JP4060092B2 - Alloy steel powder for powder metallurgy and sintered body thereof - Google Patents

Alloy steel powder for powder metallurgy and sintered body thereof Download PDF

Info

Publication number
JP4060092B2
JP4060092B2 JP2002043912A JP2002043912A JP4060092B2 JP 4060092 B2 JP4060092 B2 JP 4060092B2 JP 2002043912 A JP2002043912 A JP 2002043912A JP 2002043912 A JP2002043912 A JP 2002043912A JP 4060092 B2 JP4060092 B2 JP 4060092B2
Authority
JP
Japan
Prior art keywords
powder
alloy steel
iron
mass
steel powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002043912A
Other languages
Japanese (ja)
Other versions
JP2003247003A (en
Inventor
尚道 中村
繁 宇波
聡 上ノ薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002043912A priority Critical patent/JP4060092B2/en
Publication of JP2003247003A publication Critical patent/JP2003247003A/en
Application granted granted Critical
Publication of JP4060092B2 publication Critical patent/JP4060092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、粉末冶金用合金鋼粉に関し、 特に高密度かつ高強度の各種焼結金属部品を得るために好適な粉末冶金用合金鋼粉、およびそれを焼結して得られる焼結体に関するものである。
【0002】
【従来の技術】
粉末冶金技術は、高寸法精度の複雑な形状の部品をニアネット形状に生産することが可能であり、大幅に切削コストを低減できることから、粉末冶金製品が多方面に利用されている。最近では、部品の小型・軽量化のため、鉄系の粉末冶金製品の高強度化が強く要求されている。
【0003】
粉末冶金用鉄基粉末成形体は、鉄基粉末に、銅粉、黒鉛粉などの合金用粉末と、さらにステアリン酸、ステアリン酸リチウム等の潤滑剤を混合した鉄基粉末混合粉を金型に充填した後、加圧成形し製造されるのが一般的である。成形体の密度としては、 6.6〜7.1 Mg/m3 が一般的である。これら鉄基粉末成形体は、さらに焼結処理を施され焼結体とされ、さらに必要に応じてサイジングや切削加工が施され、粉末冶金製品とされる。また、さらに高強度が必要な場合は焼結後に浸炭熱処理や光輝熱処理を施されることもある。
【0004】
粉末冶金製品の強度を向上させるために、焼入性を改善する合金元素を鉄基粉末に添加することが一般的に行われている。この目的に有効な元素として、例えば特公昭63-66362号公報では、Moを圧縮性を損なわない範囲(Mo: 0.1〜1.0 質量%)で鉄粉に予合金化し、この鉄粉の粒子表面にCuとNiを粉末の形で拡散付着させることによって、圧粉成形時の圧縮性と焼結後の部材の強度を両立させている。しかしながら、NiやCuは、近年の環境対応やリサイクル性の観点からは不利な元素であり、できるだけ使用を避けることが望ましい。
【0005】
