JP2001156351A - Laminated-structure electrode, formation method therefor, and piezoelectric actuator - Google Patents

Laminated-structure electrode, formation method therefor, and piezoelectric actuator

Info

Publication number
JP2001156351A
JP2001156351A JP33670099A JP33670099A JP2001156351A JP 2001156351 A JP2001156351 A JP 2001156351A JP 33670099 A JP33670099 A JP 33670099A JP 33670099 A JP33670099 A JP 33670099A JP 2001156351 A JP2001156351 A JP 2001156351A
Authority
JP
Japan
Prior art keywords
film
electrode
laminated
substrate
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33670099A
Other languages
Japanese (ja)
Inventor
Zenichi Akiyama
善一 秋山
Jun Aketo
純 明渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Ricoh Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Ricoh Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP33670099A priority Critical patent/JP2001156351A/en
Publication of JP2001156351A publication Critical patent/JP2001156351A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electrode film comprising a film thickness optimized for preventing peeling at an piezoelectric film/electrode interface. SOLUTION: A PZT piezoelectric ceramics particulate 13 is allowed to float in a carrier gas for aerosolization, which is jetted onto a substrate on a substrate holder 17 through a nozzle 15 at a high sped to form a film. A gas- deposition PZT piezoelectric ceramic shows a ferroelectric characteristics after the thermal process at 600 deg.C or above after deposition, while showing a piezoelectric characteristics after polarization thereafter. The substrate (base material) is required to have a strong adhesion with the gas-deposition PZT film. The adhesion between the gas-deposition film and the base material is provided by the uncurling effect wherein the collision particles get into the base material at an initial state. The thickness of base material electrode film (0.15 μm or more) which allows sufficient engagement provides a strong adhesive force.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、積層構造電極、そ
の形成方法、及び、前記積層構造電極又は前記形成方法
によって形成された積層構造電極を用いた圧電アクチュ
エータに関し、より詳細には、セラミックス粒子をノズ
ルから基板に噴射し堆積膜を得るガスデポジション法成
膜において、圧電アクチュエータやセンサを製造するの
にふさわしい下地積層電極膜の構造及びその形成方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated electrode, a method of forming the same, and a piezoelectric actuator using the laminated electrode or the laminated electrode formed by the forming method. The present invention relates to a structure of a base laminated electrode film suitable for manufacturing a piezoelectric actuator or a sensor and a method of forming the same in a gas deposition method for forming a deposited film by injecting a gas from a nozzle to a substrate.

【0002】[0002]

【従来の技術】基板上に圧電セラミックス膜を配置し、
アクチュエータやセンサ素子に利用する試みが為されて
いる。ユニモルフ素子、バイモルフ素子として従来から
製品化されている素子は、各々の材料を接合して形成す
る為、素子の小型化にとって不向きであった。しかし、
近年、ガスデポジション法により、従来では作製が困難
であった圧電セラミックスの基板上への形成が可能にな
り、素子の小型化に有効であることが示されつつある。
2. Description of the Related Art A piezoelectric ceramic film is arranged on a substrate,
Attempts have been made to use it for actuators and sensor elements. Conventionally, devices manufactured as a unimorph device and a bimorph device are not suitable for miniaturization of the device because they are formed by bonding respective materials. But,
In recent years, a gas deposition method has made it possible to form piezoelectric ceramics on a substrate, which was conventionally difficult to produce, and has been shown to be effective in miniaturizing elements.

【0003】ガスデポジション法は、例えば、特許第1
660799号に記載されているように超微粒子を用い
た膜形成法である。真空蒸着法と同様に金属加熱源およ
び真空容器を配置させ、金属蒸気から超微粒子を形成
し、この超微粒子からなる膜を基板上に形成する。この
様なガスデポジション法による金属膜の形成は、Ni,
Cuなどの配線材料で実用化され、具体的には、各種プ
リント配線基板の断線修復や半導体装置における表面実
装用パッド電極の形成などに用いられている。
The gas deposition method is disclosed, for example, in Japanese Patent No.
This is a film formation method using ultrafine particles as described in Japanese Patent No. 660799. As in the case of the vacuum evaporation method, a metal heating source and a vacuum vessel are arranged, ultrafine particles are formed from metal vapor, and a film made of the ultrafine particles is formed on a substrate. Formation of a metal film by such a gas deposition method is performed by using Ni,
It is put to practical use with wiring materials such as Cu, and is specifically used for repairing disconnection of various printed wiring boards and forming pad electrodes for surface mounting in semiconductor devices.

【0004】一方、金属材料とは異なり、酸化物セラミ
ックス材料の超微粒子を用いた膜形成も提案されてい
る。例えば、特開平3−93606号公報には、Bi−
Pb−Sr−Ca−Cu−Oからなる酸化物超伝導厚膜
の形成法が示されている。特開平4−188503号公
報には、BaTiO3セラミックス誘電体厚膜とその耐
圧を確保する為の高分子塗膜の複合膜に関する形成法が
示されている。特開平8−230181号公報、特開平
8−267763号公報には、ガスデポジション法によ
り鉛系圧電セラミックス素子を形成し、これを用いたイ
ンクジェット用プリンターヘッドへの展開が示されてい
る。
[0004] On the other hand, unlike a metal material, a film formation using ultrafine particles of an oxide ceramic material has been proposed. For example, Japanese Patent Application Laid-Open No. 3-93606 discloses a Bi-
A method for forming an oxide superconducting thick film made of Pb-Sr-Ca-Cu-O is shown. Japanese Patent Application Laid-Open No. Hei 4-188503 discloses a method for forming a composite film of a BaTiO 3 ceramic dielectric thick film and a polymer coating film for securing the withstand voltage thereof. Japanese Patent Application Laid-Open Nos. Hei 8-230181 and Hei 8-267763 show development of a lead-based piezoelectric ceramic element formed by a gas deposition method and application to an ink jet printer head using the same.

