JP2001094265A - Copper foil with insulation resin for multilayer printed boards - Google Patents

Copper foil with insulation resin for multilayer printed boards

Info

Publication number
JP2001094265A
JP2001094265A JP27001599A JP27001599A JP2001094265A JP 2001094265 A JP2001094265 A JP 2001094265A JP 27001599 A JP27001599 A JP 27001599A JP 27001599 A JP27001599 A JP 27001599A JP 2001094265 A JP2001094265 A JP 2001094265A
Authority
JP
Japan
Prior art keywords
resin
copper foil
insulating resin
layer
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27001599A
Other languages
Japanese (ja)
Inventor
Masataka Arai
政貴 新井
Toshirou Komiyatani
壽郎 小宮谷
Masao Kamisaka
政夫 上坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP27001599A priority Critical patent/JP2001094265A/en
Publication of JP2001094265A publication Critical patent/JP2001094265A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a multilayer printed board having insulation layers which are formed with no voids left and with little thickness variation of layer insulation resins and contains no glass cloth. SOLUTION: The copper foil having an insulation resin composed of an insulation resin composition coated on the foil has two or more layers of the insulation resin, the resin layer nearest to the copper foil uses a substantially nonflow type and the outermost resin layer uses one having a softening point of 60-90 deg.C and the insulation resin composition contains a thermoplastic resin having a sulfo group of 103-105 in weight average molecular weight, a nonhalogenated polyfunctional epoxy resin having an epoxy equivalent of 500 or less, an epoxy resin curing agent and an inorganic filler.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は絶縁樹脂付き銅箔に
関し、特に、良好な成形性を有する、即ち成形時にボイ
ド残りがなく、回路層間の絶縁層の厚みを一定に確保で
き、またハロゲン化合物、リン化合物を使用せずに高度
な難燃性を示し、高耐熱性であるエポキシ樹脂系絶縁樹
脂付き銅箔に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper foil with an insulating resin, and more particularly to a copper foil with good moldability, that is, no void remains during molding, the thickness of the insulating layer between circuit layers can be kept constant, and a halogen compound is used. The present invention relates to a copper foil with an epoxy resin-based insulating resin, which exhibits high flame retardancy without using a phosphorus compound and has high heat resistance.

【0002】[0002]

【従来の技術】従来、多層プリント配線板を製造する場
合、回路が形成された内層回路基板上にガラスクロス基
材にエポキシ樹脂を含浸して半硬化させたプリプレグシ
ートを1枚以上重ね、更にその上に銅箔を重ね熱板プレ
スにて加圧一体成形するという工程を経ている。多層積
層プレス時のガラスクロス入りプリプレグと銅箔セット
の工程、及びガラスクロスプリプレグのコスト等により
高コストとなっている。また、プレス時に樹脂をフロー
させて内層回路を埋め込み、樹脂フローによってボイド
を追い出す成形方法が取られるため層間絶縁樹脂厚を一
定に保つのが難しい。加えてガラスクロスに樹脂を含浸
させる方法のため、回路層間にガラスクロスがあること
により樹脂のガラスクロスに対する含浸度合いにより耐
吸湿性、耐マイグレーション性に影響がでる場合があ
る。
2. Description of the Related Art Conventionally, when a multilayer printed wiring board is manufactured, one or more prepreg sheets obtained by impregnating a glass cloth base material with an epoxy resin and semi-curing are laminated on an inner circuit board on which a circuit is formed. A process of laminating a copper foil thereon and integrally press-molding with a hot plate press is performed. The cost is high due to the process of setting the prepreg containing the glass cloth and the copper foil at the time of the multilayer laminating press and the cost of the glass cloth prepreg. Further, it is difficult to keep the thickness of the interlayer insulating resin constant because a molding method is employed in which the inner layer circuit is buried by flowing the resin at the time of pressing and the void is driven out by the resin flow. In addition, since the glass cloth is impregnated with a resin, the presence of the glass cloth between circuit layers may affect the moisture absorption resistance and migration resistance depending on the degree of impregnation of the resin with the glass cloth.

【0003】最近、ビルドアップ方式による多層プリン
ト配線板が,高密度部品実装を目的とし,IVH形成と
高密度配線を低コストで実現するために急ピッチで開発
されてきている。特にBGA、CSPなどの高密度パッ
ケージの採用が進み、ビルドアップ多層配線板の開発に
拍車がかかっている。一般的なビルドアップ多層配線板
は、内層回路板にエポキシ樹脂等の樹脂のみで構成され
る100μm厚以下の層間絶縁層と銅箔(回路用導体)
とを積み重ねながら成形する。
Recently, a multilayer printed wiring board using a build-up system has been developed at a rapid pace for the purpose of mounting high density components and realizing IVH formation and high density wiring at low cost. In particular, the adoption of high-density packages such as BGA and CSP has progressed, and the development of build-up multilayer wiring boards has been spurred. A typical build-up multilayer wiring board has an interlayer insulating layer having a thickness of 100 μm or less and a copper foil (conductor for a circuit) composed of only an epoxy resin or the like as an inner circuit board.
And forming while stacking.

【0004】一方、エポキシ樹脂等に代表される熱硬化
性樹脂は、その優れた特性からプリント配線板をはじめ
とする電気・電子機器部品に広く使用されており、火災
に対する安全性を確保するために難燃性が付与されてい
る場合が多い。これらの樹脂の難燃化は従来臭素化エポ
キシ樹脂等のハロゲン含有化合物を用いることが一般的
であった。これらのハロゲン含有化合物は高度な難燃性
を有するが、芳香族臭素化合物は熱分解すると腐食性の
臭素、臭化水素を分離するだけでなく、酸素存在下で分
解した場合に毒性の高いポリブロムジベンゾフラン、及
びポリジブロモベンゾオキシンを形成する可能性があ
る。また、臭素を含有する老朽廃材の処分は困難であ
る。このような理由から臭素含有難燃剤に代わる難燃剤
としてリン化合物や窒素化合物か検討されている。前述
のように、リン化合物及び窒素化合物によって難燃化を
実現することができる。しかしながら、リン化合物を使
用すると、ブリード発生や、吸水率が高くなり、樹脂特
性悪化の原因にもなり得る可能性がある。
On the other hand, thermosetting resins typified by epoxy resins and the like are widely used for electric and electronic equipment parts such as printed wiring boards because of their excellent characteristics. Often have flame retardancy. Conventionally, these resins have generally used a halogen-containing compound such as a brominated epoxy resin. Although these halogen-containing compounds have high flame retardancy, aromatic bromine compounds not only separate corrosive bromine and hydrogen bromide when thermally decomposed, but also have high toxicity when decomposed in the presence of oxygen. May form bromodibenzofuran and polydibromobenzooxin. In addition, disposal of aging waste materials containing bromine is difficult. For these reasons, phosphorus compounds and nitrogen compounds are being studied as flame retardants instead of bromine-containing flame retardants. As described above, flame retardancy can be realized by the phosphorus compound and the nitrogen compound. However, when a phosphorus compound is used, the occurrence of bleeding and the increase in water absorption may increase the resin properties.

【0005】近年、既存のプレス設備を用いガラスクロ
スを用いない多層プリント配線板を製造する技術が注目
されている。しかしプレスによる方法においては、既存
の技術ではガラスクロス等の基材がない絶縁層の厚みの
バラツキを大きいという問題がある。また、これらの絶
縁樹脂層を難燃化するために、ハロゲン化合物またはリ
ン化合物が使用されているのが現状であり、これらが存
在しないと難燃性を十分に発現することができない。
In recent years, a technique for manufacturing a multilayer printed wiring board without using a glass cloth by using existing press equipment has attracted attention. However, in the method using a press, there is a problem that the thickness of the insulating layer having no base material such as glass cloth varies greatly with the existing technology. Further, in order to make these insulating resin layers flame-retardant, halogen compounds or phosphorus compounds are currently used, and if they are not present, the flame retardancy cannot be sufficiently exhibited.

【0006】[0006]

【発明が解決しようとする課題】ビルドアップ方式によ
る多層プリント配線板において、フィルム状の層間絶縁
樹脂層を用いた場合、ガラスクロス基材がないためプレ
ス成形した後の絶縁樹脂の厚みのバラツキが大きく、ま
た、適正な成形条件の幅が小さく、成形が非常に難し
い。
In a multilayer printed wiring board of a build-up type, when a film-like interlayer insulating resin layer is used, the thickness of the insulating resin after press molding is reduced because there is no glass cloth substrate. It is large and the range of appropriate molding conditions is small, making molding very difficult.

【0007】このようなプロセスにおいて、銅箔粗化面
へのコーティング樹脂を1層で形成する場合、軟化点が
高い樹脂をコーティングすると成形時のフローが少なく
内層回路の凹凸を埋め込むだけのフロー量を確保できな
くなる。また樹脂の軟化点を下げて成形時のフローを多
くすると内層回路の凹凸を埋め込むことはできるがフロ
ー量が多すぎ絶縁層間厚を一定に確保するのが難しくな
る。また、近年の環境問題への関心の高まりから、ハロ
ゲン系難燃材排除の傾向が強いが、これらに使用されて
いる樹脂は未だハロゲン系難燃材を使用しているケース
が多い。
In such a process, when forming a single layer of the coating resin on the roughened surface of the copper foil, if a resin having a high softening point is coated, the flow at the time of molding is small, and the amount of flow is sufficient to bury the unevenness of the inner layer circuit. Can not be secured. Also, if the flow during molding is increased by lowering the softening point of the resin, the irregularities of the inner layer circuit can be buried, but the flow amount is too large and it is difficult to ensure a constant insulating interlayer thickness. Further, in recent years, there has been a strong tendency to eliminate halogen-based flame-retardant materials due to increasing interest in environmental issues. However, in many cases, the resins used for these materials still use halogen-based flame-retardant materials.

【0008】本発明は、かかる問題を改善するために種
々検討し、完成されたものであり、ガラスクロスのない
絶縁層を有するプリント配線板を、絶縁樹脂層にボイド
残りがなく、絶縁樹脂の厚みのバラツキを少なく作製す
ることを目的とし、かつその層間絶縁樹脂中にはハロゲ
ン化合物あるいはリン化合物を使用せず高度な難燃性を
達成し、耐熱特性に優れた絶縁樹脂付き銅箔を提供する
ことを目的とする。
The present invention has been completed by various studies to improve such a problem, and has been completed. A printed wiring board having an insulating layer without glass cloth can be manufactured by using an insulating resin layer having no voids. Providing copper foil with insulating resin that achieves high flame retardancy without the use of halogen compounds or phosphorus compounds in the interlayer insulating resin with the aim of making thickness variations small, and with no interlayer insulating resin The purpose is to do.

【0009】[0009]

【課題を解決するための手段】本発明は、下記の各成分
を必須成分として含有する絶縁樹脂組成物を銅箔に塗布
してなる絶縁樹脂付き銅箔であって、前記絶縁樹脂の層
が2層以上であり、最も銅箔側の樹脂層を多層成形温度
にて実質的にノンフローとし最外層の樹脂層を軟化点6
0〜90℃としたことを特徴とする多層プリント配線板
用絶縁樹脂付き銅箔に関するものである。 (1)重量平均分子量が103 〜105 のサルフォン基
を有する熱可塑性樹脂、(2)ハロゲン化されていない
エポキシ当量500以下の多官能エポキシ樹脂、(3)
エポキシ樹脂硬化剤、及び(4)無機充填材。
The present invention provides a copper foil with an insulating resin obtained by applying an insulating resin composition containing the following components as essential components to a copper foil, wherein the insulating resin layer is Two or more layers, the resin layer closest to the copper foil being substantially non-flow at the multilayer molding temperature, and the outermost resin layer having a softening point of 6
The present invention relates to a copper foil with an insulating resin for a multilayer printed wiring board, wherein the temperature is 0 to 90 ° C. (1) a thermoplastic resin having a sulfone group having a weight average molecular weight of 10 3 to 10 5 ; (2) a non-halogenated polyfunctional epoxy resin having an epoxy equivalent of 500 or less; (3)
Epoxy resin curing agent, and (4) inorganic filler.

【0010】本発明において、重量平均分子量が103
〜105 のサルフォン基を有する熱可塑性樹脂(1)
は、成形時の樹脂流れを小さくし、絶縁層の厚みを維持
すること、組成物に可とう性を付与すること、及び絶縁
樹脂の高耐熱化と共に、得られた多層プリント配線板の
難燃化を達成するものである。重量平均分子量が103
未満では成形時に流動性が良すぎて絶縁層の厚みを維持
することが困難となる。重量平均分子量が105 を越え
るとエポキシ樹脂との相溶性が低下すること及び流動性
が必要以上に悪くなることにより好ましくない。(1)
成分としては、ポリサルフォン、ポリエーテルサルフォ
ン、ビスフェノールS型フェノキシ樹脂等であるが、難
燃性、耐熱性等を考えるとポリエーテルサルフォンが好
ましい。
In the present invention, the weight average molecular weight is 10 3
10 5 thermoplastic resin having a sulfone group (1)
In addition to reducing the resin flow during molding, maintaining the thickness of the insulating layer, imparting flexibility to the composition, and increasing the heat resistance of the insulating resin, the flame resistance of the resulting multilayer printed wiring board Is to achieve Weight average molecular weight is 10 3
If it is less than 3, the fluidity is too good at the time of molding, and it is difficult to maintain the thickness of the insulating layer. If the weight average molecular weight exceeds 10 5 , the compatibility with the epoxy resin is lowered and the fluidity is unnecessarily deteriorated, which is not preferable. (1)
The component is polysulfone, polyethersulfone, bisphenol S-type phenoxy resin or the like, but polyethersulfone is preferred in view of flame retardancy, heat resistance and the like.

【0011】成分(1)の配合割合は(1)、(2)及
び(3)成分の合計量の20〜60重量%が好ましい。
20重量%より少ないと、粘度が高くならずノンフロー
樹脂として厚みを保つことが不十分となり、従ってプレ
スした後の絶縁層間厚の確保ができなくなる。また難燃
性も十分に発現出来ない。一方、60重量%より多い
と、プレス時の樹脂のフローが悪くなり成形が困難とな
る。また、サルフォン基を有する熱可塑性樹脂は、末端
が水酸基、カルボキシル基、あるいはアミノ基で変性さ
れていれば、エポキシ樹脂との相溶性や反応性も良いこ
とから、エポキシ樹脂との相分離を押さえると共に、硬
化物の耐熱性も向上する為、上記変性が行われている事
が望ましい。
The mixing ratio of the component (1) is preferably 20 to 60% by weight of the total amount of the components (1), (2) and (3).
If the content is less than 20% by weight, the viscosity does not increase and the thickness of the non-flow resin cannot be maintained sufficiently, and therefore, it is impossible to secure the thickness of the insulating layer after pressing. Further, flame retardancy cannot be sufficiently exhibited. On the other hand, if it is more than 60% by weight, the flow of the resin at the time of pressing becomes poor, and molding becomes difficult. In addition, the thermoplastic resin having a sulfone group, if the terminal is modified with a hydroxyl group, a carboxyl group, or an amino group, has good compatibility and reactivity with the epoxy resin, and thus suppresses phase separation with the epoxy resin. In addition, in order to improve the heat resistance of the cured product, it is desirable that the above-mentioned modification is performed.

【0012】上記(1)成分のサルフォン基を有する熱
可塑性樹脂単独では、密着性に欠けること、及び銅箔に
コートするために溶剤に溶解して所定温度のワニスとし
たときに、粘度が高く、コート時の作業性が良くない。
このような欠点を改善するために(2)ハロゲン化され
ていないエポキシ当量500以下の多官能エポキシ樹脂
を配合する。エポキシ当量が500を越えると上記の欠
点を改善する効果が小さい。(2)成分の配合割合は
(1)、(2)及び(3)成分の合計量の10〜70重
量%が好ましい。10重量%未満では上記の効果が十分
に期待できず、また、70重量%を越えると前記高分子
量のサルフォン基を有する熱可塑性樹脂の効果が小さく
なる。
The thermoplastic resin having a sulfone group alone as the component (1) alone lacks adhesion, and has a high viscosity when dissolved in a solvent to form a varnish at a predetermined temperature for coating a copper foil. The workability during coating is not good.
In order to improve such disadvantages, (2) a non-halogenated polyfunctional epoxy resin having an epoxy equivalent of 500 or less is blended. If the epoxy equivalent exceeds 500, the effect of improving the above-mentioned disadvantages is small. The mixing ratio of the component (2) is preferably 10 to 70% by weight based on the total amount of the components (1), (2) and (3). If the amount is less than 10% by weight, the above effects cannot be sufficiently expected. If the amount exceeds 70% by weight, the effect of the thermoplastic resin having a high molecular weight sulfone group becomes small.

【0013】(2)成分のエポキシ樹脂としては、ビス
フェノール型エポキシ樹脂、ノボラック型エポキシ樹
脂、クレゾールノボラック型エポキシ樹脂、アミノフェ
ノール型エポキシ樹脂等であり、多層プリント配線板の
難燃化がより効果的に行われるのは、硫黄、窒素などの
ヘテロ原子を含むエポキシ樹脂、燃えにくい骨格のエポ
キシ樹脂、つまり酸素指数が高いエポキシ樹脂が望まし
い。
The epoxy resin of the component (2) is a bisphenol type epoxy resin, a novolak type epoxy resin, a cresol novolak type epoxy resin, an aminophenol type epoxy resin, etc., and the flame retardancy of the multilayer printed wiring board is more effective. It is preferable to use an epoxy resin containing a hetero atom such as sulfur or nitrogen, an epoxy resin having a nonflammable skeleton, that is, an epoxy resin having a high oxygen index.

【0014】次に、(3)エポキシ樹脂硬化剤はアミン
化合物、イミダゾール化合物、酸無水物、フェノール系
硬化剤などでが使用されるが、サルフォン基を含有する
化合物が望ましい。サルフォン基を含有するエポキシ硬
化剤でエポキシ樹脂を硬化させることで、103 〜10
5 のサルフォン基を有する熱可塑性樹脂とエポキシ樹脂
との相溶性を高めることが出来る。硬化剤の配合量は、
当量比で、(2)成分に対して0.9〜1.1が好まし
い。この範囲を外れると、耐熱性や電気特性が低下する
ようになる。
Next, (3) an epoxy resin curing agent such as an amine compound, an imidazole compound, an acid anhydride, or a phenol-based curing agent is used, and a compound containing a sulfone group is preferable. By curing the epoxy resin with an epoxy curing agent containing a sulfone group, 10 3 to 10
The compatibility between the thermoplastic resin having a sulfone group of 5 and the epoxy resin can be enhanced. The amount of the curing agent
The equivalent ratio is preferably 0.9 to 1.1 with respect to the component (2). Outside of this range, the heat resistance and the electrical properties will decrease.

【0015】上記成分の他に、線膨張率、耐熱性、耐燃
性などの向上のために、溶融シリカ、結晶性シリカ、炭
酸カルシウム、水酸化アルミニウム、アルミナ、クレ
ー、硫酸バリウム、マイカ、タルク、ホワイトカーボ
ン、Eガラス微粉末などの無機充填材(4)を配合す
る。この配合量は他の成分全体に対して5〜50重量%
が好ましい。5重量%より少ないと上記の配合効果が小
さく、50重量%より多く配合すると、層間絶縁樹脂の
溶融粘性が高くなり、内層回路間への埋込性が低下する
ようになる。
In addition to the above components, fused silica, crystalline silica, calcium carbonate, aluminum hydroxide, alumina, clay, barium sulfate, mica, talc, and the like are used for improving the coefficient of linear expansion, heat resistance, and flame resistance. An inorganic filler (4) such as white carbon and E glass fine powder is blended. This compounding amount is 5 to 50% by weight based on all other components.
Is preferred. If the amount is less than 5% by weight, the above-mentioned effect is small. If the amount is more than 50% by weight, the melt viscosity of the interlayer insulating resin is increased, and the embedding property between the inner layer circuits is reduced.

【0016】さらに、銅箔や内層回路基板との密着力を
高めたり、耐湿性を向上させるためにエポキシシラン等
のシランカップリング剤あるいはチタネート系カップリ
ング剤、ボイドを防ぐための消泡剤の添加も可能であ
る。
Further, a silane coupling agent such as epoxy silane or a titanate coupling agent for improving adhesion to a copper foil or an inner circuit board or improving moisture resistance, and an antifoaming agent for preventing voids. Addition is also possible.

【0017】溶剤としては、接着剤を銅箔に塗布し80
℃〜160℃で乾燥した後において、接着剤中に残りに
くいものを選択しなければならない。例えば、アセト
ン、メチルエチルケトン、トルエン、キシレン、n−ヘ
キサン、メタノール、エタノール、メチルセルソルブ、
エチルセルソルブ、メトキシプロパノール、シクロヘキ
サノン、ジメチルフォルムアミドなどが用いられる。
As a solvent, an adhesive is applied to a copper foil and
After drying at <RTIgt; C-160 C, </ RTI> those that are less likely to remain in the adhesive must be selected. For example, acetone, methyl ethyl ketone, toluene, xylene, n-hexane, methanol, ethanol, methyl cellosolve,
Ethyl cellosolve, methoxypropanol, cyclohexanone, dimethylformamide and the like are used.

【0018】層間絶縁樹脂付き銅箔は、以下の工程によ
り作製される。最も銅箔側の樹脂層(第1層)は、上記
(1)〜(4)成分を溶剤に所定の濃度で溶解した樹脂
ワニスを銅箔のアンカー面に塗工し、通常80℃〜16
0℃で加熱乾燥を行う。第1層は上記各成分の配合割合
や加熱乾燥条件等の調整により成形時に実質的のノンフ
ローとする。本発明の場合、多層化のための成形温度は
150〜200℃程度である。絶縁樹脂中の揮発成分は
組成全体に対して2.0%以下にすることが好ましい。
この揮発成分は0.3〜1.0%がより好ましい。第1
層の厚みは15μm〜70μmが好ましい。15μmよ
り薄いと乾燥過剰となることがあり条件を変更する必要
が出てくる。また、多層化成形後の層間絶縁厚みを確保
することが困難となることがある。70μmより厚いと
樹脂中の揮発成分を2.0%以下にするために多くの熱
量と時間が必要となる。以下、これと同様にして第2層
目以上を塗工していく。
The copper foil with an interlayer insulating resin is manufactured by the following steps. The resin layer (first layer) closest to the copper foil is formed by applying a resin varnish obtained by dissolving the above components (1) to (4) at a predetermined concentration in a solvent to the anchor surface of the copper foil, usually at 80 ° C to 16 ° C.
Heat and dry at 0 ° C. The first layer is made substantially non-flowable at the time of molding by adjusting the mixing ratio of each of the above components and the conditions for heating and drying. In the case of the present invention, the molding temperature for multilayering is about 150 to 200 ° C. It is preferable that the volatile component in the insulating resin is 2.0% or less based on the whole composition.
This volatile component is more preferably 0.3 to 1.0%. First
The thickness of the layer is preferably from 15 μm to 70 μm. If the thickness is less than 15 μm, drying may be excessive, and it may be necessary to change the conditions. In addition, it may be difficult to ensure the thickness of the interlayer insulation after the multilayer forming. If the thickness is greater than 70 μm, a large amount of heat and time are required to reduce the volatile component in the resin to 2.0% or less. Hereinafter, the second and subsequent layers are applied in the same manner.

【0019】最外層樹脂は(1)重量平均分子量が10
3 〜105 のサルフォン基を有する熱可塑性樹脂と
(2)ハロゲン化されていないエポキシ当量500以下
の多官能エポキシ樹脂を混合して軟化点が60〜110
℃に調整し、内層回路の凹凸を埋め込むためのフロー量
を確保する。使用するハロゲン化されていないエポキシ
当量500以下の多官能エポキシ樹脂の種類、配合量は
混合した樹脂の軟化点が60〜110℃にできる範囲で
あれば種類及び量は問わない。但し、常温で液状である
エポキシ樹脂を多量に配合すると、常温において樹脂層
が液状エポキシ樹脂によるべとつきを生じ好ましくな
い。そのため液状エポキシ樹脂の配合量は10〜45%
が好ましい。このような層構成、即ち、成形時ノンフロ
ーである層と適切な軟化点を有する層とを有することに
より、良好な成形性が確保される。従って、成形して得
られた多層プリント配線板は、その絶縁樹脂層におい
て、ボイド残りがなく、絶縁樹脂層の厚さバラツキが小
さく、絶縁樹脂層の密着性、引き剥がし強さ等の性能を
確保することができる。
The outermost resin (1) has a weight average molecular weight of 10
3-10 thermoplastic resin and (2) mixing the unhalogenated epoxy equivalent of 500 or less of the polyfunctional epoxy resin softening point having a sulfone group of 5 is 60 to 110
° C to secure the flow amount for embedding the unevenness of the inner layer circuit. The type and amount of the non-halogenated polyfunctional epoxy resin having an epoxy equivalent of 500 or less are not limited as long as the mixed resin can have a softening point of 60 to 110 ° C. However, if a large amount of the epoxy resin which is liquid at room temperature is mixed, the resin layer becomes sticky due to the liquid epoxy resin at room temperature, which is not preferable. Therefore, the compounding amount of the liquid epoxy resin is 10 to 45%.
Is preferred. By having such a layer configuration, that is, having a layer which is non-flow during molding and a layer having an appropriate softening point, good moldability is ensured. Therefore, the multilayer printed wiring board obtained by molding has no void remaining in the insulating resin layer, the thickness variation of the insulating resin layer is small, and the performance such as the adhesion of the insulating resin layer and the peeling strength is improved. Can be secured.

【0020】絶縁樹脂を2層以上塗工すると乾燥時にう
ける熱量が多くなるが、銅箔側にコートした樹脂が未硬
化又は半硬化の状態で残るようにする必要がある。本発
明においては、上記組成と塗工条件を調整することによ
り、2層以上を1層ずつ重ね塗工することが可能であ
る。また、銅箔にノンフローの樹脂を塗工し、一方、離
型キャリアフィルムに軟化点を60〜110℃に調整し
た樹脂を塗工し、これら2種の塗工シートを熱ロールに
より圧着して2層の絶縁樹脂層を形成することも可能で
ある。そして、多層プリント配線板を製造するために、
内層回路板と絶縁樹脂付き銅箔とのプレス成形時、17
0℃以上に加熱すると、硬化剤がエポキシ樹脂と反応
し、均一な硬化物が得られる。
When two or more layers of insulating resin are applied, the amount of heat received during drying increases, but it is necessary that the resin coated on the copper foil side remains uncured or semi-cured. In the present invention, it is possible to apply two or more layers one by one by adjusting the composition and the coating conditions. In addition, a non-flow resin is applied to the copper foil, while a resin whose softening point is adjusted to 60 to 110 ° C. is applied to the release carrier film, and these two types of coated sheets are pressure-bonded by a hot roll. It is also possible to form two insulating resin layers. And in order to manufacture multilayer printed wiring boards,
When press-forming the inner layer circuit board and the copper foil with insulating resin, 17
When heated to 0 ° C. or higher, the curing agent reacts with the epoxy resin, and a uniform cured product is obtained.

【0021】本発明の絶縁樹脂付き銅箔は、通常の真空
プレスにより内層回路基板にラミネートし硬化させて、
容易に外層回路を有する多層プリント配線板を形成する
ことができる。
The copper foil with insulating resin of the present invention is laminated and cured on an inner circuit board by a normal vacuum press,
A multilayer printed wiring board having an outer layer circuit can be easily formed.

【0022】[0022]

【実施例】以下、本発明を実施例により具体的に説明す
る。配合量における「部」は重量部である。
The present invention will be described below in more detail with reference to examples. "Parts" in the compounding amounts are parts by weight.

【0023】<実施例1>末端水酸基変性ポリエーテル
サルフォン(平均分子量24000、住友化学(株)製
5003P)70部とビフェニル型エポキシ樹脂(エ
ポキシ当量275、日本化薬(株)製 NC−300
P)7.5部、液状ノボラック型エポキシ樹脂(エポキ
シ当量175、油化シェルエポキシ(株)製 エピコー
ト152)28部、硬化剤として3,3’−ジアミノジ
フェニルサルフォン(三井化学(株)製 3,3−DA
S)10部とをDMF、MEK混合溶剤に攪拌・溶解
し、そこへ、チタネート系カップリング剤(味の素
(株)製 KR−46B)0.1部、硫酸バリウム10
部を添加して銅箔側樹脂ワニスを作製した。この樹脂は
乾燥後において、170℃でのフローはゼロである。
<Example 1> 70 parts of hydroxyl-terminated polyether sulfone (average molecular weight: 24,000, 5003P, manufactured by Sumitomo Chemical Co., Ltd.) and biphenyl type epoxy resin (epoxy equivalent: 275, NC-300, manufactured by Nippon Kayaku Co., Ltd.)
P) 7.5 parts, 28 parts of liquid novolak type epoxy resin (epoxy equivalent: 175, manufactured by Yuka Shell Epoxy Co., Ltd.), 3,3′-diaminodiphenylsulfone (manufactured by Mitsui Chemicals, Inc.) as a curing agent 3,3-DA
S) 10 parts were stirred and dissolved in a mixed solvent of DMF and MEK, and 0.1 part of a titanate coupling agent (KR-46B manufactured by Ajinomoto Co., Ltd.) and 10 parts of barium sulfate were added thereto.
A portion was added to prepare a copper foil side resin varnish. After drying, the resin has zero flow at 170 ° C.

【0024】さらに末端水酸基変性ポリエーテルサルフ
ォン(平均分子量24000、住友化学(株)製 50
03P)24部とビフェニル型エポキシ樹脂(エポキシ
当量275、日本化薬(株)製 NC−300P)20
部、液状ノボラック型エポキシ樹脂(エポキシ当量17
5、油化シェルエポキシ(株)製 エピコート152)
15部、硬化剤として3.3‘−ジアミノジフェニルサ
ルフォン(三井化学(株)製 3,3−DAS)10部
とをDMF、MEK混合溶剤に攪拌・溶解し、そこへチ
タネート系カップリング剤(味の素(株)製 KR−4
6B)0.1部、硫酸バリウム10部を添加して乾燥後
の軟化点が89℃の最外層樹脂ワニスを作製した。
Further, polyether sulfone modified with terminal hydroxyl group (average molecular weight 24,000, 50 manufactured by Sumitomo Chemical Co., Ltd.)
03P) 24 parts and biphenyl type epoxy resin (epoxy equivalent 275, NC-300P manufactured by Nippon Kayaku Co., Ltd.) 20
Part, liquid novolak type epoxy resin (epoxy equivalent 17
5. Yuka Shell Epoxy Co., Ltd. Epicoat 152)
15 parts and 10 parts of 3.3'-diaminodiphenylsulfone (3,3-DAS manufactured by Mitsui Chemicals, Inc.) as a curing agent were stirred and dissolved in a mixed solvent of DMF and MEK, and a titanate coupling agent was added thereto. (KR-4 manufactured by Ajinomoto Co., Inc.)
6B) 0.1 part and 10 parts of barium sulfate were added to prepare an outermost resin varnish having a softening point after drying of 89 ° C.

【0025】厚さ18μmの銅箔を用意し、このアンカ
ー面に1層目として乾燥樹脂厚50μmとなるように、
銅箔側樹脂ワニスをコンマコーターにて塗布し、100
℃で3分、150℃で3分加熱乾燥した。次いで、2層
目として乾燥樹脂厚50μmなるよう最外層樹脂ワニス
をコンマコーターにて塗布し100℃で5分、150℃
で5分加熱乾燥して全樹脂厚100μmの絶縁樹脂付き
銅箔を得た。
A copper foil having a thickness of 18 μm is prepared, and a dry resin thickness of 50 μm is formed on the anchor surface as a first layer.
Apply copper resin side resin varnish with comma coater, 100
C. for 3 minutes and 150.degree. C. for 3 minutes. Next, the outermost layer resin varnish is applied with a comma coater so as to have a dry resin thickness of 50 μm as a second layer, and is applied at 100 ° C. for 5 minutes at 150 ° C.
For 5 minutes to obtain a copper foil with an insulating resin having a total resin thickness of 100 μm.

【0026】別に、基材厚0.1mm、銅箔厚35μm
のガラスエポキシ両面銅張積層板をパターン加工して内
層回路板を得た。銅箔表面を黒化処理した後、内層回路
板の両面に上記絶縁樹脂付き銅箔を重ね合わせた。
Separately, base material thickness 0.1 mm, copper foil thickness 35 μm
The glass-epoxy double-sided copper-clad laminate was subjected to pattern processing to obtain an inner circuit board. After the surface of the copper foil was blackened, the copper foil with the insulating resin was superimposed on both surfaces of the inner circuit board.

【0027】この重ね合わされた内層回路板と絶縁樹脂
付き銅箔の各1セット間にステンレス製鏡面板を挟み、
1段(1対の熱盤間)に15セットを投入し、真空プレ
スを用いて、昇温3〜10℃/分、圧力10〜30Kg
/cm2 、真空度−760〜−730mmHgの条件
で、成形品温度170℃を40分以上確保して加熱加圧
成形し、多層プリント配線板を作製した。
A mirror plate made of stainless steel is sandwiched between each set of the superposed inner circuit board and copper foil with insulating resin.
Fifteen sets are put into one stage (between a pair of hot plates), and the temperature is increased by 3 to 10 ° C./min.
The molded product was heated and pressed at a temperature of 170 ° C. for 40 minutes or more under the conditions of / cm 2 and a degree of vacuum of −760 to −730 mmHg to produce a multilayer printed wiring board.

【0028】<実施例2>絶縁樹脂付き銅箔の最外層樹
脂において、液状ノボラック型エポキシ樹脂を30部と
し、乾燥後の軟化点を70℃とした以外は実施例1と同
様にして多層プリント配線板を作製した。
Example 2 Multilayer printing was performed in the same manner as in Example 1 except that the outermost resin of the copper foil with insulating resin was 30 parts of liquid novolak type epoxy resin and the softening point after drying was 70 ° C. A wiring board was manufactured.

【0029】<比較例1>絶縁樹脂付き銅箔を、実施例
1における銅箔側樹脂層の単一層とし、乾燥樹脂厚10
0μmとした以外は実施例1と同様にして多層プリント
配線板を得た。
<Comparative Example 1> A copper foil with an insulating resin was used as a single layer of the copper foil side resin layer in Example 1, and the dry resin thickness was 10
A multilayer printed wiring board was obtained in the same manner as in Example 1 except that the thickness was changed to 0 μm.

【0030】<比較例2>絶縁樹脂付き銅箔を、実施例
1における最外樹脂層の単一層とし、乾燥樹脂厚100
μmとした以外は実施例1と同様にして多層プリント配
線板を得た。
<Comparative Example 2> A copper foil with an insulating resin was used as a single layer of the outermost resin layer in Example 1 and a dry resin thickness of 100
A multilayer printed wiring board was obtained in the same manner as in Example 1 except that the thickness was changed to μm.

【0031】<比較例3>銅箔側、最外層樹脂共に、末
端水酸基変性ポリエーテルサルフォンをビスフェノール
A型フェノキシ樹脂(東都化成(株)製)とし最外層樹
脂の軟化点を80℃とした以外は実施例1と同様にして
多層プリント配線板を作製した。
Comparative Example 3 For both the copper foil side and the outermost layer resin, the terminal hydroxyl group-modified polyethersulfone was bisphenol A type phenoxy resin (manufactured by Toto Kasei Co., Ltd.) and the softening point of the outermost layer resin was 80 ° C. Except for the above, a multilayer printed wiring board was produced in the same manner as in Example 1.

【0032】得られた多層プリント配線板について、成
形ボイド、絶縁樹脂層厚、板周辺樹脂フロー量、難燃性
を測定した。その結果を表1に示す。
With respect to the obtained multilayer printed wiring board, a molding void, an insulating resin layer thickness, a resin flow rate around the board, and flame retardancy were measured. Table 1 shows the results.

【0033】[0033]

【表1】 [Table 1]

【0034】(測定方法) 内層回路板試験片:ライン幅(L)/ライン間隔(S)=1
20μm/180μmの細線回路、クリアランスホー
ル:1mmφ及び3mmφ、周辺に幅2mmのスリット
を有する。 1.成形ボイド:上記細線回路の線間部およびクリアラ
ンスホール部において、ボイドの有無を目視で観察し
た。 2.絶縁樹脂厚みバラツキ:内層回路上の層間絶縁樹脂
の厚みを断面にて測定した。観察部位は上記細線回路部
と幅2mmのスリット部の側面回路部である。成形され
た多層プリント配線板から、熱盤に最も近い上段のもの
と熱盤間の中間のものとを選び、これらについて、前記
の絶縁樹脂厚みをそれぞれ10ヶ所ずつ測定し、それら
の平均を求めた。この平均値の差の絶対値を絶縁樹脂厚
みバラツキとした。 3.板周辺樹脂フロー量:成形された多層プリント配線
板の周縁からはみ出た樹脂フローの長さを測定した。 4.難燃性:JIS C 6481による
(Measurement method) Inner layer circuit board test piece: line width (L) / line interval (S) = 1
A 20 μm / 180 μm thin wire circuit, clearance holes: 1 mmφ and 3 mmφ, and a slit with a width of 2 mm around the periphery. 1. Molded voids: The presence or absence of voids was visually observed between the lines of the fine wire circuit and the clearance holes. 2. Insulating resin thickness variation: The thickness of the interlayer insulating resin on the inner layer circuit was measured in cross section. The observation site is the side circuit portion of the fine wire circuit portion and the slit portion having a width of 2 mm. From the molded multi-layer printed wiring boards, select the upper one closest to the hot platen and the intermediate one between the hot platens, and measure the thickness of the insulating resin for each of these at ten locations, and calculate the average of them. Was. The absolute value of the difference between the average values was defined as the thickness variation of the insulating resin. 3. Amount of resin flow around board: The length of resin flow protruding from the periphery of the formed multilayer printed wiring board was measured. 4. Flame retardancy: according to JIS C6481

【0035】[0035]

【発明の効果】本発明の多層プリント配線板用絶縁樹脂
付き銅箔は、ビルドアップ方式による多層プリント配線
板の製造において、成形時にボイド残りがなく、絶縁樹
脂厚のバラツキが少ない、高耐熱性の多層プリント配線
板を製造することができる。そして、ハロゲン化合物、
リン化合物を使用しないで、優れた難燃性を示すことか
ら、ダイオキシン等の有害物質の発生がなく環境面で安
全である。
The copper foil with insulating resin for a multilayer printed wiring board according to the present invention has no void residue during molding, has little variation in insulating resin thickness, and has high heat resistance in the production of a multilayer printed wiring board by a build-up method. Can be manufactured. And a halogen compound,
Since it shows excellent flame retardancy without using a phosphorus compound, it does not generate harmful substances such as dioxin and is environmentally safe.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 3/30 H01B 3/30 J 3/40 3/40 C Fターム(参考) 4J002 CD05X CD06X CD11X CD13X CH08W CN03W EL136 EN006 ET006 EU116 EV216 FD136 GQ00 GQ05 4J036 AA01 DA01 DD01 FB15 JA08 5E346 CC08 CC09 CC32 CC43 EE13 HH08 HH18 5G305 AA06 AA07 AB25 AB35 AB36 BA15 BA18 BA25 BA29 CA15 CA35 CD01 CD08 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01B 3/30 H01B 3/30 J 3/40 3/40 CF term (Reference) 4J002 CD05X CD06X CD11X CD13X CH08W CN03W EL136 EN006 ET006 EU116 EV216 FD136 GQ00 GQ05 4J036 AA01 DA01 DD01 FB15 JA08 5E346 CC08 CC09 CC32 CC43 EE13 HH08 HH18 5G305 AA06 AA07 AB25 AB35 AB36 BA15 BA18 BA25 BA29 CA15 CA35 CD01 CD08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下記の各成分を必須成分として含有する
絶縁樹脂組成物を銅箔に塗布してなる絶縁樹脂付き銅箔
であって、前記絶縁樹脂の層が2層以上であり、最も銅
箔側の樹脂層を多層成形温度にて実質的にノンフローと
し最外層の樹脂層を軟化点60〜90℃としたことを特
徴とする多層プリント配線板用絶縁樹脂付き銅箔。 (1)重量平均分子量が103 〜105 のサルフォン基
を有する熱可塑性樹脂、(2)ハロゲン化されていない
エポキシ当量500以下の多官能エポキシ樹脂、(3)
エポキシ樹脂硬化剤、及び(4)無機充填材。
1. A copper foil with an insulating resin obtained by applying an insulating resin composition containing the following components as essential components to a copper foil, wherein the insulating resin has two or more layers, A copper foil with an insulating resin for a multilayer printed wiring board, wherein the resin layer on the foil side is substantially non-flow at a multilayer forming temperature and the outermost resin layer has a softening point of 60 to 90 ° C. (1) a thermoplastic resin having a sulfone group having a weight average molecular weight of 10 3 to 10 5 ; (2) a non-halogenated polyfunctional epoxy resin having an epoxy equivalent of 500 or less; (3)
Epoxy resin curing agent, and (4) inorganic filler.
【請求項2】 銅箔に塗布された樹脂層が2層である請
求項1記載の絶縁樹脂付き銅箔。
2. The copper foil with an insulating resin according to claim 1, wherein the number of resin layers applied to the copper foil is two.
【請求項3】 エポキシ硬化剤がサルフォン基を有する
化合物である請求項1又は2記載の絶縁樹脂付き銅箔。
3. The copper foil with insulating resin according to claim 1, wherein the epoxy curing agent is a compound having a sulfone group.
JP27001599A 1999-09-24 1999-09-24 Copper foil with insulation resin for multilayer printed boards Pending JP2001094265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27001599A JP2001094265A (en) 1999-09-24 1999-09-24 Copper foil with insulation resin for multilayer printed boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27001599A JP2001094265A (en) 1999-09-24 1999-09-24 Copper foil with insulation resin for multilayer printed boards

Publications (1)

Publication Number Publication Date
JP2001094265A true JP2001094265A (en) 2001-04-06

Family

ID=17480366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27001599A Pending JP2001094265A (en) 1999-09-24 1999-09-24 Copper foil with insulation resin for multilayer printed boards

Country Status (1)

Country Link
JP (1) JP2001094265A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11285700B2 (en) * 2016-03-10 2022-03-29 Mitsui Mining & Smelting Co., Ltd. Multilayer laminate and method for producing multilayer printed wiring board using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11285700B2 (en) * 2016-03-10 2022-03-29 Mitsui Mining & Smelting Co., Ltd. Multilayer laminate and method for producing multilayer printed wiring board using same

Similar Documents

Publication Publication Date Title
JP6572983B2 (en) Epoxy resin composition
JP5396805B2 (en) Epoxy resin composition
JP5011641B2 (en) Thermosetting resin composition, adhesive film using the same, and multilayer printed wiring board
KR100632169B1 (en) Interlayer Insulation Adhesive For Multilayer Printed Circuit Board
JP2002179772A (en) Resin compound for composing insulating interlayer of print circuit board, resin sheet for forming insulating layer using the resin compound and copper-plated laminate using them
WO2007067649A1 (en) Laminates for high speed and high frequency printed circuit boards
US5674611A (en) Adhesive for copper foils and an adhesive-applied copper foil
JPWO2003099952A1 (en) Adhesive film and prepreg
JP2002241590A (en) Flame-retardant epoxy resin composition
US5976699A (en) Insulating adhesive for multilayer printed circuit board
JPH11100562A (en) Interlayer insulation adhesive for multilayer printed wiring board and copper foil
JP3669663B2 (en) Interlayer insulation adhesive for multilayer printed wiring boards
JPH11279260A (en) Epoxy resin composition
JP2002064275A (en) Insulating resin film for multilayer printed wiring board
JP3084351B2 (en) Interlayer insulating adhesive for multilayer printed wiring boards
JP2001094265A (en) Copper foil with insulation resin for multilayer printed boards
JP3412572B2 (en) Epoxy resin composition, prepreg, metal foil with resin, adhesive sheet, laminated board and multilayer board
JP3703143B2 (en) Interlayer insulating adhesive for multilayer printed wiring board and copper foil with interlayer insulating adhesive for multilayer printed wiring board
JP3632823B2 (en) Interlayer insulation adhesive for multilayer printed wiring boards
JP2826091B2 (en) Insulating adhesive for multilayer printed wiring boards
JP2001089733A (en) Insulating resin adhesive for multilayer printed circuit board
JPH1154937A (en) Insulation adhesive for multilayered printed wiring board
JPH0971762A (en) Interlaminar insulating adhesive for multilayered printed circuit board
JP2911778B2 (en) Manufacturing method of multilayer printed wiring board
JP2006322006A (en) Interlayer insulation adhesive for multilayer printed wiring board, and copper foil

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050929

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051201

A02 Decision of refusal

Effective date: 20060207

Free format text: JAPANESE INTERMEDIATE CODE: A02