JP2001122677A - Method for manufacturing separator for fuel battery - Google Patents

Method for manufacturing separator for fuel battery

Info

Publication number
JP2001122677A
JP2001122677A JP30405599A JP30405599A JP2001122677A JP 2001122677 A JP2001122677 A JP 2001122677A JP 30405599 A JP30405599 A JP 30405599A JP 30405599 A JP30405599 A JP 30405599A JP 2001122677 A JP2001122677 A JP 2001122677A
Authority
JP
Japan
Prior art keywords
resin
graphite
separator
conductive
conductive agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30405599A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tajiri
博幸 田尻
Arata Sakamoto
新 坂本
Hiroyuki Okazaki
博行 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP30405599A priority Critical patent/JP2001122677A/en
Publication of JP2001122677A publication Critical patent/JP2001122677A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To obtain a fuel battery separator high in electric conductivity, thermal conductivity, mechanical strength and dimensional precision of a groove only by molding while skipping a carbonizing step and a cutting step. SOLUTION: A resin composition containing a non-carbonaceous thermoplastic resin (a polyphenylene sulfide resin or the like) and an electrically conductive agent (graphite particles, electrically conductive carbon black or the like) is molded into a sheet and the obtained sheet is subjected to stamping molding by using a grooved die to obtain the objective separator. The weight ratio of the thermoplastic resin to the electrically conductive agent is made to be 5:95-50:50. The obtained separator has 0.001-0.15 Ωcm volumetric resistance in the thickness direction, 30-200 MPa bending strength and 2-60 W/mK thermal conductivity in the thickness direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池(特に固体
高分子型燃料電池、PEFCと称する)におけるセパレ
ータの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a separator in a fuel cell (particularly, a solid polymer electrolyte fuel cell, called PEFC).

【0002】[0002]

【従来の技術】燃料電池、例えば、固体高分子型燃料電
池は、固体高分子膜(デュポン社のナフィオン膜やダウ
ケミカル社のダウ膜など)を電解質膜として用い、この
電解質膜の両側に、厚み0.1〜0.3mm程度のポー
ラスな黒鉛質ペーパーを設け、このペーパーの表面に電
極触媒として白金合金触媒を担持させている。また、前
記黒鉛質ペーパーの外側には、ガス流路としての溝が形
成された厚み1〜3mm程度の多孔質黒鉛板と、厚み
0.5mm程度の緻密質炭素板である平板セパレータと
を順次配設してセルを構成したり、ガス流路としての溝
が形成された厚み1〜3mm程度の緻密質炭素板である
セパレータを配設してセルを構成している。
2. Description of the Related Art A fuel cell, for example, a polymer electrolyte fuel cell uses a solid polymer membrane (such as a Nafion membrane manufactured by DuPont or a Dow membrane manufactured by Dow Chemical) as an electrolyte membrane. A porous graphite paper having a thickness of about 0.1 to 0.3 mm is provided, and a platinum alloy catalyst is supported as an electrode catalyst on the surface of the paper. Further, on the outside of the graphite paper, a porous graphite plate having a thickness of about 1 to 3 mm in which a groove as a gas passage is formed, and a flat separator of a dense carbon plate having a thickness of about 0.5 mm are sequentially formed. A cell is formed by arranging the cells, or a separator that is a dense carbon plate having a thickness of about 1 to 3 mm and formed with a groove as a gas flow path is arranged to form a cell.

【0003】前記平板セパレータには、酸素、水素に対
するガス不透過性、電気導電性、熱伝導性、機械強度、
耐酸性などが要求される。また、溝付きセパレータに
は、平板セパレータに対する要求性能に加えて、ガス流
路の寸法精度が高いことが要求される。
The above-mentioned flat plate separator has gas impermeability to oxygen and hydrogen, electric conductivity, heat conductivity, mechanical strength,
Acid resistance is required. Further, the grooved separator is required to have high dimensional accuracy of the gas flow path in addition to the performance required for the flat plate separator.

【0004】このようなセパレータは、フェノール樹脂
及び黒鉛粉末の成形板を炭化又は黒鉛化処理して平板を
形成したり、切削加工により、平板の表面に溝を形成す
ることにより製造されている。また、フェノール樹脂に
代えて、石油又は石炭系ピッチを用いて同様に製造され
ている。
[0004] Such a separator is manufactured by forming a flat plate by carbonizing or graphitizing a formed plate of phenolic resin and graphite powder, or by forming grooves on the surface of the flat plate by cutting. In addition, it is similarly manufactured using petroleum or coal pitch instead of phenol resin.

【0005】しかし、セパレータには厚み方向の高い導
電性(例えば、10-1〜10-3Ωcm程度の導電性)が
要求される。そのため、前述のように、フェノール樹脂
やピッチと黒鉛粉末の成形板を炭化することにより、フ
ェノール樹脂やピッチの導電性の低さを解消する必要が
ある。すなわち、セパレータの製造には炭化工程が必要
であり、未焼成(すなわち非炭素質)の樹脂を含む成形
体では、とうてい燃料電池セパレータに供することので
きる程度の導電性には達し得ない。しかし、この炭化工
程を採用すると、炭化後の板の割れなどにより歩留まり
が低下すること、炭化後の板の収縮などにより、平板セ
パレータおよび溝付きセパレータのいずれも切削加工が
必要なことなどの理由から、非常にコスト高となる。さ
らに、炭化工程により、ガスに対する不透過性が損なわ
れることが多い。
[0005] However, the separator is required to have high conductivity in the thickness direction (for example, conductivity of about 10 -1 to 10 -3 Ωcm). Therefore, as described above, it is necessary to eliminate the low conductivity of the phenol resin and the pitch by carbonizing the molded plate of the phenol resin and the pitch and the graphite powder. That is, the production of the separator requires a carbonization step, and a molded article containing an unfired (that is, non-carbonaceous) resin cannot attain an electrical conductivity sufficient to provide a fuel cell separator. However, when this carbonization step is adopted, the yield decreases due to cracking of the plate after carbonization, etc., and both the flat plate separator and the grooved separator require cutting work due to shrinkage of the plate after carbonization, etc. Therefore, the cost becomes very high. Further, the carbonization process often impairs gas impermeability.

【0006】WO99/49530号には、非炭素質樹
脂と導電剤とを含む樹脂組成物を射出成形又は圧縮成形
し、燃料電池用セパレータを製造することが開示されて
いる。この文献には、フェノール樹脂と黒鉛粉末との前
記樹脂組成物を金型に入れて加熱加圧により圧縮成形す
ることが開示されている。しかし、この方法では、樹脂
組成物中の樹脂含有量が少ないため、樹脂が偏析しやす
く、雌金型内に樹脂組成物を均質に、しかも均一な厚み
に充填することが困難である。さらに、溝付き雄金型で
加熱加圧して成形し、樹脂を硬化させた後、金型から溝
付きセパレータを取り出す必要がある。さらに、熱硬化
性樹脂は肉厚3mm程度の成形物でも5分間程度成形時
間を要する。そのため、成形サイクルを短縮して生産性
を向上することが困難であると共に、得られたシートの
均質性が低下する場合がある。
[0006] WO 99/49530 discloses that a resin composition containing a non-carbonaceous resin and a conductive agent is injection-molded or compression-molded to produce a fuel cell separator. This document discloses that the resin composition of a phenol resin and graphite powder is placed in a mold and compression-molded by heating and pressing. However, in this method, since the resin content in the resin composition is small, the resin is easily segregated, and it is difficult to uniformly fill the resin composition into the female mold with a uniform thickness. Further, it is necessary to form the grooved separator by heating and pressurizing it with a grooved male mold, and after curing the resin, removing the grooved separator from the mold. Further, the thermosetting resin requires a molding time of about 5 minutes even for a molded article having a thickness of about 3 mm. Therefore, it is difficult to improve the productivity by shortening the molding cycle, and the uniformity of the obtained sheet may decrease.

【0007】[0007]

【発明が解決しようとする課題】従って、本発明の目的
は、炭化工程を経ることなく、ガス不透過性、電気導電
性、熱伝導性、機械強度、耐酸性などの諸特性に優れる
燃料電池用セパレータ(特に固体高分子型燃料電池用セ
パレータ)を簡単な方法で短時間に効率よく製造できる
方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a fuel cell which is excellent in various properties such as gas impermeability, electric conductivity, heat conductivity, mechanical strength and acid resistance without going through a carbonization step. It is an object of the present invention to provide a method for efficiently producing a separator for a fuel cell (particularly a separator for a polymer electrolyte fuel cell) in a short time and efficiently.

【0008】本発明の他の目的は、炭化工程および切削
工程を経ることなく、成形により、高い導電性,熱伝導
性などの特性に加えて、寸法精度の高い溝(ガス流路)
を形成できる燃料電池用セパレータ(特に固体高分子型
燃料電池用セパレータ)の製造方法を提供することにあ
る。
Another object of the present invention is to form a groove (gas flow path) having high dimensional accuracy in addition to characteristics such as high conductivity and heat conductivity by molding without going through a carbonizing step and a cutting step.
It is an object of the present invention to provide a method for producing a fuel cell separator (particularly, a polymer electrolyte fuel cell separator) capable of forming a polymer.

【0009】[0009]

【課題を解決するための手段】本発明者らは、前記目的
を達成するため鋭意検討の結果、非炭素質の熱可塑性樹
脂と導電剤とを組み合わせてシート化し、スタンピング
成形法により成形すると、炭化工程および切削工程を経
ることなく、性能の高いセパレータを効率よく得ること
ができることを見いだし、本発明を完成した。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, have formed a sheet by combining a non-carbonaceous thermoplastic resin and a conductive agent, and formed the sheet by a stamping molding method. The present inventors have found that a high-performance separator can be efficiently obtained without going through a carbonizing step and a cutting step, and completed the present invention.

【0010】すなわち、本発明の方法では、非炭素質熱
可塑性樹脂と導電剤とを含む樹脂組成物で形成されたシ
ートをスタンピング成形することにより燃料電池用セパ
レータ(特に固体高分子型燃料電池用合成樹脂複合セパ
レータ)を製造する。前記樹脂組成物は、熱可塑性樹脂
(ポリフェニレンスルフィド系樹脂など)と導電剤(黒
鉛粒子、導電性カーボンブラックなど)とで構成でき、
樹脂組成物を気孔率20%以下に加熱加圧後、冷却して
厚み1〜10mmのシートを調製し、このシートをセパ
レータ成形時に、再度加熱軟化させ、スタンピング法に
より成形し、燃料電池用セパレータを製造してもよい。
スタンピング成形には、平滑面を有する平板状金型を用
いてもよいが、通常、凹凸部を有する金型、例えば、溝
付き金型などを用いることができる。熱可塑性樹脂と導
電剤との割合は、前者/後者=5/95〜50/50
(重量比)程度であり、非炭素質熱可塑性樹脂の含有量
は、通常、導電剤および非炭素質樹脂の総量に対して2
5重量%以下である。前記導電剤は、少なくとも平均粒
子径(D50%)40〜120μmの黒鉛粗粒子を含ん
でいてもよく、平均粒子径(D50%)40〜120μ
mの黒鉛粗粒子と、この黒鉛粗粒子よりも平均粒子径の
小さな黒鉛細粒子とで構成してもよい。さらに、樹脂組
成物は炭素繊維を含んでいてもよい。このようにして得
られた燃料電池用セパレータは、厚み方向の体積抵抗が
0.001〜0.15Ωcm、曲げ強度が30〜200
MPaである。また、前記シートの厚み方向の熱伝導率
は2〜60W/mK程度である。
That is, according to the method of the present invention, a sheet formed of a resin composition containing a non-carbonaceous thermoplastic resin and a conductive agent is stamped and formed to form a fuel cell separator (particularly, a polymer electrolyte fuel cell). (A synthetic resin composite separator). The resin composition can be composed of a thermoplastic resin (such as a polyphenylene sulfide resin) and a conductive agent (such as graphite particles and conductive carbon black),
The resin composition is heated and pressurized to a porosity of 20% or less, and then cooled to prepare a sheet having a thickness of 1 to 10 mm. When the sheet is formed into a separator, the sheet is softened again by heating and formed by a stamping method. May be manufactured.
For the stamping molding, a flat mold having a smooth surface may be used, but usually a mold having an uneven portion, for example, a grooved mold can be used. The ratio of the thermoplastic resin and the conductive agent is the former / the latter = 5/95 to 50/50
(Weight ratio), and the content of the non-carbonaceous thermoplastic resin is usually 2 to the total amount of the conductive agent and the non-carbonaceous resin.
5% by weight or less. The conductive agent may include at least graphite coarse particles having an average particle diameter (D50%) of 40 to 120 μm, and an average particle diameter (D50%) of 40 to 120 μm.
m, and graphite fine particles having an average particle diameter smaller than the graphite coarse particles. Further, the resin composition may include carbon fibers. The thus obtained fuel cell separator has a volume resistance in the thickness direction of 0.001 to 0.15 Ωcm and a bending strength of 30 to 200.
MPa. The thermal conductivity of the sheet in the thickness direction is about 2 to 60 W / mK.

【0011】本明細書において、「黒鉛粒子」とは黒鉛
質又は炭素質粒子を意味し、高い導電性を有する限り黒
鉛構造を有する必要はないが、高い結晶性の黒鉛構造を
有するのが好ましい。「非炭素質熱可塑性樹脂」には、
例えば、700℃以下(特に500℃以下)の温度で熱
処理された非炭素質樹脂が含まれ、500℃(特に70
0℃)を越える温度で焼成した炭化又は黒鉛化樹脂は含
まれない。
[0011] In the present specification, "graphite particles" means graphite or carbonaceous particles, and need not have a graphite structure as long as they have high conductivity, but preferably have a highly crystalline graphite structure. . "Non-carbon thermoplastic resin"
For example, a non-carbonaceous resin heat-treated at a temperature of 700 ° C. or less (especially 500 ° C. or less) is included,
0 ° C.) is not included.

【0012】粉体粒子群の粒度分布は、レーザー光回折
法によって容易に測定でき、得られる累積粒度分布曲線
より累積度20%、50%、80%点での粒子径を得る
ことができる。ここで、累積度50%の粒径を記号D5
0%で表し、平均粒子径と称す。また、粒度分布の広が
りは、累積度20%粒度(D20%)と、累積度80%
粒度(D80%)との比で表すことができ、前記比(D
80%/D20%)を均斉度と呼ぶ。この均斉度の数値
が大きいと、大粒径から小粒径までさまざまな粒子から
なるブロードな粒度特性であることを示し、この数値が
小さいと、粒径が揃った粒度特性であることを示す。
The particle size distribution of the powder particles can be easily measured by a laser beam diffraction method, and the particle size at a cumulative degree of 20%, 50% or 80% can be obtained from the obtained cumulative particle size distribution curve. Here, the particle size having a cumulative degree of 50% is represented by a symbol D5.
It is represented by 0% and is called the average particle diameter. Further, the spread of the particle size distribution is such that the cumulative degree is 20% particle size (D20%) and the cumulative degree is 80%
Particle size (D80%), and the ratio (D
80% / D20%) is called the degree of uniformity. If the numerical value of this degree of uniformity is large, it indicates a broad particle size characteristic composed of various particles from a large particle size to a small particle size, and if this numerical value is small, it indicates that the particle size characteristic is a uniform particle size. .

【0013】さらに、燃料電池用セパレータは高い導電
性を示す。そのため、「燃料電池用セパレータ」を、
「導電性プレート」と同義に用いるとともに、燃料電池
用セパレータ及び導電性プレートを単にプレート又はセ
パレータと称する場合がある。
Further, the fuel cell separator exhibits high conductivity. Therefore, "separator for fuel cell"
The term “conductive plate” is used synonymously, and the fuel cell separator and the conductive plate may be simply referred to as a plate or a separator.

【0014】[0014]

【発明の実施の形態】本発明の方法で得られる燃料電池
用セパレータ(導電性プレート)は、未焼成(未炭化お
よび未黒鉛化)であり、少なくとも一種の非炭素質樹脂
(バインダー)と導電剤とで構成される。そのため、非
炭素質熱可塑性樹脂を含む樹脂組成物は、燃料電池用セ
パレータに対応した特性[例えば、体積抵抗、曲げ強
度、熱伝導率など(特にシート形態での厚み方向の体積
抵抗、曲げ強度、厚み方向の熱伝導率など)]を有して
おり、これらの特性に優れるという特色がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The fuel cell separator (conductive plate) obtained by the method of the present invention is unfired (uncarbonized and ungraphitized), and contains at least one non-carbonaceous resin (binder) and conductive material. It is comprised with the agent. Therefore, the resin composition containing the non-carbonaceous thermoplastic resin has properties [eg, volume resistance, bending strength, thermal conductivity, etc. (particularly volume resistance in the thickness direction in sheet form, bending strength, , Thermal conductivity in the thickness direction, etc.)], and is excellent in these characteristics.

【0015】熱可塑性樹脂としては、例えば、ポリオレ
フィン系樹脂(ポリプロピレン樹脂,エチレン−プロピ
レン共重合体など)、ポリエステル系樹脂(ポリアルキ
レンテレフタレート,ポリアルキレンナフタレート又は
これらのコポリエステル,ポリアリレートなど)、ポリ
カーボネート樹脂(ビスフェノールA型ポリカーボネー
ト樹脂など)、ポリスチレン系樹脂(スチレンなどのス
チレン系単量体の単独又は共重合体など)、アクリル系
樹脂(メタクリル酸メチルなどのアクリル系単量体の単
独又は共重合体など)、ポリアミド樹脂(ポリアミド
6,ポリアミド66,ポリアミド610など)、ポリフ
ェニレンエーテル系樹脂、ポリフェニレンスルフィド系
樹脂、ポリエーテルエーテルケトン系樹脂、ポリスルホ
ン系樹脂(ポリスルホン樹脂、ポリエーテルスルホン樹
脂など)などが例示できる。これらの熱可塑性樹脂も単
独で又は二種以上組合わせて使用できる。
Examples of the thermoplastic resin include polyolefin resins (polypropylene resins, ethylene-propylene copolymers and the like), polyester resins (polyalkylene terephthalate, polyalkylene naphthalate or copolyesters and polyarylates thereof), and the like. Polycarbonate resin (such as bisphenol A type polycarbonate resin), polystyrene resin (such as styrene monomer such as styrene alone or copolymer), and acrylic resin (such as methyl methacrylate alone or copolymerized with acrylic monomer) Polymer, etc.), polyamide resin (polyamide 6, polyamide 66, polyamide 610, etc.), polyphenylene ether resin, polyphenylene sulfide resin, polyether ether ketone resin, polysulfone resin (polysulfone Down resins, polyether sulfone resins), and others. These thermoplastic resins can be used alone or in combination of two or more.

【0016】なお、固体高分子型燃料電池の作動温度
は、通常、80℃程度である。そのため、高温での耐久
性の高い樹脂(例えば、加水分解などによる劣化が生じ
にくいエンジニアリングプラスチックなど)が好まし
い。特に、前記熱可塑性樹脂のうち、スタンピング成形
性、耐薬品性、耐久性、機械的強度などの点から、ポリ
フェニレンスルフィド系樹脂が好ましい。
The operating temperature of the polymer electrolyte fuel cell is usually about 80 ° C. Therefore, a resin having high durability at high temperature (for example, engineering plastic or the like that is unlikely to be deteriorated by hydrolysis or the like) is preferable. In particular, among the thermoplastic resins, a polyphenylene sulfide-based resin is preferable in terms of stamping moldability, chemical resistance, durability, mechanical strength, and the like.

【0017】ポリフェニレンスルフィド系樹脂は、ポリ
フェニレンスルフィド骨格を有していればよく、ポリフ
ェニレンスルフィドと同族ポリマー(例えば、ポリフェ
ニレンスルフィドケトンPPSK,ポリフェニレンスル
フィドスルホンPPSS,ポリビフェニレンスルフィド
PBPSなど)も含まれる。ポリフェニレンスルフィド
系樹脂は、部分的な架橋構造を有していてもよく、架橋
構造を有していなくてもよい。ポリフェニレンスルフィ
ド系樹脂は、直鎖構造を有する直鎖型(通常、リニア型
又はセミリニア型と称する)であってもよく、分岐構造
を有する分岐型であってもよいが、通常、直鎖型ポリフ
ェニレンスルフィド系樹脂が好ましい。さらに、ポリフ
ェニレンスルフィド系樹脂は、ベンゼン環に置換基(例
えば、C 1-4アルキル基など)を有していてもよい。
The polyphenylene sulfide resin is a polyphenylene sulfide resin.
It is sufficient that the polymer has a phenylene sulfide skeleton.
Henylene sulfide and homologous polymers (for example, polyphenylene sulfide)
Nilen sulfide ketone PPSK, polyphenylenesul
Fidosulfone PPSS, polybiphenylene sulfide
PBPS). Polyphenylene sulfide
The system resin may have a partially crosslinked structure,
It does not have to have a structure. Polyphenylene luffy
Resin has a linear structure (usually linear type
Or a semi-linear type).
Although it may be a branched type having a
Enylene sulfide resins are preferred. Furthermore, polyph
The phenylene sulfide resin has a substituent (eg,
For example, C 1-4Alkyl group).

【0018】導電剤としては、種々の導電性粒子、例え
ば、導電性金属粒子、導電性金属メッキ粒子、黒鉛粒
子、導電性カーボンブラック(ファーネスブラック、ア
セチレンブラック、ケッチェンブラックなど)、コロイ
ダル黒鉛などが例示できる。これらの導電剤は単独で又
は二種以上組み合わせて使用できる。
Examples of the conductive agent include various conductive particles such as conductive metal particles, conductive metal plated particles, graphite particles, conductive carbon black (such as furnace black, acetylene black, Ketjen black), and colloidal graphite. Can be exemplified. These conductive agents can be used alone or in combination of two or more.

【0019】黒鉛粒子としては、球状の黒鉛粒子(例え
ば、メソカーボンマイクロビーズの黒鉛化品、球状化さ
れた天然及び人造黒鉛、フリュートコークス、ギルソナ
イトコークスなど)、アスペクト比2.0以下の黒鉛粉
末(例えば、アスペクト比1〜2.0程度の天然及び人
造黒鉛粉末など)などが含まれる。
Examples of the graphite particles include spherical graphite particles (eg, graphitized mesocarbon microbeads, spheroidized natural and artificial graphite, flute coke, Gilsonite coke, etc.) having an aspect ratio of 2.0 or less. Graphite powder (for example, natural and artificial graphite powder having an aspect ratio of about 1 to 2.0) and the like are included.

【0020】メソカーボンマイクロビーズ(以下、MC
MBと称する)は、高度に結晶が配向し、黒鉛類似の構
造を有する球状体(メソフェーズ小球体)である。球形
のMCMBの平均粒径は、通常、5〜50μm(例え
ば、5〜25μm)、好ましくは10〜40μm(例え
ば、10〜25μm)、特に10〜30μm程度であ
る。MCMBは、コールタール,コールタールピッチ,
重質油などの歴青物を300〜500℃程度で加熱する
ことにより生成する。このようなMCMBの製造方法
は、例えば、特公平1−27968号公報、特開平1−
242691号公報などに記載されている。MCMBの
黒鉛化品とは、通常の方法でMCMBを黒鉛化したもの
である。
[0020] Mesocarbon microbeads (hereinafter, MC)
MB) is a spheroid (mesophase spheroid) in which crystals are highly oriented and have a structure similar to graphite. The average particle size of the spherical MCMB is usually 5 to 50 μm (for example, 5 to 25 μm), preferably 10 to 40 μm (for example, 10 to 25 μm), and particularly about 10 to 30 μm. MCMB is coal tar, coal tar pitch,
It is produced by heating bituminous substances such as heavy oil at about 300 to 500 ° C. Such a method for producing MCMB is disclosed in, for example, Japanese Patent Publication No. 27968/1990,
No. 242691. The graphitized product of MCMB is obtained by graphitizing MCMB by an ordinary method.

【0021】黒鉛粉末の平均粒径は、例えば、2〜35
μm,好ましくは5〜30μm程度である。人造黒鉛粉
は、石油コークスなどを原料とし、成形、焼成し、さら
に2000℃以上の高温で黒鉛化することにより得られ
る。
The average particle size of the graphite powder is, for example, 2 to 35.
μm, preferably about 5 to 30 μm. Artificial graphite powder is obtained by using petroleum coke or the like as a raw material, molding and firing, and further graphitizing at a high temperature of 2000 ° C. or higher.

【0022】このようなMCMBの黒鉛化品及び/又は
黒鉛粉末を用いると、セパレータに導電性を有効に付与
できる。また、導電剤の形状が球形又はアスペクト比
2.0以下であるため、樹脂に対する導電性成分の構成
比率を高くできるだけでなく、成形時の内部応力が緩和
され、応力ひずみが残存しにくくなり、セパレータに反
りや変形が生じにくい。
When such a graphitized MCMB and / or graphite powder is used, conductivity can be effectively imparted to the separator. In addition, since the shape of the conductive agent is spherical or the aspect ratio is 2.0 or less, not only can the composition ratio of the conductive component to the resin be increased, but also the internal stress during molding is relaxed, and the stress strain hardly remains. The separator is unlikely to warp or deform.

【0023】導電剤(導電性粒子)は少なくとも粗粒子
を含んでいてもよく、粗粒子の平均粒子径(D50%)
は、例えば、40〜150μm(例えば、50〜125
μm)、好ましくは50〜150μm(例えば、50〜
125μm)程度であり、通常、40〜120μm(例
えば、50〜120μm)程度である。このような導電
性粗粒子は、プレート又はセパレータにおいて導電骨格
を形成し、導電に寄与する実効断面積を増加できるとと
もに、比表面積が小さいため樹脂量を大きく低減して
も、ガス透過性が小さく、一体性及び機械的強度の高い
プレート又はセパレータを形成できる。
The conductive agent (conductive particles) may contain at least coarse particles, and the average particle diameter of coarse particles (D50%)
Is, for example, 40 to 150 μm (for example, 50 to 125 μm).
μm), preferably 50 to 150 μm (for example, 50 to 150 μm).
125 μm), and usually about 40 to 120 μm (for example, 50 to 120 μm). Such conductive coarse particles form a conductive skeleton in a plate or a separator, and can increase the effective cross-sectional area contributing to conductivity, and even if the specific surface area is small, the amount of resin is greatly reduced, but the gas permeability is small. , Plates or separators with high integrity and high mechanical strength can be formed.

【0024】導電性粗粒子は、種々の導電性粒子、例え
ば、金属、非金属の粒子から選択できる。好ましい導電
性粗粒子は、黒鉛、例えば、天然黒鉛、人造黒鉛から選
択できる。前記黒鉛粗粒子は、通常、ブタノール置換真
比重が2.1以上(例えば、2.1〜2.3程度)であ
り、石油系又は石炭系の針状コークスを素原料とした黒
鉛粒子などが例示できる。導電性粗粒子(特に黒鉛粒
子)のBET比表面積は、通常、10m2/g以下(例
えば、1〜5m2/g)、好ましくは2〜5m2/g程度
である。また、JIS K 6221に規定するA法
(ジブチルフタレート(DBP)を使用)による吸油量
は、例えば、60〜75cc/100g程度である。
The conductive coarse particles can be selected from various conductive particles, for example, metal and non-metal particles. Preferred conductive coarse particles can be selected from graphite, for example, natural graphite and artificial graphite. The graphite coarse particles generally have a butanol-substituted true specific gravity of 2.1 or more (for example, about 2.1 to 2.3), and include graphite particles using petroleum or coal needle coke as a raw material. Can be illustrated. The BET specific surface area of the conductive coarse particles (especially graphite particles) is usually 10 m 2 / g or less (for example, 1 to 5 m 2 / g), and preferably about 2 to 5 m 2 / g. The oil absorption by Method A (using dibutyl phthalate (DBP)) specified in JIS K 6221 is, for example, about 60 to 75 cc / 100 g.

【0025】導電性粗粒子(黒鉛粗粒子など)の形状は
特に制限されないが、通常、非球形であり、無定形粒子
である。特に黒鉛粒子などの導電性粗粒子は、通常、扁
平で断面形状が無定形の形状を有している。導電性粗粒
子(特に黒鉛粗粒子)の粒度分布の均斉度(D80%/
D20%)は、例えば、5以下(すなわち1〜5程度)
の範囲から選択でき、通常、1.5〜5,好ましくは2
〜5,特に2.2〜4.8程度である。
The shape of the conductive coarse particles (such as graphite coarse particles) is not particularly limited, but is usually non-spherical and amorphous. In particular, conductive coarse particles such as graphite particles generally have a flat shape and an amorphous shape in cross section. Uniformity of particle size distribution of conductive coarse particles (especially graphite coarse particles) (D80% /
D20%) is, for example, 5 or less (that is, about 1 to 5).
And usually 1.5 to 5, preferably 2
-5, especially about 2.2-4.8.

【0026】前記導電性粗粒子(例えば、平均粒子径
(D50%)40〜120μmの黒鉛粗粒子)は、導電
性細粒子と組み合わせて使用できる。導電性細粒子は、
導電性粗粒子よりも平均粒子径が小さく、導電性粗粒子
間の間隙に充填可能であれば、種々の導電性粒子が使用
できる。充填された粗粒子間の空隙を細粒子が埋めるこ
とにより、導電性を大きく向上できる。
The conductive coarse particles (for example, graphite coarse particles having an average particle diameter (D50%) of 40 to 120 μm) can be used in combination with conductive fine particles. The conductive fine particles are
Various conductive particles can be used as long as they have a smaller average particle diameter than the conductive coarse particles and can fill the gaps between the conductive coarse particles. By filling the voids between the filled coarse particles with the fine particles, the conductivity can be greatly improved.

【0027】前記導電性粗粒子の平均粒子径をD1とす
るとき、導電性微粒子の平均粒子径(D50%)D2
は、D2=D1×0.001〜D1×0.6程度の範囲
から選択でき、通常、D1×0.01〜D1×0.5、
好ましくはD1×0.02〜D1×0.5、特にD1×
0.05〜D1×0.5程度である。
When the average particle diameter of the conductive coarse particles is D1, the average particle diameter of the conductive fine particles (D50%) D2
Can be selected from the range of D2 = D1 × 0.001 to D1 × 0.6, and usually D1 × 0.01 to D1 × 0.5,
Preferably D1 × 0.02 to D1 × 0.5, especially D1 ×
It is about 0.05 to D1 × 0.5.

【0028】導電性を付与するため、導電性細粒子の平
均粒子径(D50%)は、導電性粗粒子の平均粒子径に
応じて、例えば、0.1〜50μm程度の範囲から選択
でき、通常、1〜50μm、好ましくは5〜40μm、
さらに好ましくは5〜30μm(例えば、10〜25μ
m)程度である。
In order to impart conductivity, the average particle size (D50%) of the conductive fine particles can be selected from a range of, for example, about 0.1 to 50 μm according to the average particle size of the conductive coarse particles. Usually, 1 to 50 μm, preferably 5 to 40 μm,
More preferably, 5 to 30 μm (for example, 10 to 25 μm)
m).

【0029】導電性細粒子としては、粗粒子と同様、金
属粒子、非金属粒子から選択できるが、通常、天然黒
鉛、人造黒鉛などの黒鉛粒子から選択できる。細粒子の
形状は特に制限されず、例えば、球形、楕円形、方形な
どの多角形状の他、鱗片又は薄片状などの板状、ロッド
状、無定形状などであってもよい。これらの導電性細粒
子のうち充填性や成形時の潤滑性を付与するためには、
球状導電性粒子(例えば、前記球状黒鉛粒子)および薄
片状粒子(例えば、薄片状天然黒鉛粒子又は黒鉛粉)か
ら選択された少なくとも一種が好適に使用できる。球状
の導電性細粒子は、粗粒子間の間隙に対する充填性が高
いので、効率よく導電性を向上できる。また、薄片状粒
子は、球状細粒子と同じく粗粒子間の間隙に対する充填
性が高く、導電骨格として機能する導電性粗粒子と面接
触するので、効率よく導電性を向上できる。
The conductive fine particles can be selected from metal particles and non-metal particles as in the case of coarse particles, but can be generally selected from graphite particles such as natural graphite and artificial graphite. The shape of the fine particles is not particularly limited, and may be, for example, a polygonal shape such as a sphere, an ellipse, or a square, a plate shape such as a scale or a flake shape, a rod shape, an amorphous shape, and the like. Among these conductive fine particles, in order to impart filling properties and lubricity during molding,
At least one selected from spherical conductive particles (for example, the spherical graphite particles) and flaky particles (for example, flaky natural graphite particles or graphite powder) can be suitably used. Since the spherical conductive fine particles have high filling properties for the gaps between the coarse particles, the conductivity can be efficiently improved. Further, the flaky particles have a high filling property for the gaps between the coarse particles as in the case of the spherical fine particles, and are in surface contact with the conductive coarse particles functioning as a conductive skeleton, so that the conductivity can be efficiently improved.

【0030】薄片状天然黒鉛粒子(又は薄片状天然黒鉛
粉)は、高結晶性天然黒鉛を公知の方法で(例えば硫酸
を用いて)膨張化処理し、ジェットミルなどにより粉砕
した粉粒体である。膨張化処理によって黒鉛結晶の積層
構造が層間で剥離した生成物を粉砕することにより、非
常に平面的な黒鉛粉末(鱗片又は薄片状粉末)が得られ
る。このような粉末は加圧によって容易に圧縮可能であ
り、充填性を改善することができる。薄片状天然黒鉛粒
子の平均粒子径は、粉砕操作により任意に調整できる。
The flaky natural graphite particles (or flaky natural graphite powder) are obtained by expanding a highly crystalline natural graphite by a known method (for example, using sulfuric acid) and pulverizing it by a jet mill or the like. is there. By pulverizing the product in which the lamination structure of the graphite crystal is separated between the layers by the expansion treatment, a very flat graphite powder (scale or flaky powder) is obtained. Such a powder can be easily compressed by pressurization, and can improve the filling property. The average particle size of the flaky natural graphite particles can be arbitrarily adjusted by a pulverizing operation.

【0031】導電性粗粒子と導電性細粒子(特に黒鉛粒
子)との組み合わせにより、成形時に黒鉛粒子の高密度
充填が可能となり、プレートやセパレータに高い導電性
を有効に付与できる。さらに、自己潤滑性の高い黒鉛細
粒子の添加により成形時の内部応力が緩和され、応力ひ
ずみが残存しにくくなり、プレートやセパレータに反り
や変形が生じるのを防止できる。
The combination of the conductive coarse particles and the conductive fine particles (especially graphite particles) enables high-density filling of graphite particles at the time of molding, and can effectively impart high conductivity to a plate or a separator. Furthermore, the addition of graphite fine particles having high self-lubricating properties alleviates the internal stress during molding, makes it difficult for stress strain to remain, and prevents the plate and the separator from being warped or deformed.

【0032】導電性粗粒子と導電性細粒子との割合は、
高い導電性を付与できる範囲、例えば、前者/後者(重
量比)=100/0〜40/60、好ましくは100/
0〜50/50(例えば、100/0〜60/40)程
度である。
The ratio between the conductive coarse particles and the conductive fine particles is as follows:
Range in which high conductivity can be imparted, for example, former / latter (weight ratio) = 100/0 to 40/60, preferably 100 /
It is about 0 to 50/50 (for example, 100/0 to 60/40).

【0033】なお、非炭素質樹脂と導電剤との総量を基
準にして、前記導電性粗粒子の含有量は、通常、50〜
95重量%(好ましくは55〜90重量%、特に60〜
90重量%)、導電性細粒子の含有量は、0〜40%
(好ましくは0〜35重量%)程度である。
The content of the conductive coarse particles is usually 50 to 50% based on the total amount of the non-carbonaceous resin and the conductive agent.
95% by weight (preferably 55 to 90% by weight, especially 60 to 90% by weight)
90% by weight), and the content of the conductive fine particles is 0 to 40%.
(Preferably 0 to 35% by weight).

【0034】少なくとも粗粒子を含む導電剤を用いる
と、導電剤の比表面積や吸油量を低減できる。そのた
め、非炭素質樹脂の含有量が少なくても、一体性、機械
的強度の高いプレート(セパレータなど)を得ることが
できるとともに、炭化又は黒鉛化工程を経ることなく、
高い導電性及び熱伝導性のプレート(セパレータなど)
を得ることができる。
When a conductive agent containing at least coarse particles is used, the specific surface area and oil absorption of the conductive agent can be reduced. Therefore, even if the content of the non-carbonaceous resin is small, it is possible to obtain a plate having high integrity and mechanical strength (such as a separator), and without undergoing a carbonization or graphitization step.
Highly conductive and thermally conductive plates (such as separators)
Can be obtained.

【0035】熱可塑性樹脂と導電剤との割合は、導電
性,機械的強度や熱伝導性などを損なわない範囲、例え
ば、前者/後者=5/95〜50/50(重量比)程度
の範囲から選択でき、通常、10/90〜50/50
(重量比)、好ましくは10/90〜40/60(重量
比)、さらに好ましくは10/90〜35/65(重量
比)、特に10/80〜30/70(重量比)程度であ
る。導電剤の含有量が50重量%未満であると、導電性
及び熱伝導性が低下し、95重量%を越えると曲げ強度
が低下し、ガス透過率も大きくなる。特に、非炭素質樹
脂の含有量は、通常、導電剤および非炭素質樹脂の総量
に対して25重量%以下(好ましくは5〜25重量%程
度)である。より具体的には、前記非炭素質樹脂と導電
剤とを、前者/後者=5/95〜25/75(重量
比)、好ましくは10/90〜20/80(重量比)程
度の割合で用いると、導電性,機械的強度や熱伝導性な
どのプレート(セパレータ)の物性を向上できる。
The ratio between the thermoplastic resin and the conductive agent is in a range that does not impair the conductivity, mechanical strength, thermal conductivity, etc., for example, in the range of the former / the latter = about 5/95 to 50/50 (weight ratio). Can be selected from, usually 10 / 90-50 / 50
(Weight ratio), preferably about 10/90 to 40/60 (weight ratio), more preferably about 10/90 to 35/65 (weight ratio), and particularly about 10/80 to 30/70 (weight ratio). If the content of the conductive agent is less than 50% by weight, the electrical conductivity and the thermal conductivity decrease, and if it exceeds 95% by weight, the bending strength decreases and the gas permeability also increases. In particular, the content of the non-carbonaceous resin is usually 25% by weight or less (preferably about 5 to 25% by weight) based on the total amount of the conductive agent and the non-carbonaceous resin. More specifically, the non-carbonaceous resin and the conductive agent are mixed in the former / the latter at a ratio of about 5/95 to 25/75 (weight ratio), preferably about 10/90 to 20/80 (weight ratio). When used, the physical properties of the plate (separator) such as electrical conductivity, mechanical strength and thermal conductivity can be improved.

【0036】前記非炭素質熱可塑性樹脂及び導電剤で構
成された複合材(複合樹脂組成物)は、さらに炭素繊維
を含んでいてもよい。炭素繊維の種類は制限されず、石
油系又は石炭系のピッチ系炭素繊維、PAN(ポリアク
リロニトリル)系炭素繊維、レーヨン系炭素繊維、フェ
ノール樹脂系炭素繊維などが使用できる。炭素繊維の平
均繊維径は、例えば、0.5〜50μm、好ましくは1
〜30μm、さらに好ましくは5〜20μmの範囲から
選択できる。炭素繊維の平均繊維長は、適当に選択で
き、例えば、10μm〜5mm、好ましくは20μm〜
3mm程度である。炭素繊維の使用量は、セパレータを
構成する複合材全体の1〜10重量%程度の範囲から選
択できる。炭素繊維の含有量が10重量%を超えると気
密性が低下し、ガス透過率が大きくなる。
The composite material (composite resin composition) composed of the non-carbonaceous thermoplastic resin and the conductive agent may further contain carbon fibers. The type of carbon fiber is not limited, and petroleum-based or coal-based pitch-based carbon fiber, PAN (polyacrylonitrile) -based carbon fiber, rayon-based carbon fiber, phenol resin-based carbon fiber, and the like can be used. The average fiber diameter of the carbon fibers is, for example, 0.5 to 50 μm, and preferably 1 to 50 μm.
To 30 μm, more preferably 5 to 20 μm. The average fiber length of the carbon fibers can be appropriately selected, for example, 10 μm to 5 mm, preferably 20 μm to
It is about 3 mm. The amount of carbon fiber used can be selected from the range of about 1 to 10% by weight of the whole composite material constituting the separator. When the content of the carbon fiber exceeds 10% by weight, the airtightness decreases, and the gas permeability increases.

【0037】熱可塑性樹脂、導電剤及び必要により炭素
繊維などで構成された合成樹脂複合材料には、必要に応
じて、カップリング剤、離型剤、滑剤、可塑剤、安定剤
などを適宜配合してもよい。
A synthetic resin composite material composed of a thermoplastic resin, a conductive agent and, if necessary, carbon fiber, etc., is appropriately compounded with a coupling agent, a releasing agent, a lubricant, a plasticizer, a stabilizer and the like as required. May be.

【0038】このような樹脂組成物(複合材)は、慣用
の方法でシート成形され、このシートはスタンピング法
により成形される。シート成形においては、熱可塑性樹
脂中に導電剤を均一に分散できる種々の方法、例えば、
樹脂組成物を加熱混練してシート状に押し出す押し出し
成形法、熱ロールにより圧延した後、冷却してシートを
作製するカレンダ加工法、ロールプレス法などが利用で
きる。なお、シート成形においては、組織が緻密な導電
性シート又は燃料電池用セパレータを得るため、気孔率
20%以下(特に10%以下)に加熱加圧するのが有利
である。成形により得られる複合シートの厚みは、例え
ば、1〜10mm、好ましくは1〜5mm(例えば、1
〜4mm)程度である。
Such a resin composition (composite material) is formed into a sheet by a conventional method, and the sheet is formed by a stamping method. In sheet molding, various methods that can uniformly disperse the conductive agent in the thermoplastic resin, for example,
An extrusion molding method in which the resin composition is heated and kneaded and extruded into a sheet shape, a calendering method in which a sheet is rolled by a hot roll, and then cooled to produce a sheet, a roll pressing method, and the like can be used. In the sheet forming, it is advantageous to apply heat and pressure to a porosity of 20% or less (particularly 10% or less) in order to obtain a conductive sheet having a fine structure or a separator for a fuel cell. The thickness of the composite sheet obtained by molding is, for example, 1 to 10 mm, preferably 1 to 5 mm (for example, 1 to 5 mm).
44 mm).

【0039】複合シート(スタンパブルシート)のスタ
ンピング成形は、例えば、必要により所定寸法に切断し
た前記シート(ブランク)を、加熱又は予熱手段(加熱
炉や赤外線加熱など)により加熱軟化させ、前記シート
の固化温度よりも低い温度に加熱した型を用いて冷却圧
縮成形することにより行うことができる。前記スタンピ
ング成形は、熱可塑性樹脂の種類や含有量、複合シート
の特性に応じて成形条件を選択でき、例えば、熱可塑性
樹脂の融点又は軟化点(溶融温度)T℃以上の温度(例
えば、T℃〜(T+80)℃、好ましくはT℃〜(T+
50)℃程度)で、所定時間(例えば、約3〜10分
間)シートを予熱し、金型温度が熱可塑性樹脂の融点又
は軟化点Tよりも低い温度(例えば、(T−30)〜
(T−170)℃、好ましくは(T−50)〜(T−1
50)℃程度)の金型を用い、圧力10〜200MPa
(好ましくは30〜200MPa、さらに好ましくは5
0〜150MPa)程度で加圧成形することにより行う
ことができる。
In the stamping molding of a composite sheet (a stampable sheet), for example, the sheet (blank) cut to a predetermined size as needed is heated and softened by heating or preheating means (heating furnace, infrared heating, etc.), And compression-molding using a mold heated to a temperature lower than the solidification temperature. In the stamping molding, molding conditions can be selected in accordance with the type and content of the thermoplastic resin and the characteristics of the composite sheet. For example, the melting point or softening point (melting temperature) of the thermoplastic resin is equal to or higher than T ° C (for example, T ° C to (T + 80) ° C, preferably T ° C to (T +
The sheet is preheated for a predetermined time (for example, about 3 to 10 minutes) at a temperature lower than the melting point or softening point T of the thermoplastic resin (for example, (T-30)).
(T-170) ° C., preferably (T-50) to (T-1)
50) using a mold at a temperature of about 10 ° C.)
(Preferably 30 to 200 MPa, more preferably 5 to 200 MPa.
It can be performed by pressure molding at about 0 to 150 MPa).

【0040】より具体的には、熱可塑性樹脂として溶融
温度T=250〜290℃のポリフェニレンスルフィド
系樹脂を用いる場合、例えば、温度250〜370℃
(好ましくは280〜350℃)程度で加熱し、温度1
00〜250℃(好ましくは120〜230℃)程度の
金型内で圧力10〜200MPa(好ましくは30〜2
00MPa、さらに好ましくは50〜150MPa)程
度で加圧成形することにより行うことができる。
More specifically, when a polyphenylene sulfide resin having a melting temperature T = 250 to 290 ° C. is used as the thermoplastic resin, for example, a temperature of 250 to 370 ° C.
(Preferably 280 to 350 ° C.)
A pressure of 10 to 200 MPa (preferably 30 to 2 MPa) in a mold of about 00 to 250 ° C. (preferably 120 to 230 ° C.)
It can be performed by pressure molding at about 00 MPa, more preferably about 50 to 150 MPa.

【0041】金型は、セパレータの表面形態に応じて選
択でき、平滑面又平坦面を有する金型を用いて、平滑面
を有する平板状セパレータを成形してもよく、凹凸部を
有する金型(特に連続した凸部(突条)又は溝を有する
溝付き金型)を用いることにより凹凸部を有するセパレ
ータ(特に溝付きセパレータ)を成形してもよい。
The mold can be selected according to the surface form of the separator. A flat plate separator having a smooth surface may be formed using a mold having a smooth surface or a flat surface. A separator having an uneven portion (particularly, a grooved separator) may be formed by using a (particularly continuous mold (groove) having a convex portion or a groove).

【0042】このようなスタンピング成型法を利用する
と、樹脂組成物中の樹脂含有量が少なくても均質なスタ
ンパブルシートを容易に調製できると共に、スタンパブ
ルシートを圧縮成型することによりセパレータ又はプレ
ートを得ることができ、成形サイクルを短縮して高い生
産性でセパレータを製造できる。特に、炭化又は黒鉛化
工程及び切削工程を経ることなく、溝付きセパレータ又
はプレートを高い精度で得ることができる。
When such a stamping molding method is used, a uniform stampable sheet can be easily prepared even if the resin content in the resin composition is small, and the separator or plate can be formed by compression molding the stampable sheet. The separator can be manufactured with high productivity by shortening the molding cycle. In particular, a grooved separator or plate can be obtained with high precision without going through a carbonizing or graphitizing step and a cutting step.

【0043】このようにして得られた燃料電池用セパレ
ータ(又は導電性プレート)は、炭化又は黒鉛化工程を
経ることなく製造できるので、前記樹脂組成物及びシー
トの特性を備えており、厚み方向の体積抵抗が小さく、
曲げ強度が高いという特色がある。セパレータの厚さ方
向の体積抵抗は、0.001〜0.15Ωcm、好まし
くは0.001〜0.1Ωcm、さらに好ましくは0.
001〜0.08Ωcm程度であり、通常、0.001
〜0.05Ωcm、特に0.001〜0.03Ωcm
(例えば、0.001〜0.025Ωcm)程度であ
る。曲げ強度は、30〜200MPa、好ましくは30
〜150MPa、さらに好ましくは30〜100MPa
程度である。さらに、シートの厚み方向の熱伝導率は、
2〜60W/mK(例えば、3〜60W/mK)、好ま
しくは5〜60W/mK、さらに好ましくは10〜60
W/mK程度である。
The fuel cell separator (or conductive plate) thus obtained can be manufactured without going through the carbonization or graphitization step, and therefore has the characteristics of the resin composition and the sheet, and has a thickness direction. Has low volume resistance,
It has the characteristic of high bending strength. The volume resistance in the thickness direction of the separator is 0.001 to 0.15 Ωcm, preferably 0.001 to 0.1 Ωcm, and more preferably 0.1 to 0.1 Ωcm.
001-0.08 Ωcm, usually 0.001
~ 0.05Ωcm, especially 0.001-0.03Ωcm
(For example, about 0.001 to 0.025 Ωcm). The bending strength is 30 to 200 MPa, preferably 30
~ 150MPa, more preferably 30 ~ 100MPa
It is about. Furthermore, the thermal conductivity in the thickness direction of the sheet is
2-60 W / mK (for example, 3-60 W / mK), preferably 5-60 W / mK, more preferably 10-60.
It is about W / mK.

【0044】セパレータの見掛け密度(嵩密度)は、
1.1〜2.2g/cm3程度の範囲から選択でき、例
えば、1.7〜2.1g/cm3、好ましくは1.8〜
2.1g/cm3(例えば、1.8〜2g/cm3)であ
る。さらに、セパレータの厚みは、例えば、0.5〜3
mm、好ましくは0.8〜2.5mm程度である。
The apparent density (bulk density) of the separator is
It can be selected from the range of about 1.1 to 2.2 g / cm 3 , for example, 1.7 to 2.1 g / cm 3 , preferably 1.8 to 2.1 g / cm 3 .
2.1 g / cm 3 (e.g., 1.8~2g / cm 3) it is. Further, the thickness of the separator is, for example, 0.5 to 3
mm, preferably about 0.8 to 2.5 mm.

【0045】本発明のセパレータは、燃料電池、特に、
固体高分子膜を電解質膜とする固体高分子型燃料電池用
セパレータとして有用である。
The separator of the present invention can be used for a fuel cell,
It is useful as a separator for a polymer electrolyte fuel cell using a polymer electrolyte membrane as an electrolyte membrane.

【0046】[0046]

【発明の効果】本発明の方法では、炭化工程及び切削工
程を経ることなく、ガス不透過性、電気導電性、熱伝導
性、機械強度、耐酸性などの諸特性に優れる燃料電池用
セパレータ(特に固体高分子型燃料電池用セパレータ)
を簡単な方法で効率よく製造できる。また、炭化工程お
よび切削工程を経ることなく、成形により、寸法精度の
高い溝(ガス流路)を形成できる。特にポリフェニレン
スルフィド系樹脂を用いると、耐熱性、機械的強度、耐
性(耐酸性、耐熱水性など)、コストの点で優れてお
り、スタンピング成形法により高い精度で溝付きセパレ
ータを得ることができる。本発明は、燃料電池用セパレ
ータ(特に固体高分子型燃料電池用セパレータ)に有効
に適用できる。
According to the method of the present invention, a separator for a fuel cell which is excellent in various properties such as gas impermeability, electric conductivity, heat conductivity, mechanical strength and acid resistance without passing through a carbonizing step and a cutting step. Especially separators for polymer electrolyte fuel cells)
Can be efficiently manufactured by a simple method. Further, a groove (gas flow path) with high dimensional accuracy can be formed by molding without going through a carbonizing step and a cutting step. In particular, when a polyphenylene sulfide-based resin is used, it is excellent in heat resistance, mechanical strength, resistance (acid resistance, hot water resistance, etc.) and cost, and a grooved separator can be obtained with high precision by a stamping molding method. INDUSTRIAL APPLICABILITY The present invention can be effectively applied to a fuel cell separator (particularly, a polymer electrolyte fuel cell separator).

【0047】[0047]

【実施例】以下に、実施例に基づいて本発明をより詳細
に説明するが、本発明はこれらの実施例により限定され
るものではない。
EXAMPLES The present invention will be described below in more detail with reference to Examples, but the present invention is not limited to these Examples.

【0048】なお、実施例及び比較例において、種々物
性の測定は常法に基いて行った。表面状態は、熟練者が
目視により判定した。
In the examples and comparative examples, various physical properties were measured according to a conventional method. The surface condition was visually determined by a skilled person.

【0049】実施例1〜6 ポリフェニレンスルフィド系樹脂PPS((株)東プレ
ン製:T−1,LC−5G,T−4)とMCMBの黒鉛
化品(大阪瓦斯(株)製,平均粒径10μmおよび25
μm)又は人造黒鉛粉((株)エスイーシー製,SGP
10,平均粒径10μm)とを表1に示す割合でミキサ
ーを用い10分間乾式混合した。この粉末混合物を、成
形圧力20MPa、320℃の条件でロールプレス成形
し、厚さ3mmのスタンパブルシートを得た。得られた
スタンパブルシートを所定サイズ(150mm×150
mm)にカットし、オーブン内で320℃×10分間プ
レヒートし、その後、200℃の溝付きセパレーター成
形用金型を用い、100MPaの圧力で30秒間成形し
た。なお、実施例5では炭素繊維((株)ドナック製,
ドナカーボS,平均繊維長3mm)を併用した。
Examples 1 to 6 Graphitized products of polyphenylene sulfide resin PPS (manufactured by Tohprene Co., Ltd .: T-1, LC-5G, T-4) and MCMB (manufactured by Osaka Gas Co., Ltd., average particle size) 10 μm and 25
μm) or artificial graphite powder (SGP, SGP)
And an average particle diameter of 10 μm) in a ratio shown in Table 1 by dry mixing using a mixer for 10 minutes. This powder mixture was subjected to roll press molding under the conditions of a molding pressure of 20 MPa and 320 ° C. to obtain a stampable sheet having a thickness of 3 mm. The obtained stampable sheet is placed in a predetermined size (150 mm × 150 mm).
mm) and preheated in an oven at 320 ° C. for 10 minutes, and then molded at a pressure of 100 MPa for 30 seconds using a grooved separator molding die at 200 ° C. In Example 5, carbon fiber (manufactured by Donac Co., Ltd.)
Donacarbo S, average fiber length 3 mm).

【0050】比較例1 PPSに代えて、不飽和ポリエステル樹脂(昭和高分子
(株)製、リゴラック)を表1に示す割合で用い、実施
例1と同様にして成形した。
Comparative Example 1 An unsaturated polyester resin (Rigolac, manufactured by Showa Polymer Co., Ltd.) was used in place of PPS at the ratio shown in Table 1, and molded in the same manner as in Example 1.

【0051】結果を表1に示す。Table 1 shows the results.

【0052】[0052]

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡崎 博行 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 Fターム(参考) 5H018 AA06 BB01 BB03 BB12 HH00 HH01 HH03 HH04 HH05 HH06 HH09 5H026 AA06 BB01 BB02 BB08 CC03 CC04 CX02 CX04 EE06 EE18 HH01 HH03 HH04 HH05 HH06 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroyuki Okazaki 4-1-2 Hirano-cho, Chuo-ku, Osaka-shi F-term in Osaka Gas Co., Ltd. (reference) 5H018 AA06 BB01 BB03 BB12 HH00 HH01 HH03 HH04 HH05 HH06 HH09 5H026 AA06 BB01 BB02 BB08 CC03 CC04 CX02 CX04 EE06 EE18 HH01 HH03 HH04 HH05 HH06

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 非炭素質熱可塑性樹脂と導電剤とを含む
樹脂組成物で形成されたシートを、スタンピング成形す
る燃料電池用セパレータの製造方法。
1. A method for producing a fuel cell separator, comprising stamping and molding a sheet formed of a resin composition containing a non-carbonaceous thermoplastic resin and a conductive agent.
【請求項2】 厚み方向の体積抵抗が0.001〜0.
15Ωcm、曲げ強度が30〜200MPaである燃料
電池用セパレータを得る請求項1記載の製造方法。
2. A volume resistivity in a thickness direction of 0.001 to 0.5.
The manufacturing method according to claim 1, wherein a fuel cell separator having a resistance of 15 Ωcm and a bending strength of 30 to 200 MPa is obtained.
【請求項3】 シートの厚み方向の熱伝導率が2〜60
W/mKである燃料電池用セパレータを得る請求項1又
は2記載の製造方法。
3. The thermal conductivity in the thickness direction of the sheet is 2 to 60.
3. The method according to claim 1, wherein a fuel cell separator having a W / mK ratio is obtained.
【請求項4】 溝付き金型を用いてスタンピング成形す
る請求項1〜3のいずれかの項に記載の製造方法。
4. The manufacturing method according to claim 1, wherein stamping molding is performed using a grooved mold.
【請求項5】 熱可塑性樹脂と導電剤とで構成された樹
脂組成物を気孔率20%以下に加熱加圧して厚み1〜1
0mmのシートを調製し、このシートを加熱軟化させ、
スタンピング法により成形する請求項1〜4のいずれか
の項に記載の製造方法。
5. A resin composition comprising a thermoplastic resin and a conductive agent is heated and pressed to a porosity of 20% or less to form a resin composition having a thickness of 1 to 1%.
Prepare a 0 mm sheet, heat soften this sheet,
The manufacturing method according to claim 1, wherein the molding is performed by a stamping method.
【請求項6】 熱可塑性樹脂がポリフェニレンスルフィ
ド系樹脂である請求項1〜5のいずれかの項に記載の製
造方法。
6. The method according to claim 1, wherein the thermoplastic resin is a polyphenylene sulfide resin.
【請求項7】 導電剤が、黒鉛粒子及び導電性カーボン
ブラックから選択された少なくとも一種である請求項1
〜6のいずれかの項に記載の製造方法。
7. The conductive agent is at least one selected from graphite particles and conductive carbon black.
7. The production method according to any one of Items 6 to 6.
【請求項8】 熱可塑性樹脂と導電剤との割合が、前者
/後者=5/95〜50/50(重量比)である請求項
1〜7のいずれかの項に記載の製造方法。
8. The method according to claim 1, wherein the ratio of the thermoplastic resin to the conductive agent is 5/95 to 50/50 (weight ratio).
【請求項9】 導電剤が少なくとも平均粒子径(D50
%)40〜120μmの黒鉛粗粒子を含む請求項1〜8
のいずれかの項に記載の製造方法。
9. The conductive agent has an average particle diameter (D50).
%) Containing graphite coarse particles of 40 to 120 μm.
The production method according to any one of the above items.
【請求項10】 導電剤が、平均粒子径(D50%)4
0〜120μmの黒鉛粗粒子と、この黒鉛粗粒子よりも
平均粒子径の小さな黒鉛細粒子とで構成され、黒鉛粗粒
子と黒鉛細粒子との割合が前者/後者=100/0〜4
0/60(重量比)である請求項1〜9のいずれかの項
に記載の製造方法。
10. The conductive agent has an average particle size (D50%) of 4
It is composed of graphite coarse particles of 0 to 120 μm and graphite fine particles having an average particle diameter smaller than the graphite coarse particles, and the ratio of the graphite coarse particles to the graphite fine particles is the former / the latter = 100/0 to 4
The production method according to any one of claims 1 to 9, wherein the ratio is 0/60 (weight ratio).
【請求項11】 樹脂組成物がさらに炭素繊維を含む請
求項1〜10のいずれかの項に記載の製造方法。
11. The production method according to claim 1, wherein the resin composition further contains carbon fibers.
JP30405599A 1999-10-26 1999-10-26 Method for manufacturing separator for fuel battery Pending JP2001122677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30405599A JP2001122677A (en) 1999-10-26 1999-10-26 Method for manufacturing separator for fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30405599A JP2001122677A (en) 1999-10-26 1999-10-26 Method for manufacturing separator for fuel battery

Publications (1)

Publication Number Publication Date
JP2001122677A true JP2001122677A (en) 2001-05-08

Family

ID=17928510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30405599A Pending JP2001122677A (en) 1999-10-26 1999-10-26 Method for manufacturing separator for fuel battery

Country Status (1)

Country Link
JP (1) JP2001122677A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002093670A1 (en) * 2001-05-11 2002-11-21 Kureha Chemical Industry Company, Limited Separator for solid state polymer type fuel cell and method for producing the same
JP2003017085A (en) * 2001-06-27 2003-01-17 Ibiden Co Ltd Separator for solid polymer fuel cell
JP2003100313A (en) * 2001-05-24 2003-04-04 Toray Ind Inc Separator for fuel cell and its manufacturing method
JP2005005094A (en) * 2003-06-11 2005-01-06 Dainippon Ink & Chem Inc Separator for fuel cell, its manufacturing method, and fuel cell
JP2005100703A (en) * 2003-09-22 2005-04-14 Asahi Organic Chem Ind Co Ltd Conductive molding material, separator using it for fuel cell, and method of manufacturing the same
WO2005057699A1 (en) * 2003-12-09 2005-06-23 Nitta Corporation Separator and process for producing separator
JP2006172776A (en) * 2004-12-14 2006-06-29 Tokai Carbon Co Ltd Separator material for fuel cell, and its manufacturing method
JP2008021645A (en) * 2006-06-29 2008-01-31 Gm Global Technology Operations Inc Membrane humidifier for fuel cell
JP2008078023A (en) * 2006-09-22 2008-04-03 Shin Etsu Polymer Co Ltd Manufacturing method of separator for fuel cell, and separator for the fuel cell
JP2008091110A (en) * 2006-09-29 2008-04-17 Showa Denko Kk Separator for fuel cell, cell for the fuel cell, cell unit for the fuel cell, and manufacturing method of separator for the fuel cell and cell unit for the fuel cell
JP2008091097A (en) * 2006-09-29 2008-04-17 Showa Denko Kk Separator for fuel cell and manufacturing method therefor
KR100834056B1 (en) 2007-06-13 2008-06-02 한국타이어 주식회사 Carbon composite separator having high electrical conductivity for a fuel cell and method for producing the same
KR100841106B1 (en) * 2001-11-19 2008-06-25 연세대학교 산학협력단 Preparation method of bipolar plate using the electron conducting polymer composite
US7419720B2 (en) * 2001-03-13 2008-09-02 Ticona Gmbh Conductive plastic molding material, the use thereof and moulded bodies produced therefrom
JP2009099475A (en) * 2007-10-19 2009-05-07 Shin Etsu Polymer Co Ltd Separator for fuel cell and its manufacturing method
US7910501B2 (en) 2004-12-20 2011-03-22 Dainippon Ink And Chemicals, Inc. Sheet molding material for fuel cell bipolar plate, method of producing same and bipolar plate or fuel cell
WO2011074327A1 (en) * 2009-12-18 2011-06-23 日産自動車株式会社 Gas diffusion layer for fuel cell, and membrane electrode assembly using said gas diffusion layer for fuel cell
JP2019204601A (en) * 2018-05-21 2019-11-28 信越ポリマー株式会社 Fuel cell separator

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7419720B2 (en) * 2001-03-13 2008-09-02 Ticona Gmbh Conductive plastic molding material, the use thereof and moulded bodies produced therefrom
US7128996B2 (en) 2001-05-11 2006-10-31 Kureha Corporation Separator for solid polymer fuel cells, and production process thereof
WO2002093670A1 (en) * 2001-05-11 2002-11-21 Kureha Chemical Industry Company, Limited Separator for solid state polymer type fuel cell and method for producing the same
JP2003100313A (en) * 2001-05-24 2003-04-04 Toray Ind Inc Separator for fuel cell and its manufacturing method
JP2003017085A (en) * 2001-06-27 2003-01-17 Ibiden Co Ltd Separator for solid polymer fuel cell
KR100841106B1 (en) * 2001-11-19 2008-06-25 연세대학교 산학협력단 Preparation method of bipolar plate using the electron conducting polymer composite
JP2005005094A (en) * 2003-06-11 2005-01-06 Dainippon Ink & Chem Inc Separator for fuel cell, its manufacturing method, and fuel cell
JP2005100703A (en) * 2003-09-22 2005-04-14 Asahi Organic Chem Ind Co Ltd Conductive molding material, separator using it for fuel cell, and method of manufacturing the same
JP4716649B2 (en) * 2003-09-22 2011-07-06 旭有機材工業株式会社 Conductive molding material, fuel cell separator using the same, and method for producing the same
US8252475B2 (en) 2003-12-09 2012-08-28 Nitta Corporation Separator comprising a metal sheet and a resin
WO2005057699A1 (en) * 2003-12-09 2005-06-23 Nitta Corporation Separator and process for producing separator
JP2006172776A (en) * 2004-12-14 2006-06-29 Tokai Carbon Co Ltd Separator material for fuel cell, and its manufacturing method
JP4650673B2 (en) * 2004-12-14 2011-03-16 東海カーボン株式会社 Separator material for fuel cell and manufacturing method thereof
US7910501B2 (en) 2004-12-20 2011-03-22 Dainippon Ink And Chemicals, Inc. Sheet molding material for fuel cell bipolar plate, method of producing same and bipolar plate or fuel cell
JP2008021645A (en) * 2006-06-29 2008-01-31 Gm Global Technology Operations Inc Membrane humidifier for fuel cell
US8137853B2 (en) 2006-06-29 2012-03-20 GM Global Technology Operations LLC Membrane humidifier for a fuel cell
JP2008078023A (en) * 2006-09-22 2008-04-03 Shin Etsu Polymer Co Ltd Manufacturing method of separator for fuel cell, and separator for the fuel cell
JP2008091110A (en) * 2006-09-29 2008-04-17 Showa Denko Kk Separator for fuel cell, cell for the fuel cell, cell unit for the fuel cell, and manufacturing method of separator for the fuel cell and cell unit for the fuel cell
JP2008091097A (en) * 2006-09-29 2008-04-17 Showa Denko Kk Separator for fuel cell and manufacturing method therefor
KR100834056B1 (en) 2007-06-13 2008-06-02 한국타이어 주식회사 Carbon composite separator having high electrical conductivity for a fuel cell and method for producing the same
JP2009099475A (en) * 2007-10-19 2009-05-07 Shin Etsu Polymer Co Ltd Separator for fuel cell and its manufacturing method
WO2011074327A1 (en) * 2009-12-18 2011-06-23 日産自動車株式会社 Gas diffusion layer for fuel cell, and membrane electrode assembly using said gas diffusion layer for fuel cell
JP2019204601A (en) * 2018-05-21 2019-11-28 信越ポリマー株式会社 Fuel cell separator

Similar Documents

Publication Publication Date Title
JP2001126744A (en) Separator for fuel cell and fabricating method therefor
JP2001122677A (en) Method for manufacturing separator for fuel battery
CA2413146C (en) Conductive composition for solid polymer type fuel cell separator, solid polymer type fuel cell separator, solid polymer type fuel cell and solid polymer type fuel cell system using the separator
US8691129B2 (en) Method of producing exfoliated graphite composite compositions for fuel cell flow field plates
US7758783B2 (en) Continious production of exfoliated graphite composite compositions and flow field plates
US6544680B1 (en) Fuel cell separator, a fuel cell using the fuel cell separator, and a method for making the fuel cell separator
JP5567534B2 (en) Conductive structure, method for producing the same, and separator for fuel cell
JP4028940B2 (en) FUEL CELL SEPARATOR, MANUFACTURING METHOD THEREOF, AND SOLID POLYMER TYPE FUEL CELL USING THE FUEL CELL SEPARATOR
US8728679B2 (en) Laminated exfoliated graphite composite-metal compositions for fuel cell flow field plate or bipolar plate applications
US20080277628A1 (en) Exfoliated graphite composite compositions for fuel cell flow field plates
JP2001052721A (en) Separator for fuel cell and its manufacture
JP4889962B2 (en) Conductive structure, method for producing the same, and separator for fuel cell
Taherian et al. application of polymer-based composites: Bipolar plate of PEM fuel cells
JP3142587B2 (en) Carbonaceous composition, carbon material for fuel cell and method for producing the same
JP4067317B2 (en) Conductive composition and molded body thereof
KR102346997B1 (en) Artificial graphite powder and composite power using the same
JP2004269567A (en) Conductive composition and its molded product
KR102003682B1 (en) Flow channel plate for fuel cell and method of manufacturing the same
JP2002083608A (en) Separator for fuel cell and its manufacturing method
KR100485285B1 (en) The production procedure for separator of fuel cell
JP2002075394A (en) Separator member for fuel cell
JP2001236966A (en) Fuel cell separator and fuel cell
KR101169388B1 (en) High strength carbon composites using graphene, manufacturing method thereof and separator for fuel cell using the same
JP2002100377A (en) Separator for fuel cell and fuel cell
JP2002100378A (en) Separator for fuel cell and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317