JP2001085012A - Hydrogen storage alloy electrode for alkaline storage battery and alkaline storage battery - Google Patents

Hydrogen storage alloy electrode for alkaline storage battery and alkaline storage battery

Info

Publication number
JP2001085012A
JP2001085012A JP26389699A JP26389699A JP2001085012A JP 2001085012 A JP2001085012 A JP 2001085012A JP 26389699 A JP26389699 A JP 26389699A JP 26389699 A JP26389699 A JP 26389699A JP 2001085012 A JP2001085012 A JP 2001085012A
Authority
JP
Japan
Prior art keywords
nickel metal
metal layer
carbon fiber
hydrogen storage
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26389699A
Other languages
Japanese (ja)
Other versions
JP3863689B2 (en
Inventor
Nobuyuki Higashiyama
信幸 東山
Yoshihiro Masuda
喜裕 増田
Kikuko Katou
菊子 加藤
Mamoru Kimoto
衛 木本
Yasuhiko Ito
靖彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26389699A priority Critical patent/JP3863689B2/en
Publication of JP2001085012A publication Critical patent/JP2001085012A/en
Application granted granted Critical
Publication of JP3863689B2 publication Critical patent/JP3863689B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To restrain internal pressure increase at charging and discharging capacity reduction at high rate discharging by covering carbon fiber for constituting an electrode with a nickel metal layer together with hydrogen storage alloy particles and a binding agent. SOLUTION: A hydrogen storage alloy electrode for an alkaline storage battery is composed of carbon fibers covered with hydrogen storage alloy particles, a binding agent and a nickel metal layer. In the carbon fiber covered with the nickel metal layer, an added quantity is desirably 0.05 to 10.0 pts.wt. to 100 pts.wt. the hydrogen storage alloy particle, the thickness of the nickel metal layer is 0.05 to 1.0 μm, the end part is not covered with the nickel metal layer, and the surface of the carbon fiber is exposed. Electric resistance of an alloy electrode can be reduced by reducing contact resistance of the alloy particles and the carbon fiber to enhance discharging capacity at high rate discharging. Since nickel metal on the surface of the carbon fiber is low in hydrogen overvoltage, hydrogen dissociation is restrained by the surface of the alloy particles to restrain the internal pressure increase.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池の
負極として用いることができるアルカリ蓄電池用水素吸
蔵合金電極及びそれを用いたアルカリ蓄電池に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode for an alkaline storage battery which can be used as a negative electrode of an alkaline storage battery, and an alkaline storage battery using the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
水素吸蔵合金電極を負極として使用したアルカリ蓄電池
が、従来のカドミウム電極または亜鉛電極を負極として
使用したアルカリ蓄電池として比較して、エネルギー密
度が高いことから注目されている。
2. Description of the Related Art In recent years,
An alkaline storage battery using a hydrogen storage alloy electrode as a negative electrode has attracted attention because it has a higher energy density than a conventional alkaline storage battery using a cadmium electrode or a zinc electrode as a negative electrode.

【0003】このようなアルカリ蓄電池用の水素吸蔵合
金電極においては、活物質の利用率を高めて放電容量を
向上させるため、水素吸蔵合金電極に炭素繊維を添加す
ることが提案されている(特開昭63−110552号
公報)。
In such a hydrogen storage alloy electrode for an alkaline storage battery, it has been proposed to add carbon fibers to the hydrogen storage alloy electrode in order to increase the utilization rate of the active material and thereby improve the discharge capacity (see, for example, Japanese Patent Application Laid-Open No. H11-163873). JP-A-63-110552).

【0004】しかしながら、炭素繊維を単に添加するだ
けでは、水素吸蔵合金粒子間の接触抵抗を十分に低減す
ることができず、高率放電時の放電容量の低下を抑制す
ることができなかった。また、充電時において合金粒子
表面からの水素解離を抑制する働きが小さく、充電時に
電池内圧が上昇するという問題があった。
[0004] However, simply adding carbon fiber cannot sufficiently reduce the contact resistance between the hydrogen storage alloy particles, and cannot suppress a decrease in the discharge capacity during high-rate discharge. In addition, there is a problem that the function of suppressing hydrogen dissociation from the surface of the alloy particles during charging is small, and the internal pressure of the battery increases during charging.

【0005】また、炭素繊維と共に、ニッケルフレーク
や、アセチレンブラック、ファーネスブラック等を用い
ても、合金粒子間の接触抵抗を十分に低減することはで
きず、また高率放電特性も不十分なものであった。
[0005] Further, even if nickel flake, acetylene black, furnace black or the like is used together with the carbon fiber, the contact resistance between the alloy particles cannot be sufficiently reduced and the high-rate discharge characteristics are insufficient. Met.

【0006】本発明の目的は、充電時の電池内圧の上昇
を抑制することができると共に、高率放電時の放電容量
の低下を抑制することができるアルカリ蓄電池用水素吸
蔵合金電極及びそれを用いたアルカリ蓄電池を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a hydrogen storage alloy electrode for an alkaline storage battery and a hydrogen storage alloy electrode for an alkaline storage battery, which can suppress an increase in battery internal pressure during charging and a reduction in discharge capacity during high-rate discharge. To provide an alkaline storage battery.

【0007】[0007]

【課題を解決するための手段】本発明のアルカリ蓄電池
用水素吸蔵合金電極は、水素吸蔵合金粒子と、炭素繊維
と、結着剤とからなり、炭素繊維が、ニッケル金属層で
被覆されていることを特徴としている。
A hydrogen storage alloy electrode for an alkaline storage battery according to the present invention comprises hydrogen storage alloy particles, carbon fibers, and a binder, and the carbon fibers are coated with a nickel metal layer. It is characterized by:

【0008】本発明において、炭素繊維をニッケル金属
層で被覆する方法は特に限定されるものではないが、例
えば、ニッケルメッキやニッケル金属のスパッタリング
法によりニッケル金属層で炭素繊維を被覆することがで
きる。ニッケルメッキは、炭素繊維の導電性を利用した
電解メッキで行ってもよいし、無電解メッキで行っても
よい。
In the present invention, the method of coating the carbon fiber with the nickel metal layer is not particularly limited. For example, the carbon fiber can be coated with the nickel metal layer by nickel plating or nickel metal sputtering. . Nickel plating may be performed by electrolytic plating utilizing the conductivity of carbon fibers, or may be performed by electroless plating.

【0009】本発明においてニッケル金属層で被覆する
炭素繊維の繊維径は、特に限定されるものではないが、
1μm〜10μm程度であることが好ましい。また、電
極中に添加する炭素繊維の長さは、特に限定されるもの
ではないが、0.01mm〜1.0mm程度であること
が好ましい。
In the present invention, the fiber diameter of the carbon fiber coated with the nickel metal layer is not particularly limited,
It is preferably about 1 μm to 10 μm. The length of the carbon fiber added to the electrode is not particularly limited, but is preferably about 0.01 mm to 1.0 mm.

【0010】本発明の水素吸蔵合金電極への炭素繊維の
添加量は、水素吸蔵合金電極中の水素吸蔵合金粒子10
0重量部に対して、0.05〜10.0重量部であるこ
とが好ましい。炭素繊維の添加量が0.05重量部未満
であると、電極の導電性の向上が不十分であり、充電時
の電池内圧の上昇の抑制や高率放電時の放電容量の低下
の抑制という本発明の効果が十分に得られない場合があ
る。また、炭素繊維の添加量が10.0重量部を超える
と、電極中に炭素繊維を均一に混合することが困難にな
る。
The amount of carbon fiber added to the hydrogen storage alloy electrode of the present invention depends on the amount of the hydrogen storage alloy particles 10 in the hydrogen storage alloy electrode.
It is preferably 0.05 to 10.0 parts by weight with respect to 0 parts by weight. When the addition amount of the carbon fiber is less than 0.05 parts by weight, the conductivity of the electrode is insufficiently improved, and the increase in the internal pressure of the battery during charging and the reduction in the discharge capacity during high-rate discharging are suppressed. The effect of the present invention may not be sufficiently obtained. If the amount of the carbon fiber exceeds 10.0 parts by weight, it becomes difficult to uniformly mix the carbon fiber in the electrode.

【0011】本発明において炭素繊維を被覆するニッケ
ル金属層の厚みは、特に限定されるものではないが、
0.05〜1.0μmであることが好ましい。ニッケル
金属層の厚みが0.05μm未満であると、合金電極の
電気抵抗を十分に低減させることができない場合があ
る。また、ニッケル金属層の厚みが1.0μmを超えて
も厚みの増加に伴う効果の増大は期待できず経済的に不
利なものとなる。
In the present invention, the thickness of the nickel metal layer covering the carbon fibers is not particularly limited,
It is preferably from 0.05 to 1.0 μm. If the thickness of the nickel metal layer is less than 0.05 μm, the electrical resistance of the alloy electrode may not be sufficiently reduced. Further, even if the thickness of the nickel metal layer exceeds 1.0 μm, an increase in the effect due to the increase in the thickness cannot be expected, which is economically disadvantageous.

【0012】本発明におけるニッケル金属層で被覆され
た炭素繊維は、その端部においてニッケル金属層で被覆
されておらず炭素繊維の表面が露出していることが好ま
しい。端部において炭素繊維の表面が露出していること
により、正極で発生した酸素ガスがこの中を通り、負極
中を拡散することができる。すなわち、このような炭素
繊維は、電極中においてガス拡散の通路を提供する。ニ
ッケル金属層で被覆されているので、その内部に炭素繊
維による空隙が確保されており、この中をガスが通過す
ることができる。
It is preferable that the carbon fiber coated with the nickel metal layer in the present invention is not coated with the nickel metal layer at the end and the surface of the carbon fiber is exposed. Since the surface of the carbon fiber is exposed at the end, the oxygen gas generated at the positive electrode can pass therethrough and diffuse in the negative electrode. That is, such carbon fibers provide a path for gas diffusion in the electrode. Since it is covered with the nickel metal layer, a void is formed by the carbon fiber inside the nickel metal layer, and the gas can pass therethrough.