Moを主たる合金元素として、NiやCuを含まないMo系合金鋼粉もこれまで提案されている。たとえば特公平6-89365 号公報では、フェライト安定化元素であるMoを添加して、Feの自己拡散速度の速いα単一相を形成して焼結を促進させる目的で、Moを 1.5〜20質量%の範囲で予合金として含む合金鋼粉が提案されている。しかしながら、Mo添加量が比較的高いため、合金鋼粉の圧縮性が低く、高い成形密度が得られないという欠点があった。
【0006】
一方、 特公平7-51721 号公報には、 鉄粉にMoを 0.2〜1.5 質量%,Mnを0.05〜0.25質量%の範囲で予合金化させた、圧粉成形時の圧縮性が比較的高い鋼粉が開示されている。しかしながら、この鋼粉ではMo量が 1.5質量%以下であるためα相単相とならない。したがって、粒子間の焼結の進行が促進されず、開空孔の多い組織となるため、 特に加圧焼結に用いた場合に空孔を効率的につぶすことができず、緻密化が進行しにくいという問題点があった。
【0007】
このように、従来のMo合金鋼粉は、高圧縮性と高焼結性を両立するには不十分なものであった。
【0008】
【発明が解決しようとする課題】
本発明は、上述の従来技術の問題点を克服し、高圧縮性と高焼結性を両立させて、成形体の成形密度を高めるとともに開空孔を減少させることができる粉末冶金用合金鋼粉、およびそれを焼結して得られる焼結体を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的のための本発明は、Mn: 1.0質量%以下およびMo: 0.2〜1.5 質量%を予合金化して含み残部がFeおよび不可避的不純物からなる鉄基粉末の表面に、部分的に拡散付着された粉末の形でMoを合金鋼粉全量の 0.2〜10.0質量%含有するとともに前記鉄基粉末の表面に Mo が高い濃度で偏析し、かつ加圧成形を施すことによって効率的に空孔がつぶれて高密度の焼結体が得られることを特徴とする粉末冶金用合金鋼粉である。
また本発明は、上記した粉末冶金用合金鋼粉を成形し、次いで焼結したことを特徴とする焼結体である。
【0010】
【発明の実施の形態】
以下に本発明の合金鋼粉について、図面にしたがって、さらに詳細に説明する。
本発明の合金鋼粉の製造にあたっては、図2に示すように、まず所定量のMoとMnを予め合金成分として(すなわち予合金として)含有する鉄基粉末(a) とMo原料粉末(b) を準備する。
【0011】
鉄基粉末(a) としては、合金成分を所定量に調整した溶鋼を水ないしガスで噴霧したアトマイズ鉄粉が好ましい。 アトマイズ鉄粉は、通常、アトマイズ後に還元性雰囲気(例えば水素雰囲気)中で加熱してCとOを低減させる処理を施すが、本発明の鉄基粉末(a) にはこのような熱処理を施さないアトマイズままの鉄粉を用いることも可能である。
【0012】
Mo原料粉末(b) としては、金属Mo粉末を用いても良いし、あるいはMo酸化物(すなわちMoO3 )粉やフェロモリブデン粉を用いても良い。
次いで、前記した鉄基粉末(a) とMo原料粉末(b) を、所定の比率で混合(c) する。混合(c) には適用可能な任意の方法(例えばヘンシェルミキサーやコーン型ミキサーなど)を用いることができる。鉄基粉末(a) とMo原料粉末(b) との付着性を改善するために、スピンドル油等を 0.1質量%以下の範囲で添加することも可能である。
【0013】
この混合物を、水素雰囲気等の還元性雰囲気にて、 800〜1000℃の範囲で熱処理(d) することにより、本発明の合金鋼粉(e) が得られる。
この合金鋼粉は、図1に模式的に示すように、Mo原料粉末2と鉄基粉末1とが接触する部位3において、Mo原料粉末2中のMoの一部が鉄基粉末1粒子中に拡散して、Moの残部はMo原料粉末2に残留した状態で鉄基粉末1表面に付着(以下、拡散付着という)している。なお図1ではMoの拡散付着は1ケ所のみ図示しているが、実際の合金鋼粉では拡散付着箇所は1ケ所に限定されないことは言うまでもない。
【0014】
なお、Mo原料粉末2としてMo酸化物粉を用いた場合には、 この熱処理工程においてMo酸化物が金属の形態に還元される。その結果、金属Mo粉をMo原料粉末2として用いた場合と同様に、拡散付着によって部分的にMo含有量が増加した状態が得られる。 なお、このようにして熱処理(すなわち拡散付着処理)を行なうと、通常は鉄基粉末1とMo原料粉末2が焼結して固まった状態となるので、所望の粒径に破砕・分級し、必要に応じさらに焼鈍を施して、最終的な合金鋼粉製品とする。
