KR20200104650A - Compound for electrolyte of lithium secondary battery, electrolyte for lithium secondary battery and lithium secondary battery including the same - Google Patents

Compound for electrolyte of lithium secondary battery, electrolyte for lithium secondary battery and lithium secondary battery including the same Download PDF

Info

Publication number
KR20200104650A
KR20200104650A KR1020190023235A KR20190023235A KR20200104650A KR 20200104650 A KR20200104650 A KR 20200104650A KR 1020190023235 A KR1020190023235 A KR 1020190023235A KR 20190023235 A KR20190023235 A KR 20190023235A KR 20200104650 A KR20200104650 A KR 20200104650A
Authority
KR
South Korea
Prior art keywords
secondary battery
lithium secondary
electrolyte
formula
compound
Prior art date
Application number
KR1020190023235A
Other languages
Korean (ko)
Inventor
정경문
송관욱
이상진
이성철
Original Assignee
동우 화인켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동우 화인켐 주식회사 filed Critical 동우 화인켐 주식회사
Priority to KR1020190023235A priority Critical patent/KR20200104650A/en
Publication of KR20200104650A publication Critical patent/KR20200104650A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The present invention relates to a compound represented by formula 1. The compound according to the present invention can be usefully used as an additive for an electrolyte for a lithium secondary battery.

Description

리튬 이차전지 전해질용 화합물, 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차 전지{COMPOUND FOR ELECTROLYTE OF LITHIUM SECONDARY BATTERY, ELECTROLYTE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY INCLUDING THE SAME}Compound for lithium secondary battery electrolyte, electrolyte for lithium secondary battery, and lithium secondary battery including the same.

본 발명은 리튬 이차전지 전해질용 화합물, 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차 전지에 관한 것이다.The present invention relates to a compound for a lithium secondary battery electrolyte, an electrolyte for a lithium secondary battery, and a lithium secondary battery including the same.

전자 장비의 소형화 및 경량화가 실현되고 휴대용 전자 기기의 사용이 일반화됨에 따라, 이들의 전력원으로 고에너지 밀도를 갖는 이차전지에 대한 연구가 활발히 이루어지고 있다.As electronic equipment is realized in miniaturization and weight reduction and the use of portable electronic devices is generalized, research on secondary batteries having high energy density as a power source thereof has been actively conducted.

상기 이차전지로는 니켈-카드뮴 전지, 니켈-메탈 하이드라이드 전지, 니켈-수소 전지, 리튬이차전지 등을 들 수 있으며, 이 중에서 기존의 알칼리 수용액을 사용하는 전지보다 2배 이상 높은 방전 전압을 나타낼 뿐만 아니라, 단위 중량 당 에너지 밀도가 높고 급속 충전이 가능한 리튬이차전지에 대한 연구가 대두되고 있다.As the secondary battery, a nickel-cadmium battery, a nickel-metal hydride battery, a nickel-hydrogen battery, a lithium secondary battery, etc. may be exemplified, and among them, a discharge voltage that is twice or more higher than that of a battery using an existing alkaline aqueous solution In addition, research on lithium secondary batteries that have high energy density per unit weight and can be rapidly charged are emerging.

일반적으로 리튬 이차전지는 리튬이온의 삽입 및 탈리가 가능한 물질을 양극 및 음극으로 사용하고, 양극과 음극 사이에 비수 전해액을 충전시켜 제조하며, 리튬이온이 양극 및 음극에서 삽입 및 탈리될 때의 산화반응 및 환원반응에 의하여 전기적 에너지를 생성한다.In general, lithium secondary batteries are manufactured by using materials capable of intercalating and desorbing lithium ions as positive and negative electrodes, and charging a non-aqueous electrolyte between the positive and negative electrodes, and oxidation when lithium ions are inserted and desorbed from the positive and negative electrodes. It generates electrical energy by reaction and reduction reaction.

한편, 리튬 이차전지의 용량 향상을 위해서는 내부 저항이 작아야 하지만, 전지의 안전성 측면에서는 내부 저항이 클수록 유리하다. 리튬 이차전지의 용량 및 안전성은, 전해질 염 등의 용질과 비수계 유기용매의 조합으로 이루어지는 상기 비수 전해액의 성질과 밀접하게 관련되어 있다.Meanwhile, in order to improve the capacity of a lithium secondary battery, the internal resistance must be small, but in terms of the safety of the battery, the larger the internal resistance is, the more advantageous. The capacity and safety of a lithium secondary battery are closely related to the properties of the non-aqueous electrolyte solution, which is composed of a combination of a solute such as an electrolyte salt and a non-aqueous organic solvent.

대한민국 공개특허 제2018-0036340호는 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지에 관한 것으로서, 비수성 유기 용매; 리튬염; 및 화학식 1로 표시되는 화합물을 포함하는 첨가제를 포함하는 리튬 이차 전지용 전해질에 관한 내용을 개시하고 있다.Republic of Korea Patent Publication No. 2018-0036340 relates to an electrolyte for a lithium secondary battery and a lithium secondary battery including the same, comprising: a non-aqueous organic solvent; Lithium salt; And it discloses the content of the electrolyte for a lithium secondary battery including an additive containing the compound represented by the formula (1).

대한민국 공개특허 제2013-0003649호는 리튬이차전지용 전해액 첨가제, 이를 포함하는 비수성 전해액 리튬이차전지에 관한 것으로서, 화학식 1로 표현되는 이좌배위 알콕시포스핀 화합물을 포함하는 리튬이차전지용 비수성 전해액 첨가제에 관한 내용을 개시하고 있다.Republic of Korea Patent Publication No. 2013-0003649 relates to an electrolyte additive for a lithium secondary battery, a non-aqueous electrolyte lithium secondary battery including the same, and the non-aqueous electrolyte additive for a lithium secondary battery containing a bidentate alkoxyphosphine compound represented by Formula 1 Disclosing the information.

그러나, 종래 리튬 이차전지 전해질용 화합물들은 합성시 저분자 물질이 기화되어 취급이 어려우며, 수율이 낮고 고가인 문제가 있으며, 또는 산화 안정성이 떨어져 전지 내 신뢰성이 저하되는 문제가 발생하고 있다.However, conventional lithium secondary battery electrolyte compounds are difficult to handle due to vaporization of a low molecular weight material during synthesis, have low yield and high cost, or have a problem in that reliability in the battery is deteriorated due to poor oxidation stability.

그러므로, 합성이 용이하고, 리튬 이차 전지용 전해질에 적용되는 경우 전지 내 신뢰성 저하를 억제할 수 있는 화합물의 개발이 요구되고 있는 실정이다.Therefore, there is a demand for the development of a compound that is easy to synthesize and can suppress a decrease in reliability in a battery when applied to an electrolyte for a lithium secondary battery.

대한민국 공개특허 제2018-0036340호 (2018.04.09)Republic of Korea Patent Publication No. 2018-0036340 (2018.04.09) 대한민국 공개특허 제2013-0003649호 (2013.01.09)Republic of Korea Patent Publication No. 2013-0003649 (2013.01.09)

본 발명은 금속 배위성이 우수하며, 리튬 이차 전지용 전해질에 적용되는 경우 우수한 신뢰성의 부여가 가능한 화합물을 제공하고자 한다.An object of the present invention is to provide a compound having excellent metal coordination and capable of imparting excellent reliability when applied to an electrolyte for a lithium secondary battery.

또한, 본 발명은 우수한 신뢰성을 가지는 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차전지를 제공하고자 한다.In addition, the present invention is to provide an electrolyte for a lithium secondary battery having excellent reliability and a lithium secondary battery including the same.

본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다.The present invention provides a compound represented by the following formula (1).