【0013】このように端部においてその表面が露出し
た炭素繊維を用いることにより、正極で発生する酸素ガ
スを負極において効果的に吸収することができ、充電時
における電池内圧の上昇を抑制することができる。この
ような端部がニッケル金属層で被覆されていない炭素繊
維は、長尺状の炭素繊維をニッケル金属層で被覆した
後、これを適当な長さに切断することにより得ることが
できる。
By using the carbon fiber whose surface is exposed at the end as described above, oxygen gas generated at the positive electrode can be effectively absorbed at the negative electrode, and a rise in battery internal pressure during charging can be suppressed. Can be. Such a carbon fiber whose end is not covered with a nickel metal layer can be obtained by coating a long carbon fiber with a nickel metal layer and cutting the carbon fiber into an appropriate length.

【0014】本発明において用いられるニッケル金属層
で被覆された炭素繊維は、ニッケル金属層で被覆されて
いない炭素繊維よりも導電性に優れるため、合金電極内
において、合金粒子と炭素繊維との接触抵抗を小さくす
ることができる。従って、合金電極の電気抵抗を小さく
することができ、高率放電時の放電容量を高めることが
できる。
The carbon fiber coated with the nickel metal layer used in the present invention has higher conductivity than the carbon fiber not coated with the nickel metal layer. Resistance can be reduced. Therefore, the electric resistance of the alloy electrode can be reduced, and the discharge capacity during high-rate discharge can be increased.

【0015】また、炭素繊維の表面に存在するニッケル
金属は、水素過電圧が低いので、ニッケル金属層で被覆
された炭素繊維が合金粒子の表面と接触することによ
り、接触している合金粒子の表面部分において水素解離
を抑制することができる。このため、充電時の電池内部
圧力の上昇を抑制することができる。
Further, since the nickel metal present on the surface of the carbon fiber has a low hydrogen overvoltage, when the carbon fiber coated with the nickel metal layer comes into contact with the surface of the alloy particle, Hydrogen dissociation can be suppressed in some parts. For this reason, it is possible to suppress an increase in battery internal pressure during charging.

【0016】また、ニッケル金属層で被覆された炭素繊
維を合金電極内に配合することにより、電極の強度を高
めることができ、また、結着剤との結合性に優れるた
め、強固な合金電極とすることができる。
Further, by blending the carbon fiber coated with the nickel metal layer into the alloy electrode, the strength of the electrode can be increased, and since the bondability with the binder is excellent, a strong alloy electrode is provided. It can be.

【0017】図1は、本発明における水素吸蔵合金電極
中での水素吸蔵合金粒子とニッケル金属層被覆炭素繊維
の状態を示す模式的断面図である。図1に示すように、
水素吸蔵合金粒子11間には、ニッケル金属層被覆炭素
繊維12が介在しており、水素吸蔵合金粒子11と、ニ
ッケル金属層被覆炭素繊維12とが接している。炭素繊
維12は、導電性に優れたニッケル金属層を表面に有し
ているので、導電性に優れており、従って水素吸蔵合金
粒子11と炭素繊維12との接触抵抗が小さくなる。従
って、高率放電特性を高めることができる。
FIG. 1 is a schematic sectional view showing the state of the hydrogen storage alloy particles and the carbon fibers coated with the nickel metal layer in the hydrogen storage alloy electrode according to the present invention. As shown in FIG.
Nickel metal layer-coated carbon fibers 12 are interposed between the hydrogen storage alloy particles 11, and the hydrogen storage alloy particles 11 and the nickel metal layer-coated carbon fibers 12 are in contact with each other. Since the carbon fiber 12 has a nickel metal layer having excellent conductivity on the surface, the carbon fiber 12 has excellent conductivity, and accordingly, the contact resistance between the hydrogen storage alloy particles 11 and the carbon fiber 12 is reduced. Therefore, high rate discharge characteristics can be improved.

【0018】また、炭素繊維12の表面に存在するニッ
ケル金属層は、上述のように、水素過電圧が低いので、
合金粒子11の表面部分における水素解離を抑制するこ
とができ、充電時の電池内圧の上昇を抑制することがで
きる。
The nickel metal layer present on the surface of the carbon fiber 12 has a low hydrogen overvoltage as described above,
Hydrogen dissociation at the surface of the alloy particles 11 can be suppressed, and an increase in battery internal pressure during charging can be suppressed.

【0019】また、炭素繊維12の端部はニッケル金属
層により被覆されておらず、炭素繊維の表面が露出して
いる。上述のように、端部に炭素繊維の表面が露出する
ことにより、電極中において酸素ガス拡散の通路を提供
することができ、さらに充電時における電池内圧の上昇
を抑制することができる。
The end of the carbon fiber 12 is not covered with the nickel metal layer, and the surface of the carbon fiber is exposed. As described above, since the surface of the carbon fiber is exposed at the end, a passage for oxygen gas diffusion can be provided in the electrode, and a rise in battery internal pressure during charging can be suppressed.

【0020】本発明のアルカリ蓄電池は、上記本発明の
水素吸蔵合金電極を負極として備えることを特徴として
いる。具体的には、水酸化ニッケルを活物質とする正極
と、本発明の水素吸蔵合金電極からなる負極と、アルカ
リ水溶液からなる電解液とを備えるニッケル水素蓄電池
が例示される。
The alkaline storage battery of the present invention is characterized by comprising the above-mentioned hydrogen storage alloy electrode of the present invention as a negative electrode. Specifically, there is exemplified a nickel-metal hydride storage battery including a positive electrode using nickel hydroxide as an active material, a negative electrode including the hydrogen storage alloy electrode of the present invention, and an electrolytic solution including an alkaline aqueous solution.

