JP2001155971A - Electric double-layer capacitor and manufacturing method therefor - Google Patents

Electric double-layer capacitor and manufacturing method therefor

Info

Publication number
JP2001155971A
JP2001155971A JP33988599A JP33988599A JP2001155971A JP 2001155971 A JP2001155971 A JP 2001155971A JP 33988599 A JP33988599 A JP 33988599A JP 33988599 A JP33988599 A JP 33988599A JP 2001155971 A JP2001155971 A JP 2001155971A
Authority
JP
Japan
Prior art keywords
electric double
separator
layer capacitor
porosity
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33988599A
Other languages
Japanese (ja)
Other versions
JP3786551B2 (en
Inventor
Shinya Matsuno
真也 松野
Naotomo Sotoshiro
直朋 外城
Yuichi Hori
雄一 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP33988599A priority Critical patent/JP3786551B2/en
Publication of JP2001155971A publication Critical patent/JP2001155971A/en
Application granted granted Critical
Publication of JP3786551B2 publication Critical patent/JP3786551B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide an electric double-layer capacitor, having polarized electrodes with a small inner resistance and no cracks. SOLUTION: This electric double-layer capacitor includes a polarized electrode 2 made of activated carbon-based structure and impregnated with electrolytic solution, a collector 4 laminated on the upper and lower sides of the polarized electrode 2, and a separator. In this case, a void ratio (b) for ht activated carbon-based structure is made gradually smaller, as it goes from the bonding face of the collector 4 to the bonding face of the separator 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電解液を含浸した
活性炭質構造体からなる分極性電極を具備する電気二重
層コンデンサおよびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor provided with a polarizable electrode made of an activated carbonaceous structure impregnated with an electrolyte and a method of manufacturing the same.

【0002】[0002]

【従来技術】電気二重層コンデンサは、電極と電解液の
界面においてイオンの分極によりできる電気二重層を利
用したコンデンサであり、コンデンサと電池の両方の機
能を兼ね備えたものである。
2. Description of the Related Art An electric double layer capacitor is a capacitor using an electric double layer formed by polarization of ions at an interface between an electrode and an electrolytic solution, and has both functions of a capacitor and a battery.

【0003】このような電気二重層コンデンサは、従来
のコンデンサと比較して大容量の充放電が可能であると
ともに、メンテナンスフリーであり、環境汚染を招く恐
れがないことから、小型のメモリーバックアップ電源や
大容量のモータ等の補助電源等として、急速にその需要
が伸びている。
[0003] Such an electric double layer capacitor is capable of charging and discharging a larger capacity than conventional capacitors, is maintenance-free, and does not cause environmental pollution. Demand for such devices as auxiliary power sources for motors and large-capacity motors is rapidly increasing.

【0004】一般に、このような電気二重層コンデンサ
の構造は、複数の電解液を含浸させた活性炭質電極間に
形成された絶縁性の多孔質セパレータにて前記活性炭質
電極間を絶縁するとともに、該積層体の上下面または前
記分極正電極の他の表面に集電体を形成し、該集電体を
通して電気を充放電することにより、該集電体間に静電
容量を発生するものである。
In general, such an electric double layer capacitor has a structure in which the activated carbon electrodes are insulated by an insulating porous separator formed between the activated carbon electrodes impregnated with a plurality of electrolytes. A current collector is formed on the upper and lower surfaces of the laminate or on the other surface of the polarized positive electrode, and electricity is charged and discharged through the current collector to generate a capacitance between the current collectors. is there.

【0005】電気二重層コンデンサは、活性炭質構造体
中に含浸された電解液のイオンが該構造体の空隙部間を
拡散して活性炭表面に吸脱着する、いわゆる電気泳動現
象によって電荷を貯蔵できるものである。かかる電気二
重層コンデンサでは、上記構造体中の空隙部が少なくな
ると、電解液中のイオンが移動速度が極端に低下して内
部抵抗が増大してしまうために内部抵抗を低減せしめる
ためには活性炭質構造体中の空隙率を高める必要があっ
た。
[0005] The electric double layer capacitor can store charges by the so-called electrophoresis phenomenon, in which ions of the electrolyte impregnated in the activated carbonaceous structure diffuse between gaps of the structure and adsorb and desorb on the activated carbon surface. Things. In such an electric double-layer capacitor, when the number of voids in the structure is reduced, the movement speed of ions in the electrolytic solution is extremely reduced and the internal resistance is increased. Therefore, activated carbon is required to reduce the internal resistance. It was necessary to increase the porosity in the porous structure.

【0006】一方、電気二重層コンデンサに電気を供給
または取り出しのために活性炭質構造体に隣接して集電
体を配設するが、両者間での接触抵抗を低減するには両
者間の接触面積を増す必要があるために、例えば、特開
平3−201519号公報によれば、活性炭微粒子を焼
結結合せしめた互いに密度の異なる第1、2活性炭から
なる活性炭質電極を分極性電極とし、密度の高い第2活
性炭の面を集電体に密着させて、分極性電極と集電体間
の接触抵抗を低減できることが提案されている。
On the other hand, a current collector is provided adjacent to the activated carbonaceous structure for supplying or extracting electricity to or from the electric double layer capacitor. To reduce the contact resistance between the two, a contact between the two is required. In order to increase the area, for example, according to Japanese Patent Application Laid-Open No. Hei 3-201519, an activated carbon electrode composed of first and second activated carbons having mutually different densities obtained by sintering activated carbon fine particles is used as a polarizable electrode. It has been proposed that the surface of the second activated carbon having high density can be brought into close contact with the current collector to reduce the contact resistance between the polarizable electrode and the current collector.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、特開平
3−201519号公報のように密度の異なる2種類の
活性炭質構造体を用いると、炭化時の収縮率が異なるた
めに積層界面にクラック等が発生し、クラック部に浮遊
炭素が生じてしまい、これが電気泳動により分極性電極
内を移動してセパレータを透過して反対極の分極性電極
に移動してリーク電流を発生したり、ショート等を起こ
し自己放電が大きくコンデンサの静電容量を低下させる
という問題があった。
However, when two types of activated carbonaceous structures having different densities are used as disclosed in JP-A-3-201519, cracks and the like are formed at the lamination interface due to different shrinkage rates during carbonization. Then, floating carbon is generated in the crack part, which moves inside the polarizable electrode by electrophoresis, passes through the separator, moves to the opposite polarizable electrode, and generates a leak current, short circuit, etc. There is a problem that self-discharge is large and the capacitance of the capacitor is reduced.