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

상기 화학식 1에서,In Formula 1,

X1은

Figure pat00002
이고,X1 is
Figure pat00002
ego,

X2는 배위 관능기이며,X2 is a coordination functional group,

n은 1 내지 4의 정수이고,n is an integer from 1 to 4,

*는 결합손이며,* Is a binding hand,

단, X1 및 X2는 서로 상이하다.However, X1 and X2 are different from each other.

또한, 본 발명은 전술한 화합물; 리튬염; 및 유기용매를 포함하는 리튬 이차전지용 전해질을 제공한다.In addition, the present invention is a compound described above; Lithium salt; And it provides an electrolyte for a lithium secondary battery comprising an organic solvent.

또한, 본 발명은 전술한 리튬 이차전지용 전해질을 포함하는 리튬 이차전지를 제공한다.In addition, the present invention provides a lithium secondary battery comprising the electrolyte for a lithium secondary battery described above.

본 발명에 따른 화합물은 금속 배위성이 우수하며, 리튬 이차 전지용 전해질에 적용되는 경우 우수한 신뢰성의 부여가 가능한 이점이 있다.The compound according to the present invention has excellent metal coordination properties, and when applied to an electrolyte for a lithium secondary battery, there is an advantage of providing excellent reliability.

또한, 본 발명에 따른 화합물을 포함하는 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지는 우수한 수명특성 및 고온안정성을 가져서 전지의 신뢰성을 높이는 이점이 있다.In addition, the electrolyte for a lithium secondary battery including the compound according to the present invention and the lithium secondary battery including the same have excellent life characteristics and high temperature stability, thereby increasing the reliability of the battery.

이하, 본 발명에 대하여 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 직접 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 개재되는 경우도 포함한다.In the present invention, when a member is positioned "on" another member, this includes not only the case where the member is in direct contact with the other member, but also the case where another member is interposed between the two members.

본 발명에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In the present invention, when a part "includes" a certain component, it means that other components may be further included rather than excluding other components unless otherwise specified.

리튬 이차전지 전해질용 화합물Compound for lithium secondary battery electrolyte

본 발명의 한 양태는 하기 화학식 1로 표시되는 화합물에 관한 것이다.One aspect of the present invention relates to a compound represented by the following formula (1).

[화학식 1][Formula 1]

Figure pat00003
Figure pat00003

상기 화학식 1에서,In Formula 1,

X1은

Figure pat00004
이고,X1 is
Figure pat00004
ego,

X2는 배위 관능기이며,X2 is a coordination functional group,

n은 1 내지 4의 정수이고,n is an integer from 1 to 4,

*는 결합손이며,* Is a binding hand,

단, X1 및 X2는 서로 상이하다.However, X1 and X2 are different from each other.

본 발명에서, "배위 관능기"란, 금속 원자와 배위 결합이 가능한 산소, 황, 인 또는 질소를 함유하는 작용기를 일컫는다.In the present invention, the "coordinating functional group" refers to a functional group containing oxygen, sulfur, phosphorus or nitrogen capable of coordinating a metal atom and a coordination bond.

상기 금속 원자는 예컨대 3족 내지 12족의 전이금속일 수 있으며, 구체적으로, 본 발명에 따른 화합물은 상기 전이금속 원자와 배위 결합이 가능한 배위 관능기를 함유한다.The metal atom may be, for example, a transition metal of groups 3 to 12, and specifically, the compound according to the present invention contains a coordination functional group capable of coordinating bonds with the transition metal atom.

구체적으로, 상기 배위 관능기는 하이드록시기, 카르복실기, 알콕시기, 에스터기, 아민기, 아마이드기, 사이아노기, 티올기 또는 티오알콕시일 수 있다.Specifically, the coordination functional group may be a hydroxy group, a carboxyl group, an alkoxy group, an ester group, an amine group, an amide group, a cyano group, a thiol group, or a thioalkoxy group.

본 발명에 따른 화합물은

Figure pat00005
과 상기
Figure pat00006
과 상이한 배위 관능기를 함유하기 때문에 더 많은 종류의 금속 원자에 대한 배위 특성이 있는 이점이 있다.The compounds according to the invention are
Figure pat00005
And remind
Figure pat00006
It has the advantage of having coordination properties for more kinds of metal atoms because it contains a coordination functional group different from that.

본 발명에 따른 화합물은 상기 화합물 상기 화합물 내의 배위 결합할 수 있는 배위사이트가 2개 이상 존재하여 용출된 금속에 대한 배위성이 우수한 이점이 있다.The compound according to the present invention has an advantage of excellent coordination with respect to the eluted metal because there are two or more coordination sites capable of coordinating the compound in the compound.

또한, 리튬이차전지용 전해질로 적용하는 경우 플루오로가 치환된 포스파이트기가 전해질, 요컨대 전해액 내의 수소를 잡아줘 불산(HF) 생성을 억제시킬 뿐만 아니라 산소를 제거하여 전지의 팽창을 억제시켜 신뢰성을 개선되는 효과가 있다.In addition, when applied as an electrolyte for a lithium secondary battery, the fluoro-substituted phosphite group traps hydrogen in the electrolyte, namely, the electrolyte to suppress the generation of hydrofluoric acid (HF) and removes oxygen to suppress the expansion of the battery to improve reliability. Has the effect of being.

본 발명의 일 실시형태에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 2 내지 4로 표시되는 화합물로 이루어진 군에서 선택되는 1 이상일 수 있다.In one embodiment of the present invention, the compound represented by Formula 1 may be one or more selected from the group consisting of compounds represented by the following Formulas 2 to 4.

[화학식 2][Formula 2]

Figure pat00007
Figure pat00007

[화학식 3] [Formula 3]

Figure pat00008
Figure pat00008

[화학식 4][Formula 4]

Figure pat00009
Figure pat00009

본 발명에 따른 화합물이 상기 화학식 2 내지 4로 표시되는 화합물로 이루어진 군에서 선택되는 1 이상일 경우, 양극에서 용출되는 여러종류의 금속과의 배위 결합이 더욱 우수하여, 리튬 이차전지의 불량을 억제하는 이점이 있어 특히 바람직하다.When the compound according to the present invention is at least one selected from the group consisting of the compounds represented by Chemical Formulas 2 to 4, coordination bonding with various types of metals eluted from the positive electrode is more excellent, thereby suppressing defects in lithium secondary batteries. It is particularly preferred because of its advantages.

상기 화학식 1로 표시되는 화합물은 통상의 유기화학적 합성 방법을 이용하여 합성할 수 있다. 예컨대, 한쪽에 배위가능한 관능기를 가지고, 다른 한쪽에 히드록시기를 가지는 화합물과 삼염화인(PC13)을 반응시켜 포스파이트기를 도입하고, 클로라이드를 불소화시킴으로써 합성할 수 있다.The compound represented by Formula 1 can be synthesized using a conventional organic chemical synthesis method. For example, it can be synthesized by reacting a compound having a coordinating functional group on one side and a hydroxy group on the other side with phosphorus trichloride (PC1 3 ), introducing a phosphite group, and fluorinating chloride.

본 발명에 따른 화합물은

Figure pat00010
및 상기
Figure pat00011
와 서로 상이한 배위 관능기를 포함하기 때문에, 물질내 배위할 수 있는 사이트가 2개 이상 존재하여 용출된 여러 금속 배위성이 우수한 이점이 있다. 또한, 종래의 알콕시포스핀기를 포함하는 화합물이 산화 안정성이 떨어져 전지 내 신뢰성을 저하시키는 문제를 해결할 수 있는 이점이 있다. 구체적으로, 본 발명에 따른 화합물은 플루오로 치환 포스파이트기가 전해액 내 수소를 잡아줘 불산 생성을 억제시킬 뿐만 아니라, 산소를 제거하여 전지의 팽창을 억제시켜 신뢰성을 개선할 수 있는 효과의 부여가 가능하다.The compounds according to the invention are
Figure pat00010
And above
Figure pat00011
Since it contains coordination functional groups different from each other, there are two or more sites capable of coordination in the material, and thus there is an advantage of excellent coordination of several eluted metals. In addition, there is an advantage in that the conventional compound containing an alkoxyphosphine group has an advantage of solving the problem of lowering the reliability of the battery due to poor oxidation stability. Specifically, in the compound according to the present invention, the fluoro-substituted phosphite group traps hydrogen in the electrolyte to suppress the generation of hydrofluoric acid, and it is possible to impart the effect of improving reliability by suppressing the expansion of the battery by removing oxygen. Do.