【0005】また、Jpn.J.Appl.Phys.Vo
l.36(1997)1159においては、Pt膜を堆
積したSi基板上に、基板温度700℃にてPZTをガ
スデポジション成膜し、その後、900℃程の高温にて
熱処理を施した例が示されているが、同文献中には、下
部電極膜を通過してSiとPZT膜の相互拡散が生じ、
PZT膜特性が劣化することが示されている。
[0005] Also, Jpn.J.Appl.Phys.Vo.
In 1.36 (1997) 1159, PZT is gas-deposited at a substrate temperature of 700 ° C. on a Si substrate on which a Pt film is deposited, and then heat treatment is performed at a high temperature of about 900 ° C. As shown in the document, mutual diffusion of Si and the PZT film occurs through the lower electrode film,
It is shown that the properties of the PZT film deteriorate.

【0006】[0006]

【発明が解決しようとする課題】上述の様に、Si基板
上に形成されるPZT圧電膜を電気−機械変換素子(圧
電アクチュエータ)として使用する際、各種の熱履歴
後、電極膜を介しての相互拡散による圧電性の劣化や、
プロセス中での膜剥離等の故障が発生し、安定した素子
を供給することが困難な状態にある。その原因は、基板
と電極膜の密着性不良、電極膜とガスデポジション圧電
膜の密着力不足、電極膜の鉛拡散、Si拡散の素子能力
の低さ、等に起因していた。
As described above, when a PZT piezoelectric film formed on a Si substrate is used as an electro-mechanical transducer (piezoelectric actuator), after various heat histories, the electrode film passes through the electrode film. Degradation of piezoelectricity due to mutual diffusion of
A failure such as film peeling during the process occurs, and it is difficult to supply a stable element. The causes were caused by poor adhesion between the substrate and the electrode film, insufficient adhesion between the electrode film and the gas deposition piezoelectric film, lead diffusion of the electrode film, and low element performance of Si diffusion.

【0007】本発明は、上述のごとき実情に鑑みてなさ
れたもので、請求項1の発明は、圧電膜/電極界面での
剥離を防ぐ為の適正化された膜厚からなる電極膜を提供
すること、請求項2の発明は、圧電膜/電極界面での剥
離を防ぐ為の良好なPt膜組織を提供すること、請求項
3の発明は、圧電膜/電極界面での剥離を防ぐ為の良好
な配向成長したPt膜を提供すること、請求項4の発明
は、Si基板上に配置した電極膜の剥離を防止し、か
つ、熱履歴に対し相互拡散を防げる電極膜構成を提供す
ること、請求項5の発明は、積層電極の各種の材料の薄
膜化において良好な作製方法を提供すること、請求項6
の発明は、請求項1乃至4に記載の電極対策が施された
電極膜の上に、ガスデポジション法によって形成された
圧電膜を有する圧電アクチュエータを提供すること、を
目的としてなされたものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and the invention of claim 1 provides an electrode film having an optimized film thickness for preventing separation at a piezoelectric film / electrode interface. The invention of claim 2 provides a good Pt film structure for preventing peeling at the piezoelectric film / electrode interface, and the invention of claim 3 provides for preventing peeling at the piezoelectric film / electrode interface. The invention of claim 4 provides an electrode film configuration that prevents peeling of an electrode film disposed on a Si substrate and prevents mutual diffusion against thermal history. The invention of claim 5 provides a good manufacturing method in thinning various materials of the laminated electrode.
The object of the present invention is to provide a piezoelectric actuator having a piezoelectric film formed by a gas deposition method on an electrode film provided with the electrode measures described in claims 1 to 4. is there.

【0008】[0008]

【課題を解決するための手段】請求項1の発明は、電極
膜を配置したSi基板上にガスデポジション法で圧電体
膜を形成してなる積層構造電極において、前記電極膜は
1種以上の材料膜からなり、その膜厚が0.15μmよ
り厚い膜厚であることを特徴としたものである。
According to a first aspect of the present invention, there is provided a laminated electrode having a piezoelectric film formed by a gas deposition method on a Si substrate on which an electrode film is disposed, wherein the electrode film comprises at least one kind of electrode film. And a film thickness of more than 0.15 μm.

【0009】請求項2の発明は、電極膜を配置したSi
基板上にガスデポジション法で圧電体膜を形成してなる
積層構造電極において、前記電極膜がPt材料で、か
つ、粒径が0.1μm以上の粒組織からなることを特徴
としたものである。
According to a second aspect of the present invention, there is provided a semiconductor device in which an electrode film is disposed.
In a laminated structure electrode in which a piezoelectric film is formed on a substrate by a gas deposition method, the electrode film is made of a Pt material and has a grain structure having a grain size of 0.1 μm or more. is there.

【0010】請求項3の発明は、請求項2の発明におい
て、前記Ptの電極膜が(111)面に優先配向し、そ
の配向度が75%以上であることを特徴としたものであ
る。
The invention of claim 3 is characterized in that, in the invention of claim 2, the Pt electrode film is preferentially oriented to the (111) plane, and the degree of orientation is 75% or more.

【0011】請求項4の発明は、Si基板上に電気的な
絶縁機能を有する絶縁膜を配置し、その上に、密着機能
を有する膜を積層し、その上に、電極膜としてIr又は
IrO2、又はこれら積層体のうちの少なくとも1つを
有し、さらに、その上に、Pt膜が堆積されていること
を特徴としたものである。
According to a fourth aspect of the present invention, an insulating film having an electrical insulating function is disposed on a Si substrate, a film having an adhesion function is laminated thereon, and Ir or IrO is formed thereon as an electrode film. 2 or at least one of these laminates, and further, a Pt film is deposited thereon.

【0012】請求項5の発明は、Si基板上に電気的な
絶縁機能を有する膜を積層し、その上に、密着機能を有
する膜を積層し、その上に、電極膜としてIr又はIr
2又はこれら積層体のうちの少なくとも1つを積層
し、さらに、その上に、Pt膜を積層する積層構造電極
の形成方法において、前記各膜を成膜する時の前記基板
温度を300℃以上とすることを特徴としたものであ
る。
According to a fifth aspect of the present invention, a film having an electrical insulation function is laminated on a Si substrate, a film having an adhesion function is laminated thereon, and Ir or Ir is formed thereon as an electrode film.
O 2 or by laminating at least one of these laminates, further thereon, the method for forming a stacked structure electrodes of laminating Pt film, 300 ° C. the substrate temperature when forming the respective films It is characterized by the above.

【0013】請求項6の発明は、請求項1乃至4のいず
れかの電極膜の上、又は、請求項5の方法によって形成
された電極膜の上に、ガスデポジション法によりPZT
系圧電セラミックス膜を積層し、その上に、第2の電極
膜を配置してなることを特徴としたものである。
According to a sixth aspect of the present invention, a PZT is formed by a gas deposition method on the electrode film of any one of the first to fourth aspects or on the electrode film formed by the method of the fifth aspect.
A piezoelectric ceramic film is laminated, and a second electrode film is disposed thereon.

【0014】[0014]

【発明の実施の形態】(請求項1の発明)図1は、ガス
デポジション装置の一構成例を示す図で、図中、11は
キャリアガスボンベ、12はエアロゾルチェンバー、1
3はPZT圧電セラミックス微粒子、14はデポジショ
ンチェンバー、15はノズル、16はパターンマスク、
17は基板ホルダー、18はX−Y−Zθステージ、1
9はバキュームシステムで、成膜原理は、PZT圧電セ
ラミックス微粒子13をキャリアガス中に浮遊させてエ
アロゾル化し、このエアロゾルを高速で基板ホルダー1
7上の基板に噴射して膜形成するものである。ガスデポ
ジションPZT圧電セラミックスは、堆積後の600℃
以上の熱処理による強誘電特性、ならびに、その後の分
極処理により圧電性が出現する。従って、基板材料なら
びに電極膜はこの温度以上の耐熱性や耐反応性を有する
必要がある。また、ガスデポジションPZT膜と強固な
密着力を発揮出来ることが要求される。窯業的知見に基
づき、Pt材料はPZTセラミックスとの反応性が低
く、耐熱性があることから、従来から使用されている。
また、薄膜PZTの下部電極としても用いられてきた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Invention of Claim 1) FIG. 1 is a view showing an example of a configuration of a gas deposition apparatus, in which 11 is a carrier gas cylinder, 12 is an aerosol chamber, and 1 is an aerosol chamber.
3 is a PZT piezoelectric ceramic fine particle, 14 is a deposition chamber, 15 is a nozzle, 16 is a pattern mask,
17 is a substrate holder, 18 is an XYZ stage, 1
Reference numeral 9 denotes a vacuum system. The principle of film formation is that PZT piezoelectric ceramic fine particles 13 are suspended in a carrier gas to form an aerosol, and the aerosol is converted into a substrate holder 1 at high speed.
7 to form a film by spraying it on the substrate above. Gas deposited PZT piezoelectric ceramics are deposited at 600 ° C
Ferroelectric characteristics by the above heat treatment and piezoelectricity appear by the subsequent polarization treatment. Therefore, the substrate material and the electrode film need to have heat resistance and reaction resistance higher than this temperature. Further, it is required that a strong adhesion to the gas deposition PZT film can be exhibited. Based on ceramic knowledge, Pt materials have been used conventionally because of their low reactivity with PZT ceramics and heat resistance.
It has also been used as a lower electrode of a thin film PZT.

【0015】しかし、前述のように、PZT膜剥離など
の故障が存在し、安定した積層体を作製するのは困難で
あった。ガスデポジション膜と下地との密着力は、図2
に示すように、初期における衝突粒子が下地に食い込
む、いわゆる、アンカーリング効果にて強固な密着がな
される。従って、十分な食い込みを許容する下地電極膜
厚(0.15μm以上)を提供することで、強固な密着
力が得られる。
However, as described above, there was a failure such as peeling of the PZT film, and it was difficult to produce a stable laminate. Figure 2 shows the adhesion between the gas deposition film and the substrate.
As shown in (1), strong adhesion is achieved by the so-called anchoring effect, in which the collision particles in the initial stage bite into the base. Therefore, by providing a base electrode film thickness (0.15 μm or more) that allows sufficient penetration, a strong adhesion can be obtained.

【0016】(請求項2の発明)Si基板上にPt膜を
スパッタリング法により成膜するが、その膜組織はスパ
ッタリング条件により変化する。このPt膜にガスデポ
ジション法によってPZT膜を形成するが、その時、P
ZT粒子がPt膜に食い込むアンカーリング効果は、こ
のPt膜の組織に大きく作用される。従って、成膜条件
を変化させることにより膜粒径を変化させ、その上にガ
スデポジション膜を堆積させ、その後に、膜の密着程度
を評価する。膜粒径は走査型電子顕微鏡(SEM)にて
30000倍の写真撮影を行い粒径を算出した。その結
果、Pt粒子の粒径が0.1μm以上の時に十分な密着
力が得られた。付着強度はテープ剥離試験をガスデポジ
ション成膜後の膜について実施する。
(Invention of Claim 2) A Pt film is formed on a Si substrate by a sputtering method, and the structure of the film changes depending on the sputtering conditions. A PZT film is formed on this Pt film by a gas deposition method.
The anchoring effect of ZT particles digging into the Pt film is greatly affected by the structure of the Pt film. Therefore, the film diameter is changed by changing the film forming conditions, a gas deposition film is deposited thereon, and then the degree of adhesion of the film is evaluated. The particle diameter of the film was calculated by taking a photograph of 30,000 times with a scanning electron microscope (SEM). As a result, when the particle size of the Pt particles was 0.1 μm or more, sufficient adhesion was obtained. The adhesive strength is measured by performing a tape peeling test on the film after gas deposition.

【0017】(請求項3の発明)Pt電極膜は、各種ス
パッタ条件により結晶配向が異なる。前記と同様な試験
を行い、強固な付着を得る為の膜配向を求めた。膜の配
向性はXRD測定を行い、Lotgeringの示した
計算法に従う。すなわち、XRD2θ/θ測定を、2θ
が20°〜85°の範囲でスキャンさせ、検出される回
折ピークに対し、以下の計算を行う。無配向状態の回折
データはJCPDSカードデータを用いる。
(Invention of Claim 3) The crystal orientation of the Pt electrode film varies depending on various sputtering conditions. The same test as described above was performed, and the film orientation for obtaining strong adhesion was determined. The orientation of the film is measured by XRD and follows the calculation method shown by Lotgering. That is, the XRD2θ / θ measurement is
Is scanned in the range of 20 ° to 85 °, and the following calculation is performed on the detected diffraction peak. JCPDS card data is used as diffraction data in a non-oriented state.