【0015】
本発明の合金鋼粉4における合金元素量の限定理由について説明する。
本発明の合金鋼粉4で、予合金として(すなわち予め合金成分として)鉄基粉末1に含まれるMoは 0.2〜1.5 質量%である。予合金としてのMo含有量が 1.5質量%を超えても、焼入性向上の効果はさほど変わらず、かえって合金鋼粉4粒子の硬化により圧縮性が低下して好ましくない。経済的な観点からも不利となる。また、予合金としてのMo含有量が 0.2質量%未満の合金鋼粉4を成形・焼結後、浸炭処理および焼入れを行なった場合、 焼結体中にフェライト相が析出しやすくなり、その結果、焼結体が軟らかく強度的にも低いものとなる。
【0016】
予合金として鉄基粉末1に含まれるMnは 1.0質量%以下である。予合金としてのMn含有量が 1.0質量%を超えると、Mn含有量に見合う焼入性向上の効果が得られなくなり、かえって合金鋼粉4粒子の硬化により圧縮性が低下して好ましくない。経済的な観点からも不利となる。なお、Mnは鉄基粉末1中に不可避的不純物として0.04質量%程度は必ず含まれ、Mn含有量を0.04質量%よりも低減しようとするとコスト高となる。したがってMn含有量は、好ましくは0.04〜1.0 質量%である。
【0017】
本発明の合金鋼粉4で、部分的に拡散付着した粉末の形で含有されるMo含有量は、合金鋼粉全量の 0.2〜10.0質量%である。 0.2質量%未満では、焼入性向上の効果が少なく、また粒子界面での焼結促進効果も小さくなる。また、10.0質量%を超えても焼入性向上の効果や焼結促進の効果がさほど見られなくなり且つコスト高となる。なお、合金鋼粉4の圧縮性を確保するという観点からは、粉末の形で拡散付着されるMo含有量は 5.0質量%以下とすることが好ましい。
【0018】
本発明の合金鋼粉4では、不純物として含有されるCが0.05質量%以下,Oが 0.3質量%以下,Nが50質量ppm 以下であることが好ましい。不純物の含有量がこれらの値を超えると、鉄基粉末1とMo原料粉末2とを混合(すなわち図1における混合(c) の工程)した混合粉末の圧縮性が低下し、 十分な密度を有する合金鋼粉4が得られないからである。
【0019】
また、本発明における鉄基粉末1の平均粒径は特に限定されないが、工業的に低コストで製造される範囲として30〜120 μmが好適である。なお、本発明でいう平均粒径は、重量積算粒度分布の中点(d50)である。
本発明の合金鋼粉4は、予合金として鉄基粉末1中に含まれる元素が比較的少ないため、合金鋼粉4粒子の硬度が低いレベルに抑制され、圧縮成形時に高い密度が得られる。 また、粒子表面にはMoが比較的高い濃度で偏析しているため、成形体の焼結時には粒子界面でα単一相が形成される。その結果、焼結による合金鋼粉4粒子間の結合が促進され、閉空孔が形成されやすい。この特性により、本発明の合金鋼粉4を、特に加圧成形技術に適用した場合には、効率的に空孔がつぶれて高い密度の焼結体が得られる。
【0020】
【実施例】
以下に実施例でさらに詳細に本発明について説明するが、 本発明の合金鋼粉およびその用途は、以下の例に何ら限定されるものではない。
所定量のMoおよびMnを含む溶鋼を水アトマイズ法によって噴霧した後、水素雰囲気中で還元処理し、さらに解砕して鉄基粉末を製造した。この鉄基粉末にMo原料粉末としてMoO3 粉末を所定の比率添加し、さらにスピンドル油を 0.015質量%添加して、V型混合器で15分間混合した。
【0021】
この混合粉を露点40℃の水素雰囲気で熱処理(保持温度 875℃,保持時間1hr)してMoO3 粉末を金属Moに還元するとともに、鉄基粉末の表面に拡散付着させて、表1に示す組成の合金鋼粉を製造した。いずれの合金鋼粉も平均粒径(d50)は70〜90μmの範囲にあった。なお、試料番号4は、MoO3 粉の添加前にアトマイズ粉の還元処理を省略した試料である。いずれの試料もCは0.01質量%以下,Oは 0.2質量%以下,Nは20質量ppm 以下であることを化学分析で確認した。合金鋼粉粒子表面のMoの部分拡散は、粒子断面のEPMA観察で確認した。
【0022】
【表1】

Figure 0004060092
【0023】
試料番号1〜8は、Mo含有量およびMn含有量が本発明の範囲を満足する例である。試料番号9は予合金として鉄基粉末に含まれるMoが本発明の範囲の上限値を外れる例であり、試料番号10は予合金として鉄基粉末に含まれるMnが本発明の範囲の上限値を外れる例であり、試料番号11は拡散付着されるMo含有量が本発明の範囲の下限値を外れる例であり、試料番号12は拡散付着されるMo含有量が本発明の範囲の上限値を外れる例であり、試料番号13はMoを拡散付着していない例である。
【0024】
これらの合金鋼粉 100重量部に対してステアリン酸亜鉛を 1.0重量部添加し、さらに攪拌混合した後、圧力690MPaで加圧成形して直径11mm,高さ10mmのタブレット状成形体を作製した。このタブレット状成形体の密度を寸法法で測定し、真密度に対する比率を算出した。
次いでタブレット状成形体を脱ろう処理(保持温度 600℃,保持時間1hr)した後、 水素雰囲気で焼結(焼結温度1250℃,焼結時間1hr)した。この焼結体を静水圧加熱装置により10.1MPa (すなわち 100気圧)のアルゴン雰囲気で加圧焼結(焼結温度1300℃,焼結時間1hr)した。この加圧焼結体の閉空孔の体積分率(閉空孔率)と密度を測定した。加圧焼結体の閉空孔率は、水銀ポロシメータで測定した。加圧焼結体の密度はアルキメデス法で測定し、真密度に対する比率を算出した。
【0025】
加圧焼結体の閉空孔率,密度およびタブレット状成形体の密度を、表1に併せて示す。
発明例である試料番号1〜8は、試料番号9〜10,12に比べてタブレット状成形体の密度が高い。
試料番号11および13は、発明例である試料番号1〜8に比べて、加圧焼結体の閉空孔率と密度が低い。
【0026】
【発明の効果】
以上に説明したように、 本発明の粉末冶金用合金鋼粉を用いると、高圧縮性と高焼結性が両立され、高密度焼結部材の原料となる粉末冶金用合金鋼粉として好適である。特に加圧成形法に使用した場合には、効率的に空孔がつぶされるため、緻密化が促進される。
【図面の簡単な説明】
【図1】本発明の合金鋼粉の例を模式的に示す断面図である。
【図2】本発明の合金鋼粉の製造工程の例を示すブロック図である。
【符号の説明】
1 鉄基粉末
2 Mo原料粉末
3 接触する部位
4 合金鋼粉[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alloy steel powder for powder metallurgy, and more particularly to an alloy steel powder for powder metallurgy suitable for obtaining various sintered metal parts having high density and high strength , and a sintered body obtained by sintering the powder . Is.
[0002]
[Prior art]
Powder metallurgy technology is capable of producing a complex shape part with high dimensional accuracy in a near-net shape, and can greatly reduce cutting costs. Therefore, powder metallurgy products are widely used. Recently, in order to reduce the size and weight of parts, there is a strong demand for higher strength of iron-based powder metallurgy products.
[0003]
The iron-based powder compact for powder metallurgy is made of iron-based powder mixed with iron-based powder, alloy powder such as copper powder and graphite powder, and a lubricant such as stearic acid and lithium stearate. After filling, it is generally produced by pressure molding. The density of the compact is generally 6.6 to 7.1 Mg / m 3 . These iron-based powder compacts are further subjected to a sintering treatment to obtain sintered bodies, and further subjected to sizing and cutting as necessary to obtain powder metallurgy products. When higher strength is required, carburizing heat treatment or bright heat treatment may be performed after sintering.
[0004]
In order to improve the strength of powder metallurgy products, it is common practice to add alloy elements that improve hardenability to iron-based powders. As an effective element for this purpose, for example, in Japanese Examined Patent Publication No. 63-66362, Mo is pre-alloyed to iron powder within a range where the compressibility is not impaired (Mo: 0.1 to 1.0% by mass), By spreading and adhering Cu and Ni in the form of powder, both the compressibility during compacting and the strength of the sintered parts are achieved. However, Ni and Cu are disadvantageous elements from the viewpoint of environmental response and recyclability in recent years, and it is desirable to avoid their use as much as possible.
[0005]
Mo-based alloy steel powders that do not contain Ni or Cu as the main alloying element have been proposed. For example, in Japanese Examined Patent Publication No. 6-89365, Mo is added for the purpose of promoting the sintering by adding Mo, which is a ferrite stabilizing element, to form an α single phase with a high self-diffusion rate of Fe and to promote sintering. Alloy steel powders included as prealloys in the mass% range have been proposed. However, since the amount of added Mo is relatively high, the compressibility of the alloy steel powder is low, and a high molding density cannot be obtained.
[0006]
On the other hand, in Japanese Patent Publication No. 7-51721, iron powder is pre-alloyed with Mo in the range of 0.2 to 1.5 mass% and Mn in the range of 0.05 to 0.25 mass%. Steel powder is disclosed. However, this steel powder does not become α-phase single phase because the Mo content is 1.5 mass% or less. Therefore, the progress of sintering between particles is not promoted and the structure has many open pores, so that the pores cannot be efficiently crushed especially when used for pressure sintering, and the densification proceeds. There was a problem that it was difficult to do.
[0007]
Thus, the conventional Mo alloy steel powder has been insufficient to achieve both high compressibility and high sinterability.
[0008]
[Problems to be solved by the invention]
The present invention overcomes the above-mentioned problems of the prior art, achieves both high compressibility and high sinterability, increases the molding density of the compact, and reduces the number of open pores. An object is to provide a powder and a sintered body obtained by sintering the powder.
[0009]
[Means for Solving the Problems]
For the above purpose, the present invention provides a partial diffusion adherence to the surface of an iron-based powder that is prealloyed with Mn: 1.0 mass% or less and Mo: 0.2-1.5 mass%, the balance being Fe and inevitable impurities. As a result of containing Mo in an amount of 0.2 to 10.0% by mass of the total amount of alloy steel powder , Mo is segregated at a high concentration on the surface of the iron-based powder , and the pores are efficiently formed by pressure forming. It is an alloy steel powder for powder metallurgy characterized by being crushed and obtaining a high-density sintered body.
In addition, the present invention is a sintered body characterized in that the above-described alloy steel powder for powder metallurgy is formed and then sintered.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the alloy steel powder of the present invention will be described in more detail with reference to the drawings.