【0021】本発明のアルカリ蓄電池は、充電時におけ
る電池内圧の上昇を抑制することができると共に、高率
放電時の放電容量の低下を抑制することができるアルカ
リ蓄電池である。
The alkaline storage battery of the present invention is an alkaline storage battery that can suppress an increase in battery internal pressure during charging and a reduction in discharge capacity during high-rate discharge.

【0022】[0022]

【発明の実施の形態】以下、本発明を実施例に基づいて
さらに詳細に説明するが、本発明は以下の実施例に何ら
限定されるものではなく、その要旨を変更しない範囲に
おいて適宜変更して実施することが可能なものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in more detail with reference to examples. However, the present invention is not limited to the following examples, and may be appropriately modified within the scope of the invention. It can be implemented by

【0023】<実験1>この実験1では、ニッケル金属
層被覆炭素繊維を水素吸蔵合金電極中に添加する効果及
び添加量の影響について検討した。
<Experiment 1> In Experiment 1, the effect of adding the carbon fiber coated with the nickel metal layer to the hydrogen storage alloy electrode and the effect of the addition amount were examined.

【0024】(実施例1) 〔水素吸蔵合金粒子の作製〕MmNi4.0Co0.2Al
0.3Mn0.5の組成に調製した水素吸蔵合金を、アルゴン
雰囲気中におけるアーク溶解炉内で加熱溶解させ、これ
をロール冷却法で冷却することによって水素吸蔵合金片
を得た。この合金片を粉砕して、平均粒子径約40μm
の合金粒子を準備した。
(Example 1) [Preparation of hydrogen storage alloy particles] MmNi 4.0 Co 0.2 Al
The hydrogen storage alloy prepared to have a composition of 0.3 Mn 0.5 was heated and melted in an arc melting furnace in an argon atmosphere, and cooled by a roll cooling method to obtain a hydrogen storage alloy piece. This alloy piece is pulverized to an average particle diameter of about 40 μm.
Was prepared.

【0025】〔ニッケル金属層被覆炭素繊維の作製〕直
径5μmの長尺状の炭素繊維に電解メッキ法によりニッ
ケルメッキを施した後、長さ0.1mmに切断して、ニ
ッケル金属層被覆炭素繊維を得た。得られた炭素繊維の
直径は5.4μmであり、長さは0.1mmであった。
なお、炭素繊維の直径は、走査型電子顕微鏡(SEM)
で観察することにより測定した。ニッケル金属層の厚み
は、このようにSEM観察により被覆前の炭素繊維の直
径と被覆後の炭素繊維の直径を求め、その差を1/2に
することにより求めることができる。ここでは、ニッケ
ル金属層の厚みは0.2μmである。
[Preparation of Nickel Metal Layer-Coated Carbon Fiber] A long carbon fiber having a diameter of 5 μm is subjected to nickel plating by an electrolytic plating method, and then cut to a length of 0.1 mm. I got The diameter of the obtained carbon fiber was 5.4 μm, and the length was 0.1 mm.
The diameter of the carbon fiber is measured by a scanning electron microscope (SEM).
It was measured by observing with. The thickness of the nickel metal layer can be determined by determining the diameter of the carbon fiber before coating and the diameter of the carbon fiber after coating by SEM observation, and halving the difference. Here, the thickness of the nickel metal layer is 0.2 μm.

【0026】〔水素吸蔵合金電極(負極)の作製〕上記
の合金粒子100重量部と、上記のニッケル金属層被覆
炭素繊維0.01重量部とを混合した。この混合物に、
結着剤としてポリエチレンオキサイド水溶液(濃度5重
量%)20重量部を添加混合して、スラリーを得た。こ
のスラリーをパンチングメタルからなる集電体に塗布
し、乾燥した後、所定のサイズに切断して、水素吸蔵合
金電極を得た。
[Preparation of Hydrogen Storage Alloy Electrode (Negative Electrode)] 100 parts by weight of the alloy particles and 0.01 part by weight of the carbon fiber coated with a nickel metal layer were mixed. In this mixture,
20 parts by weight of a polyethylene oxide aqueous solution (concentration: 5% by weight) was added and mixed as a binder to obtain a slurry. This slurry was applied to a current collector made of punching metal, dried, and then cut into a predetermined size to obtain a hydrogen storage alloy electrode.

【0027】〔電池の作製〕上記の水素吸蔵合金電極を
負極として用いてAAサイズの正極支配型アルカリ蓄電
池(電池容量1000mAh)を作製した。正極として
は従来公知の焼結式ニッケル極を用い、セパレーターと
しては耐アルカリ性の不織布を用い、電解液としては3
0重量%水酸化カリウム水溶液を用いた。
[Preparation of Battery] Using the above-mentioned hydrogen storage alloy electrode as a negative electrode, an AA size positive-electrode dominated alkaline storage battery (battery capacity: 1000 mAh) was prepared. A conventionally known sintered nickel electrode is used as a positive electrode, an alkali-resistant nonwoven fabric is used as a separator, and 3
A 0% by weight aqueous solution of potassium hydroxide was used.

