JP3872222B2 - Solid activated carbon structure, electric double layer capacitor using the same, and method for producing the same - Google Patents

Solid activated carbon structure, electric double layer capacitor using the same, and method for producing the same Download PDF

Info

Publication number
JP3872222B2
JP3872222B2 JP33935498A JP33935498A JP3872222B2 JP 3872222 B2 JP3872222 B2 JP 3872222B2 JP 33935498 A JP33935498 A JP 33935498A JP 33935498 A JP33935498 A JP 33935498A JP 3872222 B2 JP3872222 B2 JP 3872222B2
Authority
JP
Japan
Prior art keywords
activated carbon
solid activated
solid
electric double
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33935498A
Other languages
Japanese (ja)
Other versions
JP2000169127A (en
Inventor
真也 松野
雄一 堀
直朋 外城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP33935498A priority Critical patent/JP3872222B2/en
Publication of JP2000169127A publication Critical patent/JP2000169127A/en
Application granted granted Critical
Publication of JP3872222B2 publication Critical patent/JP3872222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide an electric double layer capacitor having a high electrostatic capacity and high reliability, in which a solid activated carbon structure having high specific surface area, high mechanical strengths and excellent durability to vibration or the like is used as a polarizing electrode. SOLUTION: This solid activated carbon structure 2 comprising a laminated body composed of a first solid activated carbon layer containing, as a main component, activated carbon having a specific surface area of 1,500-13,000 m2/g, being measured by a nitrogen adsorption method (BET method) and a second solid activated carbon layer containing, as a main component, activated carbon having a specific surface area of 500-1,400 m2/g is used as the electrode of the electric double layer capacitor 1.

Description

【0001】
【発明の属する技術分野】
本発明は、バックアップ電源、車両用電源、補助電源などに用いられる小型大容量のコンデンサの電極材料、あるいはガス吸着剤や上水用、食料精製用、排水浄化用の濾過剤などに用いられる多孔質体として一般に広く適用し得る固形状活性炭質構造体およびそれを用いた電気二重層コンデンサ並びにその製造方法に関するもので、とりわけ静電容量が大きく、かつ保形性や振動に対する機械的耐久性に優れた電気二重層コンデンサに関するものである。
【0002】
【従来技術】
電気二重層コンデンサは、電極と電解液の界面においてイオンの分極によりできる電気二重層を利用したコンデンサであり、コンデンサと電池の両方の機能を兼ね備えたものである。
【0003】
このような電気二重層コンデンサは、従来のコンデンサと比較して発生する単位体積当たりの静電容量が数千倍に及ぶとともに、メンテナンスフリーであり、環境汚染を招く恐れがないことから、小型のメモリーバックアップ電源や大容量のモーター等の補助電源等として、急速にその需要が伸びている。
【0004】
一般に、このような電気二重層コンデンサの構造は、複数の電解液を含浸させた固形状活性炭質電極間に形成された絶縁性の多孔質セパレータにて前記固形状活性炭質電極間を絶縁するとともに、該積層体の上下面に集電体を形成し、該集電体を通して電気を充放電することにより、該集電体間に静電容量を発生するものである。
【0005】
従来、このような固形状活性炭質構造体としては、例えば、活性炭等の炭素成分と、四フッ化エチレン樹脂又は含フッ素重合体等の有機樹脂を混練してロール成形法や圧縮成形法等、公知の成形手段でシート状に成形したもの等が用いられていた。
【0006】
このような電気二重層コンデンサにおいては、高容量化および小型化が求められ、静電容量を高めることが要求されている。このような要求に対し、例えば、特開平8−119614号公報によれば、電極材料として高い比表面積を有する活性炭を用いることにより、コンデンサの高静電容量化が可能であることが開示されている。
【0007】
【発明が解決しようとする課題】
電気二重層コンデンサの機械的な信頼性を高める上では、コンデンサの電極は、コンデンサ製造時の取り扱いに支障のない保形性を有すること、また、コンデンサを使用する際に生じうる振動等により破損しないことが求められ、このために、電極の強度を高くする必要がある。
【0008】
しかしながら、特開平8−119614号公報によれば、高い比表面積を有するためにコンデンサの静電容量を増加させることができるものの、活性炭電極の機械的な強度が低下してしまい、振動等により破損する恐れがあるため、コンデンサの機械的な信頼性が損なわれるという問題があった。そのため、実用的な活性炭の比表面積は、せいぜい1400m2 /g程度であり、コンデンサの静電容量も低いものであった。
【0009】
従って、本発明の目的は、高い比表面積を有すると同時に、保形性や振動等に対する機械的耐久性に優れた固形状活性炭質構造体を得るとともに、これを電気二重層コンデンサの電極として用いることにより高い静電容量を有し、かつ機械的信頼性の高い電気二重層コンデンサを得ることにある。
【0010】
【課題を解決するための手段】
本発明者等は、前記課題に対して鋭意研究の結果、比表面積の高い活性炭によって形成される固形状活性炭質層と、比較的比表面積の低い活性炭によって形成され高強度を有する固形状活性炭質層とを積層することによって、ガス吸着剤やフィルタとして高性能であり、また、これを電気二重層コンデンサの電極として用いることにより高容量を有するとともに保形性や振動等に対する耐久性に優れた電気二重層コンデンサが作製可能であることを知見し、本発明に至った。
【0011】
すなわち、本発明の固形状活性炭質構造体は、窒素吸着法(BET法)による比表面積が1500〜3000m/gの活性炭を主成分とする第1固形状活性炭質層と、前記比表面積が500〜1400m/gの活性炭を主成分とする第2固形状活性炭質層との積層体からなるとともに、前記積層体の最外層が前記第2固形状活性炭質層からなることを特徴とするものである。
【0012】
ここで、前記第1固形状活性炭質層と、前記第2固形状活性炭質層との界面が、焼結によって固着していることが望ましい。
【0013】
また、前記第1固形状活性炭質層の総厚み(t)と、前記第2固形状活性炭質層の総厚み(t)との比(t/t)は、0.2〜4であることが望ましい
【0014】
また、本発明の電気二重層コンデンサは、電解液を含浸した少なくとも2枚の固状活性炭質電極と、該2の固状活性炭質電極間配設、積層された絶縁性の多孔質セパレータと、該積層体の上下面に配設された集電体とを具備する電気二重層コンデンサにおいて、前記固形状活性炭質電極が、窒素吸着法(BET法)による比表面積が1500〜3000m/gの活性炭を主成分とする第1固形状活性炭質層と、前記比表面積が500〜1400m/gの活性炭を主成分とする第2固形状活性炭質層との積層体からなることを特徴とするものである。
【0015】
さらに、本発明の電気二重層コンデンサの製造方法は、窒素吸着法(BET法)による比表面積が2100〜5000m2 /gの炭素を主原料とする第1固形状活性炭質シートと、前記比表面積が700〜2000m2 /gの炭素を主原料とする第2固形状活性炭質シートとを作製する工程と、前記第1固形状活性炭質シートと前記第2固形状活性炭質シートとを積層した後、該積層体を炭化、賦活して固形状活性炭質電極を形成する工程と、少なくとも2枚の固形状活性炭質電極間に多孔質セパレータが介在するように積層するとともに、該積層体の上下面に集電体を形成する工程と、前記固形状活性炭質電極内に電解液を含浸する工程と、を具備することを特徴とするものである。
【0016】
また、前記第1固形状活性炭質シートと前記第2固形状活性炭質シートとを積層する工程において、該積層体の最外層に前記第2固形状活性炭質シートを配置して積層することが望ましい。
【0017】
【作用】
電気二重層コンデンサにおいて、活性炭を主成分とする電極を用いる場合、活性炭と電解液との界面に電気二重層が形成されるため、電極内に含まれる活性炭粒子が有する比表面積がコンデンサの静電容量に大きく関与する。具体的には、コンデンサの静電容量は、電極内に含まれる活性炭の比表面積が増すに伴って増加するが、活性炭の比表面積が1500m2 /g以上になると急激に静電容量が増加するものである。
【0018】
一方、構造体としては、電極内に含まれる活性炭の比表面積が増すに伴って機械的な特性が低下する傾向にあり、構造体としての保形性を保つためには活性炭の強度が3点曲げ強度で300gf/mm2 以上であることが望ましく、そのために活性炭の比表面積は1400m2 /g以下とする必要がある。
本発明によれば、固形状活性炭質構造体が、高比表面積を有する活性炭を主成分とする層と、高い強度を有する構造体との積層体からなることが大きな特徴である。すなわち、第1固形状活性炭質層が活性炭粒子の内部に非常に高い比表面積を有することから、吸着剤や濾過剤等としての性能や電気二重層コンデンサの静電容量の増加等、各種用途での性能が向上するとともに、第2固形状活性炭質層は、比較的に緻密な活性炭粒子からなることから機械的強度も高く、構造体としては、保形性、耐久性等の機械的強度に優れたものとなる。
【0019】
本発明によれば、上記2つの特性を有する層の積層体からなるために、これらの特性を兼ね備えた優れた特性の構造体および電気二重層コンデンサの電極となる。
【0020】
また、前記固形状活性炭質構造体を電気二重層コンデンサの分極性電極とした場合、電極内の活性炭粒子が高い比表面積を有することから電極と電解液との接点が増加し、電解液と電極との界面に生じる電気二重層が多くでき、高い静電容量を得ることができるとともに、保形性、耐久性等の機械的強度に優れ、機械的信頼性の高い電気二重層コンデンサが得られる。
【0021】
【発明の実施の形態】
本発明によれば、前記固形状活性炭質構造体が、窒素吸着法(BET法)による比表面積が1500〜3000m2 /gの活性炭を主成分とする第1固形状活性炭質層( 以下、第1活性炭層と略す。) と、前記比表面積が500〜1400m2 /gの活性炭を主成分とする第2固形状活性炭質層( 以下、第2活性炭層と略す。) との積層体からなることが大きな特徴である。これにより、活性炭層の比表面積を高めることができるとともに、構造体の保形性、耐久性等の機械的強度が向上する。
【0022】
また、かかる構造体によっては、3点曲げ強度が300gf/mm2 以上、特に600gf/mm2 以上に高めることができる。
【0023】
ここで、前記第1活性炭層と、前記第2活性炭層とは、同時焼成により形成されることが望ましく、その界面は焼結によって固着していることが望ましい。
【0024】
また、前記第1活性炭層の総厚み(t1 )と、前記第2活性炭層の総厚み(t2 )との比(t2 /t1 )は、0.2〜4であることが望ましく、これにより、活性炭層の比表面積を高め、保形性等の機械的特性との両方の特性を実用的な範囲とすることができる。
【0025】
さらに、前記第1活性炭層と前記第2活性炭層との積層は、少なくとも1層ずつ配置され、また、複数層を積層したものでもよいが、単独の構造体としての保形性を高める上では、前記第1固形状活性炭質層を前記第2固形状活性炭質層によって挟持した構造が望ましい。
【0026】
本発明の固形状活性炭質構造物における各活性炭質層は、高い比表面積を有する活性炭粒子と、該活性炭粒子を結合するために配合された炭素成分とからなるものである。
【0027】
なお、バインダとして添加される炭素成分は、活性炭粒子間に存在するが、各活性炭層中に占める割合が、5〜50重量%であることが望ましく、これにより活性炭粒子間の焼結性および結合性を高めることができる。
【0028】
次に、本発明の固形状活性炭質構造体を得る方法について説明する。まず、第1固形状活性炭質シート( 以下第1シートと略す。) を形成するための窒素吸着法(BET法)による比表面積が2100〜5000m2 /gの炭素原料と、第2固形状活性炭質シート( 以下第2シートと略す。) を形成するための窒素吸着法(BET法)による比表面積が700〜2000m2 /gの炭素原料とを準備する。
【0029】
炭素原料としては、ヤシ殻、木材、樹脂等に対して薬品賦活やガス賦活により作製される活性炭が高比表面積を有することから好適であり、それ以外にもカーボンブラック、カーボンファイバー、石炭等が使用できる。また、その形状は、球状、フレーク状、突起状あるいは不定形があり、特に限定するものではなく、また、粉末、粒状、顆粒状のいずれであってもよく、さらに、その粒径は5〜50μmであることが望ましい。
【0030】
上記の各活性炭原料に所定量の有機バインダを焼成後の炭素成分量が5〜50重量%となる量で添加、混合する。有機バインダとしては、フェノール、テフロン、コールタール、ポリビニルブチルアルコール(PVB)、ポリビニルホルマール(PVFM)等のポリビニルアセタール、酢酸ビニル等の公知の有機バインダが挙げられ、とりわけ成形性および得られる固形状活性炭質構造体の強度の点から、ポリビニルブチルアルコール(PVB)が最も望ましい。
【0031】
得られた成形用原料をそれぞれプレス成形法、ドクターブレード法、押し出し成形法、カレンダーロール法、ロール成形法等の公知の成形手段により所定形状に成形して第1シートと第2シートを作製する。成形方法としては、生産性の高いテープ状の成形が容易であるとともに、成形体の密度が高くできるロール成形が好適に使用できる。
【0032】
得られた2種類のシートを前述したような所望の順序で積層し、60〜100℃、200〜500kg/cm2 にて熱圧着することにより一体化する。この時、積層体の焼成により得られる構造体の保形性を保つためには、前記積層体の最外層に第2シートを配置して積層することが望ましい。
【0033】
次に、前記積層体を非酸化性雰囲気中、600〜1200℃、特に700〜900℃で炭化熱処理して有機バインダ成分を炭化させるとともに、活性炭間を焼結一体化させる。焼成温度を上記範囲に限定した理由は、600℃よりも低いと粒子間の焼結が不十分で構造体の強度が低下するためであり、逆に1200℃よりも高いと、焼結が進行しすぎてしまい、活性炭の比表面積を制御することが困難となるためである。
【0034】
さらに、大気中、300〜600℃、特に350〜500℃で賦活熱処理することにより、炭化熱処理により焼結が進行し減少した細孔を酸化により再度増加させることができ、特定の比表面積および細孔径を有する固形状活性炭質構造体を得ることができる。
【0035】
次に、本発明の電気二重層コンデンサの一例として、その概略断面図である図1に基づいて説明する。
【0036】
図1によれば、電気二重層コンデンサ1は、電解液を含浸した2枚の固形状活性炭質構造体からなる固形状活性炭質電極( 以下、電極と略す。) 2間に絶縁性の多孔質セパレータ (以下、セパレータと略す。) 3が形成されている。また、電極2の上下面には集電体4が形成され、さらに、図1によれば、電極2およびセパレータ3の両端部は、封止部材5によって外部から封止されている。
【0037】
電極2を構成する前記固状活性炭質構造体は、窒素吸着法(BET法)による比表面積が1500〜3000m/gの活性炭を主成分とする第1固形状活性炭質層と、前記比表面積が500〜1400m/gの活性炭を主成分とする第2固形状活性炭質層との積層体からなることが大きな特徴であり、これにより電極中の活性炭を高比表面積となり高容量化ができるとともに、電極2の機械的な強度が向上することから、コンデンサの機械的信頼性が向上する。なお、電極2内に含まれる活性炭の比表面積が500m/gより小さいとコンデンサの静電容量は極端に低下する。
【0038】
ここで、前記第1活性炭層と前記第2活性炭層との界面が焼結によって固着していることが望ましく、また、コンデンサの静電容量を高め電極の機械的強度を実用上問題ない程度とするためには、前記第1活性炭層の総厚み(t1 )と、前記第2活性炭層の総厚み(t2 )との比(t2 /t1 )が、0.2〜4であることが望ましい。
【0039】
さらに、電極2の集電体4と接する面は、電極の製造時の保形性および集電体4の作製の容易さの点で、第2活性炭層により形成されることが望ましい。
【0040】
また、電極2は、板状であることが望ましく、また、前記固形状活性炭質構造体からなる電極は、機械的な信頼性の点で3点曲げによる強度が300gf/mm2 以上、特に600gf/mm2 以上であることが望ましい。
【0041】
電極2中に含浸される電解液としては、硫酸や硝酸等の水溶液や、プロピレンカーボネート、γ−ブチロラクトン、N,N−ジメチルホルムアミド、エチレンカーボネート、スルホラン、3−メチルスルホラン等の有機溶媒と4級アンモニウム塩、4級スルホニウム塩、4級ホスホニウム塩等の電解質を組み合わせた有機溶液が使用可能である。
【0042】
また、セパレータ3は、パルプやポリエチレン、ポリプロピレン等の有機フィルムまたはガラス繊維不織布等およびセラミックス等により形成され、電極2間を絶縁するために形成されるものであるが、電極2内に含有される前記電解液中のイオンを透過させることができる多孔質体により形成される。
【0043】
さらに、集電体4は、導電性を有する導電性ブチルゴム、アルミ箔、アルミのプラズマ溶射等により形成され、電極2との間で電荷をやり取りすることができる。また、封止部材5は、合成ゴム等により構成され、集電体4および封止部材5によって電極2に含まれる電解液が外部に漏れることを防止する。
【0044】
上記のような電気二重層コンデンサを作製する方法の一例について説明する。まず、上述したように第1のシートと第2のシートを積層後、炭化処理、賦活処理して作製した固形状活性炭質構造体を2枚以上準備する。該構造体の外周表面に封止用部材5を配置するとともにセパレータ3を介して前記固形状活性炭質構造体を積層し、前記構造体に電解液を含浸させ、固形状活性炭質電極2を形成する。そして、該積層体の上下面に集電体4を形成するための成分を含むペーストを塗布して焼成したり、板状の集電体4を貼り付けたり、または溶射等により集電体4を形成することにより電気二重層コンデンサを作製できる。
【0045】
また、他の方法として、前記固形状活性炭質構造体を作製するためのシートとセパレータとを積層し、同時焼成することも可能であるが、この場合、前記セパレータは、同時焼成により変質しない耐熱性を有することが望ましく、また、第2のシート−第1のシート−セパレータ−第1のシート−第2のシートと配置して積層、焼成することにより、少ない積層数で保形性の良いコンデンサを得ることができる。
【0046】
【実施例】
本発明の固形状活性炭質基板及びそれを用いた電気二重層コンデンサを以下のようにして評価した。
【0047】
まず、表1に示す比表面積を有する活性炭原料に対して、ポリビニルブチルアルコール(PVB)を活性炭の比表面積1000m2 /gあたり600gとなるように添加し、高速混合攪拌機にて攪拌混合、造粒した後、篩別した。
【0048】
次に、得られた成形用原料をそれぞれロール成形により成形し、長辺100mm、短辺70mmの平板状の成形体として、高比表面積の第1シートと低比表面積の第2シートとを作製した。その後、第1シートを2枚の第2シートで挟持して配置、積層し、80℃、300kg/cm2 の条件で熱圧着、一体化させた積層体を得た。
【0049】
得られた積層体に対して、真空中、900℃で10分間炭化熱処理を行った後、大気中、450℃で180分間賦活熱処理を行い、縦90mm、横60mm、構造体の厚さ3mmの固形状活性炭質構造体を作製した。なお、第1活性炭層の総厚みt1 と第2活性炭層の総厚みt2 との比(t2 /t1 )を表1に示したが、(t2 /t1 )の変化は、各シートの厚みを変更することにより調整した。
【0050】
得られた固形状活性炭質構造体について、JISR1601に従い、室温における3点曲げ強度を測定した。測定に際しては、第2活性炭層の表面側にピンを押し当てて測定した。結果は、表1に示した。
【0051】
次に、前記固形状活性炭質構造体2枚に対し、炭酸プロピレン溶液を溶媒とした過塩素酸リチウム1mol/l電解液を含浸させた後、93mm×63mm×0.3mmのガラス繊維不織布からなる多孔質セパレータを介して積層し、その上下面に93mm×63mm×0.5mmのアルミニウム製集電体を積層し、さらに、絶縁性のブチルゴム製封止部材で該積層体を固定一体化して、電気二重層コンデンサを作製した。
【0052】
得られた電気二重層コンデンサについて、2.5Vの電圧で30分間充電した後、3mA/cm2 の定電流放電法にて電極単位重量当たりの静電容量(F/g)を求めた。結果は、表1に示した。
【0053】
【表1】

Figure 0003872222
【0054】
表から明らかなように、電極内の第1活性炭層に含まれる活性炭の比表面積が3000m2 /gより高い試料No.1では、強度が300gf/mm2 より低くなり、また、電極内の第1活性炭層に含まれる活性炭の比表面積が1500m2 /gより低い試料No.17では、静電容量が20F/gより小さいものであった。また、電極内の第2活性炭層に含まれる活性炭の比表面積が700m2 /gより低い試料No.2、8においても、コンデンサの静電容量が低下した。さらに、電極内の第2活性炭層に含まれる活性炭の比表面積が1400m2 /gより高い試料No.16では、強度が300gf/mm2 より低くなり、試料No.12においては、取り扱いにより破損してしまった。
【0055】
これに対して、本発明に基づく試料では、3点曲げ強度が300gf/mm2 以上、静電容量が20F/g以上の高い静電容量を得ることができた。
【0056】
【発明の効果】
以上詳述したように、本発明の固形状活性炭質構造体およびそれを用いた電気二重層コンデンサ並びにその製造方法によれば、静電容量を大きくすることができるとともに、機械的強度を高くすることができ、振動等に対する耐久性に優れた固形状活性炭質構造体が得られる。
【図面の簡単な説明】
【図1】本発明の電気二重層コンデンサの概略断面図である。
【符号の説明】
1 電気二重層コンデンサ
2 固形状活性炭質電極
3 多孔質セパレータ
4 集電体
5 封止部材[0001]
BACKGROUND OF THE INVENTION
The present invention is a porous material used for electrode materials for small and large-capacity capacitors used for backup power supplies, vehicle power supplies, auxiliary power supplies, etc., or gas adsorbents, filter for clean water, food refining, drainage purification, etc. TECHNICAL FIELD The present invention relates to a solid activated carbon structure that can be generally widely used as a material, an electric double layer capacitor using the same, and a method for manufacturing the same. Especially, it has a large capacitance, and has shape retention and mechanical durability against vibration. The present invention relates to an excellent electric double layer capacitor.
[0002]
[Prior art]
An electric double layer capacitor is a capacitor that uses an electric double layer formed by ion polarization at the interface between an electrode and an electrolyte, and has both functions of a capacitor and a battery.
[0003]
Such an electric double layer capacitor has a capacitance per unit volume that is several thousand times that of a conventional capacitor, is maintenance-free, and does not cause environmental pollution. The demand for memory backup power supplies and auxiliary power supplies for large-capacity motors is growing rapidly.
[0004]
In general, the structure of such an electric double layer capacitor is to insulate the solid activated carbon electrodes with an insulating porous separator formed between solid activated carbon electrodes impregnated with a plurality of electrolytes. A current collector is formed on the upper and lower surfaces of the laminate, and electricity is charged and discharged through the current collector to generate a capacitance between the current collectors.
[0005]
Conventionally, as such a solid activated carbon structure, for example, a carbon component such as activated carbon and an organic resin such as a tetrafluoroethylene resin or a fluorine-containing polymer are kneaded, a roll molding method, a compression molding method, etc. What was shape | molded in the sheet form by the well-known shaping | molding means was used.
[0006]
Such an electric double layer capacitor is required to have a higher capacity and a smaller size, and is required to increase the capacitance. In response to such a requirement, for example, according to Japanese Patent Application Laid-Open No. 8-119614, it is disclosed that the use of activated carbon having a high specific surface area as an electrode material can increase the capacitance of the capacitor. Yes.
[0007]
[Problems to be solved by the invention]
In order to increase the mechanical reliability of the electric double layer capacitor, the capacitor electrode must have a shape-retaining property that does not hinder the handling of the capacitor when it is manufactured, and may be damaged by vibrations that may occur when the capacitor is used. Therefore, it is necessary to increase the strength of the electrode.
[0008]
However, according to Japanese Patent Application Laid-Open No. 8-119614, although the capacitance of the capacitor can be increased because it has a high specific surface area, the mechanical strength of the activated carbon electrode is reduced and is damaged by vibration or the like. There is a problem that the mechanical reliability of the capacitor is impaired. Therefore, the specific surface area of practical activated carbon is at most about 1400 m 2 / g, and the capacitance of the capacitor is low.
[0009]
Accordingly, an object of the present invention is to obtain a solid activated carbonaceous structure having a high specific surface area and at the same time having excellent shape retention and mechanical durability against vibration and the like, and using this as an electrode of an electric double layer capacitor Thus, an electric double layer capacitor having a high capacitance and high mechanical reliability is obtained.
[0010]
[Means for Solving the Problems]
As a result of earnest research on the above problems, the present inventors have made a solid activated carbon layer formed by activated carbon having a high specific surface area and a solid activated carbon having high strength formed by activated carbon having a relatively low specific surface area. By laminating layers, it has high performance as a gas adsorbent and filter, and by using it as an electrode of an electric double layer capacitor, it has high capacity and excellent durability against shape retention and vibration. The inventors have found that an electric double layer capacitor can be produced, and have reached the present invention.
[0011]
That is, the solid activated carbonaceous structure of the present invention has a first solid activated carbon layer mainly composed of activated carbon having a specific surface area of 1500 to 3000 m 2 / g by a nitrogen adsorption method (BET method), and the specific surface area is It consists of a laminated body with a second solid activated carbon layer mainly composed of 500 to 1400 m 2 / g activated carbon, and the outermost layer of the laminated body consists of the second solid activated carbon layer. Is.
[0012]
Here, it is desirable that the interface between the first solid activated carbon layer and the second solid activated carbon layer is fixed by sintering.
[0013]
The ratio (t 2 / t 1 ) between the total thickness (t 1 ) of the first solid activated carbon layer and the total thickness (t 2 ) of the second solid activated carbon layer is 0.2 to arbitrariness wishing to be a 4.
[0014]
The electric double layer capacitor of the present invention includes at least two solid forms activated carbon porous electrodes impregnated with an electrolyte solution, the two solid form activated carbon porous electrodes between arranged, laminated insulating porous In the electric double layer capacitor comprising a separator and current collectors disposed on the upper and lower surfaces of the laminate, the solid activated carbon electrode has a specific surface area of 1500 to 3000 m 2 by a nitrogen adsorption method (BET method). / G of activated carbon and a second solid activated carbon layer having a specific surface area of 500 to 1400 m 2 / g as a main component. It is a feature.
[0015]
Furthermore, the method for producing an electric double layer capacitor of the present invention includes a first solid activated carbon sheet mainly composed of carbon having a specific surface area of 2100 to 5000 m 2 / g by a nitrogen adsorption method (BET method), and the specific surface area. Is a step of producing a second solid activated carbon sheet made of 700 to 2000 m 2 / g of carbon as a main raw material, and the first solid activated carbon sheet and the second solid activated carbon sheet are laminated. And carbonizing and activating the laminate to form a solid activated carbon electrode, laminating so that a porous separator is interposed between at least two solid activated carbon electrodes, and upper and lower surfaces of the laminate A step of forming a current collector, and a step of impregnating the solid activated carbon electrode with an electrolytic solution.
[0016]
In the step of laminating the first solid activated carbon sheet and the second solid activated carbon sheet, it is desirable to arrange and laminate the second solid activated carbon sheet on the outermost layer of the laminate. .
[0017]
[Action]
When an electrode mainly composed of activated carbon is used in an electric double layer capacitor, an electric double layer is formed at the interface between the activated carbon and the electrolyte, so that the specific surface area of the activated carbon particles contained in the electrode is the electrostatic capacity of the capacitor. Greatly involved in capacity. Specifically, the capacitance of the capacitor increases as the specific surface area of the activated carbon contained in the electrode increases. However, when the specific surface area of the activated carbon reaches 1500 m 2 / g or more, the capacitance increases rapidly. Is.
[0018]
On the other hand, as the structure, the mechanical properties tend to decrease as the specific surface area of the activated carbon contained in the electrode increases, and the strength of the activated carbon is 3 points in order to maintain the shape retention as the structure. The bending strength is desirably 300 gf / mm 2 or more. For this purpose, the specific surface area of the activated carbon needs to be 1400 m 2 / g or less.
According to the present invention, it is a great feature that the solid activated carbonaceous structure comprises a laminate of a layer mainly composed of activated carbon having a high specific surface area and a structure having high strength. That is, since the first solid activated carbon layer has a very high specific surface area inside the activated carbon particles, it can be used in various applications such as the performance as an adsorbent or a filtering agent and the increase in the capacitance of the electric double layer capacitor. The second solid activated carbon layer is made of relatively dense activated carbon particles and has high mechanical strength, and the structure has mechanical strength such as shape retention and durability. It will be excellent.
[0019]
According to the present invention, since it is composed of a laminate of the layers having the above two characteristics, it becomes an excellent structure having these characteristics and an electrode of an electric double layer capacitor.
[0020]
When the solid activated carbon structure is a polarizable electrode of an electric double layer capacitor, the activated carbon particles in the electrode have a high specific surface area, so the number of contacts between the electrode and the electrolyte increases, and the electrolyte and electrode The electric double layer generated at the interface with the capacitor can be increased, and a high capacitance can be obtained, and an electric double layer capacitor having excellent mechanical strength such as shape retention and durability and high mechanical reliability can be obtained. .
[0021]
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention, the solid activated carbon structure has a first solid activated carbon layer (hereinafter referred to as a first activated carbon layer) mainly composed of activated carbon having a specific surface area of 1500 to 3000 m 2 / g by a nitrogen adsorption method (BET method). 1) and a second solid activated carbon layer (hereinafter abbreviated as second activated carbon layer) mainly composed of activated carbon having a specific surface area of 500 to 1400 m 2 / g. This is a major feature. Thereby, the specific surface area of the activated carbon layer can be increased, and the mechanical strength such as shape retention and durability of the structure is improved.
[0022]
In addition, depending on the structure, the three-point bending strength can be increased to 300 gf / mm 2 or more, particularly 600 gf / mm 2 or more.
[0023]
Here, the first activated carbon layer and the second activated carbon layer are preferably formed by simultaneous firing, and the interface is preferably fixed by sintering.
[0024]
The ratio (t 2 / t 1 ) between the total thickness (t 1 ) of the first activated carbon layer and the total thickness (t 2 ) of the second activated carbon layer is preferably 0.2 to 4. As a result, the specific surface area of the activated carbon layer can be increased, and both the mechanical properties such as shape retention can be within a practical range.
[0025]
Furthermore, the lamination of the first activated carbon layer and the second activated carbon layer may be arranged at least one layer, and may be a laminate of a plurality of layers, but in order to improve the shape retention as a single structure. A structure in which the first solid activated carbon layer is sandwiched between the second solid activated carbon layers is desirable.
[0026]
Each activated carbon layer in the solid activated carbon structure of the present invention comprises activated carbon particles having a high specific surface area and a carbon component blended to bind the activated carbon particles.
[0027]
In addition, although the carbon component added as a binder exists between activated carbon particles, it is desirable that the ratio occupied in each activated carbon layer is 5 to 50% by weight. Can increase the sex.
[0028]
Next, a method for obtaining the solid activated carbonaceous structure of the present invention will be described. First, a carbon raw material having a specific surface area of 2100 to 5000 m 2 / g by a nitrogen adsorption method (BET method) for forming a first solid activated carbon sheet (hereinafter abbreviated as a first sheet), and a second solid activated carbon A carbon raw material having a specific surface area of 700 to 2000 m 2 / g by a nitrogen adsorption method (BET method) for forming a quality sheet (hereinafter abbreviated as a second sheet) is prepared.
[0029]
As the carbon raw material, activated carbon produced by chemical activation or gas activation with respect to coconut shell, wood, resin, etc. is suitable because it has a high specific surface area. Besides that, carbon black, carbon fiber, coal, etc. Can be used. Further, the shape thereof is spherical, flake-like, protrusion-like or irregular, and is not particularly limited, and may be any of powder, granule and granule, and the particle size is 5 to 5. It is desirable that it is 50 micrometers.
[0030]
A predetermined amount of an organic binder is added to and mixed with each activated carbon raw material in such an amount that the amount of carbon components after firing becomes 5 to 50% by weight. Examples of the organic binder include known organic binders such as phenol, teflon, coal tar, polyvinyl butyl alcohol (PVB), polyvinyl formal (PVFM) and the like, and vinyl acetate. Polyvinyl butyl alcohol (PVB) is most desirable from the viewpoint of the strength of the structure.
[0031]
The obtained forming raw materials are respectively formed into a predetermined shape by a known forming means such as a press forming method, a doctor blade method, an extrusion forming method, a calendar roll method, a roll forming method, and the first sheet and the second sheet are produced. . As a forming method, roll forming which can easily form a tape with high productivity and can increase the density of the formed body can be suitably used.
[0032]
The obtained two types of sheets are laminated in the desired order as described above and integrated by thermocompression bonding at 60 to 100 ° C. and 200 to 500 kg / cm 2 . At this time, in order to maintain the shape retention of the structure obtained by firing the laminated body, it is desirable to dispose and laminate the second sheet on the outermost layer of the laminated body.
[0033]
Next, the laminate is carbonized and heat-treated at 600 to 1200 ° C., particularly 700 to 900 ° C. in a non-oxidizing atmosphere to carbonize the organic binder component, and the activated carbon is sintered and integrated. The reason why the firing temperature is limited to the above range is that if the temperature is lower than 600 ° C., the sintering between the particles is insufficient and the strength of the structure is lowered. Conversely, if the temperature is higher than 1200 ° C., the sintering proceeds. This is because it becomes too much to control the specific surface area of the activated carbon.
[0034]
Furthermore, by performing an activation heat treatment in the atmosphere at 300 to 600 ° C., particularly 350 to 500 ° C., the pores that have been sintered and reduced by the carbonization heat treatment can be increased again by oxidation, and a specific specific surface area and fineness can be increased. A solid activated carbon structure having a pore size can be obtained.
[0035]
Next, an example of the electric double layer capacitor of the present invention will be described with reference to FIG.
[0036]
Referring to FIG. 1, an electric double layer capacitor 1 includes a solid activated carbon electrode (hereinafter abbreviated as an electrode) 2 made of two solid activated carbon structures impregnated with an electrolytic solution. A separator (hereinafter abbreviated as a separator) 3 is formed. Further, current collectors 4 are formed on the upper and lower surfaces of the electrode 2, and further, according to FIG. 1, both ends of the electrode 2 and the separator 3 are sealed from the outside by a sealing member 5.
[0037]
The solid form activated carbon membrane structure constituting the electrode 2, a first solid activated carbon electrolyte layer the nitrogen adsorption method specific surface area by the (BET method) composed mainly of activated carbon 1500~3000m 2 / g, the ratio The main feature is that it consists of a laminate with a second solid activated carbon layer mainly composed of activated carbon having a surface area of 500 to 1400 m 2 / g, and this makes the activated carbon in the electrode have a high specific surface area and high capacity. In addition, since the mechanical strength of the electrode 2 is improved, the mechanical reliability of the capacitor is improved. If the specific surface area of the activated carbon contained in the electrode 2 is smaller than 500 m 2 / g, the capacitance of the capacitor is extremely reduced.
[0038]
Here, it is desirable that the interface between the first activated carbon layer and the second activated carbon layer is fixed by sintering, and the capacitance of the capacitor is increased so that the mechanical strength of the electrode is not problematic in practice. In order to do this, the ratio (t 2 / t 1 ) between the total thickness (t 1 ) of the first activated carbon layer and the total thickness (t 2 ) of the second activated carbon layer is 0.2-4. It is desirable.
[0039]
Furthermore, the surface of the electrode 2 that contacts the current collector 4 is preferably formed of the second activated carbon layer in terms of shape retention during manufacture of the electrode and ease of production of the current collector 4.
[0040]
The electrode 2 is preferably plate-like, and the electrode composed of the solid activated carbonaceous structure has a strength of 300 gf / mm 2 or more, particularly 600 gf, by three-point bending in terms of mechanical reliability. / Mm 2 or more is desirable.
[0041]
Examples of the electrolytic solution impregnated in the electrode 2 include aqueous solutions such as sulfuric acid and nitric acid, organic solvents such as propylene carbonate, γ-butyrolactone, N, N-dimethylformamide, ethylene carbonate, sulfolane, and 3-methylsulfolane, and quaternary. Organic solutions in which electrolytes such as ammonium salts, quaternary sulfonium salts, and quaternary phosphonium salts are combined can be used.
[0042]
The separator 3 is formed of an organic film such as pulp, polyethylene, or polypropylene, a glass fiber nonwoven fabric, ceramics, or the like, and is formed to insulate between the electrodes 2, but is contained in the electrode 2. It is formed of a porous body that can transmit ions in the electrolytic solution.
[0043]
Furthermore, the current collector 4 is formed by conductive butyl rubber, aluminum foil, aluminum plasma spraying, or the like having conductivity, and can exchange charges with the electrode 2. The sealing member 5 is made of synthetic rubber or the like, and prevents the electrolyte contained in the electrode 2 from leaking to the outside by the current collector 4 and the sealing member 5.
[0044]
An example of a method for manufacturing the electric double layer capacitor as described above will be described. First, as described above, after laminating the first sheet and the second sheet, two or more solid activated carbon structures prepared by carbonization treatment and activation treatment are prepared. The sealing member 5 is disposed on the outer peripheral surface of the structure, and the solid activated carbon structure is laminated via the separator 3, and the structure is impregnated with an electrolytic solution to form a solid activated carbon electrode 2. To do. Then, the current collector 4 is applied by applying and baking a paste containing a component for forming the current collector 4 on the upper and lower surfaces of the laminate, attaching a plate-like current collector 4, or spraying. By forming the electric double layer capacitor can be produced.
[0045]
In addition, as another method, it is possible to laminate a sheet and a separator for producing the solid activated carbonaceous structure and co-fire, but in this case, the separator is a heat resistant material that does not change in quality by co-firing. In addition, it is desirable to have a good shape-retaining property with a small number of layers by arranging and firing the second sheet-first sheet-separator-first sheet-second sheet. A capacitor can be obtained.
[0046]
【Example】
The solid activated carbon substrate of the present invention and the electric double layer capacitor using the same were evaluated as follows.
[0047]
First, polyvinyl butyl alcohol (PVB) is added to the activated carbon raw material having the specific surface area shown in Table 1 so that the specific surface area of activated carbon is 1000 g 2 / g, and the mixture is stirred and granulated with a high-speed mixing stirrer. And then sieved.
[0048]
Next, the obtained raw materials for molding are each formed by roll forming to produce a first sheet having a high specific surface area and a second sheet having a low specific surface area as a flat molded body having a long side of 100 mm and a short side of 70 mm. did. Then, the 1st sheet was pinched | interposed and laminated | stacked by the 2nd 2 sheet | seat, the laminated body which carried out thermocompression bonding and integrated on 80 degreeC and 300 kg / cm < 2 > conditions was obtained.
[0049]
The obtained laminate was subjected to carbonization heat treatment at 900 ° C. for 10 minutes in a vacuum, and then subjected to activation heat treatment at 450 ° C. for 180 minutes in the air, and was 90 mm long, 60 mm wide, and 3 mm thick. A solid activated carbon structure was prepared. The ratio (t 2 / t 1 ) between the total thickness t 1 of the first activated carbon layer and the total thickness t 2 of the second activated carbon layer is shown in Table 1, and the change in (t 2 / t 1 ) is Adjustment was made by changing the thickness of each sheet.
[0050]
About the obtained solid activated carbon structure, according to JISR1601, the 3-point bending strength at room temperature was measured. In the measurement, the measurement was performed by pressing a pin against the surface side of the second activated carbon layer. The results are shown in Table 1.
[0051]
Next, after impregnating two solid activated carbonaceous structures with a 1 mol / l lithium perchlorate electrolyte solution using a propylene carbonate solution as a solvent, it is composed of a 93 mm × 63 mm × 0.3 mm glass fiber nonwoven fabric. Laminate through a porous separator, and laminate an aluminum current collector of 93 mm × 63 mm × 0.5 mm on the upper and lower surfaces, and further fix and integrate the laminate with an insulating butyl rubber sealing member, An electric double layer capacitor was produced.
[0052]
The obtained electric double layer capacitor was charged at a voltage of 2.5 V for 30 minutes, and then the capacitance per unit electrode weight (F / g) was determined by a constant current discharge method of 3 mA / cm 2 . The results are shown in Table 1.
[0053]
[Table 1]
Figure 0003872222
[0054]
As is apparent from the table, the sample surface No. in which the specific surface area of the activated carbon contained in the first activated carbon layer in the electrode is higher than 3000 m 2 / g. 1, the strength is lower than 300 gf / mm 2 , and the specific surface area of the activated carbon contained in the first activated carbon layer in the electrode is lower than 1500 m 2 / g. In No. 17, the capacitance was less than 20 F / g. In addition, the sample No. 2 in which the specific surface area of the activated carbon contained in the second activated carbon layer in the electrode is lower than 700 m 2 / g. Also in 2 and 8, the capacitance of the capacitor decreased. Furthermore, the sample No. whose specific surface area of the activated carbon contained in the 2nd activated carbon layer in an electrode is higher than 1400 m < 2 > / g. No. 16 has a strength lower than 300 gf / mm 2 , and sample No. No. 12 was damaged by handling.
[0055]
In contrast, the sample according to the present invention was able to obtain a high capacitance with a three-point bending strength of 300 gf / mm 2 or more and a capacitance of 20 F / g or more.
[0056]
【The invention's effect】
As described above in detail, according to the solid activated carbon structure of the present invention, the electric double layer capacitor using the same, and the manufacturing method thereof, the capacitance can be increased and the mechanical strength can be increased. Thus, a solid activated carbon structure having excellent durability against vibration and the like can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of an electric double layer capacitor of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electric double layer capacitor 2 Solid activated carbon electrode 3 Porous separator 4 Current collector 5 Sealing member

Claims (10)

窒素吸着法(BET法)による比表面積が1500〜3000m/gの活性炭を主成分とする第1固形状活性炭質層と、前記比表面積が500〜1400m/gの活性炭を主成分とする第2固形状活性炭質層との積層体からなるとともに、前記積層体の最外層が前記第2固形状活性炭質層からなることを特徴とする固形状活性炭質構造体。A first solid activated carbon layer mainly composed of activated carbon having a specific surface area of 1500 to 3000 m 2 / g by a nitrogen adsorption method (BET method) and an activated carbon having a specific surface area of 500 to 1400 m 2 / g as a main component. A solid activated carbon structure comprising a laminate with a second solid activated carbon layer, and an outermost layer of the laminate comprising the second solid activated carbon layer. 前記第1固形状活性炭質層と、前記第2固形状活性炭質層との界面が、焼結によって固着していることを特徴とする請求項1記載の固形状活性炭質構造体。The solid activated carbon structure according to claim 1, wherein an interface between the first solid activated carbon layer and the second solid activated carbon layer is fixed by sintering. 前記第1固形状活性炭質層の総厚み(t1 )と、前記第2固形状活性炭質層の総厚み(t)との比(t /t)が、0.2〜4であることを特徴とする請求項1または2に記載の固形状活性炭質構造体。Ratio (t 2 ) of the total thickness (t 1 ) of the first solid activated carbon layer and the total thickness (t 2 ) of the second solid activated carbon layer / T 1) is solid activated carbon membrane structure according to claim 1 or 2, characterized in that it is 0.2 to 4. 電解液を含浸した少なくとも2枚の固状活性炭質電極と、該2の固状活性炭質電極間に配設、積層された絶縁性の多孔質セパレータと、前記積層体の上下面に配設された集電体とを具備する電気二重層コンデンサにおいて、前記固形状活性炭質電極が、窒素吸着法(BET法)による比表面積が1500〜3000m/gの活性炭を主成分とする第1固形状活性炭質層と、前記比表面積が500〜1400m/gの活性炭を主成分とする第2固形状活性炭質層との積層体からなることを特徴とする電気二重層コンデンサ。At least two solid forms activated carbon porous electrodes impregnated with an electrolytic solution, disposed between the solid-form activated carbon porous electrodes of two said, the porous separator of the laminated insulating, the upper and lower surfaces of the laminate In the electric double layer capacitor comprising the arranged current collector, the solid activated carbonaceous electrode is mainly composed of activated carbon having a specific surface area of 1500 to 3000 m 2 / g by a nitrogen adsorption method (BET method). An electric double layer capacitor comprising a laminate of one solid activated carbon layer and a second solid activated carbon layer mainly composed of activated carbon having a specific surface area of 500 to 1400 m 2 / g. 前記第1固形状活性炭質層と、前記第2固形状活性炭質層との界面が、焼結によって固着していることを特徴とする請求項記載の電気二重層コンデンサ。The electric double layer capacitor according to claim 4 , wherein an interface between the first solid activated carbon layer and the second solid activated carbon layer is fixed by sintering. 前記第1固形状活性炭質層の総厚み(t1 )と、前記第2固形状活性炭質層の総厚み(t)との比(t/t)が、0.2〜4であることを特徴とする請求項4または5に記載の電気二重層コンデンサ。The ratio (t 2 / t 1 ) between the total thickness (t 1 ) of the first solid activated carbon layer and the total thickness (t 2 ) of the second solid activated carbon layer is 0.2-4. The electric double layer capacitor according to claim 4, wherein the electric double layer capacitor is provided. 前記積層体の最外層が前記第2固形状活性炭質層からなることを特徴とする請求項4乃至6のいずれか記載の電気二重層コンデンサ。The electric double layer capacitor according to any one of claims 4 to 6, wherein the outermost layer of the laminate is composed of the second solid activated carbonaceous layer. 窒素吸着法(BET法)による比表面積が2100〜5000m/gの炭素を主原料とする第1固形状活性炭質シートと、前記比表面積が700〜2000m/gの炭素を主原料とする第2固形状活性炭質シートとを作製する工程と、前記第1固形状活性炭質シートと前記第2固形状活性炭質シートとを積層した後、該積層体を炭化、賦活して固形状活性炭質電極を形成する工程と、前記工程で得られた少なくとも2枚の固形状活性炭質電極間に多孔質セパレータを介在させて積層するとともに、該積層体の上下面に集電体を形成する工程と、前記固形状活性炭質電極内に電解液を含浸する工程と、を具備することを特徴とする電気二重層コンデンサの製造方法。A first solid activated carbon sheet mainly composed of carbon having a specific surface area of 2100 to 5000 m 2 / g by a nitrogen adsorption method (BET method) and carbon having a specific surface area of 700 to 2000 m 2 / g as a main material. After laminating the first solid activated carbon sheet and the second solid activated carbon sheet, the second solid activated carbon sheet is carbonized and activated to form a solid activated carbon. A step of forming an electrode, a step of laminating a porous separator between at least two solid activated carbon electrodes obtained in the step, and a step of forming a current collector on the upper and lower surfaces of the laminate; And a step of impregnating the solid activated carbon electrode with an electrolytic solution. 前記第1固形状活性炭質シートと前記第2固形状活性炭質シートとを積層する工程において、最外層に前記第2固形状活性炭質シートを配置して積層することを特徴とする請求項記載の電気二重層コンデンサの製造方法。In the step of laminating the said first solid activated carbon membrane sheet and said second solid activated carbon membrane sheet, according to claim 8, wherein the stacked by placing the second solid activated carbon membrane sheet in the outermost layer Manufacturing method of electric double layer capacitor. 前記第1固形状活性炭質シートの総厚み(t)と、前記第2固形状活性炭質シートの総厚み(t)との比(t/t)が、0.2〜4であることを特徴とする請求項8または9に記載の電気二重層コンデンサの製造方法。The ratio (t 2 / t 1 ) between the total thickness (t 1 ) of the first solid activated carbon sheet and the total thickness (t 2 ) of the second solid activated carbon sheet is 0.2-4. 10. The method for producing an electric double layer capacitor according to claim 8 or 9, wherein:
JP33935498A 1998-11-30 1998-11-30 Solid activated carbon structure, electric double layer capacitor using the same, and method for producing the same Expired - Fee Related JP3872222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33935498A JP3872222B2 (en) 1998-11-30 1998-11-30 Solid activated carbon structure, electric double layer capacitor using the same, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33935498A JP3872222B2 (en) 1998-11-30 1998-11-30 Solid activated carbon structure, electric double layer capacitor using the same, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000169127A JP2000169127A (en) 2000-06-20
JP3872222B2 true JP3872222B2 (en) 2007-01-24

Family

ID=18326677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33935498A Expired - Fee Related JP3872222B2 (en) 1998-11-30 1998-11-30 Solid activated carbon structure, electric double layer capacitor using the same, and method for producing the same

Country Status (1)

Country Link
JP (1) JP3872222B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4315157B2 (en) * 2003-09-11 2009-08-19 パナソニック株式会社 Manufacturing method of electric double layer capacitor
JP5676074B2 (en) * 2008-10-31 2015-02-25 関西熱化学株式会社 Method for reforming activated carbon
JP5562688B2 (en) * 2010-03-16 2014-07-30 Jsr株式会社 Lithium ion capacitor manufacturing method and positive electrode manufacturing method

Also Published As

Publication number Publication date
JP2000169127A (en) 2000-06-20

Similar Documents

Publication Publication Date Title
EP1142831B1 (en) Process for producing a carbon material for an electric double layer capacitor electrode, and processes for producing an electric double layer capacitor electrode and an electric double layer capacitor employing it
KR100880552B1 (en) Active Material Having High Capacitance For An Electrode, Manufacturing Method thereof, Electrode And Energy Storage Apparatus Comprising The Same
EP0564498A1 (en) Supercapacitor electrode and method of fabrication thereof.
WO2015026881A1 (en) Carbon-based electrodes containing molecular sieve
JP3872222B2 (en) Solid activated carbon structure, electric double layer capacitor using the same, and method for producing the same
JP3652061B2 (en) Electric double layer capacitor
JP2002075788A (en) Electric double-layer capacitor and laminate of battery cells
JPH1111921A (en) Solid activated carbon
JP3764604B2 (en) Electric double layer capacitor and manufacturing method thereof
JP2006279003A (en) Electric double layer capacitor
KR102013173B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
JPH09293649A (en) Electric double layered capacitor
JP4587522B2 (en) Electric double layer capacitor
KR101031018B1 (en) Hybrid supercapacitor using transition metal oxide aerogel
KR102188237B1 (en) Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method
KR102188242B1 (en) Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method
JP2001185452A (en) Electric double layer capacitor and its method of manufacture
JP2002260970A (en) Activated carbonaceous structure and electric double- layer capacitor using the same
JP2000007316A (en) Solid active carbon and electric double layer capacitor using the same
JP2002043180A (en) Electrical double layer capacitor
JP3904755B2 (en) Activated carbon and electric double layer capacitor using the same
JP2002015959A (en) Electric double-layer capacitor and method of manufacturing the same
JP3786551B2 (en) Electric double layer capacitor and manufacturing method thereof
JP3670507B2 (en) Electric double layer capacitor and manufacturing method thereof
JP3801802B2 (en) Electric double layer capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees