Therefore, in order to obtain good moldability, the apparent density needs to be 3.5 g / cm 3 or less.
It is more preferably at most 3.2 g / cm 3 , most preferably at most 3.0 g / cm 3 . In this case, it was also found that irregularities in the powder increased irregularities on the surface, increased the contact area between the powders, and provided good results not only in moldability but also in sinterability. Next, the present invention will be described in more detail.

【0015】[0015]

【発明実施の形態】実際の粉末製造には上記の組成の合
金になるように地金を溶解後、中間坩堝の底に設けた細
孔より流下し、これに高速の水ジェットを吹きつけ粉砕
する水アトマイズ法を用いる。この水アトマイズ法で
は、ガスアトマイズ法による粉末より当然不規則形状に
はなるが、その不規則度合いの指針になり粉末成形性の
判断の目安でもある見掛密度を上記のような3.5g/
cm3以下にするのはなかなか容易とは言えない。しかし
この見掛密度を低くする方法は、従来から幾つか考案が
されており代表的には特公昭43−6389号に見られ
る様な逆円錐のコニカルジェットを用いることが有効
で、さらに特公平5−7442号の様にコニカルジェッ
トを発生するリングノズルの上下の差圧を発生させてよ
り高い噴霧角度でアトマイズすることも見掛密度3.5
g/cm3以下の不規則度合いの高い粉末を得る方法の一
つである。
BEST MODE FOR CARRYING OUT THE INVENTION In actual powder production, a base metal is melted so as to become an alloy having the above composition, and then flows down through a fine hole provided at the bottom of the intermediate crucible, and a high-speed water jet is sprayed on this to pulverize. Water atomizing method is used. In the water atomizing method, the powder naturally has an irregular shape compared to the powder formed by the gas atomizing method.
It is not easy to reduce it to cm 3 or less. However, several methods for lowering the apparent density have been devised in the past, and it is typically effective to use an inverted conical jet as shown in JP-B-43-6389. It is also possible to atomize at a higher spray angle by generating a differential pressure above and below a ring nozzle that generates a conical jet as in Japanese Patent No. 5-7442.
This is one of the methods for obtaining a powder having a high degree of irregularity of g / cm 3 or less.

【0016】このようにして高速の水ジェットでアトマ
イズして得られた合金粉末は脱水、乾燥後、所定の分級
を行い製品となる。また、粉末を特公昭52−3747
5号の様な熱処理または、単純な加熱造粒熱処理によっ
て低見掛密度の不規則形状粉にすることも可能である。
しかし望ましくは、アトマイズのみで上記特性を達成す
る方が単純で、エネルギーやコストの面からも好まし
い。
The alloy powder obtained by atomizing with a high-speed water jet in this manner is subjected to a predetermined classification after dehydration and drying to obtain a product. In addition, powder was prepared by using Japanese Patent Publication No. 52-3747.
It is also possible to obtain an irregularly shaped powder having a low apparent density by a heat treatment such as No. 5 or a simple heat granulation heat treatment.
However, desirably, achieving the above characteristics only by atomizing is simple, and is also preferable in terms of energy and cost.

【0017】[0017]

【実施例・比較例】本発明の粉末について実施例に基づ
いて、更に詳細に説明する。粉末の成形性は見掛密度,
圧粉体抗折力で知ることができる。粉末硬さ,焼結体マ
トリックス硬さは焼結前後の硬さを知ることができ、焼
結後の硬さが重要である。また圧環強さは焼結性の目安
となり、またトータルな粉末の特性をも示す。これらの
特性の測定は下記の手段で行った。 ・見掛密度をISO−3923の測定法に従って求め
た。 ・圧粉体抗折力はステアリン酸亜鉛を0.5%添加し、
ISO−3995の測定法に従って、成形密度6.6g
/cm3で求めた。 ・粉末および焼結体マトリックス硬さは微小硬度計を用
いて荷重10gfで求めた。 ・圧環強さは成形密度6.6g/cm3、75%水素+2
5%窒素の雰囲気、780℃、20分焼結し、JIS−
Z 2507の測定法に従って求めた。 表1に、本発明の粉末と比較例の粉末および焼結体の特
性比較を示す。
Examples and Comparative Examples The powder of the present invention will be described in more detail based on Examples. Powder compactibility is apparent density,
It can be known from the bending strength of the green compact. The hardness before and after sintering can be known for the powder hardness and the sintered body matrix hardness, and the hardness after sintering is important. The radial crushing strength is a measure of sinterability, and also indicates the properties of the total powder. The measurement of these characteristics was performed by the following means. -The apparent density was determined according to the measurement method of ISO-3923.・ Compact bending strength is 0.5% with zinc stearate.
According to the measuring method of ISO-3955, the molding density is 6.6 g.
/ Cm 3 . -The powder and sintered body matrix hardness were determined with a load of 10 gf using a microhardness tester.・ Ring ring strength is 6.6 g / cm 3 of molding density, 75% hydrogen +2
Sintered at 780 ° C for 20 minutes in a 5% nitrogen atmosphere.
It was determined according to the measuring method of Z2507. Table 1 shows a property comparison between the powder of the present invention, the powder of the comparative example, and the sintered body.

【0018】[0018]

【表1】 [Table 1]

【0019】表1に示したように、本発明の合金粉であ
る実施例1〜6は、比較例1〜3のCu粉Sn粉Co粉
MIX粉にくらべて見掛密度が高く成形性が劣るが、見
掛密度が3.5g/cm3以下で、しかも圧粉体抗折力が
20kgf/cm3以上あり、実用上十分である。
As shown in Table 1, Examples 1 to 6 which are alloy powders of the present invention have higher apparent density and higher moldability than Cu powder Sn powder Co powder MIX powder of Comparative Examples 1 to 3. Although it is inferior, the apparent density is 3.5 g / cm 3 or less, and the compacting bending strength is 20 kgf / cm 3 or more, which is practically sufficient.

【0020】また、本発明粉は比較例4のCu−10S
nに比べ粉末自体の硬さが高いのみならず、粉末硬さに
対して焼結後の硬さの低下が少なく高温での耐軟化性が
優れていることがわかる。また、焼結性を表す圧環強さ
も40kgf/mm2 以上と高く、焼結特性が良好である
ことがわかる。
The powder of the present invention is the same as the Cu-10S of Comparative Example 4.
It can be seen that not only the hardness of the powder itself is higher than that of n, but also that the hardness after sintering is small with respect to the hardness of the powder, and the softening resistance at high temperatures is excellent. In addition, the radial crushing strength indicating the sintering property is as high as 40 kgf / mm 2 or more, which indicates that the sintering characteristics are good.

【0021】比較例1〜3はCu粉Sn粉Co粉のMI
X粉であり粉末硬さ、焼結体マトリックス硬さはバラツ
キが大きく測定できなかった。このように、本発明粉は
圧粉体抗折力がMIX粉ほどは高くはないが実用上十分
である。また、圧環強さと焼結体マトリックス硬さがそ
ろって高い焼結合金が得られる優れた粉末である。
In Comparative Examples 1 to 3, Cu powder Sn powder Co powder MI
The powder was X powder, and the powder hardness and the sintered body matrix hardness had large variations and could not be measured. As described above, the powder of the present invention does not have as high a die strength as MIX powder, but is practically sufficient. In addition, it is an excellent powder from which a high sintered alloy can be obtained with uniform radial crushing strength and sintered body matrix hardness.

【0022】図1に本発明Cu−10Sn−3Co粉の
焼結体の断面組織と図2に従来Cu−10Sn粉の焼結
体の断面組織とをそれぞれ示す。本発明のCu−10S
n−3Coの焼結体断面は、Coが3%合金化したこと
で従来のCu−10Snでは見られなかった析出物がマ
トリックスに微細に分散した組織となり従来の組織とは
全く異なっていることがわかる。この微細な析出物が硬
さ、圧環強さを高くし、さらに焼結時の軟化を進みにく
くしている原因と思われる。この析出物はCoリッチ相
またはCo−Sn相あるいはCo−Sn−X相と考えら
れ、これが微細に分散することで粉末の硬さが高くな
り、更に焼結体の強度が向上すると考えられる。
FIG. 1 shows a sectional structure of a sintered body of Cu-10Sn-3Co powder of the present invention, and FIG. 2 shows a sectional structure of a sintered body of conventional Cu-10Sn powder. Cu-10S of the present invention
The cross section of the sintered body of n-3Co is a structure in which precipitates not found in conventional Cu-10Sn are finely dispersed in a matrix due to the alloying of 3% of Co, which is completely different from the conventional structure. I understand. It is considered that these fine precipitates increase the hardness and the radial crushing strength, and also make it difficult for softening during sintering to proceed. This precipitate is considered to be a Co-rich phase, a Co-Sn phase, or a Co-Sn-X phase, and it is considered that the finely dispersed phase increases the hardness of the powder and further improves the strength of the sintered body.

【0023】[0023]

【発明の効果】以上詳述したように、本発明は従来無か
った組成のCu−Sn−Co系の合金粉末を提供する事
により、銅系の高強度の焼結合金の製造を可能にする産
業上有用な発明である。
As described in detail above, the present invention makes it possible to produce a copper-based high-strength sintered alloy by providing a Cu-Sn-Co-based alloy powder having a composition which has not existed conventionally. This is an industrially useful invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のCu−10Sn−3Co合金の焼結体
の断面組織
FIG. 1 is a cross-sectional structure of a sintered body of a Cu-10Sn-3Co alloy of the present invention.

【図2】従来のCu−10Sn合金の焼結体の断面組織FIG. 2 is a cross-sectional structure of a conventional Cu-10Sn alloy sintered body.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Coを1〜6重量%含み、さらにSnを
5〜12重量%含み残部がCu及び不可避不純物よりな
り、見掛密度が3.5g/cm3以下であることを特徴と
する銅合金粉末。
1. An alloy containing 1 to 6% by weight of Co and 5 to 12% by weight of Sn and the balance of Cu and unavoidable impurities, and has an apparent density of 3.5 g / cm 3 or less. Copper alloy powder.
JP37201999A 1999-12-28 1999-12-28 Alloy powder for copper series high strength sintered parts Pending JP2001181753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37201999A JP2001181753A (en) 1999-12-28 1999-12-28 Alloy powder for copper series high strength sintered parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37201999A JP2001181753A (en) 1999-12-28 1999-12-28 Alloy powder for copper series high strength sintered parts

Publications (1)

Publication Number Publication Date
JP2001181753A true JP2001181753A (en) 2001-07-03

Family

ID=18499708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37201999A Pending JP2001181753A (en) 1999-12-28 1999-12-28 Alloy powder for copper series high strength sintered parts

Country Status (1)

Country Link
JP (1) JP2001181753A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108500257A (en) * 2018-05-15 2018-09-07 陕西凯恩宝德新材料有限公司 A kind of diamond tool alloy powder and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108500257A (en) * 2018-05-15 2018-09-07 陕西凯恩宝德新材料有限公司 A kind of diamond tool alloy powder and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5504278B2 (en) Method for producing diffusion-alloyed iron or iron-based powder, diffusion-alloyed powder, composition comprising the diffusion-alloyed powder, and molded and sintered parts produced from the composition
KR960013530A (en) Sintered friction material and composite copper alloy powder used in the same and manufacturing method thereof
JPH01225749A (en) Sintered material for oilless bearing and production thereof
CN101760664A (en) Bronze powder for powder metallurgy and method of manufacturing the same
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
Nassef et al. Microstructure and mechanical behavior of hot pressed Cu-Sn powder alloys
JP2001131660A (en) Alloy powder for copper series high strength sintered parts
CN107427923B (en) Mechanical part and its manufacturing method
CN111432958B (en) Partially diffused alloyed steel powder
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
TW200426226A (en) Powder metal composition and method for producing components thereof
JP2001518143A (en) Method of manufacturing parts from particulate ferrous material
KR960003721B1 (en) Mixed powder for powder metallurgy and the sintered product thereof
JP2012097323A (en) Copper-based alloy powder for powder metallurgy
CN111432957A (en) Alloy steel powder
JP2001181753A (en) Alloy powder for copper series high strength sintered parts
US4130422A (en) Copper-base alloy for liquid phase sintering of ferrous powders
JP2007169736A (en) Alloy steel powder for powder metallurgy
JP4715358B2 (en) Alloy steel powder for powder metallurgy
JP4770667B2 (en) Iron-based powder mixture for warm mold lubrication molding
JPS5881946A (en) Al type sintered bearing alloy and preparation thereof
JP4808375B2 (en) Iron-based powder mixture for powder metallurgy
JPH0751721B2 (en) Low alloy iron powder for sintering
JPS6038442B2 (en) Manufacturing method of aluminum alloy low density sintered parts
JP3931503B2 (en) Lubricant for warm mold lubrication, high-density iron-based powder molded body, and method for producing high-density iron-based sintered body