【0008】従って、本発明の目的は、電解液の移動、
拡散がスムーズで、かつ集電体に対して接触抵抗が小さ
くできることによって内部抵抗を低減できるとともに、
活性炭質構造体にクラック等の発生しない電気二重層コ
ンデンサを得ることにある。
Accordingly, an object of the present invention is to move an electrolyte,
Diffusion is smooth and the contact resistance to the current collector can be reduced, so that the internal resistance can be reduced,
An object of the present invention is to provide an electric double layer capacitor in which cracks and the like do not occur in an activated carbonaceous structure.

【0009】[0009]

【課題を解決するための手段】本発明者等は、前記課題
に対して検討した結果、所定の固さを有する活性炭を含
有する造粒粉末に対して上下面から圧力を付与して成形
し、該成形体の加圧面に平行な一方の加圧面を除く一部
分を除去することによって、該成形体の空隙率が前記一
方の加圧面から他方の表面に向かって小さくでき、この
活性炭質構造体の前記一方の加圧面に集電体を積層し、
また前記他方の表面にセパレータを積層することによっ
て、前記活性炭質構造体の空隙率が前記集電体接着面か
ら前記セパレータ接着面に向かって小さくできるととも
に、集電体に対して接触抵抗を小さくできる結果、内部
抵抗を低減できることから、急速充放電時の電圧低下を
低減できるとともに、活性炭質構造体にクラック等が発
生することがないことを知見した。
Means for Solving the Problems As a result of studying the above-mentioned problems, the present inventors have found that granulated powder containing activated carbon having a predetermined hardness is formed by applying pressure from above and below. By removing a part except one pressing surface parallel to the pressing surface of the molded body, the porosity of the molded body can be reduced from the one pressing surface to the other surface, and the activated carbonaceous structure Laminating a current collector on the one pressing surface of the above,
Further, by laminating a separator on the other surface, the porosity of the activated carbonaceous structure can be reduced from the current collector bonding surface toward the separator bonding surface, and the contact resistance with respect to the current collector is reduced. As a result, it has been found that since the internal resistance can be reduced, the voltage drop during rapid charge / discharge can be reduced, and no cracks or the like occur in the activated carbonaceous structure.

【0010】すなわち、本発明の電気二重層コンデンサ
は、電解液を含浸した活性炭質構造体からなる分極性電
極と、該分極性電極の上下面にそれぞれ積層された集電
体およびセパレータとを具備するものであって、前記活
性炭質構造体の空隙率が前記集電体積層面から前記セパ
レータ積層面に向かって小さいことを特徴とするもので
ある。
That is, the electric double layer capacitor of the present invention comprises a polarizable electrode comprising an activated carbonaceous structure impregnated with an electrolytic solution, and a current collector and a separator which are respectively laminated on the upper and lower surfaces of the polarizable electrode. Wherein the porosity of the activated carbonaceous structure decreases from the current-collector laminated surface to the separator-laminated surface.

【0011】また、本発明の電気二重層コンデンサの製
造方法は、(a)活性炭粉末と有機樹脂とを混合し、上
下面から圧力を付与して成形する工程と、(b)該成形
体の加圧面に平行に、一方の加圧面を除く一部分を除去
して、該成形体の空隙率が前記一方の加圧面から他方の
表面に向かって小さくなるようにする工程と、(c)前
記(b)工程で得られた成形体を炭化熱処理して活性炭
質構造体を作製する工程と、(d)前記(c)工程で得
られた活性炭質構造体の空隙率の高い面にセパレータを
積層し、かつ空隙率の低い面に集電体を積層する工程
と、(e)前記活性炭質構造体内に電解液を含浸する工
程とを具備することを特徴とするものである。
Further, the method for producing an electric double layer capacitor of the present invention comprises: (a) a step of mixing activated carbon powder and an organic resin and applying pressure from upper and lower surfaces to form; (C) removing a part except for one of the pressing surfaces in parallel with the pressing surface so that the porosity of the molded body decreases from the one pressing surface toward the other surface; b) a step of carbonizing and heat-treating the molded article obtained in the step to prepare an activated carbonaceous structure; and (d) laminating a separator on the surface of the activated carbonaceous structure obtained in the step (c) having a high porosity. And a step of laminating a current collector on a surface having a low porosity, and (e) a step of impregnating the activated carbonaceous structure with an electrolytic solution.

【0012】[0012]

【発明の実施の形態】本発明の電気二重層コンデンサの
一例を概略断面図である図1に基づいて説明する。図1
によれば、電気二重層コンデンサ1は、電解液を含浸し
た2枚の分極性電極(以下、電極と略す。)2、2間に
絶縁性の多孔質セパレータ(以下、セパレータと略
す。)3が配設され、その電極2、2のセパレータ3接
触面以外の他の表面にはそれぞれ集電体4が積層されて
いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One example of an electric double layer capacitor of the present invention will be described with reference to FIG. 1 which is a schematic sectional view. FIG.
According to this, the electric double layer capacitor 1 includes an insulating porous separator (hereinafter abbreviated as a separator) 3 between two polarizable electrodes (hereinafter abbreviated as an electrode) 2 and 2 impregnated with an electrolytic solution. And a current collector 4 is laminated on each of the surfaces of the electrodes 2 and 2 other than the contact surface of the separator 3.

【0013】電極2を構成する活性炭質構造体は、高い
比表面積を有する活性炭粒子と、該活性炭粒子を結合す
るための結合剤として配合され、炭化処理を施された炭
素成分とからなるものであり、活性炭が焼結によって固
着していることが望ましい。また、コンデンサの高静電
容量を維持しつつ、構造体として必要な強度を得るため
には、電極2の比表面積が1000〜1800m2/g
であることが望ましい。
The activated carbonaceous structure constituting the electrode 2 is composed of activated carbon particles having a high specific surface area and a carbon component which has been blended as a binder for binding the activated carbon particles and has been subjected to a carbonization treatment. Yes, it is desirable that the activated carbon is fixed by sintering. Further, in order to obtain the necessary strength as a structure while maintaining the high capacitance of the capacitor, the specific surface area of the electrode 2 should be 1000 to 1800 m 2 / g.
It is desirable that

【0014】なお、結合剤として添加される炭素成分
は、活性炭粒子間に存在するが、各活性炭層中に占める
割合が、5〜50重量%であることが望ましく、これに
より活性炭粒子間の焼結性および結合性を高めることが
できる。
The carbon component added as a binder exists between the activated carbon particles, but preferably accounts for 5 to 50% by weight of each activated carbon layer. Bonding and bonding can be increased.

【0015】本発明によれば、電極2の空隙率が集電体
接触面からセパレータ接触面に向かって小さいことが大
きな特徴であり、これによって、電極2の集電体4接触
面での空隙率が小さくでき、電極2と集電体4との接触
面積が増加することから、電極2と集電体4間の接触抵
抗を低減することができるとともに、電極2のセパレー
タ3側では空隙率が大きいことから、電解液の拡散、移
動が瞬時に起き、大容量の放電によっても内部抵抗が増
大することなく、IRドロップ、すなわち放電時の電圧
低下が抑制できる。
According to the present invention, it is a major feature that the porosity of the electrode 2 decreases from the current collector contact surface to the separator contact surface. As the contact ratio between the electrode 2 and the current collector 4 increases, the contact resistance between the electrode 2 and the current collector 4 can be reduced, and the porosity on the separator 3 side of the electrode 2 can be reduced. Is large, the diffusion and movement of the electrolytic solution occur instantaneously, and the IR drop, that is, the voltage drop at the time of discharge can be suppressed without increasing the internal resistance even by a large-capacity discharge.

【0016】なお、電極2の集電体4積層面での空隙率
1は、35〜40%、電極2のセパレータ3積層面で
の空隙率b2は、42〜50%であることが望ましく、
また、図2に示す電極の集電体4積層面からの距離rと
空隙率bとの関係のようにrがゼロ付近、すなわち集電
体4積層面では空隙率bの変化が急激であり、r=(1
/6)t(t:電極2の厚み)以上では、空隙率bがほ
とんど変化しないことが望ましい。さらに、集電体4積
層面の空隙率b1とセパレータ3積層面の空隙率b2との
比(b1/b2)が、0.7〜0.8であることが望まし
い。
The porosity b 1 of the electrode 2 on the surface of the current collector 4 is 35 to 40%, and the porosity b 2 of the electrode 2 on the surface of the separator 3 is 42 to 50%. Desirably,
Further, as shown in the relationship between the distance r of the electrode from the current collector 4 laminated surface and the porosity b shown in FIG. 2, r is near zero, that is, the porosity b changes rapidly on the current collector 4 laminated surface. , R = (1
/ 6) Above t (t: the thickness of the electrode 2), it is desirable that the porosity b hardly changes. Furthermore, the ratio of the porosity of b 2 porosity of the current collector 4 laminated surface b 1 and the separator 3 lamination plane (b 1 / b 2) is desirably 0.7 to 0.8.

【0017】また、上記構成によれば、水銀圧入法によ
る電極2の嵩密度は、電極2の集電体4接触面で0.6
〜0.7g/cm3、電極2のセパレータ3接触面で
0.3〜0.4g/cm3であることが望ましい。
According to the above configuration, the bulk density of the electrode 2 by the mercury intrusion method is 0.6 at the contact surface of the electrode 2 with the current collector 4.
~0.7g / cm 3, with a separator 3 contact surface of the electrode 2 is desirably 0.3~0.4g / cm 3.

【0018】また、電極2、2は、板状であることが望
ましく、また、電極2、2は、コンデンサ製造時の取り
扱いや使用時の振動、衝撃等に耐えうる機械的な信頼性
の点でJISR1601に準じた室温における3点曲げ
強度が29kPa以上、特に58kPa以上であること
が望ましい。
The electrodes 2 and 2 are desirably plate-shaped, and the electrodes 2 and 2 have a mechanical reliability that can withstand vibration, shock, and the like during handling and use during the manufacture of the capacitor. The three-point bending strength at room temperature according to JISR1601 is preferably 29 kPa or more, and more preferably 58 kPa or more.

【0019】さらに、電極2、2の厚みtは、コンデン
サの集電体間の距離が狭くなるほど静電容量が増加する
ことから、1.5mm以下、特に1.0mm以下、さら
に0.5mm以下であることが望ましい。
Further, the thickness t of the electrodes 2 and 2 is 1.5 mm or less, particularly 1.0 mm or less, and more preferably 0.5 mm or less, since the capacitance increases as the distance between the current collectors of the capacitor decreases. It is desirable that

【0020】電極2中に含浸される電解液としては、硫
酸や硝酸等の水溶液や、プロピレンカーボネート、γ−
ブチロラクトン、N,N−ジメチルホルムアミド、エチ
レンカーボネート、スルホラン、3−メチルスルホラン
等の有機溶媒と4級アンモニウム塩、4級スルホニウム
塩、4級ホスホニウム塩等の電解質を組み合わせた有機
溶液が使用可能である。
The electrolytic solution impregnated in the electrode 2 includes an aqueous solution of sulfuric acid or nitric acid, propylene carbonate, γ-
An organic solution in which an organic solvent such as butyrolactone, N, N-dimethylformamide, ethylene carbonate, sulfolane, and 3-methylsulfolane is combined with an electrolyte such as a quaternary ammonium salt, a quaternary sulfonium salt, and a quaternary phosphonium salt can be used. .

【0021】一方、セパレータ3は、パルプやポリエチ
レン、ポリプロピレン等の有機フィルムまたはガラス繊
維不織布等およびセラミックス等により形成され、電極
2間を絶縁するために形成されるものであるが、電極2
内に含有される前記電解液中のイオンを透過させること
ができる多孔質体により形成される。
On the other hand, the separator 3 is formed of an organic film such as pulp, polyethylene or polypropylene, a glass fiber nonwoven fabric or the like, ceramics, etc., and is formed to insulate the electrodes 2 from each other.
It is formed of a porous body capable of transmitting ions in the electrolytic solution contained therein.

【0022】本発明によれば、電極2のセパレータ3接
触面での空隙率が高いことから前記電解液中のイオンが
スムーズに拡散、移動でき、内部抵抗が低減できるとい
う効果がある。
According to the present invention, since the porosity of the electrode 2 at the contact surface of the separator 3 is high, the ions in the electrolytic solution can be diffused and moved smoothly, and the internal resistance can be reduced.

【0023】さらに、集電体4は、導電性を有する導電
性ブチルゴム、アルミニウム板、アルミニウムのプラズ
マ溶射またはステンレス鋼等の金属等により形成され、
電極2との間で電荷をやり取りすることができるが、電
極2との間の接触抵抗低減のためには抵抗率および塑性
変形性の点でアルミニウムであることが望ましい。
Further, the current collector 4 is formed of conductive butyl rubber having conductivity, an aluminum plate, aluminum plasma sprayed or metal such as stainless steel, etc.
Although electric charges can be exchanged with the electrode 2, it is preferable to use aluminum in terms of resistivity and plastic deformability in order to reduce contact resistance with the electrode 2.

【0024】さらに、図1によれば、電極2、2とセパ
レータ3との積層体の外周部には電解液を保持するため
の封止部材5が配設されている。封止部材5は、電極
2,2に含浸される電解液の外部への漏れを防止すると
ともに、電極2,2、セパレータ3、集電体4を固定、
保護するためのものであり、非導電性の材料、例えば、
ポリプロピレン、アクリル等のプラスチックや、ガラ
ス、セラミックス等により形成される。
Further, according to FIG. 1, a sealing member 5 for holding the electrolytic solution is provided on the outer peripheral portion of the laminate of the electrodes 2, 2 and the separator 3. The sealing member 5 prevents the electrolyte solution impregnated in the electrodes 2 and 2 from leaking outside and fixes the electrodes 2 and 2, the separator 3 and the current collector 4.
For protection, non-conductive materials, for example,
It is formed of plastics such as polypropylene and acrylic, glass, ceramics and the like.

【0025】なお、図1では、電極2が正電極および負
電極をなす一対、すなわち2層配設されたものであった
が、本発明はこれに限られるものではなく、集電体4−
電極2−セパレータ3−電極2−集電体4を一単位とし
てこれが複数積層されたものであってもよい。
In FIG. 1, the electrode 2 has a pair of a positive electrode and a negative electrode, that is, two electrodes are provided. However, the present invention is not limited to this.
A plurality of the electrodes 2-separators 3-electrodes 2-current collector 4 may be stacked as one unit.

【0026】次に、本発明の電気二重層コンデンサを作
製方法について説明する。まず、活性炭質構造体を形成
するための窒素吸着法(BET法)による比表面積が1
000〜3000m2/gの炭素原料を準備する。
Next, a method for manufacturing the electric double layer capacitor of the present invention will be described. First, the specific surface area by the nitrogen adsorption method (BET method) for forming the activated carbonaceous structure is 1.
To prepare the carbon raw material of 000~3000m 2 / g.

【0027】炭素原料としては、ヤシ殻、木材、樹脂等
に対して薬品賦活やガス賦活により作製される活性炭が
高比表面積を有することから好適であり、それ以外にも
カーボンブラック、コールタール、カーボンファイバ
ー、石炭等が使用できる。また、その形状は、球状、フ
レーク状、突起状あるいは不定形があり、特に限定する
ものではなく、また、粉末、粒状、顆粒状のいずれであ
ってもよく、さらに、その粒径は5〜50μmであるこ
とが望ましい。
As a carbon raw material, activated carbon produced by activating a chemical or a gas with respect to coconut shell, wood, resin, or the like is preferable since it has a high specific surface area. In addition, carbon black, coal tar, and the like can be used. Carbon fiber, coal and the like can be used. The shape is spherical, flake-like, protruding or irregular, and is not particularly limited, and may be any of powder, granular, and granular. Desirably, it is 50 μm.

【0028】上記の各活性炭原料に所定量の有機バイン
ダを焼成後の炭素成分量が2.5〜75重量%となる量
で添加、混合する。有機バインダとしては、フェノー
ル、テフロン、コールタール、ポリビニルブチルアルコ
ール(PVB)、ポリビニルホルマール(PVFM)等
のポリビニルアセタール、酢酸ビニル等の公知の有機バ
インダが挙げられ、とりわけ成形性および得られる活性
炭質構造体の強度の点から、ポリビニルブチルアルコー
ル(PVB)が最も望ましい。
A predetermined amount of an organic binder is added to each of the above activated carbon raw materials and mixed in such an amount that the carbon component after firing becomes 2.5 to 75% by weight. Examples of the organic binder include known organic binders such as phenol, teflon, coal tar, polyvinyl acetal such as polyvinyl butyl alcohol (PVB) and polyvinyl formal (PVFM), and vinyl acetate. In terms of body strength, polyvinyl butyl alcohol (PVB) is most desirable.

【0029】また、上記有機バインダ以外にも可塑剤、
分散剤、溶剤等を添加してもよい。
In addition to the organic binder, a plasticizer,
You may add a dispersing agent, a solvent, etc.

【0030】そして、スプレードライ、市販の高速混合
攪拌機等により造粒する。本発明によれば、該造粒粉が
ある程度の固さを有し、成形時に加圧面とそれ以外の部
分で密度差、すなわち気孔率の差が生じるような造粒粉
であることが望ましく、かかる点から造粒粉のつぶれ性
の指標であるゆるめ嵩密度が0.3〜0.6g/cm3
であることが望ましい。
Then, granulation is performed by spray drying, a commercially available high-speed mixing stirrer, or the like. According to the present invention, it is preferable that the granulated powder has a certain degree of hardness, and is a granulated powder having a difference in density between the pressed surface and the other portion during molding, that is, a difference in porosity, From this point, the loose bulk density which is an index of the crushing property of the granulated powder is 0.3 to 0.6 g / cm 3.
It is desirable that

【0031】そして、得られた造粒粉を一軸プレス法、
ロール成形法等の上下面から圧力を付与して成形する成
型法により板状またはテープ状等の所定形状に成形す
る。これによって、加圧時に成形体の厚み方向に対して
応力分布が生じ、容易に加圧面とそれ以外の部分での密
度差、気孔率差が得られる。
Then, the obtained granulated powder is subjected to a uniaxial pressing method,
It is formed into a predetermined shape such as a plate shape or a tape shape by a molding method in which pressure is applied from the upper and lower surfaces such as a roll molding method. As a result, a stress distribution is generated in the thickness direction of the compact at the time of pressurization, and a density difference and a porosity difference between the pressurized surface and other portions can be easily obtained.

【0032】ここで、成形体の表面と内部に所望の気孔
率差を生ぜしめ、電気二重層コンデンサの静電容量を高
めるとともに、電極の集電体との接触抵抗を実用上問題
ない程度とするためには、前記成形時の加圧圧力P(M
Pa)と成形体の厚みT(mm)との比(T/P)が、
10〜500であることが望ましい。
Here, a desired porosity difference is generated between the surface and the inside of the molded body to increase the capacitance of the electric double layer capacitor, and the contact resistance between the electrode and the current collector is reduced to a level that does not pose a practical problem. In order to achieve this, the pressurizing pressure P (M
Pa) and the thickness (T / P) of the molded body T (mm)
It is desirable to be 10-500.

【0033】得られた成形体を、非酸化性雰囲気中、6
00〜1200℃、特に700〜900℃で炭化熱処理
して有機バインダ成分を炭化させるとともに、活性炭間
を焼結一体化させる。上述した範囲の焼成温度によって
粒子間を焼結させることができ、構造体としての強度を
維持できるとともに、活性炭の比表面積を所望の範囲に
制御でき、電気二重層コンデンサの静電容量を高めるこ
とができる。
The obtained molded body is placed in a non-oxidizing atmosphere at 6
The organic binder component is carbonized by carbonizing heat treatment at 00 to 1200 ° C, particularly 700 to 900 ° C, and the activated carbon is sintered and integrated. The sintering between the particles can be performed by the sintering temperature in the above range, the strength as a structure can be maintained, the specific surface area of the activated carbon can be controlled in a desired range, and the capacitance of the electric double layer capacitor can be increased. Can be.

【0034】次に、上記焼結体に対して、焼結体の空隙
率が一方の表面から他の表面に向かって連続的に小さく
なるように前記成形時の加圧面に平行な方向に一部を研
削もしくは研磨等により除去する。なお、かかる研削も
しくは研磨等の除去は、前記炭化する前に、除去しても
良い。
Next, in the above-described sintered body, the porosity of the sintered body is reduced in one direction parallel to the pressing surface during the molding so that the porosity of the sintered body decreases continuously from one surface to the other surface. The part is removed by grinding or polishing. The removal such as grinding or polishing may be performed before the carbonization.

【0035】上記活性炭質構造体を2枚作製し、これら
の空隙率が高い面同士がセパレータを介して対向するよ
うに積層し、また該積層体の上下面に集電体を所望によ
り圧着しながら積層した後、外周表面にガスケットを配
置する。そして、前記2枚の活性炭質構造体中に電解液
を含浸させて分極性電極として電気二重層コンデンサを
作製できる。なお、この電解液の含浸はセパレータを積
層する前であってもよい。
Two activated carbonaceous structures were prepared, laminated so that their surfaces having a high porosity faced each other with a separator interposed therebetween, and a current collector was pressed on the upper and lower surfaces of the laminate as required. After stacking, a gasket is arranged on the outer peripheral surface. Then, an electrolytic solution is impregnated in the two activated carbonaceous structures, so that an electric double layer capacitor can be manufactured as a polarizable electrode. The impregnation with the electrolytic solution may be performed before the separator is laminated.

【0036】また、他の方法として、前記活性炭質構造
体と前記セパレータとを先に積層して同時焼成すること
も可能であるが、この場合、前記セパレータは同時焼成
により変質しない耐熱性を有することが望ましい。
As another method, the activated carbonaceous structure and the separator can be laminated first and fired simultaneously. In this case, the separator has heat resistance that does not change due to simultaneous firing. It is desirable.

【0037】[0037]

【実施例】(実施例)まず、比表面積1800m2/g
を有する活性炭原料に対して、ポリビニルブチルアルコ
ール(PVB)を活性炭の比表面積1000m2/gあ
たり600gとなるように添加し、高速混合攪拌機にて
攪拌混合、造粒、篩別した。
EXAMPLES (Example) First, a specific surface area of 1800 m 2 / g
Was added to the activated carbon raw material having a weight ratio of 600 g per 1000 m 2 / g of the specific surface area of the activated carbon, and the mixture was stirred and mixed with a high-speed mixing stirrer, granulated, and sieved.

【0038】得られた造粒粉末のゆるめ嵩密度をJIS
Z2504に基づいて、容器内に粉末を静かに流し入
れ、所定の容積(v)にてすり切った時の容器内の粉末
の重量(m)にて測定し、m/v(g/cm3)で表さ
れるゆるめ嵩密度を測定し、表1に示した。
The loose bulk density of the obtained granulated powder was determined according to JIS.
Based on Z2504, gently pour the powder into the container, measure the weight (m) of the powder in the container when the powder is worn at a predetermined volume (v), and m / v (g / cm 3 ) The loose bulk density represented by was measured and shown in Table 1.

【0039】次に、上記造粒粉末を表1に示す成形圧
力、成形方法により表1に示す厚みT(mm)に成形
し、所定の長さ、幅にカットした後、該成形体の一方の
表面から加圧面に平行に研磨し、真空中、900℃で1
0分間炭化熱処理を行った。焼成後、活性炭質構造体の
寸法は縦90mm、横60mm、電極の厚さ2mmであ
った。なお、実施例の試料についてはクラック等の発生
がなく、いずれも歩留まりが90%以上と高いものであ
った。
Next, the granulated powder was molded into a thickness T (mm) shown in Table 1 by a molding pressure and a molding method shown in Table 1, and cut into a predetermined length and width. Polished in parallel with the pressing surface from the surface of
A carbonization heat treatment was performed for 0 minutes. After firing, the dimensions of the activated carbonaceous structure were 90 mm in length, 60 mm in width, and 2 mm in electrode thickness. The samples of the examples had no cracks or the like, and all had a high yield of 90% or more.

【0040】上記活性炭質構造体に対して、前記成形体
における加圧面と研磨面でのSEM観察を行い、画像解
析法によってそれぞれの面での空隙率を測定し、表1に
示した。
The activated carbonaceous structure was subjected to SEM observation on the pressurized surface and the polished surface of the molded body, and the porosity on each surface was measured by an image analysis method.

【0041】次に、得られた活性炭質構造体2枚に対
し、炭酸プロピレン溶液を溶媒とした過塩素酸リチウム
1mol/l電解液を含浸させて分極性電極とした後、
93mm×63mm×0.1mmのガラス繊維不織布か
らなる多孔質セパレータを介して前記分極性電極の前記
研磨面が対向するように積層し、該積層体の上下面に9
3mm×63mm×0.5mmのアルミニウム製集電体
を積層し、さらに、前記積層体の外周部を絶縁性のブチ
ルゴム製封止部材で固定一体化して、電気二重層コンデ
ンサを作製した。
Next, the two activated carbonaceous structures thus obtained were impregnated with a 1 mol / l lithium perchlorate electrolyte using a propylene carbonate solution as a solvent to form polarizable electrodes.
The polarizable electrodes are laminated so that the polished surfaces of the polarizable electrodes face each other via a porous separator made of a glass fiber non-woven fabric of 93 mm × 63 mm × 0.1 mm.
A 3 mm × 63 mm × 0.5 mm aluminum current collector was laminated, and the outer periphery of the laminate was fixed and integrated with an insulating butyl rubber sealing member to produce an electric double layer capacitor.

【0042】得られた電気二重層コンデンサについて、
図3に示すIRドロップ、つまり初期電圧降下から求め
た。すなわち、3Vの電圧で30分間充電した後、3m
A/cm2の定電流放電法によって放電した際の放電時
間と電圧との関係を示す放電曲線において、コンデンサ
の電圧が初期値(3V)の60%および50%となった
時間t1およびt2とを測定し、次式から電極単位重量当
たりの静電容量F(F/g)を求めた。 F=3mA×(t2−t1)/((0.6−0.5)×3
V×w) ただし、wは正、負の分極性電極の総重量である。
With respect to the obtained electric double layer capacitor,
It was determined from the IR drop shown in FIG. 3, that is, the initial voltage drop. That is, after charging at a voltage of 3 V for 30 minutes, 3 m
In the discharge curve showing the relationship between the discharge time and the voltage when discharging by the constant current discharge method of A / cm 2 , the times t 1 and t at which the voltage of the capacitor becomes 60% and 50% of the initial value (3 V). 2 and the capacitance F per unit weight of the electrode (F / g) was determined from the following equation. F = 3 mA × (t 2 −t 1 ) / ((0.6−0.5) × 3
V × w) where w is the total weight of the positive and negative polarizable electrodes.

【0043】また、それぞれの試料の内部抵抗を30m
A/cm2の定電流放電法を用い、3Vの電圧で充電し
た後、コンデンサの電圧が0Vとなるまでの時間Tとし
たとき0.1T時での電圧Eiとしたとき、電圧E=3
V−Eiで求められる値をIRドロップ(初期電圧降
下)とみなし、内部抵抗RをR=E/I(ここで、I=
30mA)を算出した。結果は、表1に示した。
The internal resistance of each sample was 30 m
Using a constant current discharge method A / cm 2, was charged with a voltage of 3V, when the voltage of the capacitor which has a voltage E i at time 0.1T when the time T until 0V, the voltage E = 3
The value obtained by V-E i regarded as IR drop (initial voltage drop), the internal resistance R R = E / I (where, I =
30 mA) was calculated. The results are shown in Table 1.

【0044】[0044]

【表1】 [Table 1]

【0045】表1から明らかなように、プレス成形によ
って得られた成形体を研磨しなかった試料No.9で
は、集電体側面とセパレータ側面での空隙率が同じとな
り、内部抵抗が高く、静電容量が低いものであった。ま
た、プレス成形によって得られた成形体を両面から同じ
厚み研磨した試料No.8では、集電体側面とセパレー
タ側面での空隙率が同じとなり、内部抵抗が高いもので
あった。さらに、プレス成形後、冷間一軸加圧(CI
P)成形を行った試料No.10でも、集電体側面とセ
パレータ側面での空隙率が同じとなり、内部抵抗が高
く、静電容量が低いものであった。
As is clear from Table 1, the molded article obtained by press molding was not polished. In No. 9, the porosity on the side of the current collector and the side of the separator were the same, the internal resistance was high, and the capacitance was low. In addition, the molded body obtained by press molding was polished to the same thickness from both sides of Sample No. 1. In No. 8, the porosity on the side of the current collector and the side of the separator were the same, and the internal resistance was high. Furthermore, after press molding, cold uniaxial pressing (CI
P) Sample No. Also in 10, the porosity on the side of the current collector and the side of the separator were the same, the internal resistance was high, and the capacitance was low.

【0046】これに対して、本発明に従う試料No.1
〜7では、いずれも3mA/cm2放電時の静電容量3
0F/g以上、内部抵抗16Ω以下の優れた性能を有す
るものであった。
On the other hand, the sample No. 1
-7, the electrostatic capacity at discharge of 3 mA / cm 2 was 3
It had an excellent performance of 0 F / g or more and an internal resistance of 16 Ω or less.

【0047】(比較例)実施例の試料No.9の成形体
と試料No.10の成形体を積層して焼成したところ、
両者間にクラックが発生する等により歩留まりが60%
と低いものであった。また、良品について実施例と同様
に評価したところ、静電容量18F/g、内部抵抗27
Ωであった。
(Comparative Example) 9 and Sample No. 9 When the 10 compacts were laminated and fired,
60% yield due to cracks between the two
Was low. In addition, when a good product was evaluated in the same manner as in the example, the capacitance was 18 F / g, and the internal resistance was 27 F / g.
Ω.

【0048】[0048]

【発明の効果】以上詳述したように、本発明の活性炭質
電極およびそれを用いた電気二重層コンデンサ並びにそ
の製造方法によれば、電解液の拡散、移動をスムーズに
行うことができるとともに、集電体に対する接触抵抗を
小さくすることができる結果、内部抵抗の小さい活性炭
質電極が得られ、電気二重層コンデンサの放電時のIR
ドロップを低減することができる。
As described in detail above, according to the activated carbonaceous electrode of the present invention, the electric double layer capacitor using the same, and the method of manufacturing the same, the electrolyte can be smoothly diffused and moved, As a result of reducing the contact resistance to the current collector, an activated carbon electrode having a low internal resistance can be obtained, and the IR of the electric double layer capacitor at the time of discharging is reduced.
Drops can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電気二重層コンデンサの概略断面図で
ある。
FIG. 1 is a schematic sectional view of an electric double layer capacitor of the present invention.

【図2】本発明の電気二重層コンデンサの分極性電極に
ついての空隙率の分布の一例を説明するための図であ
る。
FIG. 2 is a diagram for explaining an example of a porosity distribution of a polarizable electrode of the electric double layer capacitor of the present invention.

【図3】実施例における内部抵抗の算出方法を説明する
ための図である。
FIG. 3 is a diagram for explaining a method of calculating an internal resistance in an embodiment.

【符号の説明】[Explanation of symbols]

1 電気二重層コンデンサ 2 分極性電極 3 多孔質セパレータ 4 集電体 5 封止部材 DESCRIPTION OF SYMBOLS 1 Electric double layer capacitor 2 Polarized electrode 3 Porous separator 4 Current collector 5 Sealing member

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電解液を含浸した活性炭質構造体からなる
分極性電極と、該分極性電極の上下面にそれぞれ積層さ
れた集電体およびセパレータとを具備する電気二重層コ
ンデンサであって、前記活性炭質構造体の空隙率が前記
集電体積層面から前記セパレータ積層面に向かって小さ
いことを特徴とする電気二重層コンデンサ。
1. An electric double layer capacitor comprising: a polarizable electrode comprising an activated carbonaceous structure impregnated with an electrolytic solution; and a current collector and a separator laminated on upper and lower surfaces of the polarizable electrode, respectively. An electric double layer capacitor, wherein the porosity of the activated carbonaceous structure decreases from the current collector laminated surface to the separator laminated surface.
【請求項2】(a)活性炭粉末と有機樹脂とを混合し、
上下面から圧力を付与して成形する工程と、(b)該成
形体の加圧面に平行に、一方の加圧面を除く一部分を除
去して、該成形体の空隙率が前記一方の加圧面から他方
の表面に向かって小さくなるようにする工程と、(c)
前記(b)工程で得られた成形体を炭化熱処理して活性
炭質構造体を作製する工程と、(d)前記(c)工程で
得られた活性炭質構造体の空隙率の高い面にセパレータ
を積層し、かつ空隙率の低い面に集電体を積層する工程
と、(e)前記活性炭質構造体内に電解液を含浸する工
程とを具備することを特徴とする電気二重層コンデンサ
の製造方法。
2. (a) mixing activated carbon powder and an organic resin,
Applying pressure from the upper and lower surfaces to form, and (b) removing a part except one pressing surface in parallel with the pressing surface of the formed body to reduce the porosity of the formed body to the one pressing surface. (C) reducing the size from the surface to the other surface;
A step of producing an activated carbonaceous structure by carbonizing and heat treating the molded article obtained in the step (b); and (d) a separator on the surface of the activated carbonaceous structure obtained in the step (c) having a high porosity. And a step of (e) impregnating the activated carbonaceous structure with an electrolytic solution, comprising the steps of: laminating a current collector on a surface having a low porosity; Method.
JP33988599A 1999-11-30 1999-11-30 Electric double layer capacitor and manufacturing method thereof Expired - Fee Related JP3786551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33988599A JP3786551B2 (en) 1999-11-30 1999-11-30 Electric double layer capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33988599A JP3786551B2 (en) 1999-11-30 1999-11-30 Electric double layer capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001155971A true JP2001155971A (en) 2001-06-08
JP3786551B2 JP3786551B2 (en) 2006-06-14

Family

ID=18331744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33988599A Expired - Fee Related JP3786551B2 (en) 1999-11-30 1999-11-30 Electric double layer capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3786551B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024611A (en) * 2004-07-06 2006-01-26 Nisshinbo Ind Inc Electric double layer capacitor
JP2008034557A (en) * 2006-07-27 2008-02-14 Kyoto Univ Electrode material and its production process
JP2009117696A (en) * 2007-11-08 2009-05-28 Konica Minolta Holdings Inc Electrode of electrochemical capacitor and electrochemical capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024611A (en) * 2004-07-06 2006-01-26 Nisshinbo Ind Inc Electric double layer capacitor
JP2008034557A (en) * 2006-07-27 2008-02-14 Kyoto Univ Electrode material and its production process
JP2009117696A (en) * 2007-11-08 2009-05-28 Konica Minolta Holdings Inc Electrode of electrochemical capacitor and electrochemical capacitor

Also Published As

Publication number Publication date
JP3786551B2 (en) 2006-06-14

Similar Documents

Publication Publication Date Title
KR101310300B1 (en) Negative Electrode Active Material for Lithium Ion Rechargeable Battery and Negative Electrode
KR0143178B1 (en) Polarizanble electrode
KR100836524B1 (en) Active Material Having High Capacitance For An Electrode, Manufacturing Method thereof, Electrode And Energy Storage Apparatus Comprising The Same
EP1142831B1 (en) Process for producing a carbon material for an electric double layer capacitor electrode, and processes for producing an electric double layer capacitor electrode and an electric double layer capacitor employing it
US10644324B2 (en) Electrode material and energy storage apparatus
JPH10275748A (en) Electric double layer capacitor
KR102392582B1 (en) Electrode of power storage device and manufacturing method thereof
JP3786551B2 (en) Electric double layer capacitor and manufacturing method thereof
KR100792853B1 (en) Carbonoxide composites having high capacity, manufacturing method thereof, electrode and energy storage apparatus comprising the same
JP4587522B2 (en) Electric double layer capacitor
JP2018041921A (en) Nonaqueous lithium power storage element
JP2002260970A (en) Activated carbonaceous structure and electric double- layer capacitor using the same
JP2000169128A (en) Carbon sheet, conductive composite sheet and their production
JP2001015389A (en) Electric double-layer capacitor and manufacture thereof
JP3872222B2 (en) Solid activated carbon structure, electric double layer capacitor using the same, and method for producing the same
JP2000007316A (en) Solid active carbon and electric double layer capacitor using the same
JP2001185452A (en) Electric double layer capacitor and its method of manufacture
JPH0799141A (en) Polarized electrode, manufacture thereof and electric double layer capacitor using the same
KR101065249B1 (en) Preparing method of anode active material for lithium secondary battery and lithium secondary battery comprising anode active material formed therefrom
KR102422011B1 (en) Graphene cell and manufacturing method
KR100224142B1 (en) Eletrical double layer capacitor and manufacture
JP3488957B2 (en) Electric double layer capacitor
JP4025456B2 (en) Electric double layer capacitor and manufacturing method thereof
JP3801802B2 (en) Electric double layer capacitor and manufacturing method thereof
JP2002064038A (en) Electric double layer capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees