JP2001129509A - 重金属溶出防止剤及びそれを用いた重金属含有廃棄物の処理方法 - Google Patents

重金属溶出防止剤及びそれを用いた重金属含有廃棄物の処理方法

Info

Publication number
JP2001129509A
JP2001129509A JP31087299A JP31087299A JP2001129509A JP 2001129509 A JP2001129509 A JP 2001129509A JP 31087299 A JP31087299 A JP 31087299A JP 31087299 A JP31087299 A JP 31087299A JP 2001129509 A JP2001129509 A JP 2001129509A
Authority
JP
Japan
Prior art keywords
heavy metal
water
containing waste
added
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31087299A
Other languages
English (en)
Inventor
Makoto Mizutani
眞 水谷
Masahito Matsubara
雅人 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP31087299A priority Critical patent/JP2001129509A/ja
Publication of JP2001129509A publication Critical patent/JP2001129509A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

(57)【要約】 【課題】 重金属含有廃棄物中の重金属を効率的か
つ安定的に固定化し重金属の溶出を防ぐことができる重
金属溶出防止剤及びそれを用いた重金属含有廃棄物の処
理方法を提供する。 【解決手段】 (1)(A)硫黄、(B)アルカリ金属
化合物、及び(C)水からなる重金属溶出防止剤。
(2)(A)硫黄と(B)アルカリ金属化合物との反応
混合物、及び(C)水からなる重金属溶出防止剤。
(3)(A)硫黄と(B)アルカリ金属化合物との反応
混合物であって、(A)成分に対する(B)成分のモル
比が0.2〜2.5であることを特徴とする重金属溶出
防止剤。(4)重金属含有廃棄物に上記の重金属溶出防
止剤を添加した後必要に応じ水分を調整し、混練するこ
とを特徴とする重金属含有廃棄物の処理方法。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、重金属溶出防止剤
及びそれを用いた重金属含有廃棄物の処理方法に関し、
より詳しくは重金属含有廃棄物中の鉛、カドミウム、ク
ロムなどの重金属属を効率的かつ安定的に固定化するこ
とができる重金属溶出剤とそれを用いた重金属含有廃棄
物の処理方法に関する。
【0002】
【従来の技術】近年、都市あるいは工場等から発生する
ごみ、廃棄物が著しく増大するなか、これら廃棄物の焼
却により排出される焼却灰や飛灰の中に重金属が含まれ
ていることから、環境対策上、焼却灰や飛灰の安全な無
害化処理対策が望まれている。
【0003】その処理方法として従来、硫化ソーダなど
の硫化剤によりに重金属を硫化し溶出を防止する方法が
提案されている。例えば、特開昭53−39262号公
報、特開昭55−1830号公報、特開昭59−730
91号公報には、一般の焼却炉から排出される焼却炉灰
等に硫化ナトリウム、硫化カルシウムなどの水溶性硫化
物を混合し混練することで、焼却灰中の鉛、カドミウム
などの重金属を不溶化し無害化する処理方法が開示され
ている。しかし、理由は必ずしも明確ではないが硫化ソ
ーダなどのアルカリ金属硫化物による溶出防止は十分で
ない。例えば水銀などの硫化による不溶化では硫化カリ
ウムが過剰に存在すると,多硫化水銀が生成し再溶解し
てしまうことが一般に知られている。アルカリ金属硫化
物による硫化の改良法として特開平2−203981号
公報には有機カルボン酸を含む高分子を添加する方法が
開示され、また特開平9−248540号公報には多孔
質無機吸着剤を添加する方法が開示されているが,何れ
も新たな添加物が必要であり,経済的にもまた処理物の
減量化にも逆行することになる。
【0004】
【発明が解決しようとする課題】本発明は、上記観点か
らなされたもので、重金属含有廃棄物中の重金属を効率
的かつ安定的に固定化し重金属の溶出を防ぐことができ
る重金属溶出防止剤及びそれを用いた重金属含有廃棄物
の処理方法を提供することを目的とするものである。
【0005】
【課題を解決するための手段】本発明者らは、鋭意研究
を重ねた結果、(A)硫黄と(B)アルカリ金属化合物
との混合物又は反応混合物を含むものが重金属溶出防止
剤として有効であることを見出し本発明を完成させたも
のである。
【0006】すなわち、本発明の要旨は下記の通りであ
る。 1.(A)硫黄、(B)アルカリ金属化合物、及び
(C)水からなる重金属溶出防止剤。 2.(A)硫黄と(B)アルカリ金属化合物との反応混
合物、及び(C)水からなる重金属溶出防止剤。 3.(A)成分に対する(B)成分のモル比が0.2〜
2.5である上記1又は2記載の重金属溶出防止剤。 4.(A)硫黄と(B)アルカリ金属化合物との反応混
合物であって、(A)成分に対する(B)成分のモル比
が0.2〜2.5であることを特徴とする重金属溶出防
止剤。 5.重金属含有廃棄物に上記1〜4のいずれかに記載の
重金属溶出防止剤を添加した後必要に応じ水分を調整
し、混練することを特徴とする重金属含有廃棄物の処理
方法。
【0007】
【発明の実施の形態】以下に、本発明について詳細に説
明する。本願の第一の発明は、(A)硫黄、(B)アル
カリ金属化合物、及び(C)水からなる重金属溶出防止
剤である。
【0008】先ず、(A)成分の硫黄としては、特に制
限はなく、例えば、通常の硫黄単体で、天然産のもの、
天然ガスや石油留分の脱硫に伴い生産されるものなどを
挙げることができる。硫黄の純度としては特に高いもの
を使用する必要はない。
【0009】次に(B)成分であるアルカリ金属化合物
としては、アルカリ金属を含む化合物であれば特に制限
はなく、アルカリ金属の酸化物、水酸化物、炭酸化物等
を挙げることができる。具体的にはNaOH、Na
2 O、Na2 CO3 、KOH、K 2 O等を挙げることが
でき、単独でも、二種以上を混合して使用することもで
きる。なかでも、NaOH、KOHが好ましい。アルカ
リ金属化合物の使用形態については、特に制限はなく、
液状、粉状、粒状いずれも使用することができる。
【0010】(C)成分の水は特に制限はなく、河川
水、水道水、蒸留水を使用することができる。ここで、
(A)成分に対する(B)成分のモル比は、0.2〜
2.5の範囲が好ましく、より好ましくは0.5〜2.
0の範囲である。2.5より大きいと、重金属含有廃棄
物処理に使用する場合、重金属の固定化の効果が十分で
ない場合があり、0.2より小さいと余分な硫黄が処理
物に悪影響を及ぼす恐れがある。(C)成分の水につい
ては、特に制限はない。(A)、(B)、(C)成分の
適当量を室温で混練すると本発明の重金属溶出防止剤が
得られる。
【0011】本願の第二の発明は、(A)硫黄と(B)
アルカリ金属化合物との反応混合物、及び(C)水から
なる重金属溶出防止剤である。(A)、(B)、(C)
成分の内容と量については、第一の発明と同様である。
その製造法については、二つの方法がある。第1の方法
は、(A)、(B)、(C)成分の適当量をオートクレ
ーブ中で、好ましくは50〜170℃(より好ましくは
60〜150℃)の温度で、通常1〜60分間反応させ
て反応混合物を得る方法である。反応温度が50℃未満
では、アルカリ金属化合物の硫化反応が非常に遅くなる
恐れがあり、170℃を超えると、硫黄がポリマー化し
て混練が困難になる恐れがある。また、反応時間が1分
間未満では、アルカリ金属化合物の硫化反応が進行しな
い恐れがあり、60分間超えてもそれ以上の反応が期待
できない。反応混合物は、Na2 x (xは1〜5)で
表される数種の硫化ナトリウム化合物やNa2
2 3 ,Na2 SO3及び原料の(A),(B)成分等
の混合物であり、その組成は反応条件により異なる。仕
込み量については、第一発明と同じように、(A)成分
に対する(B)成分のモル比は、0.2〜2.5の範囲
が好ましい。0.2未満であると、硫黄の単位重量当た
りの硫化能が低下することがあり、2.5を超えると
(B)成分のアルカリ金属化合物が残ることがあり経済
的でない。以上の反応で生成した反応混合物と水からな
る混合物は放冷、空冷、水冷等の手段により冷却して重
金属溶出防止剤として使用する。
【0012】第2の方法は、(A),(B)成分の適当
量をオートクレーブ中で、好ましくは50〜170℃
(より好ましくは60〜150℃)の温度で、通常1〜
60分間反応させて反応混合物を得、それに適量の水を
加えて混練する方法である。仕込み量については、第1
の方法に水を入れないだけで、他の条件、その理由は同
様である。
【0013】本願の第三の発明は、(A)硫黄と(B)
アルカリ金属化合物との反応混合物であって、(A)成
分に対する(B)成分のモル比が0.2〜2.5である
ことを特徴とする重金属溶出防止剤である。これは、第
二の発明の第2の方法の反応混合物と同じで、水を添加
しないだけで、他の条件等は同様である。
【0014】特に、(A)成分に対する(B)成分のモ
ル比が0.2〜2.5であることが必須である。0.2
未満であると、硫黄の単位重量当たりの硫化能が低下す
ることがあり、2.5を超えると、硫化物としてNa2
Sが主になり、Na2 x におけるx=2以上の多硫化
ナトリウムが少ないため、硫化能が低下したり、(B)
成分のアルカリ金属化合物が残ることがあり経済的でな
い。
【0015】本願の第四の発明は、上記の重金属溶出防
止剤を重金属含有廃棄物に添加した後必要に応じ水分を
調整し、混練することを特徴とする重金属含有廃棄物の
処理方法である。先ず、本発明で処理に供される重金属
含有廃棄物とは、クロム,銅,カドミウム,水銀,鉛な
どの重金属を含有した、ごみ焼却灰,飛灰,汚泥,スラ
グ,石灰灰(フライアッシュ)、スラッジ等の廃棄物を
いう。
【0016】第一の発明の重金属溶出防止剤について
は、重金属含有廃棄物と重金属の量の等モル以上の
(B)成分を含有する重金属溶出防止剤とをオートクレ
ーブ等に入れて混ぜ、そのまま、又は更に水を添加して
水分を調整した後、好ましくは50〜170℃の温度
で、通常1〜60分間反応させて処理する。
【0017】第二、第三の発明重金属溶出防止剤につい
ては、重金属含有廃棄物と重金属の量の等モル以上の
(B)成分を含有する重金属溶出防止剤とを容器等に入
れて混ぜ、そのまま、又は更に水を添加して水分を調整
した後、室温で通常1〜60分間反応させて処理する。
【0018】なお、上記の水分の調整は、重金属含有廃
棄物を充分濡らすだけの量になるように行えばよい。以
上のように処理した重金属含有廃棄物は重金属が固定さ
れ、埋立基準に合格し、そのまま埋立に利用することが
できる。
【0019】
【実施例】以下に、実施例により本発明を更に具体的に
説明するが、本発明はこれらの例によってなんら制限さ
れるものではない。 実施例1〜11、比較例1〜9及び参考例1,2 〔実施例1〕内容積500ミリリットルのセパラブルフ
ラスコに硫黄(試薬一級)の粉末48g、苛性ソーダ7
2gを加えて、混練しながらオイルバスで100℃に加
熱した。この段階で試料は、褐色で不透明な流動状態と
なった。10分間の反応後放冷し,得られた固化体を
0.5〜5mmの大きさに粉砕して溶出防止剤Aを得
た。次に、室温でラボプラストミルに飛灰A(水分量
0.1重量%以下で、以下同じ)30g、水13g、溶
出防止剤Aを8g加え、10分間混練した。混練後室温
で一週間放置して得られた固化体を0.5〜5mmの大
きさに粉砕した。得られた粉体30gをpH6.0に調
整した水300ミリリットルに加え、振とう機にて6時
間振とうした。その後、内容物を1ミクロンのガラスフ
ィルターでろ過し、ろ液中に含まれるPbの濃度を測定
した。ろ液中のPbの濃度は、0.2mg/リットルと
埋立基準(0.3mg/リットル)以下の濃度であっ
た。
【0020】〔実施例2〕室温でラボプラストミルに飛
灰Aを30g、水14g、実施例1の溶出防止剤Aを1
2g加え、10分間混練した。混練後室温で一週間放置
して得られた固化体を0.5〜5mmの大きさに粉砕し
た。得られた粉体30gをpH6.0に調整した水30
0ミリリットルに加え、振とう機にて6時間振とうし
た。その後、内容物を1ミクロンのガラスフィルターで
ろ過し、ろ液中に含まれるPbの濃度を測定した。ろ液
中のPbの濃度は、0.05mg/リットル以下であっ
た。
【0021】〔実施例3〕室温でラボプラストミルに飛
灰Aを30g、水15g、実施例1の溶出防止剤Aを2
4g加え、10分間混練した。混練後室温で一週間放置
して得られた固化体を0.5〜5mmの大きさに粉砕し
た。得られた粉体30gをpH6.0に調整した水30
0ミリリットルに加え、振とう機にて6時間振とうし
た。その後、内容物を1ミクロンのガラスフィルターで
ろ過し、ろ液中に含まれるPbの濃度を測定した。ろ液
中のPbの濃度は、0.05mg/リットル以下であっ
た。
【0022】〔実施例4〕実施例1の溶出防止剤Aの8
gを13gの水に溶解させ,液体処理剤21gを作製し
た。室温でラボプラストミルに飛灰A30gに先に作製
した液体処理剤21gを加え、10分間混練した。混練
後室温で一週間放置して得られた固化体を0.5〜5m
mの大きさに粉砕した。得られた粉体30gをpH6.
0に調整した水300ミリリットルに加え、振とう機に
て6時間振とうした。その後、内容物を1ミクロンのガ
ラスフィルターでろ過し、ろ液中に含まれるPbの濃度
を測定した。ろ液中のPbの濃度は、0.05mg/リ
ットルであり埋立て基準以下であった。
【0023】〔実施例5〕内容積500ミリリットルの
セパラブルフラスコに硫黄(試薬一級)の粉末32g、
苛性ソーダ80gを加えて、混練しながらオイルバスで
100℃に加熱した。この段階で試料は、赤褐色で不透
明な流動状態となった。10分間の反応後放冷し,得ら
れた固化体を0.5〜5mmの大きさに粉砕して溶出防
止剤Bを得た。次に、室温でラボプラストミルに飛灰A
30g、水13g、溶出防止剤Bを8g加え、10分間
混練した。混練後室温で一週間放置して得られた固化体
を0.5〜5mmの大きさに粉砕した。得られた粉体3
0gをpH6.0に調整した水300ミリリットルに加
え、振とう機にて6時間振とうした。その後、内容物を
1ミクロンのガラスフィルターでろ過し、ろ液中に含ま
れるPbの濃度を測定した。ろ液中のPbの濃度は、
0.05重量mg/リットル以下であった。
【0024】〔実施例6〕室温でラボプラストミルに飛
灰Aを30g、水14g、溶出防止剤Bを12g加え、
10分間混練した。混練後室温で一週間放置して得られ
た固化体を0.5〜5mmの大きさに粉砕した。得られ
た粉体30gをpH6.0に調整した水300ミリリッ
トルに加え、振とう機にて6時間振とうした。その後、
内容物を1ミクロンのガラスフィルターでろ過し、ろ液
中に含まれるPbの濃度を測定した。ろ液中のPbの濃
度は、0.05mg/リットル以下であった。
【0025】〔実施例7〕内容積500ミリリットルの
セパラブルフラスコに硫黄(試薬一級)の粉末64g、
苛性ソーダ40gを加えて、混練しながらオイルバスで
100℃に加熱した。10分間の反応後放冷し,得られ
た固化体を0.5〜5mmの大きさに粉砕して溶出防止
剤Cを得た。次に、室温でラボプラストミルに飛灰A3
0g、水13g、溶出防止剤Cを8g加え、10分間混
練した。混練後室温で一週間放置して得られた固化体を
0.5〜5mmの大きさに粉砕した。得られた粉体30
gをpH6.0に調整した水300ミリリットルに加
え、振とう機にて6時間振とうした。その後、内容物を
1ミクロンのガラスフィルターでろ過し、ろ液中に含ま
れるPbの濃度を測定した。ろ液中のPbの濃度は、
0.05mg/リットル以下であった。
【0026】〔実施例8〕室温でラボプラストミルに飛
灰Aを30g、水15g、溶出防止剤Cを24g加え、
10分間混練した。混練後室温で一週間放置して得られ
た固化体を0.5〜5mmの大きさに粉砕した。得られ
た粉体30gをpH6.0に調整した水300ミリリッ
トルに加え、振とう機にて6時間振とうした。その後、
内容物を1ミクロンのガラスフィルターでろ過し、ろ液
中に含まれるPbの濃度を測定した。ろ液中のPbの濃
度は、0.05mg/リットル以下であった。
【0027】〔実施例9〕室温でラボプラストミルに飛
灰B(水分量0.1重量%以下、以下同じ)を30g、
水13g、溶出防止剤Aを6g加え、10分間混練し
た。混練後室温で一週間放置して得られた固化体を0.
5〜5mmの大きさに粉砕した。得られた粉体30gを
pH6.0に調整した水300ミリリットルに加え、振
とう機にて6時間振とうした。その後、内容物を1ミク
ロンのガラスフィルターでろ過し、ろ液中に含まれるP
bの濃度を測定した。ろ液中のPbの濃度は、0.05
mg/リットル以下であった。
【0028】〔実施例10〕室温でラボプラストミルに
飛灰Bを30g、水14g、溶出防止剤Aを12g加
え、10分間混練した。混練後室温で一週間放置して得
られた固化体を0.5〜5mmの大きさに粉砕した。得
られた粉体30gをpH6.0に調整した水300ミリ
リットルに加え、振とう機にて6時間振とうした。その
後、内容物を1ミクロンのガラスフィルターでろ過し、
ろ液中に含まれるPbの濃度を測定した。ろ液中のPb
の濃度は、0.05mg/リットル以下であった。
【0029】〔実施例11〕内容積500ミリリットル
のオートクレーブに硫黄(試薬一級)の粉末16g、苛
性ソーダ20g,水64gを加えて100℃に加熱し
た。20分間の反応後,室温まで放冷し,褐色の液体を
得た。次に、室温でラボプラストミルに飛灰Bの30g
に,先の反応で得られた反応液を25g加え、10分間
混練した。混練後室温で一週間放置して得られた固化体
を0.5〜5mmの大きさに粉砕した。得られた粉体3
0gをpH6.0に調整した水300ミリリットルに加
え、振とう機にて6時間振とうした。その後、内容物を
1ミクロンのガラスフィルターでろ過し、ろ液中に含ま
れるPbの濃度を測定した。ろ液中のPbの濃度は、
0.05mg/リットル以下であった。
【0030】〔比較例1〕内容積500ミリリットルの
セパラブルフラスコに硫黄(試薬一級)の粉末32g、
苛性ソーダ120gを加えて、混練しながらオイルバス
で100℃に加熱した。この段階で試料は、赤褐色で不
透明な流動状態となった。10分間の反応後放冷した。
得られた固化体を0.5〜5mmの大きさに粉砕して溶
出防止剤Dを得た。次に、室温でラボプラストミルに飛
灰A30g、水15g、溶出防止剤Dを4g加え、10
分間混練した。混練後室温で一週間放置して得られた固
化体を0.5〜5mmの大きさに粉砕した。得られた粉
体30gをpH6.0に調整した水300ミリリットル
に加え、振とう機にて6時間振とうした。その後、内容
物を1ミクロンのガラスフィルターでろ過し、ろ液中に
含まれるPbの濃度は、370重量mg/リットルであ
った。
【0031】〔比較例2〕溶出防止剤Dを8gとした以
外は比較例1と同じ条件で処理した。ろ液中のPbの濃
度は、15mg/リットルであり埋立基準以上の濃度で
あった。
【0032】〔比較例3〕溶出防止剤Dを12gとした
以外は比較例1と同じ条件で処理した。ろ液中のPbの
濃度は、5.5重量mg/リットルであり埋立基準以上
の濃度であった。
【0033】〔比較例4〕室温でラボプラストミルに飛
灰A30g、水15gと市販の無水硫化ソーダ(Na2
S)4gを加え、10分間混練した。混練後室温で一週
間放置して得られた固化体を0.5〜5mmの大きさに
粉砕した。得られた粉体30gをpH6.0に調整した
水300ミリリットルに加え、振とう機にて6時間振と
うした。その後、内容物を1ミクロンのガラスフィルタ
ーでろ過し、ろ液中に含まれるPbの濃度を測定した。
ろ液中のPbの濃度は31mg/リットルであった。
【0034】〔比較例5〕市販の無水硫化ソーダを6g
とした以外は比較例4と同じ条件で処理した。ろ液中の
Pbの濃度は、5.2mg/リットルであり埋立基準以
上の濃度であった。
【0035】〔比較例6〕市販の無水硫化ソーダを8g
とした以外は比較例4と同じ条件で処理した。ろ液中の
Pbの濃度は、8.3mg/リットルであり埋立基準以
上の濃度であった。
【0036】〔比較例7〕市販の無水硫化ソーダを12
gとした以外は比較例4と同じ条件で処理した。ろ液中
のPbの濃度は、4.1mg/リットルであり埋立基準
以上の濃度であった。
【0037】〔比較例8〕室温でラボプラストミルに飛
灰B30g、水15gと市販の無水硫化ソーダ2gを加
え、10分間混練した。混練後室温で一週間放置して得
られた固化体を0.5〜5mmの大きさに粉砕した。得
られた粉体30gをpH6.0に調整した水300ミリ
リットルに加え、振とう機にて6時間振とうした。その
後、内容物を1ミクロンのガラスフィルターでろ過し、
ろ液中に含まれるPbの濃度を測定した。ろ液中のPb
の濃度は5.0mg/リットルであった。
【0038】〔比較例9〕市販の無水硫化ソーダを8g
とした以外は比較例8と同じ条件で処理した。ろ液中の
Pbの濃度は、7.0mg/リットルであり埋立基準以
上の濃度であった。
【0039】〔参考例1〕アルカリ性の飛灰A(鉛含有
量4.9重量%)を50g採り、pH6.0に調整した
水を500ミリリットル加え、振とう機で6時間連続し
て振とうした。次いで、1ミクロンのガラスフィルター
ペーパーで濾過した溶液中の鉛濃度を測定した。そのP
b濃度は1,200mg/リットルで、埋立基準を大き
く上回る値であった。
【0040】〔参考例2〕中性の飛灰B(鉛含有量3.
8重量%)を50g採り、pH6.0に調整した水を5
00ミリリットル加え、振とう機で6時間連続して振と
うした。次いで、1ミクロンのガラスフィルターペーパ
ーで濾過した溶液中のPb濃度を測定した。そのPb濃
度は22mg/リットルで、埋立基準を大きく上回る値
であった。以上を纏めて第1表に示す。
【0041】
【表1】
【0042】
【表2】
【0043】
【発明の効果】本発明の重金属溶出防止剤を用いて、重
金属含有廃棄物を処理すれば、重金属は固定され埋立基
準以下となり、埋立に使用できる。

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 (A)硫黄、(B)アルカリ金属化合
    物、及び(C)水からなる重金属溶出防止剤。
  2. 【請求項2】 (A)硫黄と(B)アルカリ金属化合物
    との反応混合物、及び(C)水からなる重金属溶出防止
    剤。
  3. 【請求項3】 (A)成分に対する(B)成分のモル比
    が0.2〜2.5である請求項1又は2記載の重金属溶
    出防止剤。
  4. 【請求項4】 (A)硫黄と(B)アルカリ金属化合物
    との反応混合物であって、(A)成分に対する(B)成
    分のモル比が0.2〜2.5であることを特徴とする重
    金属溶出防止剤。
  5. 【請求項5】 重金属含有廃棄物に請求項1〜4のいず
    れかに記載の重金属溶出防止剤を添加した後、必要に応
    じ水分を調整し、混練することを特徴とする重金属含有
    廃棄物の処理方法。
JP31087299A 1999-11-01 1999-11-01 重金属溶出防止剤及びそれを用いた重金属含有廃棄物の処理方法 Pending JP2001129509A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31087299A JP2001129509A (ja) 1999-11-01 1999-11-01 重金属溶出防止剤及びそれを用いた重金属含有廃棄物の処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31087299A JP2001129509A (ja) 1999-11-01 1999-11-01 重金属溶出防止剤及びそれを用いた重金属含有廃棄物の処理方法

Publications (1)

Publication Number Publication Date
JP2001129509A true JP2001129509A (ja) 2001-05-15

Family

ID=18010412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31087299A Pending JP2001129509A (ja) 1999-11-01 1999-11-01 重金属溶出防止剤及びそれを用いた重金属含有廃棄物の処理方法

Country Status (1)

Country Link
JP (1) JP2001129509A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063564A (ja) * 2006-10-16 2007-03-15 Kankyo Anetos:Kk アルカリ灰を原料として生成した多硫化物(但し、Sx(x=2〜12))を主成分とする処理剤及びその製造方法
KR20210090951A (ko) * 2020-01-13 2021-07-21 주식회사 포스코건설 탈황 부산물을 이용한 중금속 안정화 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063564A (ja) * 2006-10-16 2007-03-15 Kankyo Anetos:Kk アルカリ灰を原料として生成した多硫化物(但し、Sx(x=2〜12))を主成分とする処理剤及びその製造方法
JP4598743B2 (ja) * 2006-10-16 2010-12-15 株式会社環境アネトス 多硫化物(但し、Sx(x=2〜12))を主成分とする薬剤の製造方法
KR20210090951A (ko) * 2020-01-13 2021-07-21 주식회사 포스코건설 탈황 부산물을 이용한 중금속 안정화 방법
KR102347890B1 (ko) 2020-01-13 2022-01-05 주식회사 포스코건설 탈황 부산물을 이용한 중금속 안정화 방법

Similar Documents

Publication Publication Date Title
AU2010259222A1 (en) Process for enhanced remediation of contaminated wastewaters, soils and wasteforms
JP4870423B2 (ja) 重金属処理材及びそれを用いた重金属処理方法
HU207498B (en) Process for removing heavy metals from waste waters and process for producing precipitating agent for them
JP2016022406A (ja) 重金属汚染水の処理方法
JP5915202B2 (ja) 不溶化方法
JP4529191B2 (ja) 重金属の安定化処理方法、重金属の安定化剤
JP2005288378A (ja) 重金属類を含む汚染媒体の処理方法及び処理剤
JPH09187752A (ja) 廃棄物焼却灰及び溶融飛灰の処理方法
JPH10137716A (ja) 廃棄物処理材および廃棄物処理方法
JP2001129509A (ja) 重金属溶出防止剤及びそれを用いた重金属含有廃棄物の処理方法
JP2005152781A (ja) 有害物質低減材及び有害物質低減方法
JP2012066158A (ja) 集塵灰の安定化方法
JP3574928B2 (ja) 焼却炉および溶融炉からの飛灰の処理方法
JP4712290B2 (ja) 有害物質捕集材及びそれを用いた汚水や土壌の処理方法
JPH07214029A (ja) 焼却灰または飛灰の無害化処理による重金属のリサイクル方法
CN104138884B (zh) 重金属的不溶化剂和重金属的不溶化方法
JPH09248540A (ja) 廃棄物処理材および廃棄物処理方法
JP2010234306A (ja) セレンの不溶化処理方法
JP3850205B2 (ja) 溶融飛灰及び/又は焼成飛灰の重金属溶出防止方法
JP3831832B2 (ja) Se含有灰の処理方法
JPH08103774A (ja) 排水の処理方法
JPS63111990A (ja) ごみ焼却飛灰中の重金属類の安定化処理方法
JP3632284B2 (ja) 廃棄物処理材
JP4557666B2 (ja) 重金属の溶出低減方法
KR100204949B1 (ko) 제강 전기로 분진의 불용화 처리제 및 이를 이용한 불용화 처리방법