【0028】図2は、組み立てたアルカリ蓄電池を示す
模式的断面図である。アルカリ蓄電池は、正極1、負極
2、セパレーター3、正極リード4、負極リード5、正
極外部端子6、負極缶7、封口蓋8などから構成されて
いる。正極1及び負極2は、セパレーター3を介して渦
巻き状に巻き取られた状態で負極缶7内に収容されてい
る。正極1は正極リード4を介して封口蓋8に、負極2
は負極リード5を介して負極缶7に接続されている。負
極缶7と封口蓋8との接合部には、絶縁性パッキング1
0が装着されて電池の密閉化がなされている。正極外部
端子6と封口蓋8との間には、コイルスプリング9が設
けられ、電池内圧力が異常に上昇したときに圧縮されて
電池内部のガスを大気中に放出し得るようになってい
る。
FIG. 2 is a schematic sectional view showing the assembled alkaline storage battery. The alkaline storage battery includes a positive electrode 1, a negative electrode 2, a separator 3, a positive electrode lead 4, a negative electrode lead 5, a positive electrode external terminal 6, a negative electrode can 7, a sealing lid 8, and the like. The positive electrode 1 and the negative electrode 2 are housed in a negative electrode can 7 in a state of being spirally wound via a separator 3. The positive electrode 1 is connected to the sealing lid 8 via the positive electrode lead 4 and the negative electrode 2
Is connected to a negative electrode can 7 via a negative electrode lead 5. An insulating packing 1 is provided at the joint between the negative electrode can 7 and the sealing lid 8.
0 is attached to seal the battery. A coil spring 9 is provided between the positive electrode external terminal 6 and the sealing lid 8 so that when the pressure inside the battery rises abnormally, it is compressed and the gas inside the battery can be released to the atmosphere. .

【0029】(実施例2〜実施例11)ニッケル金属層
被覆炭素繊維の添加量を合金粒子100重量部に対し、
0.03重量部、0.05重量部、0.1重量部、0.
5重量部、1.0重量部、2.0重量部、5.0重量
部、10.0重量部、11.0重量部、及び15.0重
量部に変える以外は、上記実施例1と同様にして、水素
吸蔵合金電極を作製し、電池A2〜A11を作製した。
(Examples 2 to 11) The addition amount of the carbon fiber coated with the nickel metal layer was determined based on 100 parts by weight of the alloy particles.
0.03 parts by weight, 0.05 parts by weight, 0.1 parts by weight, 0.1 part by weight.
Example 1 except that the parts were changed to 5 parts by weight, 1.0 parts by weight, 2.0 parts by weight, 5.0 parts by weight, 10.0 parts by weight, 11.0 parts by weight, and 15.0 parts by weight. Similarly, a hydrogen storage alloy electrode was produced, and batteries A2 to A11 were produced.

【0030】(比較例1)上記実施例6(電池A6)に
おいて、ニッケル金属層被覆炭素繊維1.0重量部に代
えて、ニッケル金属層を被覆していない直径5μm、長
さ0.1mmの炭素繊維1.0重量部を用いたこと以外
は、実施例6と同様にして水素吸蔵合金電極(負極)を
作製し、比較電池X1を得た。
(Comparative Example 1) In Example 6 (battery A6), the nickel metal layer-coated carbon fiber of 1.0 part by weight was replaced with a nickel metal layer-coated carbon fiber having a diameter of 5 µm and a length of 0.1 mm. A hydrogen storage alloy electrode (negative electrode) was produced in the same manner as in Example 6, except that 1.0 part by weight of carbon fiber was used, to obtain a comparative battery X1.

【0031】(比較例2)上記実施例6(電池A6)に
おいて、ニッケル金属層被覆炭素繊維1.0重量部に代
えて、カーボンブラック(ファーネスブラック、平均粒
子径約20μm)1.0重量部を用いた以外は、実施例
6と同様にして水素吸蔵合金電極(負極)を作製し、比
較電池X2を得た。
Comparative Example 2 In Example 6 (battery A6), 1.0 part by weight of carbon black (furnace black, average particle diameter of about 20 μm) was used instead of 1.0 part by weight of the nickel metal layer-coated carbon fiber. A hydrogen storage alloy electrode (negative electrode) was produced in the same manner as in Example 6, except that, was used, to obtain a comparative battery X2.

【0032】(比較例3)上記実施例6(電池A6)に
おいて、ニッケル金属層被覆炭素繊維1.0重量部に代
えて、ニッケルフレーク(福田金属箔粉工業社製、平均
粒子径約20μm)1.0重量部を用いる以外は、実施
例6と同様にして水素吸蔵合金電極(負極)を作製し、
比較電池X3を得た。
Comparative Example 3 In Example 6 (battery A6), nickel flake (manufactured by Fukuda Metal Foil & Powder Co., Ltd., average particle diameter: about 20 μm) was used instead of 1.0 part by weight of the nickel metal layer-coated carbon fiber. A hydrogen storage alloy electrode (negative electrode) was prepared in the same manner as in Example 6, except that 1.0 part by weight was used.
A comparative battery X3 was obtained.

【0033】(比較例4)上記実施例6(電池A6)に
おいて、ニッケル金属層被覆炭素繊維1.0重量部に代
えて、ニッケル金属層を被覆していない炭素繊維(直径
5μm、長さ0.1mm)1重量部と、上記比較例3で
用いたニッケルフレーク1重量部とを用いた以外は、実
施例6と同様にして水素吸蔵合金電極(負極)を作製
し、比較電池X4を得た。
Comparative Example 4 In Example 6 (battery A6), carbon fibers not coated with a nickel metal layer (diameter 5 μm, length 0 0.1 mm) A hydrogen storage alloy electrode (negative electrode) was produced in the same manner as in Example 6 except that 1 part by weight of nickel flake used in Comparative Example 3 and 1 part by weight of Comparative Example 3 were used to obtain Comparative Battery X4. Was.

【0034】(比較例5)上記実施例1において、ニッ
ケル金属層被覆炭素繊維を水素吸蔵合金電極に添加しな
いこと以外は、実施例1と同様にして水素吸蔵合金電極
(負極)を作製し、比較電池Yを得た。
Comparative Example 5 A hydrogen storage alloy electrode (negative electrode) was prepared in the same manner as in Example 1 except that the nickel metal layer-coated carbon fiber was not added to the hydrogen storage alloy electrode. A comparative battery Y was obtained.

【0035】以上のようにして得られた本発明電池A1
〜A11及び比較電池X1〜X4及びYについて、電池
特性を評価した。各電池について、100mAで充放電
を3回繰り返した後、以下の実験を行った。
The battery A1 of the present invention obtained as described above
-A11 and comparative batteries X1 to X4 and Y were evaluated for battery characteristics. After repeating charging and discharging three times at 100 mA for each battery, the following experiment was performed.

【0036】高率放電特性については、100mAの電
流値での充電を16時間行った後、5000mAで放電
したときの放電容量(電池電圧1.0Vまで)を測定し
た。電池内圧については、1000mAで80分充電し
た時点での電池内圧を測定した。これらの結果を表1に
示す。
With regard to the high rate discharge characteristics, the discharge capacity (up to a battery voltage of 1.0 V) when the battery was discharged at 5000 mA after charging at a current value of 100 mA for 16 hours was measured. Regarding the battery internal pressure, the battery internal pressure at the time of charging at 1000 mA for 80 minutes was measured. Table 1 shows the results.

【0037】[0037]

【表1】 [Table 1]

【0038】表1に示す結果から明らかなように、本発
明に従う電池A1〜A11は、比較電池X1〜X4及び
Yに比べ、高率放電時の放電容量が高く、かつ電池内圧
が低くなっている。このことから、本発明に従えば、高
率放電時の放電容量を高めることができ、充電時の電池
内圧の上昇を抑制できることがわかる。
As is clear from the results shown in Table 1, the batteries A1 to A11 according to the present invention have a higher discharge capacity at a high rate of discharge and a lower battery internal pressure than the comparative batteries X1 to X4 and Y. I have. From this, it is understood that according to the present invention, the discharge capacity at the time of high-rate discharge can be increased, and the increase in the battery internal pressure at the time of charge can be suppressed.

【0039】<実験2>この実験では、ニッケル金属層
被覆炭素繊維における、ニッケル金属層の厚みが電池特
性に及ぼす影響について検討した。
<Experiment 2> In this experiment, the effect of the thickness of the nickel metal layer on the battery characteristics in the carbon fiber coated with the nickel metal layer was examined.

【0040】(実施例12)実験1の実施例1と同様に
して、直径5μmの長尺状の炭素繊維に、ニッケルメッ
キを施した後切断し、長さ0.1mmのニッケル金属層
被覆炭素繊維を得た。なお、メッキ条件を変化させ、炭
素繊維を被覆するニッケル金属層の厚みが、0.01μ
m、0.05μm、0.1μm、0.2μm、0.5μ
m、1.0μm、及び1.5μmであるニッケル金属層
被覆炭素繊維を作製した。
Example 12 In the same manner as in Example 1 of Experiment 1, a long carbon fiber having a diameter of 5 μm was nickel-plated, cut, and cut with a nickel metal layer-coated carbon having a length of 0.1 mm. Fiber was obtained. The plating conditions were changed so that the thickness of the nickel metal layer covering the carbon fibers was 0.01 μm.
m, 0.05μm, 0.1μm, 0.2μm, 0.5μ
Nickel metal layer-coated carbon fibers having m, 1.0 μm, and 1.5 μm were produced.

【0041】これらのニッケル金属層被覆炭素繊維を用
いて、実施例6(電池A6)と同様にして、電池B1〜
B7を作製した。なお、電池B4は、上記実験1の電池
A6と同一である。得られた電池を用いて、上記実験1
と同様の実験条件で電池特性を評価した。結果を表2に
示す。
Using these carbon fibers coated with a nickel metal layer, batteries B1 to B1 were prepared in the same manner as in Example 6 (battery A6).
B7 was produced. Note that the battery B4 is the same as the battery A6 of Experiment 1 described above. Experiment 1 was performed using the obtained battery.
The battery characteristics were evaluated under the same experimental conditions as described above. Table 2 shows the results.

【0042】[0042]

【表2】 [Table 2]

【0043】表2に示す結果から明らかなように、ニッ
ケル金属層被覆炭素繊維のニッケル金属層の厚みとして
は、特に0.05〜1.0μmが好ましいことがわか
る。ニッケル金属層の厚みが0.01μmである電池B
1では、電池内圧が若干高くなっており、電池内圧上昇
を抑制する効果が電池B2〜B7に比べ低くなってい
る。また、ニッケル金属層の厚みが1.5μmである電
池B7においては、炭素繊維の柔軟性が小さくなり、合
金粒子間に炭素繊維が入りにくくなり、そのため、合金
電極中の炭素繊維の分散性が悪くなったため、電池特性
が若干低下したものと思われる。
As is clear from the results shown in Table 2, the thickness of the nickel metal layer of the carbon fiber coated with the nickel metal layer is particularly preferably 0.05 to 1.0 μm. Battery B having a nickel metal layer thickness of 0.01 μm
In No. 1, the battery internal pressure is slightly higher, and the effect of suppressing the increase in the battery internal pressure is lower than that of the batteries B2 to B7. Further, in battery B7 in which the thickness of the nickel metal layer is 1.5 μm, the flexibility of the carbon fibers is reduced, and the carbon fibers are less likely to enter between the alloy particles. Therefore, the dispersibility of the carbon fibers in the alloy electrode is reduced. It seems that the battery characteristics deteriorated slightly due to the deterioration.

【0044】上記実験においては、水素吸蔵合金組成と
して、MmNixCoyzのMが、Al及びMnである
ものを用いたが、これ以外にFe、Cu、Mg、Sn、
Si、W、Zn及びCrをMとして添加した水素吸蔵合
金組成でも同様の効果が確認されている。
In the above experiment, the composition of MmNi x Co y Mz in which M is Al and Mn was used as the hydrogen storage alloy composition. In addition, Fe, Cu, Mg, Sn,
A similar effect has been confirmed in a hydrogen storage alloy composition in which Si, W, Zn and Cr are added as M.

【0045】また、上記実験1及び2においては、水素
吸蔵合金粒子をロール急冷法で作製しているが、アトマ
イズ法及びアルゴン雰囲気中のアーク溶解炉で溶解して
製造する鋳造法による水素吸蔵合金粒子を用いた場合に
も同様の効果が確認されている。
In Experiments 1 and 2, the hydrogen storage alloy particles were produced by the roll quenching method. However, the hydrogen storage alloy particles were produced by an atomizing method and a casting method produced by melting in an arc melting furnace in an argon atmosphere. Similar effects have been confirmed when particles are used.

【0046】[0046]

【発明の効果】本発明によれば、充電時の電池内圧の上
昇を抑制することができると共に、高率放電時の放電容
量の低下を抑制することができる。従って、高容量及び
高出力化が可能となるため、ポータブル機器の高性能化
にも対応することができる。
According to the present invention, it is possible to suppress an increase in the internal pressure of the battery during charging and to suppress a decrease in the discharge capacity during high-rate discharging. Therefore, high capacity and high output can be achieved, and it is possible to cope with higher performance of a portable device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水素吸蔵合金電極における水素吸蔵合
金粒子とニッケル金属層被覆炭素繊維の状態を示す模式
的断面図。
FIG. 1 is a schematic sectional view showing a state of hydrogen storage alloy particles and a carbon fiber coated with a nickel metal layer in a hydrogen storage alloy electrode of the present invention.

【図2】本発明の実施例において作製したニッケル水素
蓄電池の構造を示す模式的断面図。
FIG. 2 is a schematic cross-sectional view showing the structure of a nickel-metal hydride storage battery manufactured in an example of the present invention.

【符号の説明】[Explanation of symbols]

1…正極 2…負極 3…セパレーター 4…正極リード 5…負極リード 6…正極外部端子 7…負極缶 8…封口蓋 9…コイルスプリング 10…絶縁性パッキング 11…水素吸蔵合金粒子 12…ニッケル金属層被覆炭素繊維 13…ニッケル金属層被覆炭素繊維の端部 DESCRIPTION OF SYMBOLS 1 ... Positive electrode 2 ... Negative electrode 3 ... Separator 4 ... Positive electrode lead 5 ... Negative electrode lead 6 ... Positive electrode external terminal 7 ... Negative electrode can 8 ... Sealing lid 9 ... Coil spring 10 ... Insulating packing 11 ... Hydrogen storage alloy particles 12 ... Nickel metal layer Coated carbon fiber 13: End of nickel metal layer-coated carbon fiber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 菊子 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 木本 衛 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 伊藤 靖彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H003 AA02 AA04 BB02 BB11 BB15 BC01 BC02 BC05 BD00 BD04 5H016 AA02 EE01 HH01 HH13  ──────────────────────────────────────────────────の Continued on the front page (72) Kikuko Kato 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Mamoru Kimoto 2-chome Keihanhondori, Moriguchi-shi, Osaka No. 5-5 Sanyo Electric Co., Ltd. (72) Inventor Yasuhiko Ito 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term in Sanyo Electric Co., Ltd. 5H003 AA02 AA04 BB02 BB11 BB15 BC01 BC02 BC05 BD00 BD04 5H016 AA02 EE01 HH01 HH13

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金粒子と、炭素繊維と、結着
剤とからなるアルカリ蓄電池用水素吸蔵合金電極であっ
て、 前記炭素繊維がニッケル金属層で被覆されていることを
特徴とするアルカリ蓄電池用水素吸蔵合金電極。
1. An alkaline storage battery hydrogen storage alloy electrode comprising hydrogen storage alloy particles, carbon fibers, and a binder, wherein the carbon fibers are coated with a nickel metal layer. Hydrogen storage alloy electrode for storage batteries.
【請求項2】 前記炭素繊維が、水素吸蔵合金粒子10
0重量部に対して、0.05〜10.0重量部含有され
ていることを特徴とする請求項1に記載のアルカリ蓄電
池用水素吸蔵合金電極。
2. The method according to claim 1, wherein the carbon fibers are made of hydrogen storage alloy particles.
The hydrogen storage alloy electrode for an alkaline storage battery according to claim 1, wherein the electrode is contained in an amount of 0.05 to 10.0 parts by weight with respect to 0 parts by weight.
【請求項3】 前記ニッケル金属層の厚みが0.05〜
1.0μmであることを特徴とする請求項1または2に
記載のアルカリ蓄電池用水素吸蔵合金電極。
3. The nickel metal layer has a thickness of 0.05 to 0.05.
The hydrogen storage alloy electrode for an alkaline storage battery according to claim 1, wherein the electrode is 1.0 μm.
【請求項4】 前記炭素繊維の端部において、炭素繊維
の表面が露出していることを特徴とする請求項1〜3の
いずれか1項に記載のアルカリ蓄電池用水素吸蔵合金電
極。
4. The hydrogen storage alloy electrode for an alkaline storage battery according to claim 1, wherein a surface of the carbon fiber is exposed at an end of the carbon fiber.
【請求項5】 請求項1〜4のいずれか1項に記載の水
素吸蔵合金電極を負極として備えることを特徴とするア
ルカリ蓄電池。
5. An alkaline storage battery comprising the hydrogen storage alloy electrode according to claim 1 as a negative electrode.
JP26389699A 1999-09-17 1999-09-17 Hydrogen storage alloy electrode for alkaline storage battery and alkaline storage battery Expired - Fee Related JP3863689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26389699A JP3863689B2 (en) 1999-09-17 1999-09-17 Hydrogen storage alloy electrode for alkaline storage battery and alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26389699A JP3863689B2 (en) 1999-09-17 1999-09-17 Hydrogen storage alloy electrode for alkaline storage battery and alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2001085012A true JP2001085012A (en) 2001-03-30
JP3863689B2 JP3863689B2 (en) 2006-12-27

Family

ID=17395768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26389699A Expired - Fee Related JP3863689B2 (en) 1999-09-17 1999-09-17 Hydrogen storage alloy electrode for alkaline storage battery and alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3863689B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012138115A3 (en) * 2011-04-06 2013-01-10 주식회사 샤인 Battery having electrode structure including metal fiber and preparation method of electrode structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012138115A3 (en) * 2011-04-06 2013-01-10 주식회사 샤인 Battery having electrode structure including metal fiber and preparation method of electrode structure
US9929409B2 (en) 2011-04-06 2018-03-27 Jenax Inc. Battery having electrode structure including metal fiber and preparation method of electrode structure

Also Published As

Publication number Publication date
JP3863689B2 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
US20070105018A1 (en) Hydrogen-absorbing alloy electrode, alkaline storage battery, and method of manufacturing the alkaline storage battery
JPH02239566A (en) Hydrogen storage alloy electrode for alkaline storage battery
JP3561646B2 (en) Paste type hydrogen storage alloy electrode for alkaline storage batteries
JP2000294234A (en) Nickel hydrogen storage battery and manufacture of the same
JP5148553B2 (en) COMPOSITE MATERIAL FOR ELECTRODE, PROCESS FOR PRODUCING THE SAME AND ALKALINE STORAGE BATTERY USING THE SA
US20090061317A1 (en) Negative electrode for alkaline storage battery and alkaline storage battery
JP3729815B2 (en) Negative electrode plate for nickel-hydrogen storage battery, method for producing the same, and nickel-hydrogen storage battery using the same
JP3183414B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
JP2966627B2 (en) Metal hydride storage battery
JP3863689B2 (en) Hydrogen storage alloy electrode for alkaline storage battery and alkaline storage battery
JPH11111330A (en) Nickel-hydrogen storage battery
JP3469754B2 (en) Hydrogen storage alloy electrode
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
US6924062B2 (en) Nickel-metal hydride storage battery
JP2000182607A (en) Hydrogen storage alloy electrode
JP3071026B2 (en) Metal hydride storage battery
JP3268938B2 (en) Nickel-hydrogen storage battery
EP4250396A1 (en) Nickel-metal hydride battery
JP3192694B2 (en) Alkaline storage battery
JP3851041B2 (en) Hydrogen storage alloy electrode
JPH07107848B2 (en) Non-sintered positive electrode for alkaline storage battery
JP3653412B2 (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery using this electrode
JP3499923B2 (en) Hydrogen storage alloy electrode for metal-hydride alkaline storage batteries and hydrogen storage alloy particles for metal-hydride alkaline storage batteries
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3475055B2 (en) Conductive agent for hydrogen storage alloy electrode and hydrogen storage alloy electrode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees