JP2001163906A - Low refractive index composition, low refractive index film, optical multilayer film and antireflection film - Google Patents

Low refractive index composition, low refractive index film, optical multilayer film and antireflection film

Info

Publication number
JP2001163906A
JP2001163906A JP34737499A JP34737499A JP2001163906A JP 2001163906 A JP2001163906 A JP 2001163906A JP 34737499 A JP34737499 A JP 34737499A JP 34737499 A JP34737499 A JP 34737499A JP 2001163906 A JP2001163906 A JP 2001163906A
Authority
JP
Japan
Prior art keywords
refractive index
composition
film
low refractive
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34737499A
Other languages
Japanese (ja)
Other versions
JP4759780B2 (en
Inventor
Toshiaki Yoshihara
俊昭 吉原
Koichi Ohata
浩一 大畑
Toru Okubo
透 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP34737499A priority Critical patent/JP4759780B2/en
Publication of JP2001163906A publication Critical patent/JP2001163906A/en
Application granted granted Critical
Publication of JP4759780B2 publication Critical patent/JP4759780B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a composition having a low refractive index and excellent in physical strengths and productivity at a low cost. SOLUTION: In the composition comprising as a main component a multi- functional acrylic compound represented by silica sol particles and dipentaerythritol hexacrylate (DPHA), the composition comprises at least 20% of silica sol particles having specific particle diameters (50-100 nm) to form a nano porous structure in the composition film to cause to reduce the apparent refractive index due to the nanoporous structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野】本発明は低屈折率組成物に関する
もので、ガラスやプラスチックなどの透明基材などに塗
工して、反射防止膜、選択透過,あるいは吸収膜などの
光学多層膜およびそれを形成可能な低屈折率組成物に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low refractive index composition, which is applied to a transparent substrate such as glass or plastic to form an optical multilayer film such as an antireflection film, a selective transmission or absorption film, and the like. The present invention relates to a low refractive index composition capable of forming

【0002】[0002]

【従来の技術】従来、ガラスやプラスチックなどの基材
に、酸化チタンや酸化ケイ素などの無機酸化物を蒸着法
あるいはスパッタ法などのドライコーティングによって
薄膜を形成して反射防止膜などの光干渉による光学多層
膜を形成する方法が知られている。しかし、このような
ドライコーティングプロセスでは装置が高価で、成膜速
度が遅く、生産性が高くないなどの課題を有している。
2. Description of the Related Art Conventionally, a thin film is formed on a base material such as glass or plastic by an inorganic oxide such as titanium oxide or silicon oxide by a dry coating such as a vapor deposition method or a sputtering method, and the thin film is formed by light interference such as an antireflection film. A method for forming an optical multilayer film is known. However, such a dry coating process has problems such as an expensive apparatus, a low film formation rate, and low productivity.

【0003】これに対して金属アルコキシドなどを出発
組成とし、基材に塗工して光学多層膜を形成する方法が
知られており、高屈折率材料としてはTiやZrなどの
アルコキシドを用いる方法が、低屈折率材料としてはS
i系アルコキシドあるいはSiアルコキシドの一部をエ
ポキシ基やアルキル基など他の有機置換基に置き換えた
有機ケイ素化合物いわゆるシランカップリング剤などを
用いる方法が提案されている。
On the other hand, there is known a method of forming an optical multilayer film by applying a metal alkoxide or the like as a starting composition to a substrate, and using an alkoxide such as Ti or Zr as a high refractive index material. However, as a low refractive index material, S
There has been proposed a method using an organosilicon compound in which a part of i-type alkoxide or Si alkoxide is replaced by another organic substituent such as an epoxy group or an alkyl group, a so-called silane coupling agent.

【0004】しかしこれらの塗膜では、乾燥重合に高
温、長時間を必要とするため生産性に問題がある。また
ある程度の低い屈折率を得ることはできるが、硬度や耐
擦傷性、基材との密着性などの物理的強度が不十分であ
り、光学多層膜は最外層に使用されるため、強度が不十
分では実用に耐えることができないといった欠点を有し
ている。
However, these coating films require a high temperature and a long time for dry polymerization, and thus have a problem in productivity. Although a certain low refractive index can be obtained, the physical strength such as hardness, scratch resistance and adhesion to the substrate is insufficient, and the optical multilayer film is used as the outermost layer. If it is insufficient, it has a drawback that it cannot withstand practical use.

【0005】これらを改善するために、ケイ素アルコキ
シドを出発物質としたシリカゾルと反応性有機ケイ素化
合物(シランカップリング剤や末端に反応基を有するジ
メチルシリコーンなど)との複合材料などが提案されて
いる(特開平9−220791など)。
In order to improve these, a composite material of a silica sol starting from a silicon alkoxide and a reactive organic silicon compound (such as a silane coupling agent or a dimethyl silicone having a terminal reactive group) has been proposed. (Japanese Unexamined Patent Publication No. 9-220791).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
のSiO2 系複合膜組成物も十分な物性を得ようとする
と加熱に長時間を要するもので、アクリロイル基などの
重合性不飽和基を含有する有機ケイ素化合物も記載され
ているが、いずれもアクリロイル基が1個乃至は2個の
単官能あるいは2官能性の化合物であり光(EB)重合
しても高い架橋密度が得られない、硬度や耐擦傷性など
の物理的強度を向上させようとすると上記複合膜成分中
にシリカ成分以外の成分、例えはアクリル系化合物を複
合し該アクリル成分比率を高くする必要がある。そうな
ると光学特性を決定するSi系などのアルコキシドを出
発組成とするシリカ成分の体積比が抑制され低屈折率化
をはかることができないという欠点を有し、低屈折率化
と硬度や耐擦傷性、密着性などの物理的強度特性が両立
できる組成物は見出されていない。
However, these SiO 2 composite film compositions also require a long time for heating in order to obtain sufficient physical properties, and contain a polymerizable unsaturated group such as an acryloyl group. An organosilicon compound is also described, but each is a monofunctional or bifunctional compound having one or two acryloyl groups, and a high cross-linking density cannot be obtained even by photo-polymerization (EB). In order to improve physical strength such as abrasion resistance, it is necessary to increase the ratio of the acrylic component by compounding a component other than the silica component, for example, an acrylic compound in the composite film component. In that case, the volume ratio of the silica component starting from an alkoxide such as a Si-based compound that determines the optical properties is suppressed, and has a disadvantage that the refractive index cannot be reduced, and the lowering of the refractive index and hardness and scratch resistance, No composition has been found that is compatible with physical strength characteristics such as adhesion.

【0007】そこで、本発明は、低い屈折率を有しかつ
物理的的強度にも優れ、安価で、生産性に優れた組成物
を提供することを目的とする。
Accordingly, an object of the present invention is to provide a composition which has a low refractive index, is excellent in physical strength, is inexpensive, and has excellent productivity.

【0008】[0008]

【課題を解決するための手段】上述の課題を達成すべく
検討した結果、シリカゾル粒子とジペンタエリストリー
ルヘキサアクリレート(DPHA)などに代表される多
官能アクリル化合物を主成分とする組成物において、組
成物中に特定粒径のシリカゾル粒子(50〜100n
m)を20%以上含有させることで、組成物被膜にナノ
ポーラス構造を呈させ、該ナノポーラス化により見掛け
の屈折率を低下させることができることを見出した。
As a result of investigations to achieve the above-mentioned objects, it was found that a composition containing silica sol particles and a polyfunctional acrylic compound represented by dipentaerythryl hexaacrylate (DPHA) as a main component was used. In the composition, silica sol particles having a specific particle diameter (50 to 100 n)
By containing 20% or more of m), it has been found that the composition coating has a nanoporous structure, and the apparent refractive index can be reduced by the formation of the nanoporous structure.

【0009】さらに、(3−アクリロキシプロピル)ト
リメトキシシランなどに代表される一般式(A)R’x
Si(OR)4-x (R:アルキル基、R’:末端にビニ
ル基、アクリロイル基、メタクリロイル基などの重合可
能な不飽和結合を有する官能基、xは0<x<4の置換
数、)で表せる有機ケイ素化合物を加えることで、ナノ
ポーラス構造でもある程度の強度が発現できることをを
見出した。
Furthermore, (3-acryloxypropyl) formula typified trimethoxysilane (A) R 'x
Si (OR) 4-x (R: an alkyl group, R ′: a functional group having a polymerizable unsaturated bond such as a vinyl group, an acryloyl group, a methacryloyl group at a terminal, x is a substitution number of 0 <x <4, It has been found that by adding an organosilicon compound represented by the formula (1), a certain strength can be exhibited even in a nanoporous structure.

【0010】本発明のハイブリッド系組成物は、粒子と
シランカップリング剤とアクリル系バインダーを用いて
おり、ハードコート組成物としては公知の技術の組合せ
ではあるが、粒径の制御でナノポーラス構造にして、な
おかつ特定組成の材料を用いて有機無機ハイブリッド膜
を形成したり、シリカ粒子を特定材料、および特定比率
にて表面修飾することで、低屈折率組成物の光学薄膜と
して、最適な材料設計条件を見出すに至り、強度と低屈
折率化の両立可能な本発明の低屈折率組成物を提供する
ものである。
The hybrid composition of the present invention uses particles, a silane coupling agent and an acrylic binder, and is a combination of known techniques as a hard coat composition, but has a nanoporous structure by controlling the particle size. In addition, by forming an organic-inorganic hybrid film using a material of a specific composition, or by modifying the surface of silica particles with a specific material and a specific ratio, the optimal material design as an optical thin film of a low refractive index composition It is an object of the present invention to provide a low refractive index composition of the present invention which can satisfy both the conditions and the strength and the low refractive index.

【0011】更に本発明を請求項に即して説明すると、
請求項1の発明は、平均粒径が5〜100nmのシリカ
ゾル粒子と分子中にビニル基、アクリロイル基、メタク
リロイル基などの重合可能な不飽和結合を少なくとも3
個以上を有するアクリル系化合物とを主成分とする低屈
折率組成物において該組成物中におけるシリカゾル粒子
含有量が30〜80%で、なかでも粒径50〜100n
mのシリカゾル粒子が20%以上含有されていることを
特徴とする低屈折率組成物を提供するものである。
Further, the present invention will be described with reference to the claims.
The invention of claim 1 provides a silica sol particle having an average particle size of 5 to 100 nm and at least three polymerizable unsaturated bonds such as a vinyl group, an acryloyl group, and a methacryloyl group in a molecule.
In a low-refractive-index composition containing, as a main component, an acrylic compound having at least one silica sol, the content of silica sol particles in the composition is 30 to 80%, and particularly, a particle size of 50 to 100 n.
It is intended to provide a low refractive index composition characterized by containing 20% or more of silica sol particles of m.

【0012】請求項2の発明は、前記低屈折率組成物中
にさらにR’x Si(OR)4-x (R:アルキル基、
R’:末端にビニル基、アクリロイル基、メタクリロイ
ル基などの重合可能な不飽和結合を有する官能基、xは
0<x<4の置換数、)、およびその加水分解物とが含
まれてなることを特徴とする請求項1に記載の低屈折率
組成物を提供するものである。
[0012] The invention of claim 2 is that the low refractive index composition further comprises R ' x Si (OR) 4-x (R: alkyl group,
R ′: a functional group having a polymerizable unsaturated bond such as a vinyl group, an acryloyl group or a methacryloyl group at a terminal, x is a substitution number of 0 <x <4), and a hydrolyzate thereof. A low refractive index composition according to claim 1, which is provided.

【0013】請求項3の発明は、前記低屈折率組成物に
おいてアクリル系化合物が3官能以上のアクリルモノマ
ーおよびその変性体で、平均分子量が200〜1000
であることを特徴とする請求項1、2何れか記載の低屈
折率組成物を提供するものである。
[0013] The invention according to claim 3 is the low refractive index composition, wherein the acrylic compound is an acrylic monomer having three or more functional groups and a modified product thereof, having an average molecular weight of 200 to 1000.
A low refractive index composition according to any one of claims 1 and 2, which is provided.

【0014】請求項4の発明は、前記低屈折率組成物を
形成するR’x Si(OR)4-x がCH2 =CHCOO
−(CH)n−Si(OR)4 (R:アルキル基、xは
0<x<4の置換数、nはn<5の整数)であって、シ
リカゾル粒子にあらかじめ修飾されてなることを特徴と
する請求項1〜3何れか記載の低屈折率組成物を提供す
るものである。
According to a fourth aspect of the present invention, R ′ x Si (OR) 4-x forming the low refractive index composition is CH 2 CHCHCOO
-(CH) n-Si (OR) 4 (R: alkyl group, x is the number of substitutions of 0 <x <4, n is an integer of n <5), and the silica sol particles are modified in advance. A low refractive index composition according to any one of claims 1 to 3 is provided.

【0015】請求項5の発明は、前記R’x Si(O
R)4-x がCH2 =CHCOO−(CH)n−Si(O
R)4 が修飾粒子に対して比率が、粒子/CH2 =CH
COO−(CH)n−Si(OR)4 のモル比で1/
0.04〜1/0.25(重量換算で90/10〜60
/40wt%相当)であることを特徴とする請求項4に
記載の低屈折率組成物を提供するものである。
According to a fifth aspect of the present invention, the R ′ x Si (O
R) 4-x is CH 2 CHCHCOO- (CH) n-Si (O
R) 4 is the ratio of particles to modified particles, particles / CH 2 2CH
The molar ratio of COO- (CH) n-Si (OR) 4 is 1 /
0.04 to 1 / 0.25 (90/10 to 60 in weight conversion)
/ 40 wt%), which provides the low refractive index composition according to claim 4.

【0016】請求項6の発明は、前記R’x Si(O
R)4-x がCH2 =CHCOO−(CH)n−Si(O
R)4 を粒子修飾する際に、pトルエンスルホン酸など
のスルホン酸触媒下で反応させてなるものであることを
特徴とする請求項4、5何れか記載の低屈折率組成物を
提供するものである。
The invention according to claim 6 is characterized in that the R ′ x Si (O
R) 4-x is CH 2 CHCHCOO- (CH) n-Si (O
The low refractive index composition according to any one of claims 4 and 5, characterized in that R) 4 is obtained by reacting a sulfonic acid catalyst such as p-toluenesulfonic acid when modifying particles. Things.

【0017】請求項7の発明は、請求項1〜6何れか記
載の低屈折率組成物が重合して組成物被膜がナノポーラ
ス構造を呈していることを特徴とする低屈折率膜を提供
するものである。
According to a seventh aspect of the present invention, there is provided a low-refractive-index film characterized in that the low-refractive-index composition according to any one of the first to sixth aspects is polymerized and the composition film has a nanoporous structure. Things.