구체적으로 본 발명에 따른 화합물은 상온 수명 특성, 고온 안정성 등과 같은 신뢰성이 우수한 이점이 있다.Specifically, the compound according to the present invention has an advantage of excellent reliability such as room temperature lifetime characteristics and high temperature stability.

리튬 이차전지용 전해질Electrolyte for lithium secondary battery

본 발명의 다른 양태는 전술한 화합물; 리튬염; 및 유기용매를 포함하는 리튬 이차전지용 전해질에 관한 것이다.Another aspect of the present invention is the compound described above; Lithium salt; And it relates to an electrolyte for a lithium secondary battery comprising an organic solvent.

구체적으로, 본 발명의 다른 양태는 하기 화학식 1로 표시되는 화합물; 리튬염; 및 유기용매를 포함하는 리튬 이차전지용 전해질에 관한 것이다.Specifically, another aspect of the present invention is a compound represented by the following formula (1); Lithium salt; And it relates to an electrolyte for a lithium secondary battery comprising an organic solvent.

[화학식 1][Formula 1]

Figure pat00012
Figure pat00012

상기 화학식 1에서,In Formula 1,

X1은

Figure pat00013
이고,X1 is
Figure pat00013
ego,

X2는 배위 관능기이며,X2 is a coordination functional group,

n은 1 내지 4의 정수이고,n is an integer from 1 to 4,

*는 결합손이며,* Is a binding hand,

단, X1 및 X2는 서로 상이하다.However, X1 and X2 are different from each other.

상기 화합물은 전술한 내용을 적용할 수 있다.The above-described compounds can be applied.

본 발명의 또 다른 실시형태에 있어서, 상기 화합물은 상기 리튬 이차전지용 전해질 전체 100 중량부에 대하여 0.01 내지 10 중량부로 포함될 수 있다. In another embodiment of the present invention, the compound may be included in an amount of 0.01 to 10 parts by weight based on 100 parts by weight of the total electrolyte for the lithium secondary battery.

본 발명의 또 다른 실시형태에 있어서, 상기 화합물은 상기 리튬 이차전지용 전해질 전체 100 중량부에 대하여 0.1 내지 5.0 중량부로 포함될 수 있으며, 더욱 구체적으로 0.2 내지 5 중량부로 포함될 수 있다.In another embodiment of the present invention, the compound may be included in an amount of 0.1 to 5.0 parts by weight, and more specifically, 0.2 to 5 parts by weight, based on 100 parts by weight of the total electrolyte for the lithium secondary battery.

상기 화합물이 상기 범위 내로 포함되는 경우 신뢰성 개선 효과, 특히 상온 수명 특성, 고온 안정성 등의 효과가 극대화되기 때문에 바람직하다.When the compound is included within the above range, it is preferable because the effect of improving reliability, particularly, room temperature lifespan, and high temperature stability, is maximized.

상기 리튬염은 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 전지의 작동을 가능하게 한다. 상기 리튬염의 농도는 0.5 내지 1.5M일 수 있으나 이에 한정되지는 않는다. 다만, 상기 리튬염의 농도가 상기 범위 내일 경우 전해액의 전도도가 낮아져 전해액 성능이 저하되는 현상을 억제할 수 있고, 전해액의 점도가 증가하여 리튬 이온의 이동성이 감소되는 현상을 억제할 수 있어 바람직하다. 요컨대, 상기 리튬염의 농도가 상기 범위 내인 경우 전도도가 우수하여 전해액 성능이 우수하고, 전해액의 점도가 알맞아 리튬 이온의 이동성이 우수한 이점이 있으나, 상기 리튬염의 농도가 상기 범위 내로 한정되는 것은 아니며, 필요에 따라 적절히 가감하여 사용할 수 있다.The lithium salt acts as a source of lithium ions in the battery, thereby enabling basic lithium battery operation. The concentration of the lithium salt may be 0.5 to 1.5M, but is not limited thereto. However, when the concentration of the lithium salt is within the above range, it is preferable that the conductivity of the electrolyte is lowered to suppress a phenomenon in which the electrolyte performance is deteriorated, and a phenomenon that the mobility of lithium ions is decreased due to an increase in the viscosity of the electrolyte can be suppressed. In short, when the concentration of the lithium salt is within the above range, the conductivity is excellent and the electrolyte performance is excellent, and the viscosity of the electrolyte is appropriate, so that the mobility of lithium ions is excellent, but the concentration of the lithium salt is not limited to the above range, and is required. It can be used by appropriately adding or subtracting it according to.

상기 리튬염으로는 예를 들면, LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, LiN(SO2F)2, LiN(SO2CF3)2, LiN(SO2C2F5)2, LiC(SO2CF3)3, LiN(SO3CF3)2, LiC4F9SO3, LiAlO4, LiAlCl4, LiCl 및 LiI로 이루어진 군에서 선택되는 1종 또는 2종 이상을 혼합하여 사용할 수 있으나 이에 한정되지는 않는다. 다만, 이 경우 리튬 이온성의 이동성이 매우 우수하고, 전도도가 우수하여 전해액 성능이 우수해지는 이점이 있어 바람직하다.As the lithium salt, for example, LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiN(SO 2 F) 2 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC(SO 2 CF 3 ) 3 , LiN(SO 3 CF 3 ) 2 , LiC 4 F 9 SO 3 , LiAlO 4 , LiAlCl 4 , One selected from the group consisting of LiCl and LiI or Two or more types may be mixed and used, but the present invention is not limited thereto. However, in this case, lithium ion mobility is very excellent, and conductivity is excellent, so that the electrolyte solution performance is excellent, which is preferable.

상기 유기용매는 고유전율 용매 및 저비점 용매로 이루어진 군에서 선택되는 1 이상의 용매를 포함할 수 있다.The organic solvent may include one or more solvents selected from the group consisting of a high-k solvent and a low boiling point solvent.

구체적으로, 상기 고유전율 용매는 당업계에서 통상적으로 사용하는 것이라면 특별히 제한하지 않으며, 예컨대 불화에틸렌 카보네이트, 에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트, 1-불화에틸렌카보네이트와같은 환상형 카보네이트, 감마-부티로락톤 및/또는 이들의 혼합물 등이 사용될 수 있다.Specifically, the high dielectric constant solvent is not particularly limited as long as it is commonly used in the art, and for example, cyclic carbonate such as fluorinated ethylene carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, 1-fluorinated ethylene carbonate, gamma-buty Lolactone and/or mixtures thereof and the like may be used.

상기 저비점 용매는 예컨대 디메틸 카보네이트, 에틸메틸 카보네이트. 디에틸카보네이트, 디프로필 카보네이트와 같은 사슬형 카보네이트, 디메톡시에탄, 디에톡시에탄, 지방산 에스테르 유도체 및/또는 이들의 혼합물 등이 사용될 수 있으나 이에 한정되지는 않는다.The low boiling point solvent is, for example, dimethyl carbonate, ethylmethyl carbonate. Chain carbonates such as diethyl carbonate and dipropyl carbonate, dimethoxyethane, diethoxyethane, fatty acid ester derivatives, and/or mixtures thereof may be used, but are not limited thereto.

상기 유기용매는 상기 리튬 이차전지용 전해질 전체 100 중량부를 만족하도록 잔부로 포함될 수 있으며, 이 경우 전술한 리튬염 및 화합물이 목적하는 효과가 우수해지므로 바람직하다.The organic solvent may be included as a balance so as to satisfy 100 parts by weight of the total electrolyte for the lithium secondary battery, and in this case, the lithium salt and compound described above are preferable because the desired effect is excellent.

본 발명에 따른 리튬 이차전지용 전해질은 그 밖의 첨가제를 더 포함할 수 있다. 구체적으로, 본 발명에 따른 리튬 이차전지용 전해질은 상기 화학식 1로 표시되는 화합물 외의 첨가제를 더 포함할 수 있다.The electrolyte for a lithium secondary battery according to the present invention may further include other additives. Specifically, the electrolyte for a lithium secondary battery according to the present invention may further include additives other than the compound represented by Formula 1 above.

요컨대, 본 발명에 따른 상기 화학식 1로 표시되는 화합물은 리튬 이차전지용 전해질의 첨가제로서 활용이 가능하다.In short, the compound represented by Formula 1 according to the present invention can be used as an additive for an electrolyte for a lithium secondary battery.

상기 그 밖의 첨가제는 예컨대 플루오로카보네이트, 비닐렌카보네이트, 옥살릴테트라플루오로포스페이트 리슘설트, 비스(옥살릴)다이플루오로포스페이트 리튬설트, 트리스옥살릴포스페이트 리튬설트 및 LiPO2F2로 이루어진 군에서 선택되는 1 이상일 수 있다.The other additives are, for example, from the group consisting of fluorocarbonate, vinylene carbonate, oxalyltetrafluorophosphate lithium sulfate, bis(oxalyl)difluorophosphate lithium sulfate, trisoxalylphosphate lithium sulfate, and LiPO 2 F 2 It may be one or more selected.

상기 그 밖의 첨가제가 더 포함되는 경우 상기 화학식 1로 표시되는 화합물의 효과가 더욱 극대화되는 이점이 있다.When the other additives are further included, the effect of the compound represented by Formula 1 is further maximized.

상기 그 밖의 첨가제는 상기 리튬 이차전지용 전해질 첨가제 전체 100 중량부에 대하여 0.5 내지 10 중량부, 구체적으로 1 내지 3 중량부, 이 경우 리튬 이차전지의 신뢰성을 더 높일 수 있는 이점이 있어 바람직하다.The other additives are preferably 0.5 to 10 parts by weight, specifically 1 to 3 parts by weight, based on 100 parts by weight of the total electrolyte additive for the lithium secondary battery. In this case, the reliability of the lithium secondary battery can be further increased, and thus it is preferable.

본 발명에 따른 리튬 이차전지용 전해질은 금속 배위성이 우수하고, 전해액내 수소를 잡아주는 역할을 수행함에 따라 불산 생성을 억제하고, 산소를 제거하여 전지의 팽창을 억제시켜 수명 특성, 고온 안정성 등의 신뢰성을 개선하는 효과가 우수하다.The electrolyte for a lithium secondary battery according to the present invention has excellent metal coordination, and as it plays a role of holding hydrogen in the electrolyte, suppresses the generation of hydrofluoric acid and suppresses the expansion of the battery by removing oxygen. The effect of improving reliability is excellent.

리튬 이차 전지Lithium secondary battery

본 발명의 또 다른 양태는 전술한 리튬 이차전지용 전해질을 포함하는 리튬 이차 전지에 관한 것이다.Another aspect of the present invention relates to a lithium secondary battery including the above-described lithium secondary battery electrolyte.

본 발명에 따른 리튬 이차전지용 전해질은 양극, 음극 및 양극과 음극 사이에 개재된 세퍼레이터로 이루어진 전극 구조체에 주입하여 리튬 이차전지로 제조된다. 전극 구조체를 이루는 양극, 음극 및 세퍼레이터는 리튬 이차전지 제조에 통상적으로 사용되던 것들이 모두 사용될 수 있다.The electrolyte for a lithium secondary battery according to the present invention is injected into an electrode structure comprising a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode to form a lithium secondary battery. As for the positive electrode, negative electrode, and separator constituting the electrode structure, all those commonly used in manufacturing lithium secondary batteries may be used.

상기 양극 및 음극은 양극 활물질 슬러리와 음극 활물질 슬러리를 각 전극 집전체에 도포하여 제조된다.The positive and negative electrodes are prepared by applying a positive electrode active material slurry and a negative electrode active material slurry to each electrode current collector.

상기 양극 활물질로는 당분야에 알려진 리튬이온을 삽입 및 탈리할 수 있는 양극 활물질이 특별한 제한없이 사용될 수 있으며, 예를 들면 코발트, 망간, 니켈에서 선택되는 최소한 1종 및 리튬의 복합산화물 중 1종 이상의 것이 바람직하고, 그 대표적인 예로는 하기에 기재된 리튬 함유 화합물이 바람직하게 사용될 수 있다.As the positive electrode active material, a positive electrode active material capable of intercalating and desorbing lithium ions known in the art may be used without particular limitation. For example, at least one selected from cobalt, manganese, and nickel, and one of lithium composite oxides The above are preferable, and as a representative example thereof, the lithium-containing compound described below may be preferably used.

LixMn1-yMyA2 (1)Li x Mn 1-y M y A 2 (1)

LixMn1-yMyO2-zXz (2)Li x Mn 1-y M y O 2-z X z (2)

LixMn2O4-zXz (3)Li x Mn 2 O 4-z X z (3)

LixMn2-yMyM'zA4 (4)Li x Mn 2-y M y M'z A 4 (4)

LixCo1-yMyA2 (5)Li x Co 1-y M y A 2 (5)

LixCo1-yMyO2-zXz (6)Li x Co 1-y M y O 2-z X z (6)

LixNi1-yMyA2 (7)Li x Ni 1-y M y A 2 (7)

LixNi1-yMyO2-zXz (8)Li x Ni 1-y M y O 2-z X z (8)

LixNi1-yCoyO2-zXz (9)Li x Ni 1-y Co y O 2-z X z (9)

LixNi1-y-zCoyMzAα (10)Li x Ni 1-yz Co y M z A α (10)

LixNi1-y-zCoyMzO2-αXα (11)Li x Ni 1-yz Co y M z O 2-α X α (11)

LixNi1-y-zMnyMzAα (12)Li x Ni 1-yz Mn y M z A α (12)

LixNi1-y-zMnyMzO2-αXα (13)Li x Ni 1-yz Mn y M z O 2-α X α (13)

식 중에서, 0.9≤x≤1.1, 0≤y≤0.5, 0≤z≤0.5, 0≤α≤2이고, M과 M'은 동일하거나 서로 다르며, Mg, Al, Co, K, Na, Ca, Si, Ti, Sn, V, Ge, Ga, B, As, Zr, Mn, Cr, Fe, Sr, V 및 희토류 원소로 이루어진 군에서 선택되며, A는 O, F, S 및 P로 이루어진 군에서 선택되고, X는 F, S 및 P로 이루어진 군에서 선택된다.In the formula, 0.9≤x≤1.1, 0≤y≤0.5, 0≤z≤0.5, 0≤α≤2, M and M'are the same or different, and Mg, Al, Co, K, Na, Ca, Si, Ti, Sn, V, Ge, Ga, B, As, Zr, Mn, Cr, Fe, Sr, V and rare earth elements are selected from the group consisting of, A is from the group consisting of O, F, S and P Is selected, and X is selected from the group consisting of F, S and P.