In producing the alloy steel powder of the present invention, as shown in FIG. 2, first, an iron-based powder (a) and Mo raw material powder (b) containing a predetermined amount of Mo and Mn as alloy components in advance (ie, as a pre-alloy). Prepare).
[0011]
The iron-based powder (a) is preferably atomized iron powder obtained by spraying molten steel with alloy components adjusted to a predetermined amount with water or gas. Atomized iron powder is usually heated in a reducing atmosphere (for example, hydrogen atmosphere) after atomization to reduce C and O, and the iron-based powder (a) of the present invention is subjected to such heat treatment. It is also possible to use non-atomized iron powder.
[0012]
As the Mo raw material powder (b), metal Mo powder may be used, or Mo oxide (that is, MoO 3 ) powder or ferromolybdenum powder may be used.
Next, the iron-based powder (a) and the Mo raw material powder (b) are mixed (c) at a predetermined ratio. For the mixing (c), any applicable method (for example, a Henschel mixer or a corn mixer) can be used. In order to improve the adhesion between the iron-based powder (a) and the Mo raw material powder (b), it is possible to add spindle oil or the like in the range of 0.1% by mass or less.
[0013]
The alloy steel powder (e) of the present invention can be obtained by heat-treating (d) this mixture in a reducing atmosphere such as a hydrogen atmosphere in the range of 800 to 1000 ° C.
As schematically shown in FIG. 1, this alloy steel powder is such that part of Mo in the Mo raw material powder 2 is in the iron base powder 1 particle at the portion 3 where the Mo raw material powder 2 and the iron base powder 1 are in contact with each other. The remainder of Mo adheres to the surface of the iron-based powder 1 (hereinafter referred to as diffusion adhesion) while remaining in the Mo raw material powder 2. In FIG. 1, only one diffusion diffusion of Mo is shown, but it goes without saying that the diffusion adhesion is not limited to one in the actual alloy steel powder.
[0014]
In addition, when Mo oxide powder is used as the Mo raw material powder 2, the Mo oxide is reduced to a metal form in this heat treatment step. As a result, as in the case where metal Mo powder is used as the Mo raw material powder 2, a state in which the Mo content is partially increased by diffusion adhesion is obtained. In addition, when heat treatment (that is, diffusion adhesion treatment) is performed in this manner, the iron-based powder 1 and the Mo raw material powder 2 are usually sintered and solidified, so that they are crushed and classified to a desired particle size. If necessary, further annealing is performed to obtain a final alloy steel powder product.
[0015]
The reason for limiting the amount of alloy elements in the alloy steel powder 4 of the present invention will be described.
In the alloy steel powder 4 of the present invention, Mo contained in the iron-based powder 1 as a pre-alloy (ie, as an alloy component in advance) is 0.2 to 1.5 mass%. Even if the Mo content as a pre-alloy exceeds 1.5% by mass, the effect of improving the hardenability does not change so much. On the contrary, the compressibility is lowered by the hardening of 4 alloy steel powder particles, which is not preferable. It is also disadvantageous from an economic point of view. In addition, when alloy steel powder 4 with a Mo content of less than 0.2 mass% as a pre-alloy is molded and sintered, then carburizing and quenching are performed, the ferrite phase is likely to precipitate in the sintered body. The sintered body is soft and low in strength.
[0016]
Mn contained in the iron-based powder 1 as a prealloy is 1.0% by mass or less. If the Mn content as the prealloy exceeds 1.0% by mass, the effect of improving the hardenability commensurate with the Mn content cannot be obtained, and on the contrary, the compressibility is lowered by the hardening of the alloy steel powder 4 particles, which is not preferable. It is also disadvantageous from an economic point of view. Note that about 0.04% by mass of Mn is inevitably contained as an inevitable impurity in the iron-based powder 1, and an attempt to reduce the Mn content below 0.04% by mass increases the cost. Therefore, the Mn content is preferably 0.04 to 1.0% by mass.
[0017]
In the alloy steel powder 4 of the present invention, the Mo content contained in the form of partially diffused and adhered powder is 0.2 to 10.0 mass% of the total amount of alloy steel powder. If it is less than 0.2% by mass, the effect of improving the hardenability is small and the effect of promoting the sintering at the particle interface is also small. Moreover, even if it exceeds 10.0% by mass, the effect of improving the hardenability and the effect of promoting the sintering are not so much seen and the cost is increased. From the viewpoint of securing the compressibility of the alloy steel powder 4, the Mo content diffused and adhered in the form of powder is preferably 5.0% by mass or less.
[0018]
In the alloy steel powder 4 of the present invention, it is preferable that C contained as impurities is 0.05 mass% or less, O is 0.3 mass% or less, and N is 50 mass ppm or less. When the content of impurities exceeds these values, the compressibility of the mixed powder obtained by mixing the iron-based powder 1 and the Mo raw material powder 2 (that is, the step of mixing (c) in FIG. 1) decreases, and sufficient density is achieved. It is because the alloy steel powder 4 which has is not obtained.
[0019]
Moreover, the average particle diameter of the iron-based powder 1 in the present invention is not particularly limited, but 30 to 120 μm is suitable as a range that is industrially manufactured at low cost. The average particle diameter referred to in the present invention is the midpoint of weight cumulative particle size distribution (d 50).
Since the alloy steel powder 4 of the present invention contains relatively few elements contained in the iron-based powder 1 as a prealloy, the hardness of the alloy steel powder 4 particles is suppressed to a low level, and a high density is obtained during compression molding. Further, since Mo is segregated at a relatively high concentration on the particle surface, an α single phase is formed at the particle interface during the sintering of the compact. As a result, the bonding between the four alloy steel powder particles by sintering is promoted, and closed pores are easily formed. Due to this characteristic, when the alloy steel powder 4 of the present invention is applied particularly to the pressure forming technique, the pores are efficiently crushed and a high density sintered body is obtained.
[0020]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the alloy steel powder of the present invention and its application are not limited to the following examples.
After molten steel containing a predetermined amount of Mo and Mn was sprayed by the water atomization method, it was reduced in a hydrogen atmosphere and further crushed to produce an iron-based powder. A predetermined ratio of MoO 3 powder as Mo raw material powder was added to this iron-based powder, and 0.015% by mass of spindle oil was further added, followed by mixing in a V-type mixer for 15 minutes.
[0021]
This mixed powder is heat-treated in a hydrogen atmosphere with a dew point of 40 ° C. (holding temperature 875 ° C., holding time 1 hour) to reduce the MoO 3 powder to metallic Mo and diffuse and adhere to the surface of the iron-based powder as shown in Table 1. Alloy steel powder of composition was produced. All alloy steel powders had an average particle size (d 50 ) in the range of 70 to 90 μm. Sample number 4 is a sample in which the reduction treatment of the atomized powder was omitted before the addition of the MoO 3 powder. In any sample, it was confirmed by chemical analysis that C was 0.01 mass% or less, O was 0.2 mass% or less, and N was 20 mass ppm or less. Partial diffusion of Mo on the alloy steel powder particle surface was confirmed by EPMA observation of the particle cross section.
[0022]
[Table 1]
Figure 0004060092
[0023]
Sample numbers 1 to 8 are examples in which the Mo content and the Mn content satisfy the scope of the present invention. Sample No. 9 is an example where Mo contained in the iron-base powder as a pre-alloy deviates from the upper limit of the range of the present invention, and Sample No. 10 is Mn contained in the iron-based powder as the pre-alloy as an upper limit of the range of the present invention. Sample No. 11 is an example in which the Mo content diffused and adhered is outside the lower limit of the range of the present invention, and Sample No. 12 is the upper limit of the Mo content diffused and deposited in the present invention. Sample No. 13 is an example in which Mo is not diffused and adhered.
[0024]
1.0 part by weight of zinc stearate was added to 100 parts by weight of these alloy steel powders, and further stirred and mixed, followed by pressure molding at a pressure of 690 MPa to produce a tablet-like molded body having a diameter of 11 mm and a height of 10 mm. The density of this tablet-like molded product was measured by a dimensional method, and the ratio to the true density was calculated.
Next, the tablet-like molded body was dewaxed (holding temperature 600 ° C., holding time 1 hour) and then sintered in a hydrogen atmosphere (sintering temperature 1250 ° C., sintering time 1 hour). This sintered body was subjected to pressure sintering (sintering temperature 1300 ° C., sintering time 1 hr) in an argon atmosphere of 10.1 MPa (that is, 100 atm) using a hydrostatic pressure heating apparatus. The volume fraction (closed porosity) and density of closed pores of this pressure sintered body were measured. The closed porosity of the pressure sintered body was measured with a mercury porosimeter. The density of the pressure sintered body was measured by the Archimedes method, and the ratio to the true density was calculated.
[0025]
Table 1 shows the closed porosity and density of the pressure-sintered body and the density of the tablet-shaped body.
Sample Nos. 1 to 8, which are invention examples, have a higher density of tablet-shaped molded bodies than Sample Nos. 9 to 10 and 12.
Sample numbers 11 and 13 are lower in the closed porosity and density of the pressure-sintered body than sample numbers 1 to 8 which are invention examples.
[0026]
【The invention's effect】
As described above, when the alloy steel powder for powder metallurgy according to the present invention is used, both high compressibility and high sinterability are compatible, and it is suitable as an alloy steel powder for powder metallurgy used as a raw material for high-density sintered members. is there. In particular, when used in the pressure molding method, the pores are efficiently crushed, so that densification is promoted.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing an example of alloy steel powder of the present invention.
FIG. 2 is a block diagram showing an example of a manufacturing process of alloy steel powder of the present invention.
[Explanation of symbols]
1 Iron-based powder 2 Mo raw material powder 3 Contact part 4 Alloy steel powder

Claims (2)

Mn: 1.0質量%以下およびMo: 0.2〜1.5 質量%を予合金化して含み残部が実質的にFeおよび不可避的不純物からなる鉄基粉末の表面に、部分的に拡散付着された粉末の形でMoを合金鋼粉全量の 0.2〜10.0質量%含有するとともに前記鉄基粉末の表面に Mo が高い濃度で偏析し、かつ加圧成形を施すことによって効率的に空孔がつぶれて高密度の焼結体が得られることを特徴とする粉末冶金用合金鋼粉。Mn: 1.0% by mass or less and Mo: 0.2-1.5% by mass, in the form of powder partially diffused and adhered to the surface of the iron-based powder substantially comprising Fe and inevitable impurities. It contains 0.2 to 10.0% by mass of Mo based on the total amount of alloy steel powder , segregates at a high concentration of Mo on the surface of the iron-based powder , and by applying pressure forming, the pores are efficiently crushed and high density firing is performed. Alloy steel powder for powder metallurgy, characterized in that a bonded body is obtained. 請求項1に記載の粉末冶金用合金鋼粉を成形し、次いで焼結したことを特徴とする焼結体。  The sintered compact characterized by shape | molding and then sintering the alloy steel powder for powder metallurgy of Claim 1.
JP2002043912A 2002-02-20 2002-02-20 Alloy steel powder for powder metallurgy and sintered body thereof Expired - Fee Related JP4060092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002043912A JP4060092B2 (en) 2002-02-20 2002-02-20 Alloy steel powder for powder metallurgy and sintered body thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002043912A JP4060092B2 (en) 2002-02-20 2002-02-20 Alloy steel powder for powder metallurgy and sintered body thereof

Publications (2)

Publication Number Publication Date
JP2003247003A JP2003247003A (en) 2003-09-05
JP4060092B2 true JP4060092B2 (en) 2008-03-12

Family

ID=28659047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002043912A Expired - Fee Related JP4060092B2 (en) 2002-02-20 2002-02-20 Alloy steel powder for powder metallurgy and sintered body thereof

Country Status (1)

Country Link
JP (1) JP4060092B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7384446B2 (en) 2004-04-22 2008-06-10 Jfe Steel Corporation Mixed powder for powder metallurgy
JP4789837B2 (en) * 2007-03-22 2011-10-12 トヨタ自動車株式会社 Iron-based sintered body and manufacturing method thereof
JP6227903B2 (en) 2013-06-07 2017-11-08 Jfeスチール株式会社 Alloy steel powder for powder metallurgy and method for producing iron-based sintered body
WO2015045273A1 (en) * 2013-09-26 2015-04-02 Jfeスチール株式会社 Alloy steel powder for powder metallurgy, and process for producing iron-based sintered object
JP6627856B2 (en) * 2017-02-02 2020-01-08 Jfeスチール株式会社 Method for producing powder mixture for powder metallurgy and sintered body
KR102250914B1 (en) * 2017-02-02 2021-05-11 제이에프이 스틸 가부시키가이샤 Powder metallurgy mixed powder, sintered body, and manufacturing method of sintered body
CN111432957B (en) * 2017-12-05 2022-03-29 杰富意钢铁株式会社 Alloy steel powder
CA3084618C (en) * 2017-12-05 2023-03-07 Jfe Steel Corporation Partially diffusion-alloyed steel powder

Also Published As

Publication number Publication date
JP2003247003A (en) 2003-09-05

Similar Documents

Publication Publication Date Title
JP3651420B2 (en) Alloy steel powder for powder metallurgy
JP5671526B2 (en) High strength low alloy sintered steel
CA2911031C (en) Alloy steel powder for powder metallurgy and method of producing iron-based sintered body
US7384446B2 (en) Mixed powder for powder metallurgy
CA2922018C (en) Alloy steel powder for powder metallurgy and method of producing iron-based sintered body
JP2001081501A (en) Powder mixture for powder metallurgy, ferrous sintered compact, and manufacturing method therefor
JP6688287B2 (en) Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method of manufacturing press-formed and sintered parts from the iron-based powder mixture
JP5929967B2 (en) Alloy steel powder for powder metallurgy
JP2010090470A (en) Iron-based sintered alloy and method for producing the same
KR20030071540A (en) Production method of high density iron based forged part
JP4556755B2 (en) Powder mixture for powder metallurgy
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
JP2011094187A (en) Method for producing high strength iron based sintered compact
JP4371003B2 (en) Alloy steel powder for powder metallurgy
JP6528899B2 (en) Method of manufacturing mixed powder and sintered body for powder metallurgy
JP2007169736A (en) Alloy steel powder for powder metallurgy
JP4715358B2 (en) Alloy steel powder for powder metallurgy
JPWO2019111834A1 (en) Partially diffused alloy steel powder
JP3351844B2 (en) Alloy steel powder for iron-based sintered material and method for producing the same
EP1323840B1 (en) Iron base mixed powder for high strength sintered parts
JP2008240031A (en) Preform for pressing using iron powder as raw material, and its manufacturing method
JP4093070B2 (en) Alloy steel powder
JP2007100115A (en) Alloy steel powder for powder metallurgy
WO2018143088A1 (en) Mixed powder for powder metallurgy, sintered body, and method for producing sintered body
JPH0751721B2 (en) Low alloy iron powder for sintering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4060092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees