JP2002083608A - Separator for fuel cell and its manufacturing method - Google Patents

Separator for fuel cell and its manufacturing method

Info

Publication number
JP2002083608A
JP2002083608A JP2000272062A JP2000272062A JP2002083608A JP 2002083608 A JP2002083608 A JP 2002083608A JP 2000272062 A JP2000272062 A JP 2000272062A JP 2000272062 A JP2000272062 A JP 2000272062A JP 2002083608 A JP2002083608 A JP 2002083608A
Authority
JP
Japan
Prior art keywords
graphite powder
average particle
fuel cell
particle size
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000272062A
Other languages
Japanese (ja)
Inventor
Takayuki Kawarada
貴之 瓦田
Koji Ono
浩嗣 小野
Yoichi Kawano
陽一 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2000272062A priority Critical patent/JP2002083608A/en
Priority to GB0304372A priority patent/GB2382457B/en
Priority to CA002421205A priority patent/CA2421205A1/en
Priority to US10/343,976 priority patent/US7063914B2/en
Priority to PCT/JP2001/007597 priority patent/WO2002021620A1/en
Priority to AU2001282605A priority patent/AU2001282605A1/en
Publication of JP2002083608A publication Critical patent/JP2002083608A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separator for a fuel cell, in which the separator having a low surface resistance can be obtained, without subjecting it to a high- temperature heat treatment, such as calcination or the like, and further which is superior in electroconductive property, gas impermeability, strength or the like. SOLUTION: After a mixture graphite powder, in which a isotropic graphite powder of average particle size of 50 to 300 μm and an isotropic graphite powder of average particle size of 50 μm or less which have been combined in the range of 40:60 to 90:10 in the weight percentage is combined with a thermosetting resin in an amount which is 5 to 15 folds, and the mixture is kneaded to form a homogeneous composition. Then, it is crushed, so that the average particle size becomes 20 to 50 μm, and obtained crushed product is molded and cured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池用セパレ
ータ及びその製造方法に関するものである。
The present invention relates to a fuel cell separator and a method for producing the same.

【0002】[0002]

【従来の技術】自動車搭載用途等に利用される燃料電池
が注目されている。この燃料電池は、化学エネルギーを
熱エネルギーに変換することなく直接電気エネルギーと
して利用するものであり、通常水素及び酸素の反応によ
って電気を取出す電池をいう。こうした燃料電池には、
リン酸型燃料電池、固体電解質型燃料電池及び固体高分
子型燃料電池(PEFC)等いくつかの方式のものがあ
るが、その中で固体高分子型燃料電池、リン酸型燃料電
池では導電性成形品であるセパレータが使用されてい
る。セパレータは、電極等と共に単位セルを構成し、該
単位セルを積層して使用されるものであって、ガス(水
素・酸素)を隔離する一方で導電性を必要とする。その
ため、10×10-2Ωcm以下の低い電気導電性が要求
される他、気体透過率が低いこと、さらには耐酸化性、
耐加水分解性、耐熱水性などが要求される。
2. Description of the Related Art Fuel cells for use in automobiles and the like are receiving attention. This fuel cell directly utilizes chemical energy as electrical energy without converting it into thermal energy, and generally refers to a battery that extracts electricity by a reaction between hydrogen and oxygen. These fuel cells include:
There are several types such as phosphoric acid type fuel cell, solid electrolyte type fuel cell and solid polymer type fuel cell (PEFC). Among them, solid polymer type fuel cell and phosphoric acid type fuel cell have conductivity. A separator which is a molded product is used. The separator constitutes a unit cell together with electrodes and the like, and is used by stacking the unit cells, and requires conductivity while isolating gases (hydrogen and oxygen). Therefore, a low electrical conductivity of 10 × 10 -2 Ωcm or less is required, and a gas permeability is low, and further, oxidation resistance,
Hydrolysis resistance and hot water resistance are required.

【0003】特開平4−214072号公報では、緻密
で機械的な強度が大きく、導電性に優れた燃料電池用セ
パレータとして適した炭素材を得るため、バインダーと
複数の粒度を有する炭素質粉粒体とからなる黒鉛化炭素
材を提案している。しかし、この方法は成形後、黒鉛化
処理する必要がある。特開平8−31231号公報で
は、空隙率が5%以下、成形体のXY方向の体積固有抵抗
とZ方向の体積固有抵抗の比の値が2以下の燃料電池用
セパレータとして適した炭素材を得るため、熱硬化性樹
脂とケッチェンブラック、真球状黒鉛粒子を配合した炭
素材を提案している。また、特開平11−195422
号公報では、バインダーの量を減らして、導電性を向上
させるため、カーボン材料に少量のバインダーを配合し
て加圧成形し、その後含浸剤を含浸させる方法が提案さ
れている。更に、特開平11−297338号公報で
は、電極部との接触抵抗が低い燃料電池用セパレータを
得るため、表面粗さを一定範囲とした燃料電池用セパレ
ータを提案している。また、特開平2000−4051
7号公報では、異方性の少ない燃料電池用セパレータ部
材を得るため、人造黒鉛と天然黒鉛を併用することを提
案している。特開平2000−21421号公報では、
ガス不透過性、熱伝導性、導電性等のバランスがとれた
燃料電池用セパレータ部材を得るため、特定の黒鉛紛末
を使用することを提案している。しかしながら、燃料電
池用セパレータとしての特性がより優れ、且つ、バラン
スの優れた燃料電池用セパレータ部材が望まれている。
Japanese Patent Application Laid-Open No. 4-214072 discloses a carbonaceous powder having a binder and a plurality of particle sizes in order to obtain a carbon material suitable for a fuel cell separator having high mechanical strength and excellent electrical conductivity. It proposes a graphitized carbon material consisting of a body. However, this method requires graphitization after molding. JP-A-8-31231 discloses a carbon material suitable for a fuel cell separator having a porosity of 5% or less and a ratio of the volume resistivity in the XY direction to the volume resistivity in the Z direction of the molded body of 2 or less. In order to obtain the carbon material, a carbon material in which a thermosetting resin, Ketjen black, and spherical graphite particles are blended has been proposed. Also, Japanese Patent Application Laid-Open No. 11-195422
In Japanese Patent Application Laid-Open Publication No. H11-264, a method is proposed in which a small amount of a binder is mixed with a carbon material, pressure-molded, and then impregnated with an impregnating agent in order to reduce the amount of the binder and improve conductivity. Further, Japanese Patent Application Laid-Open No. H11-297338 proposes a fuel cell separator having a surface roughness within a certain range in order to obtain a fuel cell separator having a low contact resistance with an electrode portion. Also, JP-A-2000-4051
No. 7 proposes to use artificial graphite and natural graphite in combination in order to obtain a fuel cell separator member with low anisotropy. In Japanese Patent Application Laid-Open No. 2000-21421,
It has been proposed to use a specific graphite powder in order to obtain a fuel cell separator member having a good balance of gas impermeability, thermal conductivity, conductivity and the like. However, there has been a demand for a fuel cell separator member that is more excellent in characteristics as a fuel cell separator and has a better balance.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、成形
性が優れ、緻密で、ガス不透過性、機械的強度及び導電
性が優れた燃料電池用のセパレータ及びその製造方法を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a separator for a fuel cell which is excellent in moldability, is dense, has excellent gas impermeability, mechanical strength and conductivity, and a method for producing the same. It is in.

【0005】[0005]

【課題を解決するための手段】本発明は、等方性黒鉛粉
と異方性黒鉛粉の重量割合が40:60〜90:10の
範囲とされた混合黒鉛粉を、熱硬化性樹脂結合剤に対し
て、5〜15倍量で配合、混練した後、成形、硬化して
得られたことを特徴とする燃料電池用セパレータであ
る。また、本発明は、平均粒径50〜300μmの等方
性黒鉛粉と平均粒径50μm未満の異方性黒鉛粉の重量
割合が40:60〜90:10の範囲とされた混合黒鉛
粉を、熱硬化性樹脂結合剤に対して、5〜15倍量で配
合、混練し、均一な樹脂組成物としたのち、平均粒径が
20〜50μmとなるように粉砕し、得られた粉砕物を
成形、硬化することを特徴とする燃料電池用セパレータ
の製造方法である。更に、本発明は、平均粒径70〜1
50μmの等方性黒鉛粉と平均粒径5〜20μmの異方
性黒鉛粉の重量割合が70:30〜80:20の範囲と
された混合黒鉛粉を、熱硬化性樹脂結合剤に対して、5
〜15倍量で配合、混練し、均一な組成物としたのち、
平均粒径が20〜50μmとなるように粉砕し、得られ
た粉砕物を成形、硬化することを特徴とする燃料電池用
セパレータの製造方法である。
According to the present invention, a mixed graphite powder having a weight ratio of isotropic graphite powder and anisotropic graphite powder in the range of 40:60 to 90:10 is bonded to a thermosetting resin. A fuel cell separator characterized by being obtained by mixing and kneading in an amount of 5 to 15 times the amount of an agent, followed by molding and curing. Further, the present invention provides a mixed graphite powder in which the weight ratio of isotropic graphite powder having an average particle diameter of 50 to 300 μm and anisotropic graphite powder having an average particle diameter of less than 50 μm is in the range of 40:60 to 90:10. After mixing and kneading the thermosetting resin binder in an amount of 5 to 15 times to obtain a uniform resin composition, pulverizing so that the average particle size becomes 20 to 50 μm, and the obtained pulverized product And a method for producing a fuel cell separator. Furthermore, the present invention provides an average particle size of 70 to 1
A mixed graphite powder in which the weight ratio of the isotropic graphite powder of 50 μm and the anisotropic graphite powder having an average particle size of 5 to 20 μm is in the range of 70:30 to 80:20 is mixed with the thermosetting resin binder. , 5
After blending and kneading in an amount of ~ 15 times to make a uniform composition,
A method for producing a separator for a fuel cell, comprising pulverizing so that the average particle size becomes 20 to 50 μm, and molding and curing the obtained pulverized product.

【0006】[0006]

【発明の実施の形態】以下に本発明を詳細に説明する。
燃料電池用セパレータは、単位セルを複数積層して構成
する燃料電池において、隣接する単位セル間に設けら
れ、電極との間で燃料ガス流路、酸化ガス流路を形成
し、燃料ガスと酸化ガスとを隔てる作用を有するもので
あり、ガス流路用の溝等が形成されている。本発明で製
造する燃料電池用セパレータは、黒鉛粉と熱硬化性樹脂
結合剤とが所定の形状に成形、硬化されてなるものであ
り、そのまま、又は必要により溝加工、穴あけ加工等が
なされて燃料電池用セパレータとして使用される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The fuel cell separator is provided between adjacent unit cells in a fuel cell configured by stacking a plurality of unit cells, and forms a fuel gas flow path and an oxidizing gas flow path with an electrode, thereby forming a fuel gas and an oxidizing gas flow path. It has a function of separating the gas from the gas, and has a groove or the like for a gas flow path. The fuel cell separator manufactured by the present invention is obtained by molding and curing a graphite powder and a thermosetting resin binder into a predetermined shape, and as it is, or as necessary, groove processing, drilling processing and the like are performed. Used as a fuel cell separator.

【0007】本発明で使用する黒鉛粉は、高い導電性を
示すものであれば制限はなく、等方性黒鉛粉としては、
例えば、特殊炭素材用やアルミ精練用に使用される石炭
系及び石油系コークス等の黒鉛粉末の他、黒鉛化された
特殊炭素材料の加工粉などであり、また異方性黒鉛粉と
しては、例えば、再結晶黒鉛紛、キッシュ黒鉛粉、膨張
黒鉛粉、黒鉛化されたニードルコークス粉、メソカーボ
ンマイクロビーズなどの炭素質を黒鉛化したものや天然
黒鉛粉などである。
[0007] The graphite powder used in the present invention is not limited as long as it exhibits high conductivity.
For example, in addition to graphite powder such as coal-based and petroleum-based coke used for special carbon materials and aluminum refining, there are also processing powders of graphitized special carbon materials, and as anisotropic graphite powder, Examples thereof include recrystallized graphite powder, quiche graphite powder, expanded graphite powder, graphitized needle coke powder, graphitized carbonaceous materials such as mesocarbon microbeads, and natural graphite powder.

【0008】本発明で使用する黒鉛粉は、少なくとも2
種類の粒度分布を有する黒鉛粉であることが好ましく、
平均粒径50〜300μm、好ましくは平均粒径70〜
150μmの等方性黒鉛粉と平均粒径50μm未満、好
ましくは平均粒径5〜20μmの異方性黒鉛粉からな
る。等方性黒鉛粉と、異方性黒鉛粉の重量割合は、4
0:60〜90:10の範囲、好ましくは70:30〜8
0:20の範囲である。この範囲を外れると、嵩密度が
低下し、導電性、ガス不透過性、強度等の性質が低下す
る。また、このように少なくとも2種類の黒鉛粉を使用
することにより、大きい粒子については、混練後の粉砕
の際、粉砕されて新しい黒鉛の断面が出るために、接触
して導電パスができる一方、大きい粒子は表面積が小さ
いため、少量の樹脂量でも混練を可能とすることが期待
される。小さい粒子については、黒鉛粒子同士の接触性
を高める一方、成形品の強度を高めることが期待され
る。また、等方性黒鉛粉は天然黒鉛粉に比べて導電性は
多少劣るものの、異方性が少ないという特徴もある。
The graphite powder used in the present invention has at least 2
It is preferably a graphite powder having a type of particle size distribution,
Average particle size 50-300 μm, preferably average particle size 70-
It comprises an isotropic graphite powder of 150 μm and an anisotropic graphite powder having an average particle diameter of less than 50 μm, preferably 5 to 20 μm. The weight ratio between the isotropic graphite powder and the anisotropic graphite powder is 4
0:60 to 90:10, preferably 70:30 to 8
The range is 0:20. Outside this range, the bulk density decreases, and properties such as conductivity, gas impermeability, and strength decrease. In addition, by using at least two types of graphite powders as described above, large particles are crushed at the time of crushing after kneading, and a new graphite cross section comes out. Since large particles have a small surface area, it is expected that kneading is possible even with a small amount of resin. For small particles, it is expected that the strength of the molded article will be increased while the contact between the graphite particles is increased. In addition, isotropic graphite powder has a feature that it has little anisotropy although conductivity is somewhat inferior to natural graphite powder.

【0009】本発明で使用する熱硬化性樹脂結合剤は、
耐熱性で、混練可能な程度に低粘度である熱硬化性樹脂
と硬化剤の組合せであれば特に制限はなく、例えばフェ
ノール樹脂、フルフリルアルコール樹脂、エポキシ樹
脂、尿素樹脂、メラミン樹脂等の樹脂を使用することが
できる。好ましい熱硬化性樹脂結合剤としては、エポキ
シ樹脂があり、この場合の好ましい硬化剤としては、多
価フェノール系硬化剤があり、これも樹脂として計算す
る。
The thermosetting resin binder used in the present invention is:
There is no particular limitation as long as it is a combination of a thermosetting resin and a curing agent that is heat-resistant and has a viscosity low enough to be kneaded, and examples thereof include resins such as phenolic resins, furfuryl alcohol resins, epoxy resins, urea resins, and melamine resins. Can be used. A preferred thermosetting resin binder is an epoxy resin, and a preferred curing agent in this case is a polyphenol-based curing agent, which is also calculated as a resin.

【0010】黒鉛粉と熱硬化性樹脂結合剤の配合割合
は、熱硬化性樹脂結合剤に対して黒鉛粉は15倍量(重
量比)以下、好ましくは5〜15倍量であることが、必
要な導電性を与えるために重要である。熱硬化性樹脂結
合剤が多すぎても、少なすぎても固有抵抗が増大するの
で、好ましくは8〜13倍量の範囲である。一般に、熱
硬化性樹脂結合剤の割合が多すぎると黒鉛粉同士の接触
が阻害されて導電性が低下し、少なすぎると所定の強度
を有する成形体が得られなくなるので、これらを考慮し
ても好ましい範囲は、上記の範囲となる。なお、黒鉛粉
と熱硬化性樹脂結合剤の混合は、これらを同時に混合し
てもよく、少なくとも2種類の粒度分布を有する黒鉛粉
を事前に混合したのち、熱硬化性樹脂結合剤と混合して
もよいが、後者の方法が好ましい。また、黒鉛粉と熱硬
化性樹脂結合剤の他に、硬化促進剤や離型剤、他の導電
性フィラー等を本発明の効果を妨げない範囲で配合する
こともできる。
The mixing ratio of the graphite powder and the thermosetting resin binder is such that the amount of the graphite powder to the thermosetting resin binder is 15 times or less (weight ratio), preferably 5 to 15 times. It is important to provide the required conductivity. If the amount of the thermosetting resin binder is too large or too small, the specific resistance increases, so that the amount is preferably in the range of 8 to 13 times. In general, if the proportion of the thermosetting resin binder is too large, the contact between the graphite powders is hindered, and the conductivity is reduced.If the proportion is too small, a molded article having a predetermined strength cannot be obtained. The preferred range is the above range. In addition, the graphite powder and the thermosetting resin binder may be mixed at the same time, and the graphite powder having at least two kinds of particle size distributions may be mixed in advance, and then mixed with the thermosetting resin binder. However, the latter method is preferred. Further, in addition to the graphite powder and the thermosetting resin binder, a curing accelerator, a release agent, other conductive fillers and the like can be blended as long as the effects of the present invention are not hindered.

【0011】混練工程では、混練機を用いて混練する。
混練機としては、汎用の例えば、ニーダー、ロール等を
用いることができるが、これらに制限されるものではな
い。混練は、熱硬化性樹脂結合剤と黒鉛粉とが可及的に
均一な組成物を形成するように行う。混練中は熱硬化性
樹脂結合剤の粘度を低下させる目的で加熱したり、低沸
点溶媒を添加したりすることもできるが、硬化を完了さ
せないことが必要である。
In the kneading step, kneading is performed using a kneader.
As the kneader, a general-purpose kneader, roll, or the like can be used, but is not limited thereto. The kneading is performed so that the thermosetting resin binder and the graphite powder form a composition as uniform as possible. During kneading, heating or a low boiling point solvent can be added for the purpose of lowering the viscosity of the thermosetting resin binder, but it is necessary that the curing is not completed.

【0012】次に、混練して得られた組成物を粉砕する
こと有利であり、且つ、この工程が特に重要であるとも
いえる。混練して得られた組成物は、冷却すれば非粘着
性の組成物となることが多いので、粉砕は公知の粉砕機
を使用して行うことができる。ここで使用する粉砕機と
しては、例えばせん断粉砕としてパルペライザー、圧縮
粉砕としてディスクミルなどを挙げることができる。粉
砕物の平均粒径は20〜50μmとすることが有利であ
る。この範囲を外れると、嵩密度が十分に高くならない
だけでなく、50μmを超えると成形体の電気比抵抗が
十分に低下せず、また粒径を小さくしすぎると粉砕費用
が増大する。この粉砕工程では平均粒径の異なる黒鉛粉
の内、大きい粒径の黒鉛粉が優先的に粉砕されて、熱硬
化性樹脂結合剤の付着していない面が生じるために、電
気比抵抗を下げる効果が生じるものと推定される。その
ため、原料として使用する平均粒径が50〜300μm
の黒鉛粉を選択的に粉砕して50μm以下にし、平均粒
径が50μmの黒鉛粉はなるべく粉砕しないようにする
ことが有利であり、必要以上に粉砕し過ぎると、熱硬化
性樹脂結合剤が十分に行き渡らなくなるため成形品の強
度が低下してしまう恐れがある。
Next, it is advantageous to pulverize the composition obtained by kneading, and it can be said that this step is particularly important. Since the composition obtained by kneading often becomes a non-tacky composition when cooled, pulverization can be performed using a known pulverizer. Examples of the pulverizer used here include a pulperizer as shear pulverization and a disc mill as compression pulverization. It is advantageous that the average particle size of the pulverized product is 20 to 50 μm. Outside of this range, not only does the bulk density not become sufficiently high, but if it exceeds 50 μm, the electrical resistivity of the compact does not decrease sufficiently, and if the particle size is too small, the cost of pulverization increases. In this pulverization step, among graphite powders having different average particle diameters, graphite powder having a large particle diameter is preferentially pulverized, and a surface to which a thermosetting resin binder is not attached is generated, so that the electrical resistivity is reduced. It is presumed that an effect is produced. Therefore, the average particle size used as a raw material is 50 to 300 μm.
It is advantageous to selectively pulverize the graphite powder to 50 μm or less, and to minimize the pulverization of the graphite powder having an average particle diameter of 50 μm. There is a possibility that the strength of the molded product may be reduced because of insufficient distribution.

【0013】粉砕後、金型による加熱型のプレス成形機
などを使用して成形する。この際、成形と同時に熱硬化
性樹脂結合剤を硬化するために、100〜350℃、好
ましくは150〜200℃程度に保持することにより行
うことがよい。温度は使用する熱硬化性樹脂結合剤の硬
化温度以上、炭化温度未満の条件とする。成形圧力は面
方向の電気比抵抗を下げ、嵩密度を高くするためには高
いほうが好ましいが、圧力を高くし過ぎると設備費用が
増大するため、20〜1000Kg/cm2程度、好ま
しくは100〜500Kg/cm2程度が適当である。
また、本発明の燃料電池用セパレータ部材の形状は、プ
レス成形の際、所定の燃料電池用セパレータの形状と
し、しかも所定の溝等を同時に設ければ、それをそのま
ま又は簡単な加工のみで燃料電池用セパレータとするこ
とができ、有利である。
After the pulverization, molding is performed by using a press molder of a heating type using a mold or the like. At this time, in order to cure the thermosetting resin binder at the same time as the molding, the temperature is preferably maintained at 100 to 350 ° C., preferably about 150 to 200 ° C. The temperature is set at a temperature not lower than the curing temperature of the thermosetting resin binder to be used and lower than the carbonization temperature. The molding pressure is preferably higher in order to lower the electrical resistivity in the surface direction and increase the bulk density. However, if the pressure is too high, the equipment cost increases, so that about 20 to 1000 kg / cm 2 , preferably 100 to 1000 kg / cm 2 About 500 kg / cm 2 is appropriate.
Further, the shape of the fuel cell separator member of the present invention may be the shape of a predetermined fuel cell separator at the time of press molding, and if a predetermined groove or the like is provided at the same time, the fuel may be used as it is or only by simple processing. It can be advantageously used as a battery separator.

【0014】本発明の成形体は、緻密で機械的強度が高
く、導電性に優れた材料を得ることができる。また、燃
料電池用セパレータに使用すれば、緻密でガス透過率が
低く電気比抵抗が低い材料を、金型に溝を加工したプレ
ス成形をするだけで得ることができるため、これまでの
ような黒鉛材料を加工して使用する必要がなく非常に効
率的である。
The molded article of the present invention can obtain a material which is dense, has high mechanical strength, and is excellent in conductivity. In addition, when used for a fuel cell separator, a dense material having a low gas permeability and a low electric resistivity can be obtained only by press-forming a groove in a mold. It is very efficient because there is no need to process and use graphite material.

【0015】本発明の製造方法で得られる燃料電池用セ
パレータは、嵩密度が1.90g/cm3以上、好ましくは
1.95g/cm3以上とすることも可能であり、ガス不透
過性、機械的強度も優れたものとなる。更に、曲げ強度
が30MPa以上、面積抵抗(面圧0.5Mpa)が40
mΩcm2又は気体透過率が1×10-14cm2以上のものを
得ることも可能となる。したがって、緻密で機械的強度
が高く、導電性に優れ、異方性が少なく、気体透過率が
小さいので、これを燃料電池に使用したとき、効率の高
い、寿命の長い燃料電池とすることができる。
[0015] The fuel cell separator obtained by the production method of the present invention can have a bulk density of 1.90 g / cm 3 or more, preferably 1.95 g / cm 3 or more. The mechanical strength is also excellent. Further, the bending strength is 30 MPa or more, and the sheet resistance (surface pressure 0.5 Mpa) is 40
It is also possible to obtain those having mΩcm 2 or a gas permeability of 1 × 10 −14 cm 2 or more. Therefore, since it is dense, has high mechanical strength, has excellent conductivity, has low anisotropy, and has a low gas permeability, when it is used for a fuel cell, it is possible to obtain a fuel cell with high efficiency and long life. it can.

【0016】[0016]

【実施例】以下、本発明の実施例に基づいて本発明を詳
細に説明する。 実施例1〜2 エポキシ樹脂及び硬化剤からなる熱硬化性樹脂結合剤に
対して、平均粒径110μmの等方性黒鉛粉(新日化テ
クノカーボン株式会社製)50重量部と平均粒径10μ
mのキッシュ黒鉛粉(光和精鉱株式会社製)50重量部
を混合した混合黒鉛粉を、表1に示す量(5〜15倍
量)で配合した。ここで、熱硬化性樹脂結合剤は、エポ
キシ樹脂としてテトラメチルビスフェノールF型エポキ
シ樹脂(新日鐵化学株式会社製、商品名YSLV−80
XY)2重量部、硬化剤としてフェノールノボラック
(荒川化学工業株式会社製タマノル758)1重量部を
配合し、それに加えて硬化促進剤としてトリフェニルホ
スフィン(北興化学工業株式会社製)0.03重量部を
配合したものである。これを、100℃に加熱したロー
ルで混練した。得られた混練物を粉砕機で粉砕した。得
られた粉砕物を金型に入れ、温度175℃、圧力350
kg/cm2の条件で20分間成形し、脱型した。この
成形体の嵩密度、面積抵抗、曲げ強度及び気体透過率を
測定した。実施例1の成形体の物性測定結果を表1に示
す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on embodiments of the present invention. Examples 1-2 With respect to a thermosetting resin binder composed of an epoxy resin and a curing agent, 50 parts by weight of isotropic graphite powder (manufactured by Shin Nikka Techno Carbon Co., Ltd.) having an average particle size of 110 µm and an average particle size of 10 µm
m of Kish graphite powder (manufactured by Kowa Seimitsu Co., Ltd.) was mixed in an amount shown in Table 1 (5 to 15 times the amount). Here, the thermosetting resin binder is a tetramethylbisphenol F type epoxy resin (trade name YSLV-80, manufactured by Nippon Steel Chemical Co., Ltd.) as the epoxy resin.
XY) 2 parts by weight, and 1 part by weight of phenol novolak (Tamanol 758 manufactured by Arakawa Chemical Industry Co., Ltd.) as a curing agent, and triphenylphosphine (Hokuko Chemical Industry Co., Ltd.) 0.03 wt. Parts. This was kneaded with a roll heated to 100 ° C. The obtained kneaded material was pulverized with a pulverizer. The obtained pulverized product was put into a mold, and the temperature was 175 ° C., the pressure was 350
Molding was performed for 20 minutes under the condition of kg / cm 2 , and the mold was released. The bulk density, sheet resistance, bending strength and gas permeability of this molded article were measured. Table 1 shows the measurement results of physical properties of the molded article of Example 1.

【0017】測定方法は、次のとおり。 < 嵩密度 >:アルキメデス法による。 < 曲げ強度 >:JIS K6911による。 < 面積抵抗(mΩcm2) >図1は面積抵抗の測定
方法を説明するための概念図であり、厚さ3mmの試料
(セパレータ部材)1の上下にカーボンペーパー2を配
置し、更にその上下に銅板3を配置し、上下方向に面圧
0.5MPaの圧力をかける。2枚のカーボンペーパー2
間の電圧を電圧計4で読むと同時に、2枚の銅板3間の
電流を電流計5で読んで抵抗(平均値)を計算する。な
お、使用したカーボンペーパーは、東レ社製のTGP−
H−Mシリーズ(090M:厚さ0.28mm、120
M:厚さ0.38mm)である。
The measuring method is as follows. <Bulk density>: by Archimedes' method. <Bending strength>: According to JIS K6911. <Area resistance (mΩcm 2 )> FIG. 1 is a conceptual diagram for explaining a method of measuring the area resistance. A carbon paper 2 is arranged above and below a sample (separator member) 1 having a thickness of 3 mm, and furthermore, above and below it. The copper plate 3 is placed, and a pressure of 0.5 MPa is applied vertically. 2 carbon papers 2
At the same time, the voltage between the two copper plates 3 is read by the ammeter 5 and the resistance (average value) is calculated. The carbon paper used was TGP- manufactured by Toray Industries, Inc.
HM series (090M: thickness 0.28mm, 120
M: 0.38 mm in thickness).

【0018】< 気体透過率 >気体透過率は、Darcy
の法則に基づいて計算した。実際の測定は、32mmφ
で厚み2mmの各セパレータサンプルを用い、密閉容器
内に配置し、窒素ガスを用い、圧力10kg/cm2をかけた
ときに、セパレーターを通過する窒素ガスの流量を測定
して次の計算式から求めた。 気体透過率K(cm2)=Q・μ・l/(△P・gc・A) (但し、Qは流量(cm3/sec)、Aはセパレーター面積(c
m2)、lは厚み (cm)、μは気体の粘度(g/ cm・sec)、△
Pは圧力差(g/cm2)及びgcは重力換算係数である)
<Gas permeability> The gas permeability is Darcy.
It was calculated based on the law of Actual measurement is 32mmφ
Using each separator sample having a thickness of 2 mm, placed in a closed container, using nitrogen gas, and applying a pressure of 10 kg / cm 2 , measure the flow rate of nitrogen gas passing through the separator, and use the following formula I asked. Gas permeability K (cm 2 ) = Q ・ μ ・ l / (△ P ・ g c・ A) (However, Q is flow rate (cm 3 / sec), A is separator area (c
m 2 ), l is thickness (cm), μ is gas viscosity (g / cm · sec), △
P is the pressure difference (g / cm 2 ) and g c is the gravity conversion coefficient)

【0019】[0019]

【表1】 [Table 1]

【0020】実施例3〜4 エポキシ樹脂、硬化剤からなる熱硬化性樹脂結合剤に対
して、平均粒径110μmの等方性黒鉛粉(新日化テク
ノカーボン株式会社製)75重量部と平均粒径10μm
のキッシュ黒鉛粉(光和精鉱株式会社製)25重量部を
混合した混合黒鉛粉を、表2に示す量(5〜15倍量)
で配合した。エポキシ樹脂としてビスフェノールF型エ
ポキシ樹脂(東都化成株式会社製、商品名エポトートY
DF−8170C)を使用した他は、実施例1と同じ硬
化剤及び硬化促進剤を使用し、実施例1と同様にして、
混練し、粉砕し、成形し、脱型した。この成形体の物性
測定結果を表2に示す。
Examples 3 and 4 75 parts by weight of isotropic graphite powder (manufactured by Nippon Techno Techno Carbon Co., Ltd.) having an average particle size of 110 μm with respect to a thermosetting resin binder composed of an epoxy resin and a curing agent. Particle size 10μm
Mixed powder obtained by mixing 25 parts by weight of Kish graphite powder (produced by Kowa Seiko Co., Ltd.) in an amount shown in Table 2 (5 to 15 times)
Was blended. As epoxy resin, bisphenol F type epoxy resin (Epototo Y, manufactured by Toto Kasei Co., Ltd.)
DF-8170C), except that the same curing agent and curing accelerator as in Example 1 were used.
It was kneaded, crushed, molded and demolded. Table 2 shows the measurement results of the physical properties of the molded product.

【0021】[0021]

【表2】 [Table 2]

【0022】比較例1 実施例1において、熱硬化性樹脂結合剤に対する、平均
粒径110μmの等方性黒鉛粉50重量部と平均粒径1
0μmのキッシュ黒鉛粉50重量部を混合した混合黒鉛
粉の配合比を変えた他は、実施例1と同様にして成形
し、測定を行った。結果を表1に示す。
Comparative Example 1 In Example 1, 50 parts by weight of isotropic graphite powder having an average particle size of 110 μm and an average particle size of 1
Molding and measurement were performed in the same manner as in Example 1 except that the mixing ratio of the mixed graphite powder obtained by mixing 50 parts by weight of 0 μm quiche graphite powder was changed. Table 1 shows the results.

【0023】比較例2 実施例3において、熱硬化性樹脂結合剤に対する、平均
粒径110μmの等方性黒鉛粉75重量部と平均粒径1
0μmのキッシュ黒鉛粉25重量部を混合した混合黒鉛
粉の配合比を変えた他は、実施例2と同様にして成形
し、測定を行った。結果を表2に示す。
COMPARATIVE EXAMPLE 2 In Example 3, 75 parts by weight of isotropic graphite powder having an average particle size of 110 μm and an average particle size of 1 with respect to the thermosetting resin binder were used.
Molding and measurement were carried out in the same manner as in Example 2 except that the mixing ratio of the mixed graphite powder obtained by mixing 25 parts by weight of 0 μm quiche graphite powder was changed. Table 2 shows the results.

【0024】実施例5 実施例1と同様な実験において、等方性黒鉛粉とキッシ
ュ黒鉛粉の配合比のみを変えた実験を行い、黒鉛粉の配
合比とタップBD(嵩密度)の関係を調べた。結果を図2
に示す。なお、タップBDは、250mlのメスシリンダーに
サンプル150gを入れ、30mmの高さで900回タッピングし
たときの体積から計算したものである。
Example 5 In the same experiment as in Example 1, an experiment was conducted in which only the mixing ratio of the isotropic graphite powder and the Kish graphite powder was changed, and the relationship between the mixing ratio of the graphite powder and the tap BD (bulk density) was determined. Examined. Figure 2 shows the results.
Shown in The tap BD is calculated from the volume when a sample of 150 g is put into a 250 ml measuring cylinder and the tapping is performed 900 times at a height of 30 mm.

【0025】実施例6〜8、比較例3〜4 等方性黒鉛粉とキッシュ黒鉛粉の配合比のみを変え、そ
の他は全て実施例1と同様の実験を行った。熱硬化性樹
脂結合剤に対する、平均粒径110μmの等方性黒鉛粉
50重量部と平均粒径10μmのキッシュ黒鉛粉50重
量部を混合した混合黒鉛粉の配合比は全て9倍量で行っ
た。結果を表3に示す。
Examples 6 to 8 and Comparative Examples 3 and 4 The same experiment as in Example 1 was carried out except that only the mixing ratio between the isotropic graphite powder and the quiche graphite powder was changed. The mixing ratio of the mixed graphite powder obtained by mixing 50 parts by weight of isotropic graphite powder having an average particle diameter of 110 μm and 50 parts by weight of Kish graphite powder having an average particle diameter of 10 μm was 9 times the amount of the thermosetting resin binder. . Table 3 shows the results.

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【発明の効果】本発明によれば、面積抵抗の低い燃料電
池用セパレーターが焼成等の高温熱処理なしに得られる
ので、低コスト化を行なえる効果がある。また、導電
性、ガス不透過性、強度等が優れるので、燃料電池用の
セパレータとしての価値が高い。
According to the present invention, a fuel cell separator having a low sheet resistance can be obtained without high-temperature heat treatment such as sintering, so that the cost can be reduced. Further, since it has excellent conductivity, gas impermeability, strength, and the like, it has high value as a separator for a fuel cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 面積抵抗の測定方法を説明するための概念図FIG. 1 is a conceptual diagram for explaining a method of measuring a sheet resistance.

【図2】 黒鉛配合比とタップBDの関係を示すグラフFIG. 2 is a graph showing a relationship between a graphite mixing ratio and a tap BD.

【符号の説明】[Explanation of symbols]

1 試料(セパレータ部材) 2 カーボンペーパー 3 銅板 1 sample (separator member) 2 carbon paper 3 copper plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川野 陽一 福岡県北九州市戸畑区大字中原先の浜46− 80 新日鐵化学株式会社総合研究所内 Fターム(参考) 5H026 AA04 AA06 BB01 BB02 BB06 BB08 CC03 CX04 EE06 EE18 HH01 HH05  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yoichi Kawano 46-80, Nakahara-san, Ohata, Tobata-ku, Kitakyushu-shi, Fukuoka F-term in Nippon Steel Chemical Research Laboratories (reference) CX04 EE06 EE18 HH01 HH05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 等方性黒鉛粉と異方性黒鉛粉の重量割合
が40:60〜90:10の範囲で混合された混合黒鉛
粉を、熱硬化性樹脂結合剤に対し、5〜15倍量で配
合、混練した後、成形、硬化することを特徴とする燃料
電池用セパレータ。
1. A mixed graphite powder mixed in a weight ratio of isotropic graphite powder and anisotropic graphite powder in a range of 40:60 to 90:10 is added to a thermosetting resin binder in an amount of 5 to 15%. A fuel cell separator characterized by being compounded and kneaded in twice the amount, then molded and cured.
【請求項2】 平均粒径50〜300μmの等方性黒鉛
粉と平均粒径50μm未満の異方性黒鉛粉の重量割合が
40:60〜90:10の範囲で配合された混合黒鉛粉
を、熱硬化性樹脂に対して、5〜15倍量で配合した
後、混練し、均一な組成物としたのち、平均粒径が20
〜50μmとなるように粉砕し、得られた粉砕物を成
形、硬化することを特徴とする燃料電池用セパレータの
製造方法。
2. A mixed graphite powder blended with an isotropic graphite powder having an average particle size of 50 to 300 μm and an anisotropic graphite powder having an average particle size of less than 50 μm in a weight ratio of 40:60 to 90:10. After blending the thermosetting resin in an amount of 5 to 15 times, kneading to obtain a uniform composition, the average particle diameter is 20.
A method for producing a separator for a fuel cell, comprising pulverizing to a size of about 50 μm, and molding and curing the obtained pulverized product.
【請求項3】 平均粒径70〜150μmの等方性黒鉛
粉と平均粒径5〜20μmの異方性黒鉛粉の重量割合が
70:30〜80:20の範囲とされた混合黒鉛粉を、
熱硬化性樹脂結合剤に対して、5〜15倍量を混練し、
均一な組成物としたのち、平均粒径が20〜50μmと
なるように粉砕し、得られた粉砕物を成形、硬化するこ
とを特徴とする燃料電池用セパレータの製造方法。
3. A mixed graphite powder in which the weight ratio of isotropic graphite powder having an average particle size of 70 to 150 μm to anisotropic graphite powder having an average particle size of 5 to 20 μm is in the range of 70:30 to 80:20. ,
Kneading 5 to 15 times the amount to the thermosetting resin binder,
A method for producing a fuel cell separator, comprising: forming a uniform composition, pulverizing the composition to have an average particle diameter of 20 to 50 μm, and molding and curing the obtained pulverized product.
JP2000272062A 2000-09-04 2000-09-07 Separator for fuel cell and its manufacturing method Withdrawn JP2002083608A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000272062A JP2002083608A (en) 2000-09-07 2000-09-07 Separator for fuel cell and its manufacturing method
GB0304372A GB2382457B (en) 2000-09-04 2001-09-03 Separator for fuel cell, process for producing the same, and material therefor
CA002421205A CA2421205A1 (en) 2000-09-04 2001-09-03 Separator for fuel cell, process for producing the same, and material therefor
US10/343,976 US7063914B2 (en) 2000-09-04 2001-09-03 Fuel cell separator, process for producing the same and material therefor
PCT/JP2001/007597 WO2002021620A1 (en) 2000-09-04 2001-09-03 Separator for fuel cell, process for producing the same, and material therefor
AU2001282605A AU2001282605A1 (en) 2000-09-04 2001-09-03 Separator for fuel cell, process for producing the same, and material therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000272062A JP2002083608A (en) 2000-09-07 2000-09-07 Separator for fuel cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002083608A true JP2002083608A (en) 2002-03-22

Family

ID=18758258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000272062A Withdrawn JP2002083608A (en) 2000-09-04 2000-09-07 Separator for fuel cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002083608A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065567A1 (en) * 2001-02-15 2002-08-22 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte type fuel cell
JP2004192878A (en) * 2002-12-10 2004-07-08 Tokai Carbon Co Ltd Manufacturing method of separator material for solid polymer type fuel cell
JP2005122974A (en) * 2003-10-15 2005-05-12 Dainippon Ink & Chem Inc Fuel cell separator and fuel cell
WO2005064721A1 (en) * 2003-12-26 2005-07-14 Nippon Steel Chemical Co., Ltd. Composition for fuel cell separator and process for producing fuel cell separator
JP2005196973A (en) * 2003-12-26 2005-07-21 Nippon Steel Chem Co Ltd Composition for fuel cell separator and manufacturing method of fuel cell separator
WO2007072745A1 (en) * 2005-12-21 2007-06-28 Tokai Carbon Co., Ltd. Separator material for solid polymer electrolyte fuel cell and process for producing the same
JP2009110944A (en) * 2007-10-11 2009-05-21 Nichias Corp Resin composition for fuel cell separator and fuel cell separator
JP2010511279A (en) * 2006-12-01 2010-04-08 テク ソ、ジュン Nickel-plated fuel cell separator and method for manufacturing the same (FUELCELLSEPARAPARORPLATTEDWITHNICKELANDITMANUFACTURINGMETHOD)
KR101131726B1 (en) * 2006-12-22 2012-03-28 재단법인 포항산업과학연구원 Fabrication method of a carbonaceous bipolar plate for PEMFC

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065567A1 (en) * 2001-02-15 2002-08-22 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte type fuel cell
US7452624B2 (en) 2001-02-15 2008-11-18 Panasonic Corporation Polymer electrolyte type fuel cell
JP2004192878A (en) * 2002-12-10 2004-07-08 Tokai Carbon Co Ltd Manufacturing method of separator material for solid polymer type fuel cell
JP2005122974A (en) * 2003-10-15 2005-05-12 Dainippon Ink & Chem Inc Fuel cell separator and fuel cell
WO2005064721A1 (en) * 2003-12-26 2005-07-14 Nippon Steel Chemical Co., Ltd. Composition for fuel cell separator and process for producing fuel cell separator
JP2005196973A (en) * 2003-12-26 2005-07-21 Nippon Steel Chem Co Ltd Composition for fuel cell separator and manufacturing method of fuel cell separator
JP4633356B2 (en) * 2003-12-26 2011-02-16 新日鐵化学株式会社 Composition for fuel cell separator and method for producing fuel cell separator
WO2007072745A1 (en) * 2005-12-21 2007-06-28 Tokai Carbon Co., Ltd. Separator material for solid polymer electrolyte fuel cell and process for producing the same
JP2010511279A (en) * 2006-12-01 2010-04-08 テク ソ、ジュン Nickel-plated fuel cell separator and method for manufacturing the same (FUELCELLSEPARAPARORPLATTEDWITHNICKELANDITMANUFACTURINGMETHOD)
KR101131726B1 (en) * 2006-12-22 2012-03-28 재단법인 포항산업과학연구원 Fabrication method of a carbonaceous bipolar plate for PEMFC
JP2009110944A (en) * 2007-10-11 2009-05-21 Nichias Corp Resin composition for fuel cell separator and fuel cell separator

Similar Documents

Publication Publication Date Title
JP3463806B2 (en) Fuel cell separator and method of manufacturing the same
JP2001126744A (en) Separator for fuel cell and fabricating method therefor
WO2002021620A1 (en) Separator for fuel cell, process for producing the same, and material therefor
JP2001122677A (en) Method for manufacturing separator for fuel battery
JP3573444B2 (en) Carbonaceous separator member for polymer electrolyte fuel cell and method of manufacturing the same
CA1246140A (en) Coke filled separator plate for electrochemical cells
JP4890724B2 (en) Composite conductive material formed by thermal compression and fuel cell electrode using such material
JP2002083608A (en) Separator for fuel cell and its manufacturing method
JP3616255B2 (en) Separator member for polymer electrolyte fuel cell and method for producing the same
JP4537809B2 (en) Carbon / phenolic resin composite material, carbon / phenolic resin composite cured material, carbon / phenolic resin composite carbonized material, fuel cell separator, conductive resin composition, battery electrode, electric double layer capacitor
JPWO2003056648A1 (en) Fuel cell separator
JP2002083609A (en) Composition for fuel cell separator, and its manufacturing method
JP2000173630A (en) Manufacture of separator member for solid polymer fuel cell
KR20120114511A (en) Reinforced thin fuel cell seperator containing pulverized carbon fiber and method of manufacturing the same
JP2002075394A (en) Separator member for fuel cell
JP4854979B2 (en) Composition for fuel cell separator, method for producing fuel cell separator, and fuel cell separator
JP2005129507A (en) Graphitic powder for fuel cell separator, and fuel cell separator
JP2001139696A (en) Method for producing conductive resin molding and separator for fuel cell
JP2005339953A (en) Prepreg for fuel cell, separator for fuel cell consisting of this prepreg and manufacturing method for it
JP2004281261A (en) Separator for fuel cells and its manufacturing method
JP2004119346A (en) Molding material for solid polymer type fuel cell separator, its manufacturing method and solid polymer type fuel cell separator
JP2002134127A (en) Method of manufacturing separator member for fuel cell
KR101169388B1 (en) High strength carbon composites using graphene, manufacturing method thereof and separator for fuel cell using the same
JP2005122974A (en) Fuel cell separator and fuel cell
KR101131726B1 (en) Fabrication method of a carbonaceous bipolar plate for PEMFC

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204