【0018】各結晶面からの反射(回折)強度をI(h
k l)とし、それらの合計をΣI(h k l)と
する。無配向状態における(1 1 1)反射強度の全
強度に対する割合をP0とすると、P0は式(1)で表
される。
The reflection (diffraction) intensity from each crystal plane is represented by I (h
kl), and their sum is ΔI (hkl). Assuming that the ratio of the (11 1) reflection intensity in the non-aligned state to the total intensity is P0, P0 is represented by equation (1).

【0019】[0019]

【数1】 (Equation 1)

【0020】同じように、配向した膜からの反射強度に
ついても同様な計算を行い、その比をPとすると、Pは
式(2)で表される。
Similarly, the same calculation is performed for the reflection intensity from the oriented film, and when the ratio is P, P is expressed by equation (2).

【0021】[0021]

【数2】 (Equation 2)

【0022】前記式(1)、(2)で求めたP0とPか
ら配向度Fを求めるが、その配向度Fは式(3)のよう
に定義される。
The degree of orientation F is obtained from P0 and P obtained by the above equations (1) and (2). The degree of orientation F is defined as in equation (3).

【0023】[0023]

【数3】 (Equation 3)

【0024】実際の反射強度はピークの積分面積、また
は、ピーク高さより求めて良い。Pt膜の(111)配
向度が75%以上の時に良好な密着力が得られる。これ
は、Pt膜強度が膜配向により変化し、結果として付着
力の向上にいたるものと考えられる。
The actual reflection intensity can be obtained from the integrated area of the peak or the peak height. When the (111) orientation degree of the Pt film is 75% or more, good adhesion is obtained. This is considered to be due to the fact that the strength of the Pt film changes depending on the film orientation, and as a result, the adhesion is improved.

【0025】(請求項4の発明)Pt電極膜は電気的に
絶縁体であるSiO2膜等の上に配置される。または、
直接Si基板上に配置される。しかし、これら下地とP
t膜との密着力は乏しいため、一般に、両者に相性の良
い密着膜が薄く配置される。この密着膜として、従来か
らTi,Ta,Crなどが用いられてきた。しかし、こ
れらの膜は600℃以上の熱履歴により、Pt膜と反応
し、Pt膜内に取り込まれる、または、Pt膜を透過し
て来る酸素により酸化反応をし、密着膜としての機能を
低減させる。したがって、Ptと密着膜との間にIt系
材料からなる膜を配置することにより、このPt膜の剥
離を防止する。Ir膜、または、IrO2膜は導電性で
あり、本発明では、これら膜とPt膜を電極膜として定
義している。Pt/Ir/密着膜/SiO2/Siなる
基板に対し、PZTガスデポジション膜を形成し、熱処
理後のPZT膜の付着強度を試験する。
(Invention of Claim 4) The Pt electrode film is disposed on an electrically insulating SiO 2 film or the like. Or
It is arranged directly on the Si substrate. However, these bases and P
Since the adhesion to the t film is poor, an adhesion film compatible with both is generally thinly arranged. Conventionally, Ti, Ta, Cr and the like have been used as this adhesion film. However, these films react with the Pt film due to a heat history of 600 ° C. or more, and undergo an oxidation reaction by oxygen taken in the Pt film or oxygen passing through the Pt film, thereby reducing the function as an adhesion film. Let it. Therefore, by disposing a film made of an It-based material between Pt and the adhesion film, the peeling of the Pt film is prevented. The Ir film or the IrO 2 film is conductive, and in the present invention, these films and the Pt film are defined as electrode films. A PZT gas deposition film is formed on a substrate of Pt / Ir / adhesion film / SiO 2 / Si, and the adhesion strength of the PZT film after the heat treatment is tested.

【0026】(請求項5の発明)上述の様な密着膜を有
する積層膜を再現性よく安定して作製する為のスパッタ
リング条件のうち、基板温度を適正化する。密着膜、及
び、その上部に成膜される電極膜を基板温度300℃以
上で成膜するのが密着膜/下地界面の剥離防止に効果的
であった。
(Invention of claim 5) Among the sputtering conditions for stably producing a laminated film having the above-mentioned adhesion film with good reproducibility, the substrate temperature is optimized. Forming the adhesion film and the electrode film formed thereon at a substrate temperature of 300 ° C. or more was effective in preventing separation of the adhesion film / base interface.

【0027】(請求項6の発明)上述の様な各対策を施
した電極膜の上にガスデポジション法によってPZT膜
を成膜し、熱処理を施し、その上に、上部電極を配置
し、分極処理を施す。次に、膜堆積面の裏面より、Si
基板をエッチングして、部分的に薄層化した構造体を形
成する。電界印加に対する圧電歪みによる膜変形を計測
し、電気−機械変換素子(圧電アクチュエータ)の機能
を確認する。
(Invention of claim 6) A PZT film is formed by a gas deposition method on the electrode film which has been subjected to the above-described countermeasures, and a heat treatment is performed, and an upper electrode is disposed thereon. A polarization process is performed. Next, from the back surface of the film deposition surface, Si
The substrate is etched to form a partially thinned structure. The film deformation due to the piezoelectric strain caused by the applied electric field is measured, and the function of the electromechanical transducer (piezoelectric actuator) is confirmed.

【0028】実施例1(請求項1に対応) 表1にPZTガスデポジション条件を示す。Example 1 (corresponding to claim 1) Table 1 shows PZT gas deposition conditions.

【0029】[0029]

【表1】 [Table 1]

【0030】図2は、Si基板上への成膜例であるが、
PZT粒子がSi基板にめり込み、良好なアンカーリン
グ効果が得られている。この基板−膜遷移層の厚さは、
約0.15μmにおよんでいた。これよりアンカー効果
による密着力確保と、それを許容させる電極膜の厚さが
推定され、以下の実験を試みた。
FIG. 2 shows an example of film formation on a Si substrate.
The PZT particles sink into the Si substrate, and a good anchoring effect is obtained. The thickness of this substrate-film transition layer is
It was about 0.15 μm. From this, it was estimated that the adhesion was secured by the anchor effect and the thickness of the electrode film that allowed the adhesion was estimated, and the following experiment was attempted.

【0031】スパッタリングでPt/Ti膜をSiO2
付きSi基板上に成膜し、密着層Ti膜厚を50nmに
固定し、Ptの膜厚をスパッタ時間を変化させることに
より、各種の膜厚を準備した。表2に、Pt膜厚とガス
デポジションPZT膜のテープ剥離試験の結果を示す。
The Pt / Ti film is formed by sputtering using SiO 2
Various thicknesses were prepared by depositing a film on the Si substrate with the adhesive layer, fixing the thickness of the adhesion layer Ti to 50 nm, and changing the thickness of the Pt film by changing the sputtering time. Table 2 shows the results of the tape peeling test of the Pt film thickness and the gas deposition PZT film.

【0032】[0032]

【表2】 [Table 2]

【0033】実施例2(請求項2に対応) 表3に、Pt膜形成のスパッタリング条件を示す。ま
た、図3に典型的なSEM写真を示す。複数の写真撮影
を行い、無作為に直線を引き、この線に交わる粒子の径
を測定する。サンプル数は100点以上行い、相加平均
から粒径を求めた。表4に、Pt膜粒径とガスデポジシ
ョンPZT膜のテープ剥離試験の結果を示す。
Example 2 (corresponding to claim 2) Table 3 shows sputtering conditions for forming a Pt film. FIG. 3 shows a typical SEM photograph. A plurality of photographs are taken, a straight line is drawn at random, and the diameter of a particle intersecting this line is measured. The number of samples was 100 or more, and the particle size was determined from the arithmetic mean. Table 4 shows the results of the Pt film particle diameter and the tape peeling test of the gas deposition PZT film.

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】実施例3(請求項3に対応) 図4に、典型的なPt膜のXRDパターンを示す。配向
度を極端に低下させる為に、配向度70%以下のPt膜
作製には、スパッタガスに微量のO2ガスを添加させ
た。Pt膜厚は0.3μmである。表5に、Pt(11
1)配向度とガスデポジションPZT膜のテープ剥離試
験の結果を示す。
Embodiment 3 (corresponding to claim 3) FIG. 4 shows an XRD pattern of a typical Pt film. In order to extremely lower the degree of orientation, a small amount of O 2 gas was added to the sputtering gas for producing a Pt film having an degree of orientation of 70% or less. The Pt film thickness is 0.3 μm. Table 5 shows that Pt (11
1) The results of the degree of orientation and the tape peeling test of the gas deposition PZT film are shown.

【0037】[0037]

【表5】 [Table 5]

【0038】実施例4(請求項4に対応) 密着膜にTa、第1の電極にIr、第2の電極にPtを
それぞれマグネトロンスパッタ法にて成膜した。層構成
はPt(300)/Ir(300)/Ta(100)/
SiO2(800)/Si基板である。ただし、( )
内の数字は厚さを示し、単位はnmである。ガスデポジ
ションPZT膜を成膜した後、第1のテープ剥離試験を
実施した。さらに、実プロセスに即した熱処理を行っ
た。処理温度は600、650、700℃の3水準で、
時間は2時間とした。熱処理後、テープ剥離試験を行っ
た。試料数は10とした。比較として、次の試料:Pt
(600)/Ti(100)/SiO2(800)/S
i、Pt(600)/Ta/SiO2(800)/Si
について同様に行った。表6に、その結果を示す。表6
中の数字は剥離試験にて膜剥離が生じなかったものの数
を分子に、試料数を分母に示す。
Example 4 (corresponding to claim 4) Ta was formed on the adhesion film, Ir was formed on the first electrode, and Pt was formed on the second electrode by magnetron sputtering. The layer structure is Pt (300) / Ir (300) / Ta (100) /
An SiO 2 (800) / Si substrate. However, ()
The numbers in parentheses indicate the thickness, and the unit is nm. After forming the gas deposition PZT film, a first tape peeling test was performed. Further, heat treatment was performed according to the actual process. The processing temperature is three levels of 600, 650 and 700 ° C.
The time was 2 hours. After the heat treatment, a tape peeling test was performed. The number of samples was 10. For comparison, the following sample: Pt
(600) / Ti (100) / SiO 2 (800) / S
i, Pt (600) / Ta / SiO 2 (800) / Si
Was performed similarly. Table 6 shows the results. Table 6
The numbers in the table indicate the number of samples that did not undergo film peeling in the peeling test as the numerator and the number of samples as the denominator.

【0039】[0039]

【表6】 [Table 6]

【0040】Ti密着層は熱処理中に酸化され、密着膜
としての機能を消失させる。Ta膜も同様に好ましくな
い結果を示す。ただし、650℃以上ではTiより優位
である。Ir膜を配置することにより、密着膜の機能は
保持される。
The Ti adhesion layer is oxidized during the heat treatment and loses its function as an adhesion film. Ta films also show undesirable results. However, it is superior to Ti at 650 ° C. or higher. By arranging the Ir film, the function of the adhesion film is maintained.

【0041】実施例5(請求項5に対応) 表3に示した条件でスパッタリング成膜をした場合、ス
パッタ粒子のエネルギが各条件により変化し、膜質も変
化する。しかし、スパッタ圧力、ターゲット投入パワー
に対する膜質依存は少なく、主に、基板温度が膜質を決
定的に支配することがわかった。実施例4のPt/Ir
/Ta膜を各温度でスパッタ成膜し、600℃熱処理後
のガスデポジションPZT膜剥離試験を行った。剥離し
た試料は全て密着膜/SiO2界面で発生した。表7
に、その結果を示すが、全ての膜を300℃以上で成膜
することで不良は発生しない。
Example 5 (corresponding to claim 5) When a film is formed by sputtering under the conditions shown in Table 3, the energy of sputtered particles changes according to each condition, and the film quality also changes. However, it has been found that the film quality is less dependent on the sputtering pressure and the target input power, and the substrate temperature mainly determines the film quality. Pt / Ir of Example 4
A / Ta film was formed by sputtering at each temperature, and a gas deposition PZT film peeling test after heat treatment at 600 ° C. was performed. All of the peeled samples were generated at the interface between the adhesion film and SiO 2 . Table 7
The results are shown below, but no defect occurs when all the films are formed at 300 ° C. or higher.