상기 음극 활물질로는 당분야에 알려진 리튬이온을 삽입 및 탈리할 수 있는 음극 활물질이 특별한 제한없이 사용될 수 있으며, 이러한 상기 음극 활물질로는 결정질 탄소, 비정질 탄소, 탄소 복합체, 탄소 섬유 등의 탄소재 물질, 리튬 금속, 리튬 합금 등이 사용될 수 있다. 예를 들면, 비정질 탄소로는 하드카본, 코크스, 1500℃ 이하에서 소성한 메조카본마이크로비드(mesocarbonmicrobead: MCMB), 메조페이스피치계 탄소섬유(mesophase pitch-basedcarbon fiber: MPCF) 등이 있다. 결정질 탄소로는 흑연계 재료가 있으며, 구체적으로는 천연흑연, 인조흑연, 흑연화 코크스, 흑연화 MCMB, 흑연화 MPCF 등이 있다.As the negative electrode active material, a negative electrode active material capable of intercalating and desorbing lithium ions known in the art may be used without particular limitation, and as the negative electrode active material, a carbon material such as crystalline carbon, amorphous carbon, carbon composite, carbon fiber, etc. , Lithium metal, lithium alloy, and the like may be used. For example, amorphous carbon includes hard carbon, coke, mesocarbon microbeads (MCMB) fired at 1500° C. or lower, and mesophase pitch-based carbon fibers (MPCF). The crystalline carbon includes graphite-based materials, and specifically, natural graphite, artificial graphite, graphitized coke, graphitized MCMB, graphitized MPCF, and the like.

상기 탄소재 물질은 d002 층간거리(interplanar distance)가 3.35-3.38Å X-선 회절(X-ray diffraction)에 의한 Lc(crystallite size)가 적어도 20㎚ 이상인 물질이 바람직하다. 리튬 합금으로는 리튬과 알루미늄, 아연, 비스무스, 카드뮴, 안티몬, 실리콘, 납, 주석, 갈륨 또는 인듐과의 합금이 사용될 수 있다.The carbon material is preferably a material having a d002 interplanar distance of 3.35-3.38Å Lc (crystallite size) by X-ray diffraction of at least 20 nm. As the lithium alloy, an alloy of lithium and aluminum, zinc, bismuth, cadmium, antimony, silicon, lead, tin, gallium, or indium may be used.

상기 양극 활물질 및 상기 음극 활물질은 각각 바인더 및 용매와 혼합되어 양극 활물질 슬러리 및 음극 활물질 슬러리로 제조될 수 있다.The positive electrode active material and the negative electrode active material may be mixed with a binder and a solvent, respectively, to prepare a positive electrode active material slurry and a negative electrode active material slurry.

상기 바인더로는 활물질의 페이스트화, 활물질의 상호 접착, 집전체와의 접착, 활물질 팽창 및 수축에 대한 완충효과 등의 역할을 하는 물질로서, 예를 들면 폴리비닐리덴플루오라이드, 폴리헥사플루오로프로필렌-폴리비닐리덴플루오라이드의 공중합체(P(VdF/HFP)), 폴리(비닐아세테이트), 폴리비닐알코올, 폴리에틸렌옥사이드, 폴리비닐피롤리돈, 알킬레이티드폴리에틸렌옥사이드, 폴리비닐에테르, 폴리(메틸메타크릴레이트), 폴리(에틸아크릴레이트), 폴리테트라플루오로에틸렌, 폴리비닐클로라이드, 폴리아크릴로니트릴, 폴리비닐피리딘, 스티렌-부타디엔고무, 아크릴로니트릴-부타디엔 고무 등이 있다. 상기 바인더의 함량은 전극 활물질 전체 100 중량부에 대하여 0.1 내지 30 중량부, 바람직하게는 1 내지 10 중량부이다. 상기 바인더의 함량이 너무 적으면 전극 활물질과 집전체와의 접착력이 불충분하고, 바인더의 함량이 너무 많으면 접착력은 좋아지지만 전극 활물질의 함량이 그만큼 감소하여 전지용량을 고용량화 하는데 불리하다.The binder is a material that plays a role of forming a paste of the active material, bonding the active material to each other, bonding to the current collector, and buffering the expansion and contraction of the active material. For example, polyvinylidene fluoride, polyhexafluoropropylene -Polyvinylidene fluoride copolymer (P(VdF/HFP)), poly(vinyl acetate), polyvinyl alcohol, polyethylene oxide, polyvinylpyrrolidone, alkylated polyethylene oxide, polyvinyl ether, poly(methyl) Methacrylate), poly(ethylacrylate), polytetrafluoroethylene, polyvinyl chloride, polyacrylonitrile, polyvinylpyridine, styrene-butadiene rubber, acrylonitrile-butadiene rubber, and the like. The content of the binder is 0.1 to 30 parts by weight, preferably 1 to 10 parts by weight, based on 100 parts by weight of the total electrode active material. If the content of the binder is too small, the adhesion between the electrode active material and the current collector is insufficient, and if the content of the binder is too high, the adhesion is improved, but the content of the electrode active material decreases that much, which is disadvantageous in increasing the battery capacity.

상기 활물질 슬러리의 용매로는 통상적으로 비수계 용매 또는 수계 용매가 사용될 수 있다. 비수계 용매로는 예를 들면, N-메틸-2-피롤리돈(NMP), 디메틸포름아미드, 디메틸아세트아미드, N,N-디메틸아미노프로필아민, 에틸렌옥사이드, 테트라히드로퓨란 등을 사용할 수 있으며, 수계 용매로는 물, 이소프로필 알코올 등이 사용될 수 있으나, 이에 한정되는 것은 아니다.As a solvent for the active material slurry, a non-aqueous solvent or an aqueous solvent may be used. As the non-aqueous solvent, for example, N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, N,N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran, etc. can be used. , Water, isopropyl alcohol, etc. may be used as the aqueous solvent, but is not limited thereto.

상기 전극 활물질 슬러리에는 필요에 따라, 도전재, 증점제 등이 추가적으로 더 포함될 수 있다.If necessary, the electrode active material slurry may further include a conductive material, a thickener, and the like.

상기 도전재는 전자 전도성을 향상시키는 물질로서, 흑연계 도전재, 카본 블랙계 도전재, 금속 또는 금속 화합물계 도전재로 이루어진 군에서 선택되는 적어도 하나를 사용할 수 있다. 상기 흑연계 도전재의 예로는 인조흑연, 천연흑연 등이 있으며, 카본 블랙계 도전재의 예로는 아세틸렌 블랙, 케첸 블랙(ketjen black), 덴카 블랙(denka black), 써멀 블랙(thermal black), 채널 블랙(channel black) 등이 있으며, 금속계 또는 금속 화합물계 도전재의 예로는 주석, 산화주석, 인산주석(SnPO4), 산화티타늄, 티탄산칼륨, LaSrCoO3, LaSrMnO3와 같은 페로브스카이트(perovskite) 물질이 있다. 그러나 상기 열거된 도전재에 한정되는 것은 아니다.The conductive material is a material that improves electronic conductivity, and at least one selected from the group consisting of a graphite conductive material, a carbon black conductive material, and a metal or metal compound conductive material may be used. Examples of the graphite-based conductive material include artificial graphite and natural graphite, and examples of the carbon black-based conductive material include acetylene black, ketjen black, denka black, thermal black, and channel black. channel black), and examples of metal-based or metallic compound-based conductive materials include perovskite materials such as tin, tin oxide, tin phosphate (SnPO 4 ), titanium oxide, potassium titanate, LaSrCoO 3 , and LaSrMnO 3. have. However, it is not limited to the conductive materials listed above.

상기 도전재의 함량은 전극 활물질 전체 100 중량부에 대하여 0.1 내지 10 중량부인 것이 바람직하다. 도전재의 함량이 0.1 중량부보다 적은 경우에는 전기 화학적 특성이 저하될 수 있고, 10 중량부을 초과하는 경우에는 중량당 에너지 밀도가 감소할 수 있다.The content of the conductive material is preferably 0.1 to 10 parts by weight based on 100 parts by weight of the total electrode active material. When the content of the conductive material is less than 0.1 parts by weight, electrochemical properties may be deteriorated, and when it exceeds 10 parts by weight, the energy density per weight may decrease.

상기 증점제는 활물질 슬러리의 점도조절 역할을 할 수 있는 것이라면 특별히 한정되지 않으나, 예를 들면 카르복시메틸 셀룰로오스, 하이드록시메틸 셀룰로오스, 하이드록시에틸 셀룰로오스, 하이드록시프로필 셀룰로오스 등이 사용될 수있다.The thickener is not particularly limited as long as it can control the viscosity of the active material slurry, but for example, carboxymethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, and the like may be used.

이와 같이 제조된 양극 및 음극 활물질 슬러리는 전극 집전체에 도포되어 양극 및 음극으로 제조되는데, 양극 집전체로는 알루미늄 또는 알루미늄 합금 등을 사용할 수 있고, 음극 집전체로는 구리 또는 구리 합금 등을 사용할 수 있다. 상기 양극 집전체 및 음극 집전체의 형태로는 호일, 필름, 시트, 펀칭된 것, 다공질체, 발포체 등을 들 수 있다.The positive and negative active material slurry prepared in this way is applied to an electrode current collector to be prepared as a positive electrode and a negative electrode. Aluminum or aluminum alloy may be used as the positive electrode current collector, and copper or copper alloy may be used as the negative electrode current collector. I can. The positive electrode current collector and the negative electrode current collector may be formed of a foil, film, sheet, punched material, porous material, foam, or the like.

제조된 양극과 음극은 그 사이에 세퍼레이터를 개재시킨 전극 구조체로 제조된 후 전지 케이스에 수납하고, 여기에 전해액을 주입하여 리튬 이차전지로 제조된다. 세퍼레이터로는 종래에 세퍼레이터로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.The prepared positive and negative electrodes are manufactured as an electrode structure with a separator interposed therebetween, and then accommodated in a   battery   case, and an electrolyte is injected therein to make a lithium secondary battery. As a separator, a conventional porous polymer film used as a separator, for example, polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer. The porous polymer film prepared with may be used alone or by stacking them, or a conventional porous non-woven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, etc., may be used, but is not limited thereto. .

본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.The external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape using a can, a square shape, a pouch type, or a coin type.

본 발명에 따른 리튬 이차전지는 상기 화학식 1로 표시되는 화합물을 포함하기 때문에 이차 전지의 수명 특성, 고온 안정성 등의 신뢰성이 우수한 이점이 있다.Since the lithium secondary battery according to the present invention contains the compound represented by Chemical Formula 1, there is an advantage in that the secondary battery has excellent reliability such as life characteristics and high temperature stability.

이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세히 설명한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지는 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다. 또한, 이하에서 함유량을 나타내는 "%" 및 "부"는 특별히 언급하지 않는 한 중량 기준이다.Hereinafter, examples will be described in detail to describe the present specification in detail. However, the embodiments according to the present specification may be modified in various forms, and the scope of the present specification is not construed as being limited to the embodiments described below. The embodiments of the present specification are provided to more completely describe the present specification to those of ordinary skill in the art. In addition, "%" and "parts" indicating content hereinafter are based on weight unless otherwise noted.

합성예 1Synthesis Example 1

에틸렌시아노하이드린에 삼염화인(PC13)을 이용하여 포스파이트를 도입한 후, 클로라이드를 불소화시켜 화학식 2로 표시되는 화합물을 합성하였다.Phosphite was introduced into ethylene cyanohydrin using phosphorus trichloride (PC1 3 ), and then the chloride was fluorinated to synthesize a compound represented by Chemical Formula 2.

[화학식 2][Formula 2]

Figure pat00014
Figure pat00014

합성된 화합물은 1H NMR (299.87 MHz, acetone-d6): δ = 2.74(t, 2H), 4.25(t, 2H)ppm을 나타냈다.The synthesized compound showed 1 H NMR (299.87 MHz, acetone-d6): δ = 2.74 (t, 2H), 4.25 (t, 2H) ppm.

합성예 2Synthesis Example 2

에틸렌시아노하이드린 대신 2-메톡시 에탄올을 이용하여 화학식 3으로 표시되는 화합물을 합성하였다.A compound represented by Chemical Formula 3 was synthesized using 2-methoxy ethanol instead of ethylene cyanohydrin.

[화학식 3] [Formula 3]

Figure pat00015
Figure pat00015

합성된 화합물은 1H NMR (299.87 MHz, acetone-d6): δ = 2.61(S, 3H), 2.84(t, 2H), 3.25(t, 2H)ppm을 나타냈다.The synthesized compound showed 1 H NMR (299.87 MHz, acetone-d6): δ = 2.61 (S, 3H), 2.84 (t, 2H), 3.25 (t, 2H) ppm.

합성예 3Synthesis Example 3

에틸렌시아노하이드린 대신 2-아세트아미노에탄올을 이용하여 화학식 4로 표시되는 화합물을 합성하였다.The compound represented by Formula 4 was synthesized using 2-acetaminoethanol instead of ethylene cyanohydrin.

[화학식 4][Formula 4]

Figure pat00016
Figure pat00016

합성된 화합물은 1H NMR (299.87 MHz, acetone-d6): δ = 1.91(S, 3H), 2.98(t, 2H), 3.25(t, 2H)ppm을 나타내었다.The synthesized compound showed 1H NMR (299.87 MHz, acetone-d6): δ = 1.91 (S, 3H), 2.98 (t, 2H), 3.25 (t, 2H) ppm.

실시예 1Example 1

(1) 양극 및 음극의 제조(1) Preparation of anode and cathode

양극 활물질로 LiCoO2 97.3 중량부, 바인더로 폴리비닐리덴플루오라이드 1.4 중량부, 도전재로 케첸 블랙 1.3 중량부를 혼합한 후 N-메틸피롤리돈에 분산시켜 양극 활물질 슬러리를 제조하였다. 상기 양극 활물질 슬러리를 알루미늄 호일에 도포하여 건조한 후 이를 압연하여 양극을 제조하였다. 97.3 parts by weight of LiCoO 2 as a positive electrode active material, 1.4 parts by weight of polyvinylidene fluoride as a binder, and 1.3 parts by weight of Ketjen Black as a conductive material were mixed and dispersed in N-methylpyrrolidone to prepare a positive electrode active material slurry. The positive electrode active material slurry was coated on an aluminum foil, dried, and then rolled to prepare a positive electrode.

또한, 음극 활물질 그라파이트 98 중량부, 바인더 폴리비닐리덴플루오라이드 1 중량부, 도전재로 카본블랙 1 중량부를 혼합한 후 N-메틸피롤리돈에 분산시켜 음극 활물질 층 조성물을 제조하여 구리 호일에 도포하여 건조한 후 이를 압연하여 음극을 제조하였다.In addition, 98 parts by weight of graphite as a negative electrode active material, 1 part by weight of binder polyvinylidene fluoride, and 1 part by weight of carbon black as a conductive material were mixed and dispersed in N-methylpyrrolidone to prepare a negative electrode active material layer composition and applied to copper foil. Then, it was dried and then rolled to prepare a negative electrode.

(2) 전해액 제조(2) Electrolytic solution manufacturing

에틸렌 카보네이트(EC):디메틸카보네이트(DMC):에틸메틸카보네이트(EMC)의 부피비가 40:40:20인 혼합 용액에 0.95M의 LiPF6를 첨가하여 리튬 이차전지용 전해질로서 비수성 혼합 용액을 제조하였다.A non-aqueous mixed solution was prepared as an electrolyte for a lithium secondary battery by adding 0.95M LiPF 6 to a mixed solution in which the volume ratio of ethylene carbonate (EC):dimethyl carbonate (DMC):ethylmethyl carbonate (EMC) was 40:40:20. .