【0018】請求項8の発明は、請求項7記載の低屈折
率膜を基材上に高屈折率膜および必要に応じて他の屈折
率膜とともに備えている事を特徴とする光学多層膜を提
供するものである。
According to an eighth aspect of the present invention, there is provided an optical multilayer film comprising the low refractive index film according to the seventh aspect and a high refractive index film and optionally another refractive index film on a substrate. Is provided.

【0019】請求項9の発明は、光学多層膜が反射防止
機能を有するものである請求項8記載の反射防止膜を提
供するものである。
According to a ninth aspect of the present invention, there is provided an antireflection film according to the eighth aspect, wherein the optical multilayer film has an antireflection function.

【0020】本発明によれば、シリカゾル粒子と末端に
ビニル基、アクリロイル基、メタクリロイル基などの重
合可能な不飽和結合を複数個有する多官能アクリル化合
物を主成分とすることで、塗膜形成後にUVあるいはE
B照射により塗膜中のアクリロイル基などの重合可能な
不飽和結合基の光(EB)重合による架橋のにより硬化
するものであり、該組成物中のシリカの粒子径およびバ
インダーである多官能アクリルの比率を制御すること
で、ナノポーラス構造を呈させ、見掛け屈折率を低下さ
せるものである。
According to the present invention, a silica sol particle and a polyfunctional acrylic compound having a plurality of polymerizable unsaturated bonds such as a vinyl group, an acryloyl group, and a methacryloyl group at a terminal are used as main components, so that after coating film formation, UV or E
B is cured by crosslinking of polymerizable unsaturated bond groups such as acryloyl groups in the coating film by photo-irradiation (EB) polymerization, and the particle diameter of silica in the composition and the polyfunctional acrylic binder By controlling the ratio, a nanoporous structure is exhibited, and the apparent refractive index is reduced.

【0021】組成物自身が低屈折率成分として機能する
ものではあるが、ナノポーラス化により材料自身の屈折
率(シリカの屈折率1.45程度アクリル成分の屈折率
1.50程度)では到達できないほどの低屈折率化
(1.40以下)をはかることができるものである。
Although the composition itself functions as a low-refractive-index component, the composition itself cannot be reached with the refractive index of the material itself (about 1.45 for silica and about 1.50 for an acrylic component) due to nanoporosity. Can be reduced in refractive index (1.40 or less).

【0022】物理的強さは通常アクリル基などの導入量
によって決定されるものであり、これらのアクリル基成
分は通常シリカ成分などに比べると屈折率的にはやや高
く、アクリル成分が増加すると強度は高いが屈折率が低
くできなくなってしまうが、本発明の組成物は特定の多
官能アクリル化合物を用いることで、少ないバインダー
比でも強度を発現させるものある。
The physical strength is usually determined by the amount of acrylic group or the like introduced, and these acrylic group components are usually slightly higher in refractive index than silica components and the like, and the strength increases when the acrylic component increases. Although the refractive index is high but the refractive index cannot be lowered, the composition of the present invention can exhibit strength even with a small binder ratio by using a specific polyfunctional acrylic compound.

【0023】なかでも、アクリル化合物を分子量が大き
なプレポリマーではなく、DPHAなどの3官能以上の
多官能アクリルモノマー用いることで、より均質で架橋
密度の高いハイブリッド膜を形成することができる。
In particular, a hybrid film having a higher homogeneity and a higher crosslink density can be formed by using a trifunctional or higher polyfunctional acrylic monomer such as DPHA instead of a prepolymer having a large molecular weight as the acrylic compound.

【0024】さらにアクリロイル基を含有した有機ケイ
素化合物による複合化(粒子修飾化)で、より被膜の架
橋密度を向上させることができる分子レベルで均一なハ
イブリッド構造を呈しているのので、シリカゾルなどの
低屈折率化成分の体積比が大きく、ナノポーラス構造を
呈していても充分な強度を発揮できるもので、硬度が高
く耐擦傷性性も良好で、従来の低屈折率組成物の欠点を
大幅に改善することができ、低屈折率化と高強度化の両
立可能な組成物を提供するものである。
Further, by complexing (particle modification) with an organosilicon compound containing an acryloyl group, a uniform hybrid structure at a molecular level that can further improve the crosslink density of the coating film is obtained. The volume ratio of the low-refractive index component is large, and it can exhibit sufficient strength even if it has a nanoporous structure.It has high hardness and good scratch resistance, greatly reducing the disadvantages of conventional low-refractive index compositions. An object of the present invention is to provide a composition which can be improved and can achieve both a low refractive index and a high strength.

【0025】[0025]

【発明の実施の形態】本発明の一実施例を詳細に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described in detail.

【0026】本発明の組成物は、シリカゾル粒子と末端
にビニル基、アクリロイル基、メタクリロイル基などの
重合可能な不飽和結合を複数個有する多官能アクリル化
合物を主成分とし、さらにアクリロイル基含有の有機ケ
イ素化合物などが含まれる有機無機ハイブリッド組成物
からなるものてあり、これを基材に塗工し、加熱乾燥
し、被膜を形成した後、UVなどの光照射を施すことで
低屈折率組成物被膜を形成可能とするものであり、該組
成物中のシリカの粒子径などを制御することで、ナノポ
ーラス構造を呈させ、見掛け屈折率を低下させるもので
ある。
The composition of the present invention comprises a silica sol particle and a polyfunctional acrylic compound having a plurality of polymerizable unsaturated bonds such as a vinyl group, an acryloyl group, and a methacryloyl group at a terminal, and further comprises an acryloyl group-containing organic compound. It is composed of an organic-inorganic hybrid composition containing a silicon compound and the like, and is applied to a substrate, dried by heating, and after forming a film, is irradiated with light such as UV to obtain a low refractive index composition. A film can be formed, and by controlling the particle diameter of silica in the composition, a nanoporous structure is exhibited, and the apparent refractive index is reduced.

【0027】低屈折率組成物中に含まれる各成分につい
て以下に詳述する。本発明において用いられる、シリカ
ゾルとは平均粒径が5〜100nmの粒子径のシリカ粒
子が溶媒中に分散されたもので、ケイ酸ナトリムなどの
ケイ酸アルカリからイオン交換等でアルカリを除去した
り、酸で中和したりする方法で得られるシリカゾルであ
って、水性でも、有機溶剤置換された有機溶媒系シリカ
ゾルでも特に限定されないが、アクリルモノマーとの相
溶性、プラスティック基材への塗工適性などから有機溶
媒系のものが望ましい。
Each component contained in the low refractive index composition will be described in detail below. The silica sol used in the present invention is one in which silica particles having an average particle diameter of 5 to 100 nm are dispersed in a solvent, and an alkali is removed from an alkali silicate such as sodium silicate by ion exchange or the like. , A silica sol obtained by a method of neutralizing with an acid, and is not particularly limited to an aqueous solvent or an organic solvent-based silica sol substituted with an organic solvent, but is compatible with an acrylic monomer, and is suitable for coating on a plastic substrate. Thus, an organic solvent-based solvent is desirable.

【0028】5nm以下は製造が困難であり、100n
m以上では光の散乱のため透明性が損なわれる。
If it is less than 5 nm, it is difficult to manufacture,
Above m, transparency is impaired due to light scattering.

【0029】ナノポーラス構造とするためには粒子とバ
インダーとの比率が重要であり、本発明の低屈折率組成
物被膜中の全シリカ粒子成分が30〜80wt%さらに
好適には40〜70wt%含有されていることがが望ま
しく、30wt%以下では所望の屈折率が得られにく
く、80%以上では十分な強度を発現できなくなる。な
かでも粒径が50〜100nmである大粒子径成分が2
0wt%以上、さらに好適には30%以上含有されるこ
とで、良好なナノポーラス構造とすることができるもの
であって、20%以下では効果が少ない。
In order to obtain a nanoporous structure, the ratio of the particles to the binder is important, and the total refractive index of the silica particles in the low refractive index composition coating film of the present invention is 30 to 80 wt%, more preferably 40 to 70 wt%. When the content is less than 30% by weight, it is difficult to obtain a desired refractive index, and when the content is more than 80%, sufficient strength cannot be exhibited. Among them, a large particle diameter component having a particle diameter of 50 to 100 nm is 2
A good nanoporous structure can be obtained by containing 0% by weight or more, more preferably 30% or more, and less than 20% has little effect.

【0030】多官能アクリル化合物とは、その分子中に
ビニル基、アクリロイル基やメタクルロイル基など重合
可能なの不飽和結合を少なくとも3個以上有するもので
あって、例えばDPHAなどのアクリルモノマー類と、
これらのモノマーの変性体、および誘導体、などが使用
できる。
The polyfunctional acrylic compound is a compound having at least three polymerizable unsaturated bonds such as a vinyl group, an acryloyl group, and a methacryloyl group in a molecule thereof. For example, an acrylic monomer such as DPHA;
Modified forms and derivatives of these monomers can be used.

【0031】なかでもDPHA、PETA、あるいはP
ETAとHDIなどのジイソシアネートとの反応生成で
あるプレポリマーなど多官能アクリルモノマー類および
その変性体などで、平均分子量200〜1000のもの
であれば、シリカゾルとの相溶性も良く、被膜形成時に
相分離することなく、架橋密度の高い、均質で透明なハ
イブリッド被膜が形成できる。アクリロイル基含有有機
ケイ素化合物とはR’x Si(OR)4-x (R:アルキ
ル基、R’:末端にビニル基、アクリロイル基、メタク
リロイル基などの重合可能な不飽和結合を有する官能
基、xは0<x<4の置換数、)で表せる有機ケイ素化
合物(以下一般式Aと称す)であって、ビニルトリメト
キシチタン、メタクリロキシトリイソプロポキシチタネ
ート、メタクリロキシプロピルトリイソプロポキシジル
コネートなどが例示される。
Among them, DPHA, PETA, or P
A polyfunctional acrylic monomer such as a prepolymer, which is a reaction product of ETA with a diisocyanate such as HDI, or a modified product thereof, having an average molecular weight of 200 to 1,000, has good compatibility with silica sol, and has good compatibility with silica sol. A uniform and transparent hybrid coating having a high crosslinking density can be formed without separation. The acryloyl group-containing organosilicon compound is R ′ x Si (OR) 4-x (R: alkyl group, R ′: a functional group having a polymerizable unsaturated bond such as a vinyl group, an acryloyl group, a methacryloyl group at a terminal, x is an organosilicon compound (hereinafter referred to as general formula A) represented by 0 <x <4, such as vinyltrimethoxytitanium, methacryloxytriisopropoxytitanate, methacryloxypropyltriisopropoxyzirconate, etc. Is exemplified.

【0032】なかでも(3−アクリロキシプロピル)ト
リメトキシシランなどに代表されるCH2 =CHCOO
−(CH)n −Si(OR)4 (R:アルキル基、xは
0<x<4の置換数、nはn<5の整数)で表せるアク
リロイル基含ケイ素化合物(以下一般式Bと称す)が好
適である。
Among them, CH 2 CHCHCOO represented by (3-acryloxypropyl) trimethoxysilane and the like
-(CH) n -Si (OR) 4 (R: alkyl group, x is the number of substitutions of 0 <x <4, n is an integer of n <5) silicon-containing acryloyl group compound (hereinafter referred to as general formula B) ) Are preferred.

【0033】これらの有機金属ケイ素化合物は組成物中
にp−トルエンスルホン酸などの有機酸触媒を含有させ
ることで、塗工後に大気中の水分でもって加水分解反応
させて被膜形成しても良いし、またあらかじめ水(塩酸
などの触媒を含む)を添加し加水分解反応させたものを
用いることもできる。
These organometallic silicon compounds may be coated with an organic acid catalyst such as p-toluenesulfonic acid to form a film by a hydrolysis reaction with atmospheric moisture after coating. Alternatively, water (including a catalyst such as hydrochloric acid) added in advance and subjected to a hydrolysis reaction may be used.

【0034】その際に、有機ケイ素化合物の加水分解物
が、該有機ケイ素化合物の全アルコキシル基を加水分解
させるのに必要な水の量よりも1/8〜7/8の量の水
で部分加水分解されたものであるとすることで安定な組
成物を得ることができ、余分な水を残すことなく特別な
分離精製せずに用いることができる。
At this time, the hydrolyzate of the organosilicon compound is partially dissolved with water in an amount of 1/8 to 7/8 of the amount of water required to hydrolyze all the alkoxyl groups of the organosilicon compound. By being hydrolyzed, a stable composition can be obtained, and can be used without leaving extra water and without special separation and purification.

【0035】上記の調整は、アクリル化合物と余分な水
との副反応を抑制したり、ケイ素化合物の加水分解率を
コントロールして、ケイ素化合物ポリマーの成長を抑制
したり、相溶性を高めることで、相分離を抑制し均質で
分子架橋密度が高く、分子レベルのハイブリッド膜を形
成至らしめるものである。
The above-mentioned adjustment is carried out by suppressing a side reaction between the acrylic compound and excess water, controlling the rate of hydrolysis of the silicon compound, suppressing the growth of the silicon compound polymer, and increasing the compatibility. It is intended to suppress the phase separation and to form a homogeneous, high molecular crosslink density and a molecular level hybrid film.

【0036】これらのハイブリッド系組成物の組み合わ
せは、一般に公知ではあるが、本発明の組成物は単なる
組み合わせではなく、マトリックスであるコート組成物
の無機のネットワークと無機フィラーとの相溶性、親和
性が高く、単に有機樹脂中に分散するより、より良い分
散状態、フィラーとマトリックスとの密着性が高い被膜
が得られる材料系で、通常の添加効果よりも高い効果が
得られるものであり、特にこれらのアクリロイル基含有
ケイ素化合物の添加の際に、シリカゾル粒子と一般式A
の有機ケイ素化合物を別の系にて混合反応させ、あらか
じめ粒子表面に修飾させると、バインダー成分となるア
クリル化合物の量を抑制しても十分な強度を得られるな
どの効果が大きくなりナノポーラス構造の本発明の組成
物には好適である。
[0036] Combinations of these hybrid compositions are generally known, but the composition of the present invention is not a mere combination, and the compatibility and affinity between the inorganic network of the coat composition as the matrix and the inorganic filler. Is higher than simply dispersed in the organic resin, a better dispersion state, a material system capable of obtaining a film having a high adhesion between the filler and the matrix, which is capable of obtaining a higher effect than the usual addition effect, When the acryloyl group-containing silicon compound is added, silica sol particles and a compound represented by the general formula A
If the organosilicon compound is mixed and reacted in another system and the particle surface is modified in advance, the effect such as obtaining sufficient strength increases even if the amount of the acrylic compound serving as a binder component is suppressed, and the nanoporous structure has It is suitable for the composition of the present invention.

【0037】表面修飾の方法は、塩酸、有機酸の存在下
で両者を混合し、有機金属のアルコキシド基と粒子表面
のOH基とを反応させることで容易に処理されるもので
あり、特別に分離精製することなく、そのまま他の成分
を添加してコーティング組成物を調整することができ
る。
The surface modification method is a method in which both are mixed in the presence of hydrochloric acid and an organic acid, and are easily treated by reacting an alkoxide group of an organic metal with an OH group on the particle surface. Without separating and purifying, the coating composition can be prepared by adding other components as they are.

【0038】なかでもアクリロイル基含有ケイ素化合物
を粒子修飾する際に、アルコールやケトン系などの有機
溶媒中でpトルエンスルホン酸などのスルホン酸触媒下
で反応させるのが修飾効率が良好で溶媒中への水の混入
を防止することができ好適である。
In particular, when the acryloyl group-containing silicon compound is modified with particles, it is preferable to carry out the reaction in an organic solvent such as an alcohol or ketone under a sulfonic acid catalyst such as p-toluenesulfonic acid in order to improve the modification efficiency and to transfer the particles into the solvent. This is preferable because it is possible to prevent the mixing of water.

【0039】さらにシリカゾル粒子とアクリロイル基含
有ケイ素化合物との比率をシリカゾル粒子/アクリロイ
ル基含有ケイ素化合物のモル比が1/0.04〜1/
0.25(重量換算で90/10〜60/40wt%相
当)とすることでナノポーラス構造と強度の両立するこ
とができ好適である。
Further, the ratio of the silica sol particles to the acryloyl group-containing silicon compound is adjusted so that the molar ratio of silica sol particles / acryloyl group-containing silicon compound is 1 / 0.04 to 1 /
By setting it to 0.25 (equivalent to 90/10 to 60/40 wt% in terms of weight), it is possible to achieve both a nanoporous structure and strength, which is preferable.

【0040】本発明における、ナノポーラス構造とは、
光の散乱の影響を受けないほどの微細な空隙を意味する
もので、空隙の形態は閉じられたもの、開かれたもので
も特に限定されるものではない。
In the present invention, the nanoporous structure is
It means a minute gap that is not affected by light scattering, and the form of the gap is not particularly limited, even if it is closed or opened.

【0041】該空隙は物理的にはある大きさを有するも
のであるが微細かつ不定形の場合が多く、電子顕微鏡な
どでは直接観察されないことも多い。その場合には光学
的な手法で屈折率を測定すると、多成分系における加成
性から逸脱する現象が観察されることでナノポーラス構
造と推定した。
The voids physically have a certain size, but are often fine and irregular, and are often not directly observed by an electron microscope or the like. In that case, when the refractive index was measured by an optical method, a phenomenon deviating from the additivity in the multi-component system was observed, so that the nanoporous structure was presumed.

【0042】例えば屈折率1.45のシリカ粒子と屈折
率1.52のアクリルバインダーを用いた場合、通常5
0/50vol%の混合物ではほぼ中間的屈折率である
1.47〜1.49の間になることが観察される。本発
明のようなナノポーラス構造の場合はこれよりも小さく
なり、見掛け屈折率が1.45以下、粒径によっては
1.35以下と大きく加成性から逸脱する現象が見られ
る。
For example, when silica particles having a refractive index of 1.45 and an acrylic binder having a refractive index of 1.52 are used, usually 5
It is observed that a mixture of 0/50 vol% has an intermediate refractive index between 1.47 and 1.49. In the case of a nanoporous structure as in the present invention, the phenomenon becomes smaller and the apparent refractive index is 1.45 or less.

【0043】これらの現象は被膜がナノポーラス構造を
呈していること、すなわち微細な空隙が存在することで
見掛けの屈折率が低下したためと推測されるもので、本
発明の低屈折率組成物もこの屈折率測定手法によりバイ
ンダー比率を変えた組成物の屈折率を測定することで、
ナノポーラス構造を呈しているとして定義したもので、
ポーラス構造の形態や、その組成物被膜の膜厚方向の分
布(例えば表面方向に傾斜構造を有するなど)など特に
に限定されるものではない。
These phenomena are presumed to be due to the fact that the coating has a nanoporous structure, that is, the apparent refractive index has been reduced due to the presence of fine voids. By measuring the refractive index of the composition with the binder ratio changed by a refractive index measurement technique,
It is defined as having a nanoporous structure,
The shape of the porous structure and the distribution of the composition film in the film thickness direction (for example, having a gradient structure in the surface direction) are not particularly limited.

【0044】UV照射による硬化を行う際には、ラジカ
ル重合開始剤を添加すると好適であり、ベンゾインメチ
ルエーテルなどのベンゾインエーテル系開始剤、アセト
フェノン、2、1−ヒドロキシシクロヘキシルフェニル
ケトン、などのアセトフェノン系開始剤、ベンゾフェノ
ンなどのベンゾフェノン系開始剤など特に限定されるも
のではない。
When curing by UV irradiation, it is preferable to add a radical polymerization initiator, such as a benzoin ether-based initiator such as benzoin methyl ether, or an acetophenone-based initiator such as acetophenone or 2,1-hydroxycyclohexylphenyl ketone. The initiator and the benzophenone-based initiator such as benzophenone are not particularly limited.

【0045】上述した各成分をいくつか組み合わせてコ
ーティング組成物に加えることができ、さらに、物性を
損なわない範囲で、分散剤、安定化剤、粘度調整剤、着
色剤など公知の添加剤を加えることができる。
Some of the above-mentioned components can be added in combination to the coating composition. Further, known additives such as dispersants, stabilizers, viscosity modifiers and coloring agents are added as long as the physical properties are not impaired. be able to.

【0046】コーティング組成物の塗布方法には、通常
用いられる、ディッピング法、ロールコティング法、ス
クリーン印刷法、スプレー法など従来公知の手段が用い
られる。被膜の厚さは目的の光学設計にあわせて、液の
濃度や塗工量によって適宜選択調整することができる。
As a method for applying the coating composition, conventionally known means such as a dipping method, a roll coating method, a screen printing method, and a spray method are used. The thickness of the coating can be appropriately selected and adjusted depending on the concentration of the liquid and the amount of coating in accordance with the intended optical design.

【0047】本発明の低屈折率組成物は、ガラスやプラ
スチックフィルムなど特に限定されるものではなく、さ
らに必要に応じて各種ハードコート剤、低屈折率材料、
セラミック蒸着膜と積層することが可能で、また本発明
の組成比を変えて積層することも可能である。
The low refractive index composition of the present invention is not particularly limited, such as glass and plastic films, and may further include various hard coating agents, low refractive index materials,
It is possible to laminate with a ceramic vapor deposition film, and it is also possible to laminate with changing the composition ratio of the present invention.

【0048】本発明のコーティング組成物を具体的な実
施例をあげて説明する。
The coating composition of the present invention will be described with reference to specific examples.

【0049】[0049]

【実施例】表面にUV硬化樹脂HC層(5μm)を設け
た80μm厚のTACフィルムを基材として、下記組成
の材料を各成分の固形分が表1に示す割合になるように
組み合わせて調液してコーティング組成物を作成、UV
硬化の開始剤としてアセトフェノン系開始剤を重合成分
に対して2%添加した。
EXAMPLE An 80 μm thick TAC film provided with a UV-curable resin HC layer (5 μm) on the surface was used as a base material, and materials having the following compositions were combined so that the solid content of each component was as shown in Table 1. Liquid to make coating composition, UV
An acetophenone-based initiator was added as a curing initiator in an amount of 2% based on the polymerization component.

【0050】バーコーターにより塗布し、乾燥機で10
0℃−1min乾燥し、高圧水銀灯により1,000m
J/cm2 の紫外線を照射して硬化させ、光学膜厚(n
d=屈折率n*膜厚d(nm))がnd=550/4n
mになるよう適宜濃度調整をして低屈折率被膜を形成
し、各種試験用の試験体を得た。
Apply with a bar coater and 10
Dry at 0 ° C for 1 min.
It is cured by irradiating ultraviolet rays of J / cm 2 , and the optical film thickness (n
d = refractive index n * thickness d (nm)) is nd = 550 / 4n
m, a low-refractive-index coating was formed by appropriately adjusting the concentration to obtain test specimens for various tests.

【0051】本発明の実施例として実施例1〜3に示す
配合で、比較例1として粒径の小さいものだけを用いた
系、また、比較例2としてのバインダー成分として多官
能アクリルモノマーを用いてない系の試験体を合わせて
作成し、下記評価方法にて評価した。表1に結果を示
す。
As an example of the present invention, a system using only one having a small particle diameter as a comparative example 1 with the composition shown in Examples 1 to 3, and a polyfunctional acrylic monomer as a binder component as a comparative example 2 An untested specimen was also prepared and evaluated by the following evaluation method. Table 1 shows the results.

【0052】<コーティング組成物の各成分> (a)平均粒径10〜15nmのシリカゾル/MEK溶
媒 (b)平均粒径50〜70nmのシリカゾル/MEK溶
媒 (c)平均粒径50〜70nmのシリカゾルにモル比で
1/0.08(重量比で約80/20)(3−アクリロ
キシプロピル)トリメトキシシランを今後し触媒として
pトルエンスルホン酸をアクリルシランに対して重量比
で1%添加し室温で3時間攪拌し反応させ修飾させた複
合ゾル。 (d)DPHAのMEK希釈溶液。 (e)OH価130、平均分子量10000、Tg88
℃の市販アクリルポリオール樹脂の溶液(酢酸ブチル、
酢酸エチル混合溶剤)
<Each component of coating composition> (a) silica sol having an average particle size of 10 to 15 nm / MEK solvent (b) silica sol having an average particle size of 50 to 70 nm / MEK solvent (c) silica sol having an average particle size of 50 to 70 nm 1 / 0.08 (approximately 80/20 by weight) (3-acryloxypropyl) trimethoxysilane was added as a catalyst, and 1% by weight of p-toluenesulfonic acid was added to acrylsilane as a catalyst. A composite sol modified by stirring at room temperature for 3 hours to react. (D) MEK diluted solution of DPHA. (E) OH value 130, average molecular weight 10,000, Tg88
℃ commercial acrylic polyol resin solution (butyl acetate,
Ethyl acetate mixed solvent)

【0053】<評価試験> (1)光学特性 分光光度計により入射角5で550nmにおける反射率
を測定し、反射率値か被膜の屈折率を見積もった。 (2)密着性 塗料一般試験法JIS−K5400のクロスカット密着
試験方法に準じて塗膜の残存数にて評価した。 (3)鉛筆硬度 塗料一般試験法JIS−K5400の鉛筆引っかき値試
験方法に準じて塗膜の擦り傷にて評価した 。 (4)耐擦傷試験 スチールウール#0000により、250g/cm2
荷重で往復5回擦傷試験を実施、目視による傷の外観を
検査した。評価は、傷なし◎、かるく傷あり○、かなり
傷つく△、著しく傷つく×の4段階とした。
<Evaluation Test> (1) Optical Properties The reflectance at 550 nm at an incident angle of 5 was measured with a spectrophotometer, and the reflectance value or the refractive index of the coating was estimated. (2) Adhesion Evaluated by the number of remaining paint films according to the cross-cut adhesion test method of JIS-K5400, a general test method for paint. (3) Pencil hardness The paint was evaluated for scratches on the coating film according to the Pencil Scratch Value Test Method of General Test Method for JIS-K5400. (4) Scratch resistance test A steel wool # 0000 was used to perform a reciprocating scratch test five times with a load of 250 g / cm 2 to visually inspect the appearance of the scratch. The evaluation was made in four stages: 傷 without damage, あ り with slight damage, △ with considerable damage, and x with severe damage.

【0054】[0054]

【表1】 [Table 1]

【0055】表1に示すように、本発明の実施例は屈折
率が1.40と低くなおかつ密着性、硬度、耐擦傷性な
ど強度面にも優れるが、比較例1の比粒径の小さいもの
だけを用いた系ではかなり70%とシリカ成分をかなり
多くしても、屈折率が1.46と低くならずに低屈折率
化がはかれない。また、比較例2のバインダー成分とし
て多官能アクリルモノマーを用いてない系では粒径の大
きなものを用いたため、屈折率が1.4と所望のものが
得られたが強度面で特性が劣っていることがわかる。
As shown in Table 1, the Examples of the present invention have a low refractive index of 1.40 and are excellent in strength such as adhesion, hardness, and scratch resistance, but Comparative Example 1 has a small specific particle size. In a system using only the above, even if the silica component is considerably increased to 70%, the refractive index is not reduced to 1.46 and the refractive index cannot be reduced. Further, in the system of Comparative Example 2 in which a polyfunctional acrylic monomer was not used as the binder component, a material having a large particle diameter was used, so that a desired refractive index of 1.4 was obtained, but the characteristics were inferior in strength. You can see that there is.

【0056】[0056]

【発明の効果】以上述べたように本発明の低屈折率組成
物は、シリカゾル粒子ととアクリル基含有ケイ素化合物
ならびに多官能アクリルモノマーを有し、無機と有機化
合物の分子レベルのハイブリッド構造を呈した被膜を形
成できるものであり、ナノポーラス構造による低屈折率
という光学特性と物理的強度特性とを兼備した被膜を形
成することができるものである。
As described above, the low refractive index composition of the present invention comprises silica sol particles, an acrylic group-containing silicon compound and a polyfunctional acrylic monomer, and exhibits a hybrid structure of an inorganic and organic compound at the molecular level. Thus, it is possible to form a film having both the optical characteristics of a low refractive index and the physical strength characteristics due to the nanoporous structure.

【0057】すなわち、ディスプレイの反射防止膜など
の基材の最外層に形成され、過酷な環境や取り扱いにも
充分に耐えられる被膜を形成することができ、蒸着など
と比べ装置コストも比較的安価で、成膜(塗工)速度も
10倍以上で生産性も高く、製造も容易である。
That is, a film formed on the outermost layer of a substrate such as an anti-reflection film of a display can be formed so as to be sufficiently resistant to severe environments and handling. Thus, the film forming (coating) speed is 10 times or more, the productivity is high, and the production is easy.

【0058】また本発明の組成物の被膜は、光照射など
で硬化するため、低温での塗工が可能なので、フィルム
などのを巻き取り塗工で作成することが可能で安価に、
大量生産できるといった効果を奏する。
Further, since the coating of the composition of the present invention is cured by light irradiation or the like, it can be applied at a low temperature.
It has the effect of mass production.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09D 4/02 C09D 4/02 4J026 5/00 5/00 M 4J038 7/12 7/12 Z 183/07 183/07 G02B 1/11 C08F 292/00 // C08F 292/00 G03F 7/11 503 G03F 7/11 503 G02B 1/10 A Fターム(参考) 2H025 AA00 AB20 AC01 AD01 BC14 BC43 BC83 CA01 CC06 CC08 FA03 2K009 AA02 BB02 BB28 CC09 CC24 CC42 DD02 DD05 4F006 AA02 AB24 AB39 AB52 BA01 BA02 CA05 CA08 DA01 EA03 4J002 CP141 CP161 DJ016 FB106 GQ00 4J011 PA13 PB16 PC08 QA23 SA01 SA31 TA06 TA09 UA01 UA03 VA01 WA02 4J026 AC00 BA43 DB05 GA09 4J038 DL122 FA111 GA01 GA02 HA446 KA15 KA20 MA10 MA14 NA17 NA19 PB08 PC03 PC08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C09D 4/02 C09D 4/02 4J026 5/00 5/00 M 4J038 7/12 7/12 Z 183/07 183/07 G02B 1/11 C08F 292/00 // C08F 292/00 G03F 7/11 503 G03F 7/11 503 G02B 1/10 A F term (reference) 2H025 AA00 AB20 AC01 AD01 BC14 BC43 BC83 CA01 CC06 CC08 FA03 2K009 AA02 BB02 BB28 CC09 CC24 CC42 DD02 DD05 4F006 AA02 AB24 AB39 AB52 BA01 BA02 CA05 CA08 DA01 EA03 4J002 CP141 CP161 DJ016 FB106 GQ00 4J011 PA13 PB16 PC08 QA23 SA01 SA31 TA06 TA09 UA01 UA03 VA01 GA01 BA02 GA01 BA01 GA02 BA00 KA20 MA10 MA14 NA17 NA19 PB08 PC03 PC08

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】平均粒径が5〜100nmのシリカゾル粒
子と分子中にビニル基、アクリロイル基、メタクリロイ
ル基などの重合可能な不飽和結合を少なくとも3個以上
を有するアクリル系化合物とを主成分とする低屈折率組
成物において該組成物中におけるシリカゾル粒子含有量
が30〜80%で、なかでも粒径50〜100nmのシ
リカゾル粒子が20%以上含有されていることを特徴と
する低屈折率組成物。
1. A silica sol particle having an average particle diameter of 5 to 100 nm and an acrylic compound having at least three polymerizable unsaturated bonds such as a vinyl group, an acryloyl group and a methacryloyl group in a molecule. A low-refractive-index composition characterized in that the composition has a silica sol particle content of 30 to 80%, and in particular, 20% or more of silica sol particles having a particle size of 50 to 100 nm. object.
【請求項2】前記低屈折率組成物中にさらにR’x Si
(OR)4-x (R:アルキル基、R’:末端にビニル
基、アクリロイル基、メタクリロイル基などの重合可能
な不飽和結合を有する官能基、xは0<x<4の置換
数、)、およびその加水分解物とが含まれてなることを
特徴とする請求項1に記載の低屈折率組成物。
2. The method according to claim 1, wherein said low refractive index composition further comprises R ' x Si.
(OR) 4-x (R: alkyl group, R ′: functional group having a polymerizable unsaturated bond such as a vinyl group, acryloyl group, methacryloyl group at the terminal, x is the number of substitutions of 0 <x <4) And a hydrolyzate thereof. The low refractive index composition according to claim 1, wherein
【請求項3】前記低屈折率組成物においてアクリル系化
合物が3官能以上のアクリルモノマーおよびその変性体
で、平均分子量が200〜1000であることを特徴と
する請求項1、2記載の低屈折率組成物。
3. The low refractive index according to claim 1, wherein the acrylic compound in the low refractive index composition is an acrylic monomer having three or more functional groups and a modified product thereof, and has an average molecular weight of 200 to 1,000. Rate composition.
【請求項4】前記低屈折率組成物を形成するR’x Si
(OR)4-x がCH2 =CHCOO−(CH)n−Si
(OR)4 (R:アルキル基、xは0<x<4の置換
数、nはn<5の整数)であって、シリカゾル粒子にあ
らかじめ修飾されてなることを特徴とする請求項1〜3
何れか記載の低屈折率組成物。
4. R ′ x Si forming the low refractive index composition
(OR) 4-x is CH 2 CHCHCOO- (CH) n-Si
(OR) 4 (R: alkyl group, x is the number of substitutions of 0 <x <4, n is an integer of n <5), and the silica sol particles are modified in advance. 3
The low refractive index composition according to any one of the above.
【請求項5】前記R’x Si(OR)4-x がCH2 =C
HCOO−(CH)n−Si(OR)4 が修飾粒子に対
して比率が、粒子/CH2 =CHCOO−(CH)n−
Si(OR)4 のモル比で1/0.04〜1/0.25
(重量換算で90/10〜60/40wt%相当)であ
ることを特徴とする請求項4に記載の低屈折率組成物。
5. The method according to claim 1, wherein said R ′ x Si (OR) 4-x is CH 2 CC.
HCOO- (CH) n-Si ratio to (OR) 4 is modified particles, the particle / CH 2 = CHCOO- (CH) n-
1 / 0.04 to 1 / 0.25 by molar ratio of Si (OR) 4
The low-refractive-index composition according to claim 4, wherein the composition is equivalent to 90/10 to 60/40 wt% in terms of weight.
【請求項6】前記R’x Si(OR)4-x がCH2 =C
HCOO−(CH)n−Si(OR)4 を粒子修飾する
際に、pトルエンスルホン酸などのスルホン酸触媒下で
反応させてなるものであることを特徴とする請求項4、
5何れか記載の低屈折率組成物。
6. The method according to claim 1, wherein said R ' x Si (OR) 4-x is CH 2 CC
The particle modification of HCOO- (CH) n-Si (OR) 4 is carried out in the presence of a sulfonic acid catalyst such as p-toluenesulfonic acid.
5. The low refractive index composition according to any one of the above items 5.
【請求項7】請求項1〜6何れか記載の低屈折率組成物
が重合して組成物被膜がナノポーラス構造を呈している
ことを特徴とする低屈折率膜。
7. A low-refractive-index film, characterized in that the low-refractive-index composition according to any one of claims 1 to 6 is polymerized and the composition film has a nanoporous structure.
【請求項8】請求項7記載の低屈折率膜を基材上に高屈
折率膜および必要に応じて他の屈折率膜とともに備えて
いる事を特徴とする光学多層膜。
8. An optical multilayer film comprising the low refractive index film according to claim 7 provided on a substrate together with a high refractive index film and, if necessary, another refractive index film.
【請求項9】光学多層膜が反射防止機能を有するもので
ある請求項8記載の反射防止膜。
9. The anti-reflection film according to claim 8, wherein the optical multilayer film has an anti-reflection function.
JP34737499A 1999-12-07 1999-12-07 Low refractive index composition, low refractive index film, optical multilayer film and antireflection film Expired - Lifetime JP4759780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34737499A JP4759780B2 (en) 1999-12-07 1999-12-07 Low refractive index composition, low refractive index film, optical multilayer film and antireflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34737499A JP4759780B2 (en) 1999-12-07 1999-12-07 Low refractive index composition, low refractive index film, optical multilayer film and antireflection film

Publications (2)

Publication Number Publication Date
JP2001163906A true JP2001163906A (en) 2001-06-19
JP4759780B2 JP4759780B2 (en) 2011-08-31

Family

ID=18389807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34737499A Expired - Lifetime JP4759780B2 (en) 1999-12-07 1999-12-07 Low refractive index composition, low refractive index film, optical multilayer film and antireflection film

Country Status (1)

Country Link
JP (1) JP4759780B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164117A (en) * 1999-12-07 2001-06-19 Toppan Printing Co Ltd High-refractive-index composition and antireflection laminate
WO2002039187A1 (en) * 2000-11-08 2002-05-16 Jsr Corporation Compositions for under-resist film and processes for producing the same, and under-resist films and processes for producing the same
WO2004005976A1 (en) * 2002-07-05 2004-01-15 Nof Corporation Reduced-reflection film having low-refractive-index layer
JP2007507342A (en) * 2003-05-20 2007-03-29 ディーエスエム アイピー アセッツ ビー.ブイ. Method for coating a nanostructured surface, nanostructured coating, and article comprising the coating
US7229686B2 (en) 2002-09-25 2007-06-12 Shin-Etsu Chemical Co., Ltd. Antireflection film and making method
CN100375908C (en) * 2003-06-18 2008-03-19 旭化成株式会社 Antireflective film
CN100500938C (en) * 2007-09-28 2009-06-17 钢铁研究总院 Nano modified acrylic resin emulsion used for zinc coating plate and preparation method thereof
CN102064204A (en) * 2010-12-03 2011-05-18 中国科学院上海硅酸盐研究所 Broadband antireflection nano structure and preparation method thereof
JPWO2011142130A1 (en) * 2010-05-14 2013-07-22 株式会社Kri Modified metal oxide sol
US9435916B2 (en) 2008-12-30 2016-09-06 3M Innovative Properties Company Antireflective articles and methods of making the same
US9908772B2 (en) 2008-12-30 2018-03-06 3M Innovative Properties Company Nanostructured articles and methods of making nanostructured articles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131214A (en) * 1980-12-18 1982-08-14 Gen Electric Abrasion resistant ultraviolet ray curable coating composition and manufacture
JPH04234441A (en) * 1990-09-10 1992-08-24 Minnesota Mining & Mfg Co <3M> Covering material having improved adhesiveness to organic covering
WO1997011129A1 (en) * 1995-09-20 1997-03-27 Mitsubishi Rayon Co., Ltd. Coating composition forming wear-resistant coat and article covered with the coat
JPH116902A (en) * 1997-04-04 1999-01-12 Fuji Photo Film Co Ltd Reflection preventing film and picture display device using it
JP2001164117A (en) * 1999-12-07 2001-06-19 Toppan Printing Co Ltd High-refractive-index composition and antireflection laminate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131214A (en) * 1980-12-18 1982-08-14 Gen Electric Abrasion resistant ultraviolet ray curable coating composition and manufacture
JPH04234441A (en) * 1990-09-10 1992-08-24 Minnesota Mining & Mfg Co <3M> Covering material having improved adhesiveness to organic covering
WO1997011129A1 (en) * 1995-09-20 1997-03-27 Mitsubishi Rayon Co., Ltd. Coating composition forming wear-resistant coat and article covered with the coat
JPH116902A (en) * 1997-04-04 1999-01-12 Fuji Photo Film Co Ltd Reflection preventing film and picture display device using it
JP2001164117A (en) * 1999-12-07 2001-06-19 Toppan Printing Co Ltd High-refractive-index composition and antireflection laminate

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164117A (en) * 1999-12-07 2001-06-19 Toppan Printing Co Ltd High-refractive-index composition and antireflection laminate
WO2002039187A1 (en) * 2000-11-08 2002-05-16 Jsr Corporation Compositions for under-resist film and processes for producing the same, and under-resist films and processes for producing the same
WO2004005976A1 (en) * 2002-07-05 2004-01-15 Nof Corporation Reduced-reflection film having low-refractive-index layer
CN100334469C (en) * 2002-07-05 2007-08-29 日本油脂株式会社 Reduced-reflection film having low-refractive-index layer
US7229686B2 (en) 2002-09-25 2007-06-12 Shin-Etsu Chemical Co., Ltd. Antireflection film and making method
JP2007507342A (en) * 2003-05-20 2007-03-29 ディーエスエム アイピー アセッツ ビー.ブイ. Method for coating a nanostructured surface, nanostructured coating, and article comprising the coating
US7604866B2 (en) 2003-06-18 2009-10-20 Asahi Kasei Kabushiki Kaisha Antireflection film
CN100375908C (en) * 2003-06-18 2008-03-19 旭化成株式会社 Antireflective film
CN100500938C (en) * 2007-09-28 2009-06-17 钢铁研究总院 Nano modified acrylic resin emulsion used for zinc coating plate and preparation method thereof
US9435916B2 (en) 2008-12-30 2016-09-06 3M Innovative Properties Company Antireflective articles and methods of making the same
US9908772B2 (en) 2008-12-30 2018-03-06 3M Innovative Properties Company Nanostructured articles and methods of making nanostructured articles
US9939557B2 (en) 2008-12-30 2018-04-10 3M Innovative Properties Company Antireflective articles and methods of making the same
JPWO2011142130A1 (en) * 2010-05-14 2013-07-22 株式会社Kri Modified metal oxide sol
JP5750436B2 (en) * 2010-05-14 2015-07-22 株式会社Kri Modified metal oxide sol
CN102064204A (en) * 2010-12-03 2011-05-18 中国科学院上海硅酸盐研究所 Broadband antireflection nano structure and preparation method thereof
CN102064204B (en) * 2010-12-03 2014-06-18 中国科学院上海硅酸盐研究所 Broadband antireflection nano structure and preparation method thereof

Also Published As

Publication number Publication date
JP4759780B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4590705B2 (en) Anti-reflection laminate
US5840428A (en) Organically-modified, radiation-curable siloxane resin and method of making the same
JP5289708B2 (en) Coating composition and resin laminate
JP4292634B2 (en) Method for manufacturing antireflection laminate
KR101497409B1 (en) Resin composition
WO2006093748A2 (en) Inorganic-organic hybrid nanocomposite antiglare and antireflection coatings
US5449702A (en) Coating composition and process for producing abrasion-resistant synthetic resin molded articles
JP2002053805A (en) Coating film forming composition
JP3197918B2 (en) Coating composition and surface modification method of synthetic resin molded article
JP2001163906A (en) Low refractive index composition, low refractive index film, optical multilayer film and antireflection film
JP2003517369A (en) Coating material
JP4736234B2 (en) Method for manufacturing antireflection laminate
JPH05339541A (en) Coating composition
JP2001164117A (en) High-refractive-index composition and antireflection laminate
JP4480408B2 (en) Coating composition for silver plating and method for producing the same
JP2000356705A (en) High refractive index composition and optical film comprising the same
JP2002235036A (en) Antireflection laminate
CA2421465A1 (en) Coating compositions
JP2000191944A (en) Silico-acrylic composition for obtaining abrasion- and scratch-resistant coating, its production and use
JP5337360B2 (en) Coating composition, cured film and resin laminate
JPH03145602A (en) Laminate and production thereof
JP2000336313A (en) Coating composition having high refractive index
JP4590665B2 (en) High refractive index composition, high refractive index film and antireflection film
JP5124892B2 (en) Low refractive index composition for coating and optical multilayer film comprising the composition
JP3377303B2 (en) Coating composition and method for producing wear-resistant article using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4759780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term