【0042】[0042]

【表7】 [Table 7]

【0043】実施例6(請求項6に対応) 図5に示す構成のアクチュエータを作製した。図5にお
いて、上層から、上部電極(Au)21,ガスデポジシ
ョンPZT(50μm)22,Pt/Ir/Ta/Si
223,Si基板(650μm)24である。電極膜
等は前述の実施例4と同じである。また、裏面より堀加
工Aを施した部位のSi基板24の厚さは170μmで
ある。なお、図中、Dは6×6mm、PZTの幅dは5
×5mmである。
Example 6 (corresponding to claim 6) An actuator having the structure shown in FIG. 5 was manufactured. In FIG. 5, an upper electrode (Au) 21, a gas deposition PZT (50 μm) 22, Pt / Ir / Ta / Si,
O 2 23 and a Si substrate (650 μm) 24. The electrode film and the like are the same as those in the fourth embodiment. Further, the thickness of the Si substrate 24 at the portion where the moat processing A was performed from the back surface is 170 μm. In the drawing, D is 6 × 6 mm, and the width d of PZT is 5
× 5 mm.

【0044】Si基板24上に各膜を成膜した(前述ま
での実施例と同じ条件)。次に、600℃熱処理を行っ
た。PZT面積とほぼ等しい面積で、上部電極21をス
パッタリングにて成膜した。下地電極23と上部電極2
1に電界を印加し、分極処理を行い、最後に、堀加工部
AをKOHアルカリ溶液にてエッチング処理を行った。
0−100Vのパルス信号を印加し、振動変位をレーザ
ー変位計で測定した。図6に、その結果を示す。図6に
示すように、試料は周辺固定端平板歪みに対応した理想
的な振動変位を示す。また、周波数帯域も広く10kH
z以上においても変位は一定であり、100V印加時の
最大変位は1.6μmであった。
Each film was formed on the Si substrate 24 (under the same conditions as in the above-described embodiments). Next, a heat treatment at 600 ° C. was performed. The upper electrode 21 was formed by sputtering with an area approximately equal to the PZT area. Base electrode 23 and upper electrode 2
An electric field was applied to No. 1 to perform a polarization process. Finally, the trench A was etched with a KOH alkaline solution.
A pulse signal of 0 to 100 V was applied, and the vibration displacement was measured with a laser displacement meter. FIG. 6 shows the results. As shown in FIG. 6, the sample shows an ideal vibration displacement corresponding to the peripheral fixed end plate distortion. In addition, the frequency band is wide and 10 kHz
The displacement was constant even at z or more, and the maximum displacement when 100 V was applied was 1.6 μm.

【0045】[0045]

【発明の効果】請求項1の発明は、電極膜を配置したS
i基板上にガスデポジション法で圧電体膜を形成してな
る積層構造電極において、前記電極膜を1種以上の材料
膜とし、その膜厚を0.15μmより厚くすることによ
り、圧電膜/電極膜界面での剥離防止が出来た。
According to the first aspect of the present invention, an S electrode having an electrode film is provided.
In a laminated electrode in which a piezoelectric film is formed on an i-substrate by a gas deposition method, the electrode film is made of one or more kinds of material films, and the film thickness is made larger than 0.15 μm. The separation at the electrode film interface was prevented.

【0046】請求項2の発明は、電極膜を配置したSi
基板上にガスデポジション法で圧電体膜を形成してなる
積層構造電極において、前記電極膜をPt材料とし、か
つ、粒径を0.1μm以上の粒組織とすることにより、
圧電膜/電極膜界面での剥離防止が出来た。
According to a second aspect of the present invention, there is provided a semiconductor device in which an electrode film is disposed.
In a laminated structure electrode in which a piezoelectric film is formed on a substrate by a gas deposition method, the electrode film is made of a Pt material and has a grain structure of 0.1 μm or more.
The separation at the piezoelectric film / electrode film interface was prevented.

【0047】請求項3の発明は、請求項2の発明におい
て、前記Ptの電極膜を(111)面に優先配向し、そ
の配向度を75%以上とすることにより、圧電膜/電極
膜界面での剥離防止が出来た。
According to a third aspect of the present invention, in the second aspect of the present invention, the Pt electrode film is preferentially oriented to the (111) plane, and the degree of orientation is set to 75% or more, whereby the piezoelectric film / electrode film interface is improved. Was able to prevent peeling.

【0048】請求項4の発明は、Si基板上に電気的な
絶縁機能を有する膜、その上に、密着機能を有する膜、
その上に、電極膜としてIr又はIrO2又はこれら積
層体のうちの少なくとも1つを有し、さらに、その上
に、Pt膜が堆積されているようにしたので、密着膜機
能の低減が防止され、密着膜/下地界面剥離が防止でき
た。
According to a fourth aspect of the present invention, there is provided a film having an electrical insulation function on a Si substrate, a film having an adhesion function thereon,
Further, Ir or IrO 2 or at least one of these laminates is provided as an electrode film, and a Pt film is further deposited thereon, so that the function of the adhesion film is prevented from being reduced. As a result, peeling of the adhesion film / base interface was prevented.

【0049】請求項5の発明は、Si基板上に電気的な
絶縁機能を有する膜を積層し、その上に、密着機能を有
する膜を積層し、その上に、電極膜としてIr又はIr
2又はこれら積層体のうちの少なくとも1つを積層
し、さらに、その上に、Pt膜を積層する積層構造電極
の形成方法において、前記各膜を成膜する時の前記Si
基板の温度を300℃以上としたので、密着膜機能の低
減が防止され、密着膜/下地界面剥離が防止できる、電
気−機械変換素子が出来た。
According to a fifth aspect of the present invention, a film having an electrical insulation function is laminated on a Si substrate, a film having an adhesion function is laminated thereon, and Ir or Ir is formed thereon as an electrode film.
O 2 or at least one of these laminates is laminated, and a Pt film is further laminated thereon to form a laminated electrode.
Since the temperature of the substrate was set to 300 ° C. or higher, an electromechanical conversion element capable of preventing a decrease in the function of the adhesive film and preventing peeling of the interface between the adhesive film and the underlayer was obtained.

【0050】請求項6の発明は、請求項1乃至4のいず
れかに記載の電極膜の上、又は、請求項5記載の電極膜
形成方法により形成されるSi基板上の電極層の上に、
ガスデポジション法によりPZT系圧電セラミックス膜
が積層され、その上に、第2の電極膜が配置されるよう
にしたので、密着膜機能の低減が防止され、密着膜/下
地界面剥離が防止できる、電気−機械変換素子が出来
た。
According to a sixth aspect of the present invention, there is provided an electrode film according to any one of the first to fourth aspects, or an electrode layer on a Si substrate formed by the electrode film forming method according to the fifth aspect. ,
Since the PZT-based piezoelectric ceramic film is laminated by the gas deposition method, and the second electrode film is disposed thereon, reduction in the function of the adhesive film is prevented, and peeling of the interface between the adhesive film and the base can be prevented. Thus, an electro-mechanical conversion element was completed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 ガスデポジション装置の一構成例を示す図で
ある。
FIG. 1 is a diagram showing an example of a configuration of a gas deposition device.

【図2】 Si基板上への成膜例を示す図である。FIG. 2 is a view showing an example of film formation on a Si substrate.

【図3】 典型的なSEM写真を示す図である。FIG. 3 is a view showing a typical SEM photograph.

【図4】 典型的なPt膜のXRDパターンを示す図で
ある。
FIG. 4 is a view showing an XRD pattern of a typical Pt film.

【図5】 本発明による圧電アクチュエータの一例を示
す図である。
FIG. 5 is a diagram showing an example of a piezoelectric actuator according to the present invention.

【図6】 本発明による圧電アクチュエータの振動変位
を示す図である。
FIG. 6 is a diagram showing a vibration displacement of a piezoelectric actuator according to the present invention.

【符号の説明】[Explanation of symbols]

11…キャリアガスボンベ、12…エアロゾルチェンバ
ー、13…PZT圧電セラミックス微粒子、14…デポ
ジションチェンバー、15…ノズル、16…パターンマ
スク、17…基板ホルダー、18…X−Y−Zθステー
ジ、19…バキュームシステム、21…上部電極、22
…ガスデポジションPZT、23…Pt/Ir/Ta/
SiO2膜、24…Si基板。
11 ... Carrier gas cylinder, 12 ... Aerosol chamber, 13 ... PZT piezoelectric ceramic fine particles, 14 ... Deposition chamber, 15 ... Nozzle, 16 ... Pattern mask, 17 ... Substrate holder, 18 ... XYZZ stage, 19 ... Vacuum system , 21 ... upper electrode, 22
... Gas deposition PZT, 23 ... Pt / Ir / Ta /
SiO 2 film, 24 ... Si substrate.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電極膜を配置したSi基板上にガスデポ
ジション法で圧電体膜を形成してなる積層構造電極にお
いて、前記電極膜は1種以上の材料からなり、膜厚が
0.15μmより厚いことを特徴とする積層構造電極。
1. A laminated structure electrode in which a piezoelectric film is formed by a gas deposition method on a Si substrate on which an electrode film is disposed, wherein the electrode film is made of at least one material and has a thickness of 0.15 μm. A laminated electrode characterized by being thicker.
【請求項2】 電極膜を配置したSi基板上にガスデポ
ジション法で圧電体膜を形成してなる積層構造電極にお
いて、前記電極膜がPt材料で、かつ、粒径が0.1μ
m以上の粒組織からなることを特徴とする積層構造電
極。
2. A laminated electrode comprising a piezoelectric film formed by a gas deposition method on a Si substrate on which an electrode film is disposed, wherein the electrode film is made of a Pt material and has a particle size of 0.1 μm.
A laminated electrode comprising a grain structure of m or more.
【請求項3】 前記Ptの電極膜が(111)面に優先
配向し、その配向度が75%以上であることを特徴とす
る請求項2記載の積層構造電極。
3. The laminated structure electrode according to claim 2, wherein the Pt electrode film is preferentially oriented to the (111) plane, and the degree of orientation is 75% or more.
【請求項4】 Si基板上に電気的な絶縁機能を有する
絶縁膜、その上に、密着機能を有する密着機能膜、その
上に、電極膜としてIr又はIrO2又はこれら積層体
のうちの少なくとも1つを有し、さらに、その上に、P
t膜が堆積されていることを特徴とする積層構造電極。
4. An insulating film having an electrical insulating function on a Si substrate, an adhesive function film having an adhesive function on the insulating film, and an electrode film made of Ir or IrO 2 or at least one of these laminates. Have one, and additionally, P
A laminated structure electrode having a t film deposited thereon.
【請求項5】 Si基板上に電気的な絶縁機能を有する
膜を積層し、その上に、密着機能を有する膜を積層し、
その上に、電極膜としてIr又はIrO2又はこれら積
層体のうちの少なくとも1つを積層し、さらに、その上
にPt膜を積層する積層構造電極の形成方法であって、
前記各膜を成膜する時の前記基板温度を300℃以上と
することを特徴とする積層構造電極の形成方法。
5. A film having an electrical insulating function is laminated on a Si substrate, and a film having an adhesion function is laminated thereon.
A method for forming a laminated electrode, on which Ir or IrO 2 or at least one of these laminates is laminated as an electrode film, and further, a Pt film is laminated thereon.
A method of forming a laminated structure electrode, wherein the substrate temperature at which each of the films is formed is 300 ° C. or higher.
【請求項6】 請求項1乃至4のいずれかに記載の電極
膜の上、又は、請求項5記載の形成方法により形成され
たSi基板上の電極層の上に、ガスデポジション法によ
りPZT系圧電セラミックス膜が積層され、その上に第
2の電極膜が配置されていることを特徴とする圧電アク
チュエータ。
6. PZT by gas deposition on the electrode film according to claim 1 or on the electrode layer on the Si substrate formed by the method according to claim 5. A piezoelectric actuator, wherein a system piezoelectric ceramic film is laminated, and a second electrode film is disposed thereon.
JP33670099A 1999-11-26 1999-11-26 Laminated-structure electrode, formation method therefor, and piezoelectric actuator Pending JP2001156351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33670099A JP2001156351A (en) 1999-11-26 1999-11-26 Laminated-structure electrode, formation method therefor, and piezoelectric actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33670099A JP2001156351A (en) 1999-11-26 1999-11-26 Laminated-structure electrode, formation method therefor, and piezoelectric actuator

Publications (1)

Publication Number Publication Date
JP2001156351A true JP2001156351A (en) 2001-06-08

Family

ID=18301906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33670099A Pending JP2001156351A (en) 1999-11-26 1999-11-26 Laminated-structure electrode, formation method therefor, and piezoelectric actuator

Country Status (1)

Country Link
JP (1) JP2001156351A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017767A (en) * 2001-07-03 2003-01-17 Sony Corp Piezoelectric element
JP2004014933A (en) * 2002-06-10 2004-01-15 Matsushita Electric Ind Co Ltd Piezo-electric element and method of manufacturing the same
JP2004120320A (en) * 2002-09-26 2004-04-15 Fuji Photo Film Co Ltd Ultrasonic transducer array and its manufacturing method
JP2004207692A (en) * 2002-12-09 2004-07-22 Seiko Epson Corp Piezoelectric device, liquid discharge head, ferroelectric device, electronic device, and method for manufacturing them
JP2005101577A (en) * 2003-09-01 2005-04-14 Fuji Photo Film Co Ltd Laminate structure, piezoelectric actuator, and manufacturing method thereof
JP2006229154A (en) * 2005-02-21 2006-08-31 Brother Ind Ltd Piezoelectric actuator, inkjet head and their manufacturing methods
US7579251B2 (en) 2003-05-15 2009-08-25 Fujitsu Limited Aerosol deposition process
US7673385B2 (en) 2003-09-01 2010-03-09 Fujifilm Corporation Laminated structure method
US10374140B2 (en) 2015-12-17 2019-08-06 Seiko Epson Corporation Piezoelectric device for ultrasonic sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017767A (en) * 2001-07-03 2003-01-17 Sony Corp Piezoelectric element
JP2004014933A (en) * 2002-06-10 2004-01-15 Matsushita Electric Ind Co Ltd Piezo-electric element and method of manufacturing the same
JP2004120320A (en) * 2002-09-26 2004-04-15 Fuji Photo Film Co Ltd Ultrasonic transducer array and its manufacturing method
JP2004207692A (en) * 2002-12-09 2004-07-22 Seiko Epson Corp Piezoelectric device, liquid discharge head, ferroelectric device, electronic device, and method for manufacturing them
JP4507564B2 (en) * 2002-12-09 2010-07-21 セイコーエプソン株式会社 Method for manufacturing piezoelectric device, method for manufacturing liquid discharge head, and method for manufacturing liquid discharge apparatus
US7579251B2 (en) 2003-05-15 2009-08-25 Fujitsu Limited Aerosol deposition process
JP2005101577A (en) * 2003-09-01 2005-04-14 Fuji Photo Film Co Ltd Laminate structure, piezoelectric actuator, and manufacturing method thereof
US7673385B2 (en) 2003-09-01 2010-03-09 Fujifilm Corporation Laminated structure method
JP2006229154A (en) * 2005-02-21 2006-08-31 Brother Ind Ltd Piezoelectric actuator, inkjet head and their manufacturing methods
US10374140B2 (en) 2015-12-17 2019-08-06 Seiko Epson Corporation Piezoelectric device for ultrasonic sensor

Similar Documents

Publication Publication Date Title
EP0561616B1 (en) Piezoelectric/electrostrictive element having auxiliary electrode disposed between piezoelectric/electrostrictive layer and substrate
US6543107B1 (en) Method of producing a piezoelectric thin film
JP3890634B2 (en) Piezoelectric thin film element and ink jet recording head
JP3120260B2 (en) Piezoelectric / electrostrictive film type element
KR100978145B1 (en) Epitaxial oxide film, piezoelectric film, piezoelectric film element, and liquid delivery head and liquid delivery apparatus using piezoelectric element
KR101113490B1 (en) Piezoelectric substance, piezoelectric element, and liquid discharge head and liquid discharge apparatus using piezoelectric element
TWI264839B (en) Dielectric element, piezoelectric element, ink jet head and method for producing the same head
EP1054459A1 (en) Thin-film piezoelectric bimorph element, mechanical detector and inkjet head using the same, and methods of manufacturing the same
JP2001152360A (en) Ceramic dielectric film forming method, multilayered structure of ceramic dielectric film/substrate, and electro-mechanical transducer
JPH09298324A (en) Piezoelectric thin film element, manufacture thereof, and ink jet recorder head using the same
WO2005086248A1 (en) Piezoelectric element, inkjet head, angular velocity sensor, production methods for these and inkjet recording device
JPH0549270A (en) Piezoelectric/electrostrictive actuator
JP2000328223A (en) Laminated structure, powdery raw material for the same and piezoelectric actuator
JP2001156351A (en) Laminated-structure electrode, formation method therefor, and piezoelectric actuator
JP5370332B2 (en) Piezoelectric element and ink jet recording head
JP2008041921A (en) Piezoelectric thin film element and its manufacturing method, as well as ink jet head and ink jet-type recorder
JP2019522902A (en) Polarization of piezoelectric thin film elements in the direction of priority electric field drive
JP3582550B2 (en) Method of manufacturing printer head for inkjet recording
JP4451610B2 (en) Piezoelectric element, inkjet head, angular velocity sensor, manufacturing method thereof, and inkjet recording apparatus
US7193756B2 (en) Piezoelectric element, method for fabricating the same, inkjet head, method for fabricating the same, and inkjet recording apparatus
JPH11204849A (en) Piezo-electric actuator
EP1338672B1 (en) Piezoelectric thin film and method for preparation thereof, piezoelectric element, ink-jet head, and ink-jet recording device
JP2005119166A (en) Piezoelectric element, inkjet head, method of manufacturing the same, and inkjet recorder
US7622854B2 (en) Piezoelectric element and film formation method for crystalline ceramic
JP3734176B2 (en) Method for manufacturing printer head for inkjet recording and method for manufacturing actuator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070424