JP2012097323A - Copper-based alloy powder for powder metallurgy - Google Patents

Copper-based alloy powder for powder metallurgy Download PDF

Info

Publication number
JP2012097323A
JP2012097323A JP2010245901A JP2010245901A JP2012097323A JP 2012097323 A JP2012097323 A JP 2012097323A JP 2010245901 A JP2010245901 A JP 2010245901A JP 2010245901 A JP2010245901 A JP 2010245901A JP 2012097323 A JP2012097323 A JP 2012097323A
Authority
JP
Japan
Prior art keywords
powder
alloy powder
alloy
apparent density
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010245901A
Other languages
Japanese (ja)
Inventor
Shinji Terai
臣治 寺居
Mayuko Tanaka
麻祐子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2010245901A priority Critical patent/JP2012097323A/en
Publication of JP2012097323A publication Critical patent/JP2012097323A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide Cu-Sn-Ni-based alloy powder for powder metallurgy where the formability of green compact is improved by reducing the powder grain size and reducing the apparent density and high strength characteristics are easily acquired by carrying out aging treatment of the sintered compact.SOLUTION: This alloy powder for powder metallurgy contains 3-12 wt% of Sn, 5-15 wt% of Ni, and the balance Cu with unavoidable impurities. The apparent density of the alloy powder is 3.0 g/cmor lower, and 70% or more of the powder grain sizes are 45 μm or shorter.

Description

本発明は、銅系で高強度の焼結部品を製造するための粉末冶金用の合金粉末に関するものである。   The present invention relates to an alloy powder for powder metallurgy for producing a copper-based high strength sintered part.

銅系の焼結部品は一般に軸受けや摺動部品として多く使用されている。銅系の焼結部品用粉末としては、Cu−Sn系、Cu−Zn系が多く使用されているが、さらなる高強度化への要求に対して新たな合金系の開発が期待されている。高強度銅系合金としては、アルミニウム青銅や高力黄銅が知られているが、いずれの合金系もアルミニウムを含むことから通常の焼結雰囲気(水素還元雰囲気)では、焼結が困難なため実用化の障害となっている。スピノーダル分解を起こす時効硬化型の合金系は、時効処理することにより高強度な焼結部品が得られる。中でもCu−Sn−Ni系の合金は時効処理が容易であることから新たな高強度焼結部品として実用化が期待される(例えば非特許文献1)。   Copper-based sintered parts are generally used as bearings and sliding parts. As a powder for copper-based sintered parts, a Cu-Sn system and a Cu-Zn system are often used, but development of a new alloy system is expected in response to a demand for further strengthening. Aluminum bronze and high-strength brass are known as high-strength copper alloys, but since any alloy system contains aluminum, it is difficult to sinter in a normal sintering atmosphere (hydrogen reduction atmosphere). It has become an obstacle to conversion. An age-hardening type alloy system that causes spinodal decomposition can be sintered to obtain a high-strength sintered part. Among these, Cu-Sn-Ni alloys are expected to be put to practical use as new high-strength sintered parts because they are easy to age (see, for example, Non-Patent Document 1).

金属あるいは合金粉末を用いる粉末冶金法では、金型に金属または合金粉末を充填し加圧成形することにより圧粉体を作成し、この圧粉体を不活性ガスあるいは還元雰囲気下で加熱することにより焼結体を作成する。成形性の悪い圧粉体は、ハンドリング性が悪く小型複雑形状な部品や薄肉部を有する焼結部品の製造に適さないために使用が制限される。一般に粉末冶金の原料粉末としては噴霧法(水アトマイズ法)によって製造される合金粉末が使用されるが、Cu−Sn−Ni系合金粉末の場合は、Cu−Sn合金に融点の高いNiを含有させるため溶融合金の表面張力が高くなるために粉末が球状化し見掛け密度が高くなり易い。さらに粉末自体が硬いために一般に使用されるCu−Sn系粉末等に比べると成形性に劣るといった問題がある。   In the powder metallurgy method using metal or alloy powder, a metal or alloy powder is filled in a metal mold and pressed to form a green compact, which is then heated in an inert gas or reducing atmosphere. A sintered body is prepared by The green compact having poor formability is limited in use because it has poor handling properties and is not suitable for the production of small and complex shaped parts or sintered parts having thin portions. Generally, alloy powder produced by spraying (water atomization) is used as the raw material powder for powder metallurgy, but Cu-Sn-Ni alloy powder contains Ni with high melting point in Cu-Sn alloy powder. Therefore, since the surface tension of the molten alloy is increased, the powder is spheroidized and the apparent density is easily increased. Furthermore, since the powder itself is hard, there is a problem that it is inferior in formability as compared with a Cu-Sn powder or the like generally used.

一方、混合粉末を使用する場合は、例えば電解銅粉のような柔らかく成形性に優れた銅粉を混合することにより高い成形性が得られる。しかしながら、下記の特許文献1に記載されるような錫、ニッケル等の成分は、固相中の拡散速度が遅いために、均一な組織の焼結体を得ることが困難となるため、焼結部品の強度不足やバラツキが生じるといった問題がある。   On the other hand, when using mixed powder, high moldability is obtained by mixing soft and excellent copper powder such as electrolytic copper powder. However, the components such as tin and nickel described in Patent Document 1 below are difficult to obtain a sintered body having a uniform structure because the diffusion rate in the solid phase is slow. There are problems such as insufficient strength of parts and variations.

特開平11−256206号公報Japanese Patent Laid-Open No. 11-256206

日本金属学会誌、第63巻、第10号(1999)1338−1347Journal of the Japan Institute of Metals, Vol. 63, No. 10 (1999) 1338-1347

本発明は、原料粉末の見掛け密度および粉末粒度を低減することによって圧粉体の成形性を改善し、高い強度特性が得られる粉末冶金用の原料としてCu−Sn−Ni系の合金粉末(粉末冶金用銅系合金粉末)を提供することを課題とする。   The present invention improves the moldability of a green compact by reducing the apparent density and powder particle size of the raw material powder, and as a raw material for powder metallurgy that can provide high strength properties (Cu-Sn-Ni alloy powder (powder) An object is to provide a copper-based alloy powder for metallurgy.

本発明は、時効処理によりスピノーダル分解を起こし容易に高強度な焼結部品が得られるCu−Sn−Ni系合金粉末の組成を最適化し、かつアトマイズ法の条件を種々検討した結果、Cu−Sn−Ni系合金粉末を微粉化および低見掛け密度化することによって、ハンドリング性に優れた圧粉体が作成でき高強度な焼結部品が得られる粉末を開発した。   The present invention optimizes the composition of Cu-Sn-Ni-based alloy powder that can cause spinodal decomposition by aging treatment and easily obtain a high-strength sintered part, and as a result of various investigations on the conditions of the atomization method, Cu-Sn -We have developed a powder that can produce a green compact with excellent handling properties and a high-strength sintered part by making the Ni-based alloy powder fine and reducing the apparent density.

本発明は、3〜12重量%のSnを含み、さらに5〜15重量%のNiを含み、残部がCuおよび不可避不純物からなり、見掛け密度3.0g/cm3以下かつ粉末の粒度の70%以上が45μm以下であることを特徴とする粉末冶金用銅系合金粉末である。 The present invention contains 3 to 12% by weight of Sn, further contains 5 to 15% by weight of Ni, the balance is made of Cu and inevitable impurities, has an apparent density of 3.0 g / cm 3 or less, and 70% or more of the particle size of the powder. Is a copper-based alloy powder for powder metallurgy, characterized by being 45 μm or less.

SnおよびNiは高温域でCuに固溶し、急冷することで過飽和固溶体となる。Cu−Sn−Ni系合金の過飽和固溶体は時効処理することにより、スピノーダル分解を起こし時効硬化する。スピノーダル分解とは、スピノーダル曲線を有する合金系の領域内のある濃度のものが熱振動などによって濃度のゆらぎが生じ、初期から中期過程においては母相に整合した形で組成の異なる相に分解することである。上記現象により高強度な焼結部品を得るためには、少なくともSnは3重量%以上、Niは5重量%以上を含有する必要がある。Snを12重量%より多く、Niを15重量%より多く含有させても硬い化合物相(例えばNi3Sn)が形成されるが、マトリックス強度が上がっても焼結体の強度(例えば圧環強度)は十分に得られなくなることから、Snの最適な含有量は3〜12重量%、Niは5〜15重量%に限定した。尚、本発明において「不可避不純物」とは、意図的に添加していないのに、各原料の製造工程等で不可避的に混入する不純物のことであり、これらの総和は通常0.1重量%以下である。 Sn and Ni are dissolved in Cu at a high temperature and rapidly cooled to become a supersaturated solid solution. A supersaturated solid solution of a Cu-Sn-Ni alloy undergoes spinodal decomposition and age hardens by aging treatment. Spinodal decomposition means that a certain concentration within the range of an alloy system having a spinodal curve undergoes concentration fluctuations due to thermal vibration, etc., and decomposes into a phase with a different composition in a form consistent with the parent phase in the initial to mid-term process. That is. In order to obtain a sintered part having high strength due to the above phenomenon, it is necessary to contain at least Sn at 3 wt% or more and Ni at 5 wt% or more. A hard compound phase (for example, Ni 3 Sn) is formed even if Sn is added in an amount of more than 12% by weight and Ni is added in an amount of more than 15% by weight. Therefore, the optimum content of Sn was limited to 3 to 12% by weight, and Ni was limited to 5 to 15% by weight. In the present invention, `` inevitable impurities '' means impurities that are inevitably mixed in the manufacturing process of each raw material, although not intentionally added, and the sum of these is usually 0.1% by weight or less. is there.

本発明の合金粉末は、水アトマイズ法により製造される。水アトマイズ法は溶融合金を水で噴霧し粉末化する方法であり、溶融合金中の各成分元素は溶解時に均質化された液相となり、噴霧時に急冷凝固され均一な組成の合金粉末が製造される。また水アトマイズの条件を工夫することにより、粉末の微細化および不規則形状化すなわち低見掛け密度化することができ、本発明の合金粉末を製造する際には、例えば、図1に示されるような、特公平05−082441号公報に記載のリングノズルを使用することが好ましい。このリングノズルには、ノズルから噴出した水ジェットにより構成される水膜ができるだけ均一となるように、均流リング1と整流リング2が組み込まれており、図2に示されるようにして、この均流リング1には、噴霧媒体が噴霧ノズル内へ導入されてから噴出口に至るまでの間に4個以上(図2では8個)の分割孔3と、当該分割孔より流出する噴霧媒体の流れ方向を変更させる方向に、分割孔の数の2倍以上の数(図2では24個)の整流孔4が設けられている。   The alloy powder of the present invention is produced by a water atomization method. The water atomization method is a method in which a molten alloy is sprayed with water to form a powder, and each component element in the molten alloy becomes a homogenized liquid phase when dissolved, and rapidly solidifies when sprayed to produce an alloy powder with a uniform composition. The Further, by devising the water atomization conditions, the powder can be refined and irregularly shaped, that is, the apparent density can be reduced. When producing the alloy powder of the present invention, for example, as shown in FIG. It is preferable to use a ring nozzle described in Japanese Patent Publication No. 05-082441. In this ring nozzle, a current equalizing ring 1 and a rectifying ring 2 are incorporated so that a water film constituted by a water jet ejected from the nozzle is as uniform as possible. As shown in FIG. The flow equalizing ring 1 includes four or more (eight in FIG. 2) divided holes 3 from the time when the spray medium is introduced into the spray nozzle to the outlet, and the spray medium flowing out from the divided holes. The number of the rectifying holes 4 is more than twice the number of the divided holes (24 in FIG. 2) in the direction in which the flow direction is changed.

さらに、粉末の微細化および低見掛け密度化を達成するには、噴霧水の噴射角度(以降、「噴霧水頂角」という)を高くすることが有効であり、特に本発明では、噴霧水頂角50°以上、噴霧水圧力300kgf/cm2以上の条件にて水アトマイズを実施することが望ましい。 Further, in order to achieve finer powder and lower apparent density, it is effective to increase the spray angle of spray water (hereinafter referred to as “spray water top angle”). It is desirable to perform water atomization under conditions of an angle of 50 ° or more and a spray water pressure of 300 kgf / cm 2 or more.

水アトマイズにより製造される粉末は、合金元素の偏析が少ないため、混合粉末に比べ均質な組織の焼結体が得られる。水アトマイズ粉末はガスアトマイズ粉末に比べると不規則な形状であり成形性の良い圧粉体を得られるが、電解銅粉を使用した混合粉末に比べると十分な圧粉体の成形性が得られない。本発明の合金粉末は、一般に銅系合金の焼結部品に使用されるCu−Snに融点の高いNiを含有することにより溶融合金の表面張力が高くなるためか、粉末が球状化し易くCu−Sn合金粉末に比べ見掛け密度が高くなる傾向があるが、本発明者は、水アトマイズの条件を種々検討した結果、粉末を低見掛け密度化することによって成形性に優れた粉末が得られることを見い出して本発明を完成した。   Since the powder produced by water atomization has little segregation of alloy elements, a sintered body having a homogeneous structure can be obtained as compared with the mixed powder. Water atomized powder has an irregular shape compared to gas atomized powder, and a green compact with good moldability can be obtained, but sufficient green compact moldability cannot be obtained compared with mixed powder using electrolytic copper powder. . The alloy powder of the present invention is generally made of Cu-Sn, which is used for sintered parts of copper-based alloys, because the surface tension of the molten alloy is increased by containing Ni having a high melting point. Although the apparent density tends to be higher than that of the Sn alloy powder, the present inventors have studied various conditions for water atomization, and as a result, the inventors have found that a powder with excellent formability can be obtained by reducing the apparent density of the powder. As a result, the present invention was completed.

粉末の成形性は、圧粉体抗折力によって評価することができる。実際の焼結体部品は形状や大きさの違いによって多少基準に差があるが、概ね抗折力は圧粉体の成形密度が6.6 g/cm3において5.0MPa以上あることが好ましく、さらには10MPa以上であることが好ましい。本発明の粉末は圧粉体密度が6.6 g/cm3において10MPa以上の抗折力が得られる。一般的に粉末の成形性を改善するには粉末を微細化および不規則形状化することが好ましく、水アトマイズ法による製造では噴霧水の角度を高くすることが有効とされるが、見掛け密度2.0 g/cm3以下の粉末を製造することは困難であり、本発明の合金粉末の見掛け密度は2.0〜3.0g/cm3である。 The moldability of the powder can be evaluated by the green compact bending strength. The actual sintered parts have some differences in standards depending on the shape and size, but in general, the bending strength is preferably 5.0 MPa or more at a compacting density of 6.6 g / cm 3 , It is preferably 10 MPa or more. The powder of the present invention can have a bending strength of 10 MPa or more at a green density of 6.6 g / cm 3 . In general, to improve the moldability of the powder, it is preferable to make the powder finer and irregularly shaped. In the production by the water atomization method, it is effective to increase the angle of the spray water, but the apparent density is 2.0. It is difficult to produce a powder of g / cm 3 or less, and the apparent density of the alloy powder of the present invention is 2.0 to 3.0 g / cm 3 .

さらには本発明の合金粉末を使用した圧粉体は、焼結および時効処理することにより、HV硬さが300以上かつ圧環強度600MPa以上の焼結体が得られる。金属単体もしくは合金粉末の混合粉末を使用した場合の圧粉体は圧粉体密度が6.6 g/cm3において10MPa以上の抗折力を得られるが、本発明の合金粉末のようにHV硬さが300以上かつ圧環強度600MPa以上の焼結体を得ることはできない。 Further, the green compact using the alloy powder of the present invention can be sintered and aged to obtain a sintered body having an HV hardness of 300 or more and a crushing strength of 600 MPa or more. The green compact using a single metal or a mixed powder of alloy powder can obtain a bending strength of 10 MPa or more at a green compact density of 6.6 g / cm 3 . However, it is impossible to obtain a sintered body having a crushing strength of 600 MPa or more.

本発明では、Cu−Sn−Ni系の合金粉末を微粉化および低見掛け密度化することで、ハンドリング性に優れた圧粉体が得られ、かつ時効処理によって容易に高強度な焼結部品を製造することが可能である。   In the present invention, by compacting the Cu-Sn-Ni alloy powder and reducing the apparent density, a green compact having excellent handling properties can be obtained, and a high-strength sintered part can be easily obtained by aging treatment. It is possible to manufacture.

本発明の粉末冶金用銅系合金粉末を製造するのに適したリングノズルの好ましい一例における断面図である。It is sectional drawing in a preferable example of the ring nozzle suitable for manufacturing the copper-type alloy powder for powder metallurgy of this invention. 図1のリングノズルを構成する均流リングの平面図である。It is a top view of the current equalizing ring which comprises the ring nozzle of FIG.

以下に、本発明の合金粉末について実施例に基づき更に詳細に説明する。
粉末の成形性は、見掛け密度および圧粉体抗折力で評価することができる。見掛け密度はISO 3923規格の測定法に従い求めた。圧粉体の抗折力は粉末にワックス系潤滑剤を0.5重量%混合し、圧粉体密度が6.6g/cm3となるように30×12×6mmの直方体にプレス成形し、ISO 3995規格の測定法に従い求めた。マイクロビッカース硬さは、焼結後あるいは時効後の焼結体マトリックス硬さを測定可能な微小硬度計を使い、荷重10gfで求めた。圧環強さは焼結性を評価する目安となりトータルな焼結体の特性を示す。圧環強さはJIS Z 2507規格の測定法に従い求めた。
Hereinafter, the alloy powder of the present invention will be described in more detail based on examples.
The moldability of the powder can be evaluated by the apparent density and the green compact bending strength. The apparent density was determined according to the measurement method of ISO 3923 standard. The compressive strength of the green compact is 0.5% by weight of wax-based lubricant mixed in the powder, press-molded into a 30 × 12 × 6mm cuboid so that the green compact density is 6.6g / cm 3, and ISO 3995 standard It was determined according to the measurement method. The micro Vickers hardness was obtained at a load of 10 gf using a micro hardness meter capable of measuring sintered body matrix hardness after sintering or aging. The crushing strength is a guideline for evaluating the sinterability and shows the characteristics of the total sintered body. The crushing strength was determined according to the measurement method of JIS Z 2507 standard.

本発明の合金粉末である実施例1〜3および比較例1〜5は、表1に示す組成となるように水アトマイズ法により製造した。実施例1〜3の粉末は、特公平05-082441号公報に記載される形状に準じたノズルを使用し、噴霧水頂角55°、噴霧水圧力350kgf/cm2の条件で作成し、比較例1〜5は、噴霧水頂角および噴霧水圧力の条件を変えることにより、表1に示す特性の粉末を作成した。尚、表1には、SnとNiの成分値しか記載されていないが、残部はCuである。 Examples 1 to 3 and Comparative Examples 1 to 5, which are alloy powders of the present invention, were produced by the water atomization method so as to have the compositions shown in Table 1. The powders of Examples 1 to 3 were prepared using a nozzle according to the shape described in Japanese Patent Publication No. 05-082441, and were prepared under conditions of a spray water top angle of 55 ° and a spray water pressure of 350 kgf / cm 2. In Examples 1 to 5, powders having the characteristics shown in Table 1 were prepared by changing the spray water apex angle and spray water pressure conditions. In Table 1, only the component values of Sn and Ni are described, but the balance is Cu.

これらの粉末に金型潤滑剤としてワックス系潤滑剤を0.3重量%加え、ロッキングミキサーで混合した。比較例6は、粒度−100meshの電解銅粉、−250meshのアトマイズSn粉末、−200meshのCu−Niアトマイズ合金粉末、これらの粉末を表1に示す組成となるようにロッキングミキサーで混合した。実施例1〜3および比較例1〜6の粉末を圧粉体密度が6.6g/cm3となるようにφ14×φ7×7mmの円筒形にプレス成形し、水素25体積%、窒素75体積%の混合ガス中で840℃、20min間保持し水冷却した。さらに窒素雰囲気中で350℃、60min間の時効処理を行った。その結果を以下の表1に示す。 To these powders, 0.3% by weight of a wax lubricant as a mold lubricant was added and mixed with a rocking mixer. In Comparative Example 6, electrolytic copper powder having a particle size of −100 mesh, atomized Sn powder of −250 mesh, Cu—Ni atomized alloy powder of −200 mesh, and these powders were mixed with a rocking mixer so as to have the composition shown in Table 1. The powders of Examples 1 to 3 and Comparative Examples 1 to 6 were press-molded into a cylindrical shape of φ14 × φ7 × 7 mm so that the green compact density was 6.6 g / cm 3, and hydrogen was 25% by volume and nitrogen was 75% by volume. The mixture was cooled in water at 840 ° C. for 20 minutes. Further, an aging treatment was performed at 350 ° C. for 60 minutes in a nitrogen atmosphere. The results are shown in Table 1 below.

Figure 2012097323
Figure 2012097323

上記表1に示すように本発明の合金粉末である実施例1〜3は、粉末粒度45μm以下が70%以上かつ見掛け密度が3.0g/cm3以下の粉末であり、その圧粉体は約17MPa以上の高い抗折力が得られる。またSnを3〜12重量%およびNiを5〜15重量%含み焼結後に時効処理することによって、650MPa以上の高い圧環強度が得られる。 As shown in Table 1 above, Examples 1 to 3, which are alloy powders of the present invention, are powders having a powder particle size of 45 μm or less of 70% or more and an apparent density of 3.0 g / cm 3 or less. High bending strength of 17 MPa or more can be obtained. Further, high crushing strength of 650 MPa or more can be obtained by aging treatment after sintering containing 3 to 12% by weight of Sn and 5 to 15% by weight of Ni.

一方、比較例1〜3に示す粉末は、SnおよびNiをそれぞれ9重量%含有し、その焼結体は時効処理によって高い圧環強度が得られる。しかしながら粉末粒度45μm以下が70%以上かつ見掛け密度が3.0 g/cm3以下でないため、その圧粉体の抗折力は10MPa以下となり十分な成形性が得られない。 On the other hand, the powders shown in Comparative Examples 1 to 3 each contain 9% by weight of Sn and Ni, and the sintered body can obtain high crushing strength by aging treatment. However, since the powder particle size of 45 μm or less is 70% or more and the apparent density is not 3.0 g / cm 3 or less, the bending strength of the green compact is 10 MPa or less, and sufficient moldability cannot be obtained.

比較例4に示す粉末は、粉末粒度45μm以下が70%以上かつ見掛け密度が3.0g/cm3以下であり、その圧粉体は高い抗折力を得られるが、SnおよびNiの含有量がそれぞれ1重量%と少ないために、その焼結体は時効処理しても充分な圧環強度が得られない。 The powder shown in Comparative Example 4 has a powder particle size of 45 μm or less of 70% or more and an apparent density of 3.0 g / cm 3 or less. The green compact can obtain a high bending strength, but the Sn and Ni contents are low. Since each of them is as small as 1% by weight, even if the sintered body is subjected to an aging treatment, sufficient crushing strength cannot be obtained.

比較例5に示す粉末は、粉末粒度45μm以下が70%以上かつ見掛け密度が3.0g/cm3以下であり、その圧粉体は高い抗折力が得られるが、SnおよびNiの含有量がそれぞれ20重量%と多い。その焼結体は時効処理によって硬化し、マトリックス相自体は高いHV硬さが得られる。しかしながら硬く脆いNi−Sn系の化合物相が多く析出するため、十分な圧環強度が得られない。 The powder shown in Comparative Example 5 has a powder particle size of 45 μm or less of 70% or more and an apparent density of 3.0 g / cm 3 or less, and the green compact provides high bending strength, but the contents of Sn and Ni are high. Each is as high as 20% by weight. The sintered body is cured by aging treatment, and the matrix phase itself has high HV hardness. However, since a lot of hard and brittle Ni—Sn compound phases are precipitated, a sufficient crushing strength cannot be obtained.

比較例6に示す粉末は電解銅粉や合金粉末を含む混合粉末であり、その圧粉体は実施例1〜3よりも高い抗折力が得られる。しかしながらその焼結体は、合金粉末の焼結体に比べ、マトリックス相中のNi、Snの均一性がないため、十分に時効硬化せず高い圧環強度が得られない。   The powder shown in Comparative Example 6 is a mixed powder containing electrolytic copper powder and alloy powder, and the green compact has higher bending strength than Examples 1-3. However, since the sintered body does not have uniformity of Ni and Sn in the matrix phase as compared with the sintered body of the alloy powder, the sintered body does not sufficiently age harden and high crushing strength cannot be obtained.

本発明の粉末冶金用銅系合金粉末を使用した圧粉体は、高い成形性が得られ焼結後の時効処理によって容易に高強度な焼結体が得られるため、粉末冶金法によって製造されるあらゆる焼結部品に使用でき、有用である。   The green compact using the copper-based alloy powder for powder metallurgy of the present invention is manufactured by the powder metallurgy method because high formability is obtained and a high-strength sintered body can be easily obtained by aging treatment after sintering. It can be used for any sintered part.

1 均流リング
2 整流リング
3 分割孔
4 整流孔
1 Uniform ring 2 Rectifier ring 3 Divided hole 4 Rectifier hole

Claims (1)

粉末冶金に使用されるCu−Sn−Ni系の合金粉末であって、当該合金粉末が、3〜12重量%のSnを含み、さらに5〜15重量%のNiを含み、残部がCuおよび不可避不純物からなり、見掛け密度が3.0g/cm3以下で、しかも、粒度の70%以上が45μm以下であることを特徴とする粉末冶金用銅系合金粉末。 Cu-Sn-Ni based alloy powder used in powder metallurgy, the alloy powder containing 3-12 wt% Sn, further containing 5-15 wt% Ni, the balance being Cu and inevitable A copper-based alloy powder for powder metallurgy comprising impurities, having an apparent density of 3.0 g / cm 3 or less, and 70% or more of the particle size being 45 μm or less.
JP2010245901A 2010-11-02 2010-11-02 Copper-based alloy powder for powder metallurgy Pending JP2012097323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010245901A JP2012097323A (en) 2010-11-02 2010-11-02 Copper-based alloy powder for powder metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010245901A JP2012097323A (en) 2010-11-02 2010-11-02 Copper-based alloy powder for powder metallurgy

Publications (1)

Publication Number Publication Date
JP2012097323A true JP2012097323A (en) 2012-05-24

Family

ID=46389565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010245901A Pending JP2012097323A (en) 2010-11-02 2010-11-02 Copper-based alloy powder for powder metallurgy

Country Status (1)

Country Link
JP (1) JP2012097323A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018034551A1 (en) * 2016-08-19 2018-02-22 영남대학교산학협력단 Method for preparing metal composite and metal composite prepared thereby
KR20180081031A (en) * 2018-07-05 2018-07-13 영남대학교 산학협력단 Manufacturing method for metal composite and metal composite manufacrured by the same
JP2019011483A (en) * 2017-06-29 2019-01-24 福田金属箔粉工業株式会社 Copper-based alloy powder for powder metallurgy and sintered body formed of copper-based alloy powder
CN117127058A (en) * 2023-05-06 2023-11-28 江西省科学院应用物理研究所 High-strength high-hardness copper-based alloy and preparation process thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156240A (en) * 1985-12-19 1987-07-11 イーエムエー コーポレーション Powder metallurgical production of copper-nickel-tin spinodal alloy
JPS62278208A (en) * 1986-05-27 1987-12-03 Fukuda Metal Foil & Powder Co Ltd Ring nozzle for producing metallic powder
JP2001131660A (en) * 1999-11-09 2001-05-15 Fukuda Metal Foil & Powder Co Ltd Alloy powder for copper series high strength sintered parts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156240A (en) * 1985-12-19 1987-07-11 イーエムエー コーポレーション Powder metallurgical production of copper-nickel-tin spinodal alloy
JPS62278208A (en) * 1986-05-27 1987-12-03 Fukuda Metal Foil & Powder Co Ltd Ring nozzle for producing metallic powder
JP2001131660A (en) * 1999-11-09 2001-05-15 Fukuda Metal Foil & Powder Co Ltd Alloy powder for copper series high strength sintered parts

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018034551A1 (en) * 2016-08-19 2018-02-22 영남대학교산학협력단 Method for preparing metal composite and metal composite prepared thereby
JP2019011483A (en) * 2017-06-29 2019-01-24 福田金属箔粉工業株式会社 Copper-based alloy powder for powder metallurgy and sintered body formed of copper-based alloy powder
KR20180081031A (en) * 2018-07-05 2018-07-13 영남대학교 산학협력단 Manufacturing method for metal composite and metal composite manufacrured by the same
KR101981893B1 (en) * 2018-07-05 2019-05-23 영남대학교 산학협력단 Manufacturing method for metal composite and metal composite manufacrured by the same
CN117127058A (en) * 2023-05-06 2023-11-28 江西省科学院应用物理研究所 High-strength high-hardness copper-based alloy and preparation process thereof
CN117127058B (en) * 2023-05-06 2024-02-09 江西省科学院应用物理研究所 High-strength high-hardness copper-based alloy and preparation process thereof

Similar Documents

Publication Publication Date Title
JP5504278B2 (en) Method for producing diffusion-alloyed iron or iron-based powder, diffusion-alloyed powder, composition comprising the diffusion-alloyed powder, and molded and sintered parts produced from the composition
JP4769287B2 (en) Bronze powder for powder metallurgy and method for producing the same
JP6444379B2 (en) Copper alloy, use of copper alloy, bearing having copper alloy, and method of manufacturing bearing made of copper alloy
JP6106323B1 (en) Sintered tungsten-based alloy and method for producing the same
US11273489B2 (en) Aluminum alloy powder formulations with silicon additions for mechanical property improvements
JP2012097323A (en) Copper-based alloy powder for powder metallurgy
JP2017095792A (en) Method for generating porous spherical type iron-based alloy powder by reduction reaction and powder and sintered body thereof
JP5250388B2 (en) Composite metal glass having both strength and conductivity and method for producing the same
CN101658931B (en) Rare earth powder metallurgy iron aldurbra-containing oil bearing material and preparation technology thereof
JP2006316312A (en) Method for producing sintered aluminum alloy with high strength and abrasion resistance
CN106498220A (en) Nickelous carbonate is used for the method for improving sintering copper-manganese damping alloy performance
TWI465589B (en) Production method of sintered bronze alloy powder
JP2013023707A (en) Mixed powder for powder metallurgy
JP5951636B2 (en) Improved aluminum alloy powder metal with transition elements
JP4177534B2 (en) Alloy powder for copper-based high strength sintered parts
JP5403707B2 (en) Cu-based infiltration powder
JPWO2019111834A1 (en) Partially diffused alloy steel powder
KR100978901B1 (en) MANUFACTURING METHOD OF Fe-BASED SINTERED BODY WITH HIGH TENSILE STRENGTH AND HIGH HARDNESS
JP2009007433A (en) Copper-based oil-containing sintered sliding member and method for producing the same
JP6860435B2 (en) A sintered body composed of a copper-based alloy powder for powder metallurgy and the copper-based alloy powder.
KR20100117180A (en) Manufacturing method of maganese added sintered ferrous alloy
JP2016079432A (en) Copper alloy for sliding shaft bearing
JP5923023B2 (en) Mixed powder for powder metallurgy and method for producing sintered material
KR20090097715A (en) Fe-based sintered body with high strength and high elongation and manufacturing method thereof
JP2018178225A (en) Manufacturing method of magnesium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150204