상기 비수성 혼합 용액 전체 100 중량부를 기준으로, 하기 화학식 2로 표시되는 화합물 1.0 중량부를 첨가하여 리튬 이차 전지용 전해질을 제조하였다.An electrolyte for a lithium secondary battery was prepared by adding 1.0 part by weight of a compound represented by the following formula 2 based on 100 parts by weight of the total non-aqueous mixed solution.

[화학식 2][Formula 2]

Figure pat00017
Figure pat00017

(3) 리튬 이차 전지의 제조(3) Manufacture of lithium secondary battery

상기 (1)에 따라 제조된 양극 및 음극, (2)에 따라 제조된 전해액을 이용하여 이차 전지를 제조하였다.A secondary battery was manufactured using the positive and negative electrodes prepared according to (1) and the electrolyte prepared according to (2).

실시예 2Example 2

전해액 제조시 화학식 2로 표시되는 화합물 대신 화학식 3으로 표시되는 화합물을 1.0 중량% 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that 1.0% by weight of the compound represented by Formula 3 was added instead of the compound represented by Formula 2 when preparing the electrolyte solution.

[화학식 3][Formula 3]

Figure pat00018
Figure pat00018

실시예 3Example 3

전해액 제조시 화학식 2로 표시되는 화합물 대신 화학식 4로 표시되는 화합물을 1.0 중량부 첨가한 것을 제외하고는 실시예 1와 동일한 방법으로 리튬 이차 전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that 1.0 part by weight of the compound represented by Formula 4 was added instead of the compound represented by Formula 2 when preparing the electrolyte solution.

[화학식 4][Formula 4]

Figure pat00019
Figure pat00019

비교예 1Comparative Example 1

전해질 제조시 상기 화학식 2로 표시되는 화합물을 첨가하지 않는 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지용 전해질을 제조하였다.An electrolyte for a lithium secondary battery was prepared in the same manner as in Example 1, except that the compound represented by Formula 2 was not added during the preparation of the electrolyte.

비교예 2Comparative Example 2

전해질 제조시 화학식 2로 표시되는 화합물 대신 다이메틸포스피노에테인을 1.0 중량부를 첨가하는 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지용 전해질을 제조하였다.An electrolyte for a lithium secondary battery was prepared in the same manner as in Example 1, except that 1.0 part by weight of dimethylphosphinoethane was added instead of the compound represented by Formula 2 when preparing the electrolyte.

실험예Experimental example

실시예 및 비교예에 따라 제조된 이차전지를 25℃에서 0.2C의 전류로 전압이 4.2V에 이를 때까지 정전류로 충전하고, 이어서 전압이 2.5V에 이를 때까지 0.2C의 정전류로 방전하였다. 이어서, 0.5C의 전류로 전압이 4.2V에 이를 때까지 정전류 충전하고, 4.2V를 유지하면서 전류가 0.05C가 될 때까지 정전압 충전하였다. 이어서, 방전시에 전압이 2.5V에 이를 때까지 0.5C의 정전류로 방전하였다 (화성 단계).The secondary batteries prepared according to Examples and Comparative Examples were charged with a constant current at 25°C with a current of 0.2C until the voltage reached 4.2V, and then discharged with a constant current of 0.2C until the voltage reached 2.5V. Subsequently, constant current charging was performed with a current of 0.5C until the voltage reached 4.2V, and constant voltage charging was performed until the current reached 0.05C while maintaining 4.2V. Then, at the time of discharging, it was discharged with a constant current of 0.5C until the voltage reached 2.5V (formation step).

(1) 상온수명특성 (1) Room temperature life characteristics

상기 화성 단계를 거친 이차전지를 25℃에서 1.0C의 전류밀도로 전압이 4.2V에 이를 때까지 정전류 충전하고, 4.2V를 유지하면서 전류밀도가 0.05C가 될 때까지 정전압 충전하였다. 이어서, 방전시에 전압이 2.5V에 이를 때까지 1.0C의 정전류로 방전하는 사이클을 300회 반복하였다.The secondary battery that had undergone the conversion step was charged at a constant current at 25°C with a current density of 1.0C until the voltage reached 4.2V, and while maintaining 4.2V, the secondary battery was charged with a constant voltage until the current density reached 0.05C. Subsequently, the cycle of discharging with a constant current of 1.0 C was repeated 300 times until the voltage reached 2.5 V during discharge.

각각의 이차전지의 300번째 사이클에서의 용량 유지율(capacity retention ratio, %)을 하기 수학식 1로 계산하였다.The capacity retention ratio (%) in the 300th cycle of each secondary battery was calculated by Equation 1 below.

[수학식 1][Equation 1]

용량유지율[%]=[300번째 사이클에서의 방전용량/1번째 사이클에서의 방전용량]×100Capacity retention rate [%] = [Discharge capacity at the 300th cycle / Discharge capacity at the first cycle] × 100

(2) 고온안정성 (2) High temperature stability

상기 화성 단계를 거친 이차전지를 25℃에서 1.0C의 전류로 전압이 4.2V에 이를 때까지 정전류 충전하고, 4.2V를 유지하면서 전류가 0.05C가 될 때까지 정전압 충전하였다. 이어서, 충전된 이차전지를 60℃에서 보관하면서 24시간마다 멀티-미터(multi-meter)를 이용하여 전압을 측정하여 충전상태 셀의 고온에서 잔류 전압을 측정하여 고온 전압 보존 안정성을 측정하였다.The secondary battery that had undergone the formation step was charged at a constant current at 25° C. with a current of 1.0 C until the voltage reached 4.2 V, and charged at a constant voltage until the current reached 0.05 C while maintaining 4.2 V. Then, while storing the charged secondary battery at 60°C, the voltage was measured every 24 hours using a multi-meter, and the residual voltage of the charged cell was measured at a high temperature to measure the high temperature voltage storage stability.

각각의 이차전지의 15일째 측정 시 전압 유지율(Voltage retention ratio, %)을 하기 수학식 2로 계산하였다.The voltage retention ratio (%) at the time of measurement on the 15th day of each secondary battery was calculated by Equation 2 below.

[수학식 2][Equation 2]

전압 유지율[%]=[15일째 개방전압/초기 개방전압]×100Voltage retention rate[%]=[open circuit voltage on the 15th day/initial open voltage]×100

(3) 두께 증가율(3) Thickness increase rate

실시예 및 비교예에 따라 제조된 리튬 이차 전지를 1C의 전류 밀도로 전압이 4.45V에 이를 때까지 정전류충전하였다. 충전 후 두께를 측정하고, 이를 60℃에서 28일간 보존하면서 7일 간격으로 두께 변화율(%)을 측정하였다. 28일째에 측정한 두께 변화율을 하기 표 1에 나타내었다.The lithium secondary batteries prepared according to Examples and Comparative Examples were charged at a constant current at a current density of 1C until the voltage reached 4.45V. After filling, the thickness was measured, and the thickness change rate (%) was measured at intervals of 7 days while storing it at 60° C. for 28 days. The thickness change rate measured on the 28th day is shown in Table 1 below.

상온수명특성Room temperature life characteristics 고온안정성High temperature stability 두께 증가율(%)Thickness increase rate (%) 실시예 1Example 1 87.1%87.1% 82.4%82.4% 13.413.4 실시예 2Example 2 89.8%89.8% 83.2%83.2% 12.212.2 실시예 3Example 3 89.8%89.8% 84.7%84.7% 8.08.0 비교예 1Comparative Example 1 76.3%76.3% 70.3%70.3% 24.324.3 비교예 2Comparative Example 2 86.3%86.3% 75.3%75.3% 18.318.3

표 1을 참고하면, 본 발명에 따른 화합물을 첨가제로서 포함하는 전해질이 주입된 실시예들의 경우 상온 수명 특성, 고온 안정성이 높고 두께 증가율이 적어 우수한 성능을 나타내는 것을 알 수 있다.Referring to Table 1, it can be seen that the examples in which the electrolyte containing the compound according to the present invention is injected as an additive exhibits excellent performance due to high room temperature life characteristics, high temperature stability, and low thickness increase rate.

Claims (6)

하기 화학식 1로 표시되는 화합물:
[화학식 1]
Figure pat00020

상기 화학식 1에서,
X1은
Figure pat00021
이고,
X2는 배위 관능기이며,
n은 1 내지 4의 정수이고,
*는 결합손이며,
단, X1 및 X2는 서로 상이하다.
Compound represented by the following formula (1):
[Formula 1]
Figure pat00020

In Formula 1,
X1 is
Figure pat00021
ego,
X2 is a coordination functional group,
n is an integer from 1 to 4,
* Is a binding hand,
However, X1 and X2 are different from each other.
제1항에 있어서,
상기 화학식 1로 표시되는 화합물은 하기 화학식 2 내지 4로 표시되는 화합물로 이루어진 군에서 선택되는 1 이상인 것인 화합물:
[화학식 2]
Figure pat00022

[화학식 3]
Figure pat00023

[화학식 4]
Figure pat00024
.
The method of claim 1,
The compound represented by Formula 1 is one or more compounds selected from the group consisting of compounds represented by the following Formulas 2 to 4:
[Formula 2]
Figure pat00022

[Formula 3]
Figure pat00023

[Formula 4]
Figure pat00024
.
제1항 또는 제2항에 따른 화합물;
리튬염; 및
유기용매를 포함하는 리튬 이차전지용 전해질.
A compound according to claim 1 or 2;
Lithium salt; And
An electrolyte for a lithium secondary battery containing an organic solvent.
제3항에 있어서,
상기 화합물은 리튬 이차전지용 전해질 전체 100 중량부에 대하여 0.01 내지 10 중량부로 포함되는 것인 리튬 이차전지용 전해질.
The method of claim 3,
The compound is an electrolyte for a lithium secondary battery contained in an amount of 0.01 to 10 parts by weight based on 100 parts by weight of the total electrolyte for a lithium secondary battery.
제4항에 있어서,
상기 화합물은 리튬 이차전지용 전해질 전체 100 중량부에 대하여 0.1 내지 5.0 중량부로 포함되는 것인 리튬 이차전지용 전해질.
The method of claim 4,
The compound is an electrolyte for a lithium secondary battery contained in an amount of 0.1 to 5.0 parts by weight based on 100 parts by weight of the total electrolyte for a lithium secondary battery.
제3항에 따른 리튬 이차전지용 전해질을 포함하는 리튬 이차 전지.A lithium secondary battery comprising the electrolyte for a lithium secondary battery according to claim 3.
KR1020190023235A 2019-02-27 2019-02-27 Compound for electrolyte of lithium secondary battery, electrolyte for lithium secondary battery and lithium secondary battery including the same KR20200104650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190023235A KR20200104650A (en) 2019-02-27 2019-02-27 Compound for electrolyte of lithium secondary battery, electrolyte for lithium secondary battery and lithium secondary battery including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190023235A KR20200104650A (en) 2019-02-27 2019-02-27 Compound for electrolyte of lithium secondary battery, electrolyte for lithium secondary battery and lithium secondary battery including the same

Publications (1)

Publication Number Publication Date
KR20200104650A true KR20200104650A (en) 2020-09-04

Family

ID=72470793

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190023235A KR20200104650A (en) 2019-02-27 2019-02-27 Compound for electrolyte of lithium secondary battery, electrolyte for lithium secondary battery and lithium secondary battery including the same

Country Status (1)

Country Link
KR (1) KR20200104650A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3890090A1 (en) * 2020-04-03 2021-10-06 SK Innovation Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery including the same
WO2022203206A1 (en) * 2021-03-22 2022-09-29 삼성에스디아이 주식회사 Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
EP4148828A1 (en) * 2021-09-08 2023-03-15 SK On Co., Ltd. Lithium secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130003649A (en) 2011-06-30 2013-01-09 삼성에스디아이 주식회사 Non-aqueous liquid electrolyte additive for lithium secondary cell, non-aqueous liquid electrolyte and lithium secondary cell comprising the same
KR20180036340A (en) 2016-09-30 2018-04-09 삼성에스디아이 주식회사 Electrolyte for lithium rechargeable battery and lithium rechargeable battery including the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130003649A (en) 2011-06-30 2013-01-09 삼성에스디아이 주식회사 Non-aqueous liquid electrolyte additive for lithium secondary cell, non-aqueous liquid electrolyte and lithium secondary cell comprising the same
KR20180036340A (en) 2016-09-30 2018-04-09 삼성에스디아이 주식회사 Electrolyte for lithium rechargeable battery and lithium rechargeable battery including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3890090A1 (en) * 2020-04-03 2021-10-06 SK Innovation Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery including the same
US11664535B2 (en) 2020-04-03 2023-05-30 Sk On Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery including the same
WO2022203206A1 (en) * 2021-03-22 2022-09-29 삼성에스디아이 주식회사 Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
EP4148828A1 (en) * 2021-09-08 2023-03-15 SK On Co., Ltd. Lithium secondary battery

Similar Documents

Publication Publication Date Title
KR102451966B1 (en) Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same
KR102030347B1 (en) Electrolyte for lithium secondary battery including additives,and lithium secondary battery
KR20200044539A (en) Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same
KR20210060330A (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR101581780B1 (en) electrolyte for lithium secondary battery and lithium secondary battery containing the same
KR101901886B1 (en) Electrolyte for secondary battery and secondary battery containing the same
KR20200104772A (en) Compound, electrolyte for lithium secondary battery and lithium secondary battery including the same
KR100767427B1 (en) Nonaqueous electrolyte for li-secondary battery and li secondary battery thereby
KR20100041028A (en) Elecrolyte for secondary battery and secondary battery including the same
EP2928005B1 (en) Electrolyte for long cycle life secondary battery and secondary battery containing the same
KR20080062671A (en) Nonaqueous electrolyte for li-secondary battery and li secondary battery thereby
US7858241B2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary batter using the same
CN111048831B (en) Electrolyte for secondary battery and lithium secondary battery comprising same
KR20200104650A (en) Compound for electrolyte of lithium secondary battery, electrolyte for lithium secondary battery and lithium secondary battery including the same
KR20150075495A (en) Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR20080061692A (en) Nonaqueous electrolyte comprising trimethylsilyl phosphite for li-secondary battery and li secondary battery thereby
KR102440657B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR102539887B1 (en) Compound, electrolyte for lithium secondary battery and lithium secondary battery including the same
KR102514199B1 (en) Electrolyte Additives for Secondary Batteries, Non-Aqueous Electrolytes for Lithium Secondary Batteries Containing the Same, and Lithium Secondary Batteries Including the Same
KR102488633B1 (en) Electrolyte Additives for Secondary Batteries, Non-Aqueous Electrolytes for Lithium Secondary Batteries Containing the Same, and Lithium Secondary Batteries Including the Same
KR20080061866A (en) Nonaqueous electrolyte for li-secondary battery and li secondary battery thereby
KR100864318B1 (en) Nonaqueous electrolyte for Li-secondary battery and Li secondary battery thereby
KR20200126781A (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR20160009952A (en) Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
JP7289367B2 (en) Compound, electrolyte for lithium secondary battery containing same, and lithium secondary battery